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Amean-field theory of the spin-Peierls ordered state in a magnetic field is proposed for the two-dimensional
Heisenberg model coupled to phonons. We show that fermionic excitations dominate the thermodynamics of
this kind of system leading to a robust spin-Peierls order parameter or energy gap over a wide range of
magnetic field in the low-temperature limit. This picture is shown to be consistent with recent observations
made in the CuGeO3 material.

The recent discovery of a spin-Peierls~SP! transition in
the inorganic compound CuGeO3 prompts renewed interest
for this kind of structural instability.1,2 Evidence for such a
nonmagnetic transition has been exemplified in several ways.
The lattice distortion has been well established by x-ray and
elastic neutron experiments.3–5 The magnetic susceptibility
decreases exponentially in the ordered state showing a gap in
the spin excitations.1,6 This is also confirmed by heat-
capacity measurements which present a thermally activated
component below the SP critical temperature.7 An essential
ingredient which enters in the theoretical description of ther-
modynamic properties of the SP ordered state is the spectrum
of elementary excitations. Recent acoustic experiments8 per-
formed under magnetic field revealed that despite the ex-
pected reduction of the SP transition temperature under the
application of a uniform magnetic field, the lattice distortion
and in turn the gap remain unaffected by the field in the
low-temperature domain of the ordered state. This rigidity of
the SP order parameter was found to persist up to a field of
13 T or so. It clearly indicates that at variance with EPR and
neutron-scattering experiments6,9 the full triplet splitting
does not show up for thermodynamic properties. This salient
feature, though implicit in previous one-dimensional
calculations10,11proved to be a natural consequence of Fermi
statistics for elementary excitations of the spin-Peierls state.
From the Bethe ansatz solution of the Heisenberg model,
fermionic excitations are well known to already characterize
the properties of the undistorted antiferromagnetic spin
chain. This is also depicted by the Jordan-Wigner~JW! ferm-
ion representation of spins which tells us that a band picture
of excitations in terms of particles and holes excited across a
gap prevails in the one-dimensional dimerized case.10 In this
work, we present a mean-field theory of the spin-Peierls or-

dered state in two dimensions which establishes the fermi-
onic nature of spin excitations in the thermodyanmic proper-
ties of CuGeO3. The temperature profile of the energy gap
as well as its field dependence are given and compared to
experiments. Finally, the zero-temperature energy gap is cal-
culated as a function of the dimerization by varying the spin-
phonon coupling constant.

We start the analysis with the two-dimensional~2D!
Heisenberg model
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where J(8)5J0(16d) are the intrachain antiferromagnetic
exchange couplings modulated by the lattice displacement
u5d/g with g being a constant.J' is the interchain antifer-
romagnetic coupling andK is the elastic constant for the
lattice displacement which is taken in the static adiabatic
limit.14 The spin part of the Hamiltonian can be transformed
by means of the generalized Jordan-Wigner~JW!
transformation15
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the lattice, the Hamiltonian can be written in the form
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whereA andB label the two sublattices and the phasesF
and F8 of the XY part are chosen so that the flux per
plaquette isp.16 For the spin-Peierls problem at hand, the
four fermion operator terms are decoupled in a Hartree-Fock
approximation by introducing an alternating bond order pa-
rameterQ5^c2i , j c2i11,j

† & and Q85^c2i11,j c2i12,j
† & in the

longitudinal direction, and a uniform one,P5^ci ,2j ci ,2j11
† &

for the transverse direction. The choice of an alternated lon-
gitudinal order parameter is motivated by the alternation of
the exchange interactionJ andJ8. Following the example of
theXY part, the phases of the order parametersQ, Q8, and
P are fixed top and 0 on adjacent longitudinal bonds
whereas in the perpendicular direction the bonds are phase-
less. In Fourier space the mean-field Hamiltonian becomes
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where e(k)5J1e
ikx2J2e

2 ikx12J'1cosky with J15J(1
12uQu), J25J8(112uQ8u), and J'15J'(112uPu). The
Hamiltonian~4! is diagonalized using the following canoni-
cal transformation:
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whereuk5vk5eiak/2/A2. ak is given by

tanak5
~J11J2!sinkx
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The Hamiltonian then becomes
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N being the number of sites. As for the dispersion relation, it
takes the form

E6~k!56 1
2 ue~k!u, ~7!

where (6) refers to upper and lower band.
The equilibrium values of the order parameters are ob-

tained from the minimization of the free energy per site
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with respect to both spin and lattice order parameters and
where n(x)5(11ebx)21 is the Fermi distribution factor.
This leads to a set of coupled mean-field equations which
can be solved numerically.

The ground-state wave function corresponds to the case
where the lower band is filled:
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It is formed by the pairs of fermions (ck
A† ,ck

B†) with the
weightsvk and2uk* , respectively, which correspond from
~2! to pairs of spins denoted (↑,↓)k in reciprocal space. The
ground state is a singlet since^FGSuSzuFGS&
5^FGSu(Stot)2uFGS&50, while excited states with a wave
vector k8, relevant to magnetic susceptibility, specific heat,
etc., consist in creatingparticle-holeexcitations, namely
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In terms of original spins, the particle and the hole, albeit
delocalized as band excitations, will correspond to a kink in
the spin configuration. SinceSz561 for the particle and the
hole, such excitations refer to theSz50 component of the
S51 triplet state. Generally speaking, this is consistent with
the fact that the SP order parameter has only one component.
It is worthwhile to note here that allowing for lattice fluctua-
tions beyond mean field, namely statistical variation ofd
with wave vectors different thanq5p, the kink is present in
both spin and lattice configurations. The dispersion relation
for each member of the particle-hole pair is given by

1
2 ^FEXuHuFEX&2 1

2 ^FGSuHuFGS&5E1~k!52E2~k!

and corresponds to an energy gap
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at k05(0,p/2).
The temperature profiles for the gap@Eg(T)# and the lat-

tice distortion @d(T)# are given in Fig. 1. Both quantities
show the characteristic mean-field behavior in (TSP2T)1/2

nearTSP. By way of an application to real material, the use
of the estimated values3,7 J0'117 K'14J' for the longitu-
dinal and transverse exchanges interactions in CuGeO3 al-
lows to adjust the spin-phonon coupling constant
l5J0g

2/K'0.069 in order to get the experimental value
TSP'0.124J0'14.5 K. With such parameters, one gets
Eg'27 K for the zero-temperature gap which is close to
observation. It corresponds to the ratioEg(0)/TSP.1.86
showing a slight deviation from the BCS value.

The effect of a uniform magnetic fieldh is of interest
here. Indeed,h will couple to both particles and holes
through the Zeeman termHh52gmB( iSi

zh which becomes
2gmBh(k(dk

†dk1 f k
†f k) in the JW representation. This sim-

ply adds toH in ~6! as a chemical potential. The mean-field
solution for finite h leads as expected to a reduction of
TSP.

10,12 At very low temperature, the gap and in turn the
lattice distortion order paramater are found to befield-
independent. As shown in Fig. 1, this result is consistent with
recent acoustic data ford(T,h) in CuGeO3,

8 confirming the
band or fermionic nature of excitations. Physically, the num-
ber of thermally excited particle-hole pairs decreases expo-
nentially as the temperature is lowered leading to a vanish-
ingly small effect ofh on each member of the pairs. The
energy of the ordered phase and the order parameter are thus
unaffected by the field asT→0. The rigidity ofEg(0) with
respect toh, depicted in Fig. 1, will then lead to a ratio
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Eg(0)/TSP(h) that grows away from the BCS value. It is
worthwhile to note that similar effects have been recently
observed for the Peierls state under field, that is a system for
which a band picture of electronic excitations is well known
to prevail.13 The situation is clearly different nearTSPwhere
the number of thermally excited particles and holes is much
larger yielding to a sizable effect ofh on the energy and in
turn onTSP. In low field, the latter is found to follow the
usual quadratic decrease withh ~Refs. 10 and 12! as shown
in Fig. 2:

TSP~h!'TSP~0!@12a„gmBh/kBTSP~0!…2#. ~12!

Using the above set of parameters, we finda.0.45 (g'2)
which is compatible with the experimental estimation.17

As for a thermodynamic quantity like the longitudinal
magnetic susceptibilityx(T,h)51/2gmB(d^N&/dh)h , its
evaluation is actually equivalent to the one of compressibil-
ity of JW fermions which becomes
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at low temperature. HereD(Eg) is the density of states at the
energy gap. Therefore the lowest energy gap to be observed
in experiments ~e.g., in CuGeO3) like magnetic
susceptibility1 of the condensed SP state is characterized by
the above particle-hole character. A similar field-independent
thermal activation will be found for the hole and particle
contributions to specific heat, in contrast with the analysis of
the data under field made in Ref. 7.

The low-temperature energy gap profile at higher mag-
netic field is also of interest here. As reported in Fig. 3, the
T→0 gap is essentially field independent up tohc'13 T
where a rapid drop is found. This critical field signals an
instability of the mean-field solution with a gap that goes
down to zero.11 Actually hc proves to be close to the experi-
mental value of 13 T found in Ref. 8 and at which a sharp
drop of the gap amplitude is observed. The result for a lower
temperatureT50.35 K ~curve 3! shows a sharp drop only
aroundhc514 T whereas the gap remains unchanged below

FIG. 1. The temperature profile for the gap is drawn for several
values of the magnetic fieldh: h50, 8, and 10 T corresponding to
the full, dotted, and dashed-dotted lines, respectively. The experi-
mental data of Ref. 8 are reported for comparison forh50 ~circles!,
8 ~squares!, and 10 T~triangles!. In the inset, the dimerization pa-
rameterd as a function ofT for h50 ~full line! and h510 T
~dashed line!.

FIG. 2. The spin-Peierls critical temperature is displayed as a
function of the square of the magnetic field using the parameters
TSP(h50)514.5 K andJ5117 K for CuGeO3. The dotted line is
a fit using Eq.~12! with the valuea.0.45.

FIG. 3. The energy gap is plotted as a function of the magnetic
field. Curves 1 and 2 correspond to the present 2D calculations and
experimental data of Ref. 8 forT54.3 K, respectively. Curve 3 is
the mean-field prediction for a lower-temperatureT50.35 K.
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14 T. The instability of the mean-field solution at large field
indicates that the modulation wave vector is no longer
pinned at the commensurate value (p,p) and must be ad-
justed to an incommensurate value in order to compensate
the effect of the Zeeman energy.

The last point we would like to address concerns the de-
pendence of the energy gap on the amplitude of the dimer-
ization parameterd. At finite J' , it is of the form

Eg~d!5E01c„2d/~11d!…n ~J'!J0 ,d.0!. ~14!

The present two-dimensional bond mean-field theory thus
gives a finite valueE0 of the gap asd→01. A similar dis-
continuity for the gap atd50 has been found recently using
a bond mean-field theory in one dimension.18 Using the
above set of parameters relevant to CuGeO3, namely
J'50.07, one gets, for example,E0.0.18,c.0.83, and the
exponentn.0.68. As for the influence of the transverse ex-
change in the present SP theory, antiparallel spin alignment
promoted byJ' tends to reduce the amplitude of the SP gap,
albeit keeping the value of the exponentn essentially un-
changed. Incidentally, the value ofn obtained here is close to
other mean-field results.19 As for the critical temperature
TSP, it is found to vary linearly with the spin-phonon cou-

pling constantl in the weak-coupling domain. IfJ' be-
comes sufficiently large, however (J'.J'c'0.13J0), the
frustration is strong enough to necessitate a finite spin-
phonon coupling constantlc for the stabilization of a SP
ordered state.

In summary, we have proposed a bond mean-field theory
of the two-dimensional Heisenberg model for the description
of the ordered SP state in a magnetic field. We have shown
that the apparent rigidity for the zero-temperature gap of
CuGeO3 over a wide range of magnetic field is a signature
of particle-hole fermion statistics for the thermodynamic
properties of this kind of system. Finally, transverse spin
exchange is found to compete with the SP ordered state
which can even be suppressed at sufficiently small exchange
anisotropy.
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