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Relaxation phenomena in a class of nondissipative systems with two highly disparate time scales~i.e.,
Brownian systems! have unique commonalities quantifiable via two scalars. It is shown that theexactly
solvable problem of the dynamics of aweakly linkedimpurity spin in as5

1
2 XY chain belongs to this

dynamical universality class and so does that of a heavy mass in an infinite harmonic oscillator chain and a
spinless quasi two-dimensionalattractiveFermi gas in the long-wavelength limit. The case of the strongly
linked impurity in theXY chain is also discussed along with the corresponding limits in the harmonic oscillator
chain and the electron-gas problems.

According to the continued-fraction formalism1 ~CFF! for
relaxation studies2,3 one canuniquely specifythe behavior of
some dynamical variable in the time domain of any Hermit-
ian ~i.e., nondissipative! system using two scalar quantities,
d ands. These quantities specify the dimensionality and the
hypersurface, respectively, of a certain Hilbert space in
which the dynamical variable of interest, sayA(t), resides.
As the vectorA(t) evolves in time according to the appro-
priate equation of motion~i.e., Heisenberg equation for
quantum systems and Liouville equation for classical sys-
tems!, its tip traces out the hypersurfaces. Thus, knowledge
of d, the dimensionality of the Hilbert space, ands, the
shape of the Hilbert space, is in principle, sufficient to char-
acterize the dynamical correlations~i.e., relaxation functions!
involving A(t) for a given system.

As we shall see, seemingly unrelated dynamical variables
in very different physical systems may exhibit the samed
and s and hence in that specific sense may belong to the
samedynamical universality class~DUC!.5 Physical prob-
lems in the same DUC exhibit identical relaxationat all
times. Such knowledge may lead to previously unnoticed
deep connections between the physical systems in the same
DUC and is hence of significant scientific interest.

It is well known for instance, that both thes51
2 XY and

transverse Ising~TI! models in one-dimensional~1D! can be
reduced to the free fermion problem.4 Subsequently, starting
from the Hamiltonians for theXY and TI chains, with appro-
priate choice of parameters and with careful considerations
regarding system symmetry, it has been shown that the time
evolutions of any bulk spin in these systems, in the thermo-
dynamic limit, are identical, and hence they belong to the
same DUC.6 Spin dynamics, however, is sensitive to the ex-
istence of translational invariance. A few years ago, it was
proved that the dynamics of the surface spin in a semi-
infinite XY chain is closely related~though not exactly
equivalent! to that in an infinite harmonic oscillator chain.7

This work showed that the breaking of translational invari-
ance allows one to readily probe the simplest possible ways
for excitation to propagate in anXY chain ~this propagation
is already quite involved for the Heisenberg chain!. Hence,
one may expect that spin chains with a single magnetic im-

purity may exhibit simpler dynamical behavior for the impu-
rity spin and those spins in its vicinity than the dynamical
behavior exhibited by the bulk spins.

The physical properties of extremely low impurity quan-
tum spin systems, especially the single impuritys51/2
Heisenberg chain and its relation to the one-impurity Kondo
problem, have attracted considerable attention within the
past few years.8 In this paper we demonstrate that the dy-
namical xx ~or yy! correlations of the impurity spin in a
s5 1

2 XY chain with a single weakly bound magnetic impurity
is dynamically equivalentto two very different problems.5

These are~i! the velocity relaxation of a heavy mass impu-
rity in an infinite harmonic oscillator chain~i.e., a slightly
modified version of the ‘‘Brownian motion’’ problem!,9 and
~ii ! the density relaxation in a quasi-2D attractive quantum
fermion gas at temperatureT50.10 The most important com-
monality between these systems is that they all have two
highly disparate characteristic time scales, just like what one
finds in Brownian motion.11 Hence, we contend that these
systems belong to the dynamical universality class of
Brownian motion.

The calculation of a dynamical spin pair-correlation
function, ^Sj

a(t)Sj
a&/^(Sj

a)2&, wherea5(x,y) for a single
impurity s5 1

2 XY chain with j being the impurity spin, has
been accomplished as follows.12 The CFF provides a pre-
scription for constructing solutions to the Heisenberg equa-
tion of motion for some dynamical variable and in turn for
calculating the dynamical spin pair correlations involving the
dynamical variable under study. Using the CFF we first ex-
press the operatorSj

a(t) as an orthogonal expansion in a
Hilbert space. It is assumed2 that the Hilbert space is spanned
by a complete set of orthogonal bases with the orthogonality
being realized via a suitable scalar product, e.g., the Kubo
scalar product~KSP!.1 Thus,

Sj
a~ t !5 (

n50

d21

f nan~ t !, ~1!

wheref n’s form a complete set oftime-independentorthogo-
nal bases andan(t)’s are their time-dependent coefficients.
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The orthogonality of thef n’s are realized through the KSP
which leads to a simple recurrence relation~RR!, RR I, for
the f n’s given by

f n115
i

\
@H, f n#1Dn f n21 , ~2!

where the square braces denote commutators and
Dn5( f n , f n)/( f n21 , f n21), n>1, and for this problem in
which spin dynamics in the temperatureT→` limit is con-
sidered we choose (X,Y)[^XY†&2^X&^Y†& ~a special case
of the KSP!. From here on we set\[1 for convenience.
Since Eqs.~1! and ~2! must satisfy the Heisenberg equation
of motion for Sj

a(t) one obtains a second RR, RR II, con-
cerning thean(t)’s,

Dn11an1152
dan

dt
1an21 , n>0, a21[0. ~3!

A more convenient way of writing RR II, for practical
applications,13 is by taking its Laplace transform and there-
after expressinga0(z) as a continued fraction~CF!. For er-
godic problems,d→` in Eq. ~1!,14 and hencea0(z) is an
infinite CF ~ICF! as described below

a0~z!51/„z1D1 /$z1D2 /@z1D3 /~z1••• to `!#%….
~4!

Sincea0(t)54^Sj
a(t)Sj

a& at T5`, it follows from Eq. ~4!
that the information for the calculation of the dynamical spin
pair correlation is contained in$Dn%, where theDn’s are
functions of multipoint static correlations of the system.7 The
calculation of theDn’s is greatly simplified at highT’s at
which the traces over the spins that enter into theDn’s be-
come trivial to evaluate. The resultant dynamics which, how-
ever, remains highly nontrivial, describes a system in which
all the eigenstates are nearly equally Boltzmann weighted
~unless T5` when all the states areprecisely equally
weighted!. In what follows we sketch the exact solution for
a0(t)54^Sj

x(t)Sj
x& for the s51/2 XY chain with a single

magnetic impurity at sitej in the limit of weak coupling at
T5`. We then show, thats[$D1 ,D2 ,D3 , . . . % for this
spin problem is identical to that for velocity autocorrelation
function of a heavy impurity in an infinite harmonic oscilla-
tor chain5,11 and that for density relaxation in a 2D quantum
electron gas of attractive~abnormal! fermions in the long-
wavelength limit atT50.5,10

Single impurity s51
2 XY chain:This system can be de-

scribed by the following Hamiltonian:

H5 (
iÞ j ,i51

N

SW i•SW i111aSW j•~SW j211SW j11!, ~5!

whereSW k[(Sk
x ,Sk

y) in the XY chain and the impurity spin
which is coupled to its nearest neighbors via the dimension-
less quantitya, has been labeled as thej th spin and
N→`. The sign of the coupling constant in Eq.~5!, which is
set to unity, is unimportant for our analysis which will be
carried out atT5`. To studySj

x(t), i.e., the dynamics of the
impurity spin, for the Hamiltonian in Eq.~5!, we choose
f 05Sj

x(0)[Sj
x . This choice is consistent with the spirit of

linear-response theory in which one probes the spreading of

an infinitesimal perturbation throughout the system. Using
RR I in Eq.~2!, T5` and, for the present, retaining only the
lowest-order terms ina we find,

f n

a
5f~n!~Sj2n

x Sj2~n21!
z

•••Sj
z1Sj1n

x Sj1~n21!
z

•••Sj
z!,

n~Þ0!5even, ~6!

f n

a
5f~n!~Sj2n

y Sj2~n21!
z

•••Sj
z1Sj1n

y Sj1~n21!
z

•••Sj
z!,

n~Þ0!5odd, ~7!

where f(n)5(1,2,2,1,1,2,2,1,1, . . . ) for
n51,2,3, . . .̀ . At T5`, recalling the definition ofDn @see
below Eq.~2!#, this implies that

D15
a2

2
, Dn5

1

4
,n.1, ~8!

and hences5(a2/2,1/4,1/4,. . . ). If all the Dn’s were the
same,s would have described the surface of a hypersphere.
Hence, one can regard the presents as one which describes
the hypersurface of a ‘‘distorted’’ hypersphere. This distor-
tion can be readily attributed to the weakened bonds@char-
acterized bya!1 in Eq. ~5!# joining the nearest neighbors
of the impurity in real space which contributes to theslow
time scale in this problem. The rest of the scalars enter from
the existentfast time scale associated with the dynamics of
the other spins which are coupled between the nearest neigh-
bors by the coupling constant which is set to unity. The ICF
for this problem can be trivially summed and the result is

a0~z!5
1

z~12a2!1a2Az211
, ~9!

where only the positive sign between the two terms in the
denominator is relevant to insure thatz is imaginary. Hence,
upon inverse Laplace transform ofa0(z) in Eq. ~9!,
a0(t)51/2p i*Cdz exp(zt)a0(z), where the contourC runs
along the right side of the imaginary axis from2 i` to i`.
This integral cannot be evaluated in closed form.2,11 For
a→0, t→` a0(t) has been expressed exactly by several
workers.11 They have shown thata0(t) consists of anexpo-
nentially decaying~Brownian motion! part and anoscillatory
algebraically decayingpart. Hence, at large times~e.g., typi-
cally t;102, for a;1/10 and large time depends upon how
small a is as discussed in Senet al. in Ref. 11!, it is the
slower algebraic decay that dominates the relaxation process.
Rigorously one can show that,5

a0~ t !5
a2

pu~2a221!u (n51

` F2~12a2!

~12a2!2 G
n

GS n1
1

2D Jn~ t !tn
,

~10!

where a→0, G and Jn are gamma and Bessel functions,
respectively, and timet is expressed in units of the coupling
constant in Eq.~5! which is set to unity. The behavior looks
markedly exponential-like until ast→`, it acquires
t23/2cos(t2p/4) ~see Fig. 1 in Senet al. in Ref. 11!. It may
be noted that knowing$ f n%, a0(t) and$Dn% one may readily
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solve7 for all the quantities in Eq.~1! and hence solve for the
Heisenberg equation of motionSj

x(t).15

Harmonic oscillator chain with a heavy impurity:As
mentioned earlier,s for an infinite harmonic oscillator chain
characterized by

H5 (
i52N

N pi
2

2mi
1
k

2 (
i52N

N

~xi112xi !
2, ~11!

wherepi , xi denote the momentum, position of oscillatori ,
mi5m if iÞ0 andmi5m0 if i50 with m0@m is a solved
problem.11 The Hilbert space of the velocityv0(t) of the
heavy impurity at site 0 admits the following
s5(2l,1,1, . . . ), wherel5m/m0 . Form/m05l→0, the
hypersurface of the Hilbert space for the velocity of the im-
purity mass isidentical ~to within a constant! to that of the
impurity spin in thes51

2 XY chain fora→0. This equiva-
lence may be viewed as follows.

The key issue is that the characteristic frequency
v0[2Ak/m0 associated with the motion of the heavy mass,
m0 , in the harmonic oscillator chain is vanishingly small
compared to the frequencies characterizing the dynamics of
all the other masses forl→0 and hencev0 fixes the mac-
roscopic time scale. Thus, there are two highly disparate time
scales in this problem and hence, in this specific sense, this is
a problem of ‘‘Brownian motion.’’11 The details of the inter-
actions between the smaller masses of the chain do not affect
the dynamics of the heavy impurity which is dictated byl.
For the spin-chain case in the limit ofa→0 a simple minded
understanding of the equivalent physics may be as follows.
The vanishingly small coupling and hence frequency associ-
ated with the nearest-neighbor interactions of the impurity
spin may be contrasted with the high-frequency associated
with the interactions amongst all the other spins. Again, it is
the slowest time scale governed bya that dictates the impu-
rity spin dynamics.

Interestingly, this equivalence between the harmonic os-
cillator chain and theXY spin chain becomes untenable
whena is not vanishingly small. In fact, the dynamics of the
impurity spin more closely resembles that of the bulk spin in
this regime ofa and the problem belongs to a very DUC
Ref. 6 under such circumstances. Asa→1, the hypersur-
face acquires a totally different structure with
s→(1/4,1/2,3/4,. . . ). There is no known example of a
problem involving masses connected by harmonic springs
that exhibit such as.

Quasi-2D attractive quantum fermion gas at T50 at long
wavelengths:The problem with electrons~as fermions! has
been extensively studied by many authors.10 Much progress
has been made in constructing exact solution for the dynam-
ics of the density operator in recent years by Lee and Hong.10

These authors considered the Sawada Hamiltonian16 and ig-
nored the electron spins to write

H5H01V, ~12!

where

H05(
kW

ekckW
†
ckW , ~13!

ek5k2/2m is the kinetic energy of an electron with momen-
tum kW , ckW

† (ckW) are creation~annihilation! operators of the

fermion with momentumkW , andV5(kV k , where

V k5
1

2
vk ( 8

pÞp8
@bpWcpW 1kW1c

2pW 2kW
†

bpW
†
#( 8
pW 8

@b2pW 8c2pW 82kW

1c
2pW 82kW
†

b
2pW 8
†

#, ~14!

wherevk52pe2/k, e5electronic charge,\[1, is the Fou-
rier transform of the Coulomb interaction amongst the spin-
less electrons in 2D. There is, in general, external pressure/
neutralizing background present to stabilize this system. The
primes on the sums implyupW u,kF , upW 1kW u.kF , wherekF is
the Fermi momentum andpW ÞpW 8 guarantees that the Pauli
exclusion principle is satisfied. The Hamiltonian in Eq.~14!
only describes the physics of the particle-hole transitions and
ignores the particle-particle~hole-hole! scatterings which
also contribute to the total density fluctuations. Knowledge
of such density fluctuations readily yields the frequency-
dependent polarizibility or the dynamic structure factor.17

Let us now focus on the time evolution of this restricted
density operatorr̃kW(t) in the sense that the particle-particle
~hole-hole! scatterings are ignored,

r̃kW~ t !5( 8
pW

@dkW~pW ,t !1dkW
†
~2pW ,t !#, ~15!

where

dkW~pW ,t ![bpW~ t !cpW 1kW~ t !, dkW
†
~pW ,t ![cpW 1kW

†
~ t !bpW

†
~ t !.

~16!

This study is valid for high densities and long wavelengths
(k→0) atT50. The calculations reveal that to O(k2) ~Refs.
10,18!

s5Fnk2m S vk1 p

mD ,eF2k2,eF2k2, . . . G , ~17!

wheren[kF
2/2p. Clearly, if the interaction between the fer-

mions isattractive, i.e.,vk522pe2/k and 2e2m/k;1, then
s for this problem becomes identical to the spin-impurity
problem in theXY chain at thea→0 limit and to the heavy
impurity problem in the harmonic oscillator chain in the
l→0 limit. This limit for attractive~abnormal! fermions then
describes a ‘‘Brownian’’ system in which the dynamics is
dictated completely by the slow time scale entering from
(p/m22e2p/k).

Physically the fast time scale, entering fromDn

5eF
2k2 (n.1), describes the vibrations of the Fermi surface

of the noninteracting system. The slow time scale describes
the single-particle excitations corresponding to particle-hole
excitations immediately above the Fermi sea due to the at-
tractive interaction between the fermions.

Localization limit:Returning to theXY model, fora→`,
i.e., a system which effectively behaves as a three spinXY
cluster, one finds that the ICF in Eq.~5! truncates atD550.
This implies that the dynamical behavior is characterized by
threefrequencies atv/aJ50, 1/A2 and atA2. It turns out
that due to the two-dimensional nature of the spin in theXY
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model, this behavior is slightly more complex than what one
obtains in thel→` limit of the harmonic oscillator chain
which simply yields the plasma mode frequency. As pointed
out by Leeet al.,5 in the electron-gas problem this corre-
sponds to the case in which the single-particle motions are

either frozen or are completely overwhelmed by the plasma
oscillation ~strong-coupling limit!. Thus, for alla except at
a→0, the spin problem is distinct from the other two.
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