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Critical exponents of self-avoiding walks in three dimensions
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We analyze Monte Carlo data of self-avoiding walks with up to about 8000 steps on a simple cubic
lattice with emphasis on the question of the discrepancy between the scaling exponents obtained by renormal-
ization group calculations and Monte Carlo simulations. This discrepancy has been recently investigated by
Dayantis and Palierné’hys. Rev. B49, 3217(1994] for self-avoiding walks of up to 3000 steps, and has been
shown to originate from the finite size of chains generated in Monte Carlo simulations. Our analysis demon-
strates this conjecture and shows that the exponents decrease for longer chains toward the renormalization
group value.

Recently it has been indicated by several Monte Carldotic value of the critical exponent by fitting to a simple
(MC) simulationd*? that the critical exponent of the self-  power law, and corrections to scaling have been necessary
avoiding walk (SAW) in three dimensions exceeds the even for chain lengths of the order of2010° steps. Ac-
renormalization-group(RG) resulf »=0.588+0.001 and cording to the renormalization-groufRG) theory’ one ex-
does not reach an asymptotic value even for rather longects
chains. Table | presents MC simulation estimates of the criti-
cal exponentswg and vg, which correspond to the mean-
square end-to-end distance and the mean-square radius of (Xn)=N?"(Co+CyN 214+ C,N 42+ .. 1) (1)
gyration, respectively*~" The range ofN, which is the
number of steps of the SAW, is indicated for each result. As
has been first noticed by Zifferétthe critical exponent ob- Where(Xy) is the averaged length propeifpr example, the
tained through a log-log plot of the MC data in the range ofmean-square end-to-end distance’=0.588+0.001 and
short chaing99-999 steps in Ref.) s slightly larger than A;=0.47+0.03. Dayantis and Palierheerformed a de-
the critical exponent obtained in the range of longer chaingailed analysis of their datéor N up to 2999 stepswith
(999-9999 steps in Ref.)1This observation is also sup- respect to this scaling law in order to show that the MC
ported by the difference between thevalues obtained in result for v tends towards the RG result dkis increased.
previous MC simulation$;® with chain lengths of up to Assuming that the asymptotic value ofis the RG result,
3000 steps at the most, and the results obtained for longéhey obtained the set of scaling parameters for various length
chains'” as shown in Table I. It should be noted, however,properties, takingA;=0.5 (the fitting result or A;=0.47
that the different values, obtained by dividing the data into (the RG result Their results show that the scaling law in Eg.
two groups of short and long chains, are equal within the(1) describes correctly the data up to 50 steps, while the data
statistical uncertainty of the resufté. above 50 steps are described successfully either by the scal-

The observations discussed above have been conjecturéwy law or by a simple power law withy=0.5919. This
recently by Zifferet and by Dayantis and Palierhto result suggests that the difference between the MC and the RG
from the finite size of the SAW'’s generated in the MC results may originate from the slow decreasevafowards
simulations. Namely, the chains generated in the MC simuthe asymptotic value, which still allows a very good fit of the
lations have not been sufficiently long to reach the asympMC data to a simple power law.

TABLE I. Monte Carlo values of the critical exponenin three dimensions. The exponent corresponds
to the mean-square end-to-end distance and the expegeatthe mean-square radius of gyration.

Nrange vy v Agr As
Rapaport(Ref. 4 200-2400 0.59190.0004 0.59330.0004 1.1340.005 0.1772-0.0006
Madras and SokalRef. 5 200-3000 0.59070.0014 0.593%20.0020 1.156:0.022 0.1768 0.0044
Zifferer (Ref. 1) 99-9999 0.5901 0.5916
99-999 0.5910 0.5925

999-9999 0.5895 0.5910
Dayantis and 50-800 0.5919.0002
Palierne(Ref. 6
Eizenberg and 200-7168 0.5900.0003 0.5914 0.0003 1.1594 0.0005 0.182& 0.0006

Klafter (Ref. 7)
200-3200 0.59080.0004 0.592%0.0004 1.1530.007 0.18030.0007
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1.220 TABLE II. Estimates for the mean-square end-to-end distance
| (R2) and the mean-square radius of gyrati@y).
1212 } N (RR) (SV
© ] 200 603.66-1.27 95.480.18
,':' { { 400 1368.8%3.04 217.740.43
z 1.204 - } { H ﬂ}} ## 608 2247.6%5.11 357.720.73
N 1 800 3107.56¢:7.35 494.641.08
F e { } } 992 4023.889.63 640.641.41
vV } { 1216 5066.8512.43 807.731.78
1 1408 6039.2414.78 963.922.16
1.188 - { 1600 7072.4515.99 1127.0%2.57
1920 8737.2€21.61 1391.593.16
22 28 30 34 38 2560 12 257.2:31.7 1951.044.64
2816 13 706.%35.6 2188.645.18
log,oN 3200 16 042.942.0 2559.18 6.14
3840 19 755.538.0 3151.557.03
FIG. 1. (R_’,%,)_/NzV vs log;oN, uszing the renormalization-group 4 ggg 21 296.6:39.9 3401.395.81
(Ref. 3) prediction 22=1.176. (Ry) is the mean-square end-tq- 22 895 7 36.0 3654.98 4,56
fi(r)wg distance of al-step SAW. Error bars are the standard deV|a-4 608 24 432 & 40 2 3010.44 5 89
' 5120 27 759.953.0 4 435.66:7.92
In this comment we intend to further establish the asser® 632 30981.160.5 4950.05:9.54
tion that » decreases towards the RG result as the chaiff 144 34 400.465.1 5487.7310.5
length is increased. Our first step has been to verify that 6 656 37706.6:78.4 6028.4413.5
obtained from our MC data, indeed decreaseN #screases. 6 912 39528.466.7 6323.2+10.2
As mentioned already the decrease observed in previous MC168 41101.875.7 6581.9913.9
simulation$’” was within the statistical uncertainty of the 7 680 44 666.4£73.6 7145.129.0
results. Here we improve the accuracy of the MC data in7 936 46 502.675.5 7422.16:10.6

the range of relatively long chaindN{E3200) in order to
evidence this decrease. For this purpose we have continued

our previous MC simulatiorfson a simple-cubic lattice that, although the range dfl has not been significantly
to generate SAW's withN in the range from 3200 to changed, we have improved the statistics and accuracy of
7936 steps. As before, we have used the pivot algorithf (RZ) and (S%) in the range of relatively long chains
which has been proven to be extremely efficient for the(N>3200). Therefore, the proportional weight of the results
study of global equilibrium properties of chains. Table Il jn this range, when performing a weighted least-squares fit,
presents the obtained values @3) and(S{), which are s larger in comparison with our previous analysis. This in-
the mean-square end-to-end distance and the mean-squaligates that the critical exponemttends to decrease a
radius of gyration, respectively. The results in Table Ilincreases. In order to show this trend more clearly we have
with N ranging from 200 to 3200 steps were taken from our

previous work! The standard deviations ¢R2) and(S3)

were determined as described in Ref. 7. The number of itera- |
tions for each run was 1:810° for N<3200 and 3.& 10° . {
for N>3200. The computation time for generating 01926 }
3.8x 1P SAW'’s of 7936 steps, for example, was 76 h on the T } { EE }
RS 6000. The initial chain required for the pivot algorithm , . | { } %
was generated using the dimerization methahd it took = ] {
1.5 h on the RS 6000 to generate an initial chain of 7936 | {
steps. x| } {
Fitting our data withN ranging from 200 to 7936 steps to 'z 01895 - }
the power lawAN?” through a log-log plot and using a ((/) '
weighted least-squares figave for(R%)=AgN?"R, 01885
vr=0.5896+ 0.0002, ARr=1.171+0.004 (2) 01375; i
and for(Sﬁ,)=ASN2VS, 22 26 30 a4 38
vs=0.5908+0.0002,  Ag=0.1834+0.0006. (3) log;oN

Theser values are smaller than our previous resuftr FIG. 2. (S3)/N?” vs log,N, using the renormalization-group
N between 200 and 7168, which werg=0.5904+0.0003  (Ref. 3 prediction 2=1.176.(S?%) is the mean-square radius of
and vs=0.5914+0.0003. The difference is due to the fact gyration of anN-step SAW. Error bars are the standard deviation.



5080 BRIEF REPORTS 53

1184 4 1.1820 T
T 1.1800 4
1.180 4 Ps
o w T
> 1 L =~ 1.1780 - *
[aV} [aV}
¢
1.176

1.1760

1.172 4

1.1740

2.2 2.6 3.0 3.4 3.8 22 2.6 3.0 3.4 3.8

log,M log,,M

FIG. 3. Black circles, a plot of 2z, obtained through a log-log FIG. 4. Black circles, a plot of 25, obtained through a log-log
fit of our MC data for(R) with N ranging fromM to 7936 steps,  fit of our MC data for(S2) with N ranging fromM to 7936 steps,
vs log;oM. Error bars are the standard deviation. Solid line, a plotys |og,M. Error bars are the standard deviation. Solid line, a plot
of 2vg, obtained through a log-log fit of the reprodud@®f) val-  of 2, obtained through a log-log fit of the reproductf) val-
ues withN ranging fromM to 8000 steps, vs logM. ues withN ranging fromM to 8000 steps, vs logM.

divided our MC data into two groupsN=<3200 and

N=3200. The critical exponents obtained from our MC data8(P) for chains up to 800 steps. Our results are presented in
with N<3200 aré Figs. 3 and 4(black circles which exhibit 2vg and 2vg vs

log1oM, respectively. The solid lines in Figs. 3 and 4 corre-
vr=0.5908+ 0.0004, Ar=1.153+0.007, (4) spond to the following indirect analysis. First, we obtained
the scaling parameteS, andC; in Eq. (1) using our MC
vs=0.5921+0.0004,  Ag=0.1803+0.0007, data for(R%) and(S2). Then, substitutirzlg these parameters
. into Eq.(1), we obtained new values ¢Ry) and in the
and withN=3200 are rangeq200—8000 steps. Finally, theofit{qiz]g prf)igéure which
_ _ was described above was repeated using the new values of
vr=0.5882:0.0009,  Ar=1.200-0020, (5 (RZ) and(SZ) to obtain “smoothed” curves of the plots in
VS=0.589E 0.0009, AS: 0.1887+0.0028. FigS. 3 and 4, Th'e results of the indirect. analy(s'slid Iine)
are consistent with the results of the direct analybiack
It can be seen that thevalues which have been obtained for circles. It can be seen that the curves in Figs. 3 and 4 de-
N=3200 are significantly smaller than thevalues in the crease as the lower bourM is increased, thus supporting
range ofN=<3200. The difference between the exponents inour previous observations regarding the decrease of the criti-
Ed. (4) and Eq.(5) is not within the statistical uncertainty of cal exponenwv. The curves also show thag obtained in the
the results, especially fars. This provides evidence that  range 16—10* steps is within the RG results
really decreases as the chain length is increased. A further,=1.176+0.002, whilevg in this range is still larger. The
analysis of our results supports this observation. averages ofvg and vg over the values obtained by direct
As mentioned, the critical exponentis expected to de- analysis withM ranging from 1920 to 435@n this range the
crease towards an asymptotic limit Bis—c, with the RG  curves in Figs. 3 and 4 are relatively jlare vz=0.5886 and
results as the asymptotic value. In Figs. 1 and 2 we preseni,=0.5896, and demonstrate the difference betwegand
plots of (RY)/N*7 and (S{)/N*7 vs logyoN. According v Indeed, the results of previous MC simulatibfs’ of
to Eq.(1) these plots should approach a plateauNer1, as  chains up to 19 steps, which were summarized in Table |,
the scaling law in Eq(1) approaches the asymptotic power- show thatvg> vg. In addition, the results in Ref. 2 for the
law behaviorCoN?” with 2v=1.176. The curves in Figs. 1 scaling parameters in Eql) support the observation that
and 2 clearly flatten adl increases although they are too y4 approaches the asymptotic limit more slowly thag.
scattered to prove the existence of a plateau. Figure 2, which In summary, we have extended previous MC simulation
is somewhat less scattered, indicates that the asymptotic limgif SAW’s on a simple-cubic lattice and improved the statis-
for vs has not been recovered within the range of our MCtics and accuracy in the range of relatively long chains. We
simulation. obtained the critical exponentsg and vg of the mean-
Our MC data for(R%) and(S3) have been fitted to the squared end-to-end distance and the mean-square radius of
power lawAN?” over the range oN=M to N=7936 steps gyration, respectively, at different ranges of the chain lengths
for different values of the lower bounill. The purpose of between 200 and 7936 steps. Our results suggest that in the
this analysis is to show the decrease of the critical exponentainge 16— 10* steps vg is within the RG result
when the contribution of relatively short chains is gradually »y=0.588+ 0.001, whilevg is still larger for the same num-
eliminated. A similar analysis has been performed in Refber of steps.
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