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Relaxation phenomena in a class of nondissipative systems with two highly disparate time(iseales
Brownian systemshave unique commonalities quantifiable via two scalars. It is shown thaexhetly
solvable problem of the dynamics of aeakly linkedimpurity spin in as=% XY chain belongs to this
dynamical universality class and so does that of a heavy mass in an infinite harmonic oscillator chain and a
spinless quasi two-dimensionattractive Fermi gas in the long-wavelength limit. The case of the strongly
linked impurity in theX'Y chain is also discussed along with the corresponding limits in the harmonic oscillator
chain and the electron-gas problems.

According to the continued-fraction formaliSitCFP) for  purity may exhibit simpler dynamical behavior for the impu-
relaxation studi€’s® one canuniquely specifyhe behavior of  rity spin and those spins in its vicinity than the dynamical
some dynamical variable in the time domain of any Hermit-behavior exhibited by the bulk spins. . .
ian (i.e., nondissipativesystem using two scalar quantities, ~ The physical properties of extremely low impurity quan-
d ando. These quantities specify the dimensionality and thum spin systems, especially the single impurdy-1/2
hypersurface, respectively, of a certain Hilbert space irieisenberg chain and its relation to the one-impurity Kondo
which the dynamical variable of interest, sayt), resides. Problem, have attracted considerable attention within the
As the vectorA(t) evolves in time according to the appro- Past few yearS.In this paper we demonstrate that the dy-
priate equation of motior(i.e., Heisenberg equation for Namicalxx (or yy) correlations of the impurity spin in a
guantum systems and Liouville equation for classical sysfszE XY c_haln with ?S'”g'e weakly bound magnetic impurity
tems, its tip traces out the hypersurfage Thus, knowledge is dynamically equivalento two very different problems.
of d ,the dimensionality of the Hilbert spac,e and the These ardi) the velocity relaxation of a heavy mass impu-
shape of the Hilbert space, is in principle, sufficient to char rity in an infinite harmonic oscillator chaii.e., a slightly

i . . ) ) ‘modified version of the “Brownian motion” problen? and
acterize the dynamical correlatiofi®., relaxation functions (i) the density relaxation in a quasi-2D attractive quantum
involving A(t) for a given system.

. ) . fermion gas at temperatufie= 0.1° The most important com-
~ As we shall see, seemingly unrelated dynamical variableg,onajity between these systems is that they all have two
in very different physical systems may exhibit the sathe pigniy disparate characteristic time scales, just like what one
and o and hence in that specific sense may belong 10 thgngs in Brownian motiort! Hence, we contend that these
samedynamical universality clas¢DUC).” Physical prob-  systems belong to the dynamical universality class of
lems in the same DUC exhibit identical relaxatian all  grownian motion.
times Such knowledge may lead to previously unnoticed The calculation of a dynamical spin pair-correlation
deep connections between the physical systems in the sam ction (SH(t)S™V/{((S%)?), where a=(x,y) for a single

» A9 ()9 i)/ ’

DUC and is hence of significant scientific interest. impurity s=1 XY chain withj being the impurity spin, has

It is well known for instance, that both the=1 XY and . :
: , , : been accomplished as followsThe CFF provides a pre-
transverse IsingTl) models in one-dimension&l D) can be S ) i )
scription for constructing solutions to the Heisenberg equa-

reduced to the free fermion probléhSubsequently, starting tion of motion for some dynamical variable and in turn for

from the Hamiltonians for th&Y and Tl chains, with appro- ; . : : . : .
calculating the dynamical spin pair correlations involving the

priate choice of parameters and with careful consideration : : : .
) ; - _dynamical variable under study. Using the CFF we first ex-
regarding system symmetry, it has been shown that the timée o oo
ress the operatog’(t) as an orthogonal expansion in a

evolutions of any bulk spin in these systems, in the thermoP" . : )
y b y Hilbert space. It is assuméthat the Hilbert space is spanned

dynamic limit, are identical, and hence they belong to theb ) .
same DUC Spin dynamics, however, is sensitive to the ex- ya comp_lete set of orthogonal bases with the orthogonality
! ' eing realized via a suitable scalar product, e.g., the Kubo

istence of translational invariance. A few years ago, it wa

proved that the dynamics of the surfacey spin ir? a semi-Scalar productksP)." Thus,
infinite XY chain is closely relatedthough not exactly
equivalent to that in an infinite harmonic oscillator chain. d-1

This work showed that the breaking of translational invari- S'(t)= 2 f,a,(t), (N
ance allows one to readily probe the simplest possible ways v=0

for excitation to propagate in adY chain(this propagation

is already quite involved for the Heisenberg chaidence, wheref,’s form a complete set dime-independentrthogo-
one may expect that spin chains with a single magnetic imnal bases and,(t)’s are theirtime-dependent coefficients
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The orthogonality of thef,’s are realized through the KSP an infinitesimal perturbation throughout the system. Using
which leads to a simple recurrence relati®R), RR I, for RR lin Eq.(2), T= and, for the present, retaining only the

the f,’s given by lowest-order terms ix we find,
i f,
fv+l:%[H!fv]+Ava7l! (2) Z:(ﬁ(y)(ijfvsjz—(v—l)'“sz+S}(+v jZ+(V_1)“'SjZ)'
where the square braces denote commutators and £0)=even 6
A,=(f,,f)(f,_1,f,_1), v=1, and for this problem in (#0) ’ ©
which spin dynamics in the temperatufe-co limit is con- f
sidered we chooseX(Y)=(XY"—(X)}(YT) (a special case ==, (1SS oy S,
of the KSB. From here on we sei=1 for convenience. @
Since Eqgs(1) and(2) must satisfy the Heisenberg equation »(#0)=odd @
of motion for Sj’(t) one obtains a second RR, RR I, con- ’
cerning thea,(t)’s, where d(v)=(+,—,—,+,+,—,—,+,+,...) for
g v=1,2,3, .. 2. At T=00, recalling the definition of , [see
aV . i i i
A,ia,. = — H—’_av—lv »=0, a_,=0. (3 below Eq.(2)], this implies that
2
o
A more convenient way of writing RR I, for practical A=%, Ay=zv>1 (8)

applications;® is by taking its Laplace transform and there-
after expressin@o(z) as a continued fractiofCF). For er-  and hencer=(«?/2,1/4,1/4,. . .). If all the A,’s were the

godic problemsd—o in Eq. (1),** and henceay(z) is an  same,s would have described the surface of a hypersphere.

infinite CF (ICF) as described below Hence, one can regard the presenas one which describes
the hypersurface of a “distorted” hypersphere. This distor-
ao(2)=WUz+ A1 {z+ Ay /[z+ A5/ (z+ -+ to ©)]}). tion can be readily attributed to the weakened bojutter-

acterized bya<1 in Eq. (5)] joining the nearest neighbors
Sinceay(t) =4(Sf'(t)S/") at T=e=, it follows from Eq. (4) of the impurity in real space which contributes to thiew

that the information for the calculation of the dynamical spintime scale in this problem. The rest of the scalars enter from
pair correlation is contained A}, where theA s are  the existenfasttime scale associated with the dynamics of

functions of multipoint static correlations of the systéfhe the other spins WhiCh are coupled_ bet_ween the nearest neigh-
calculation of theA,’s is greatly simplified at highl’s at bors _by the coupling constant which is set o unity. The .ICF
which the traces o&er the spins that enter into s be- for this problem can be trivially summed and the result is

come trivial to evaluate. The resultant dynamics which, how-
ever, remains highly nontrivial, describes a system in which ag(2)= 1 ’
all the eigenstates are nearly equally Boltzmann weighted 2(1—a®) +a?J%+1
(unless T=« when all the states ar@recisely equally - : .
weighted. In what follows we sketch the exact solution for where _only the positive sign hetween Fhe “.’VO terms in the
a5(1) = 4(SK(1)S") for the s=1/2 XY chain with a single denominator is relevant to insure thats imaginary. Hence,

magnetic impurity at sit¢ in the limit of weak coupling at  “P°" inver§e Laplace transform odo(2) in Eq. (9),
T=%O. We tr?en );how €'fhatrE{Al Ay Ag, L} f([))r tﬁis (1) = 1/2mi [ cdz exp@fag(2), where the contouC runs
spin problem is identical to that for velocity autocorrelation _Ia_lr:)_ng_t?e ”glht side tofbthe |m?g|rt1adry_aX|sl frogn %{Er?_' 'Foo'
function of a heavy impurity in an infinite harmonic oscilla- IS _Integral cannot be evaluated in close or

tor chair'** and that for density relaxation in a 2D quantum “_’IS : tﬂ’o;ha"(:]) has hbeen tﬁ;i:)retssed QX?C“%/ by several
electron gas of attractiveabnormal fermions in the long- WOTKETS. €y have shown o(t) consists of arexpo-

wavelength limit aff =050 nentially decaying(B_rownian motion part and. aroscillatory
Single impurity s=2 XY chain: This system can be de- algebraically decayingart. Hence, at large timde.g., typi-
scribed by the following Hamiltonian: cally t”?"z- for-a~1/10 a.md large tlme dependg upon how
small « is as discussed in Segt al. in Ref. 1)), it is the
N slower algebraic decay that dominates the relaxation process.

H= 2 §i.§+1+a§j.(§jfl+ §j+1), (5) Rigorously one can show that,
i#ji=1

€)

2 * 2\1n
WhereékE(Sf,S{) in the XY chain and the impurity spin ag(t)= az {2(1 62( 2) F<n+ 1) @
which is coupled to its nearest neighbors via the dimension- (20"~ 1)]i=1 [ (1-a%) 2 t
less quantity @, has been labeled as thgh spin and (10
N— 0. The sign of the coupling constant in E§&), whichis  where «—0, I" and J,, are gamma and Bessel functions,
set to unity, is unimportant for our analysis which will be respectively, and time is expressed in units of the coupling
carried out alf=c. To studyS}‘(t), i.e., the dynamics of the constant in Eq(5) which is set to unity. The behavior looks
impurity spin, for the Hamiltonian in Eq(5), we choose markedly exponential-like until ast—e, it acquires
f0=S}<(O)ES}‘. This choice is consistent with the spirit of t~%?cost—m/4) (see Fig. 1 in Sewt al. in Ref. 11. It may
linear-response theory in which one probes the spreading dfe noted that knowingf,}, ag(t) and{A,} one may readily
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solvé for all the quantities in Eq(1) and hence solve for the e,=k?/2m is the kinetic energy of an electron with momen-

. . . 15 N
Heisenberg equation of motid{(t). tum K, CE (cy) are creation(annihilation operators of the

Harmonic oscillator chain with a heavy impurityAs . . - .
. ; P A . . =S 7
mentioned earlierg for an infinite harmonic oscillator chain fermion with momentunk, andV=x,7", where

characterized by

2

N p K N
= — )2
H_i;N 2mi+ i=ZN (Xi+17X)%, 1y

1 ’ !
Vi=goe 2 Iopepeitcl s b1 [bogie s
P#p P
t t
+Cfﬁ’7|2b75’]' (14

wherep;, x; denote the momentum, position of oscillatpr ~ wherev,=2mwe?/k, e=electronic chargef=1, is the Fou-
mi=m if i#0 andm;=mg if i=0 with my>m is a solved rier transform of the Coulomb interaction amongst the spin-
problem!! The Hilbert space of the velocityo(t) of the less electrons in 2D. There is, in general, external pressure/
heavy impurity at site 0 admits the following neutralizing background present to stabilize this system. The
o=(2\,1,1,...),wherex=m/mg. For m/my=A—0, the  primes on the sums implp|<kg, |p+K|>kg, wherekg is
hypersurface of the Hilbert space for the velocity of the im'the Fermi momentum anﬂ# 5, guarantees that the Pauli
.purity.mass. is:dentical E‘O Within.a constantto t_hat of _the exclusion principle is satisfied. The Hamiltonian in Ef4)
impurity spin in thes=; XY chain for a—0. This equiva- o describes the physics of the particle-hole transitions and
lence may be_wewed_ as follows. . ignores the particle-particléhole-holg scatterings which

The key issue is that the characteristic frequencyisq contribute to the total density fluctuations. Knowledge
wo=2yk/my associated with the motion of the heavy mass,qf such density fluctuations readily yields the frequency-
Mo, in the harmonic oscillator chain is vanishingly small gependent polarizibility or the dynamic structure factor.
compared to the frequencies charactenzmg the dynamics of | ot us now focus on the time evolution of this restricted
all the other masses for—0 and hencaw, fixes the mac-  gensity operatopi(t) in the sense that the particle-particle
roscopic time scale. Thus, there are two highly disparate timenole-hole scatterings are ignored,
scales in this problem and hence, in this specific sense, this is
a problem of “Brownian motion.! The details of the inter- N ) R f -
actions between the smaller masses of the chain do not affect pi(t)= 2 [di(p,D)+di(=p,D)], (19
the dynamics of the heavy impurity which is dictated Yy P
For the spin-chain case in the limit af—~0 a simple minded where
understanding of the equivalent physics may be as follows.
The vanishingly small coupling and hence frequency associ-  dg(p,t)=bs(t)cs. (1), dE(ﬁ,t)Ecg+E(t)bg(t)_
ated with the nearest-neighbor interactions of the impurity (16)
spin may be contrasted with the high-frequency associated . i ) ) .
with the interactions amongst all the other spins. Again, it is! "iS Study is valid for high densities and long wavelengths

the slowest time scale governed bythat dictates the impu- (K—0) atT=0. The calculations reveal that to 5] (Refs.

rity spin dynamics. 10,18

Interestingly, this equivalence between the harmonic os- nk2 o
cillator chain and theXY spin chain becomes untenable o=|—/| vt = ,Eng,Eng, o, 17
whene« is not vanishingly small. In fact, the dynamics of the m m

impurity spin more closely resembles that of the bulk spin i”wherenEkE/ZTr. Clearly, if the interaction between the fer-
this regime ofa and _the problem belongs to a very DUC ;1o isattractive i.e.,v, = — 2me/k and 22m/k~ 1, then
Ref. 6 under such circumstances. &s~1, the hypersur- ¢, this problem becomes identical to the spin-impurity
face acquires a totally different structure  with i ohiem in thex Y chain at thew—0 limit and to the heavy
o—(1/4,1/2,3/4,...). There is no known example of & ity problem in the harmonic oscillator chain in the
problem involving masses connected by harmonic spring§ g |imit. This limit for attractive(abnormal fermions then
that exhibit such a. describes a “Brownian” system in which the dynamics is

Quasi-2D attractive quantum fermion gas atl atlong  gictated completely by the slow time scale entering from
wavelengthsThe problem with electron&s fermiong has (m/m—2e2m/K).

been extensively studied by_ many authjdlrs_lluch progress Physically the fast time scale, entering from,

:lzso?fﬁg d’gigﬁ '2 Cgr”astgficr:'chgﬁ?cgzzué'oggr;:g g)ér:]am; €2k? (n>1), describes the vibrations of the Fermi surface

These authors Zonpsidered the Saw)allda Ha)r/niltéﬁ'md i 9 of the noninteracting system. The slow time scale describes
9 the single-particle excitations corresponding to particle-hole

nored the electron spins to write excitations immediately above the Fermi sea due to the at-
tractive interaction between the fermions.

Localization limit: Returning to theX'Y model, for a—oo,
i.e., a system which effectively behaves as a three Xpin
cluster, one finds that the ICF in E() truncates at\5=0.
This implies that the dynamical behavior is characterized by
Ho=> eclck, (13  threefrequencies ai»/aJ=0, 1/y2 and aty2. It turns out

k that due to the two-dimensional nature of the spin inXhé

H=Hy+V, (12)

where
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model, this behavior is slightly more complex than what oneeither frozen or are completely overwhelmed by the plasma
obtains in thex—co limit of the harmonic oscillator chain oscillation (strong-coupling limit. Thus, for alle except at
which simply yields the plasma mode frequency. As pointedx— 0, the spin problem is distinct from the other two.

out by Leeetal,’ in the electron-gas problem this corre- The Physics Department of SUNY Buffalo kindly sup-
sponds to the case in which the single-particle motions ar@orted this research.
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