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We analyze Monte Carlo data of self-avoiding walks with up to about 8000 steps on a simple cubic
lattice with emphasis on the question of the discrepancy between the scaling exponents obtained by renormal-
ization group calculations and Monte Carlo simulations. This discrepancy has been recently investigated by
Dayantis and Palierne@Phys. Rev. B49, 3217~1994!# for self-avoiding walks of up to 3000 steps, and has been
shown to originate from the finite size of chains generated in Monte Carlo simulations. Our analysis demon-
strates this conjecture and shows that the exponents decrease for longer chains toward the renormalization
group value.

Recently it has been indicated by several Monte Carlo
~MC! simulations1,2 that the critical exponentn of the self-
avoiding walk ~SAW! in three dimensions exceeds the
renormalization-group~RG! result3 n50.58860.001 and
does not reach an asymptotic value even for rather long
chains. Table I presents MC simulation estimates of the criti-
cal exponentsnR and nS , which correspond to the mean-
square end-to-end distance and the mean-square radius of
gyration, respectively.1,4–7 The range ofN, which is the
number of steps of the SAW, is indicated for each result. As
has been first noticed by Zifferer,1 the critical exponent ob-
tained through a log-log plot of the MC data in the range of
short chains~99–999 steps in Ref. 1! is slightly larger than
the critical exponent obtained in the range of longer chains
~999–9999 steps in Ref. 1!. This observation is also sup-
ported by the difference between then values obtained in
previous MC simulations,4–6 with chain lengths of up to
3000 steps at the most, and the results obtained for longer
chains,1,7 as shown in Table I. It should be noted, however,
that the differentn values, obtained by dividing the data into
two groups of short and long chains, are equal within the
statistical uncertainty of the results.1,7

The observations discussed above have been conjectured
recently by Zifferer1 and by Dayantis and Palierne2 to result
from the finite size of the SAW’s generated in the MC
simulations. Namely, the chains generated in the MC simu-
lations have not been sufficiently long to reach the asymp-

totic value of the critical exponentn by fitting to a simple
power law, and corrections to scaling have been necessary
even for chain lengths of the order of 1022103 steps. Ac-
cording to the renormalization-group~RG! theory3 one ex-
pects

^XN&5N2n~C01C1N
2D11C2N

2D21••• ! ~1!

where^XN& is the averaged length property~for example, the
mean-square end-to-end distance!, n50.58860.001 and
D150.4760.03. Dayantis and Palierne2 performed a de-
tailed analysis of their data~for N up to 2999 steps! with
respect to this scaling law in order to show that the MC
result for n tends towards the RG result asN is increased.
Assuming that the asymptotic value ofn is the RG result,
they obtained the set of scaling parameters for various length
properties, takingD150.5 ~the fitting result! or D150.47
~the RG result!. Their results show that the scaling law in Eq.
~1! describes correctly the data up to 50 steps, while the data
above 50 steps are described successfully either by the scal-
ing law or by a simple power law withn50.5919. This
suggests2 that the difference between the MC and the RG
results may originate from the slow decrease ofn towards
the asymptotic value, which still allows a very good fit of the
MC data to a simple power law.

TABLE I. Monte Carlo values of the critical exponentn in three dimensions. The exponentnR corresponds
to the mean-square end-to-end distance and the exponentnS to the mean-square radius of gyration.

N range nR nS AR AS

Rapaport~Ref. 4! 200–2400 0.591960.0004 0.593360.0004 1.13460.005 0.177260.0006
Madras and Sokal~Ref. 5! 200–3000 0.590760.0014 0.593960.0020 1.15660.022 0.176860.0044
Zifferer ~Ref. 1! 99–9999 0.5901 0.5916

99–999 0.5910 0.5925
999–9999 0.5895 0.5910

Dayantis and 50–800 0.591960.0002
Palierne~Ref. 6!
Eizenberg and 200–7168 0.590460.0003 0.591460.0003 1.159460.0005 0.182060.0006
Klafter ~Ref. 7!

200–3200 0.590860.0004 0.592160.0004 1.15360.007 0.180360.0007
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In this comment we intend to further establish the asser-
tion that n decreases towards the RG result as the chain
length is increased. Our first step has been to verify thatn,
obtained from our MC data, indeed decreases asN increases.
As mentioned already the decrease observed in previous MC
simulations1,7 was within the statistical uncertainty of the
results. Here we improve the accuracy of the MC data in
the range of relatively long chains (N.3200) in order to
evidence this decrease. For this purpose we have continued
our previous MC simulations7 on a simple-cubic lattice
to generate SAW’s withN in the range from 3200 to
7936 steps. As before, we have used the pivot algorithm,1,5,7,8

which has been proven to be extremely efficient for the
study of global equilibrium properties of chains. Table II
presents the obtained values of^RN

2 & and ^SN
2 &, which are

the mean-square end-to-end distance and the mean-square
radius of gyration, respectively. The results in Table II
with N ranging from 200 to 3200 steps were taken from our
previous work.7 The standard deviations of^RN

2 & and ^SN
2 &

were determined as described in Ref. 7. The number of itera-
tions for each run was 1.83106 for N<3200 and 3.83106

for N.3200. The computation time for generating
3.83106 SAW’s of 7936 steps, for example, was 76 h on the
RS 6000. The initial chain required for the pivot algorithm
was generated using the dimerization method,9 and it took
1.5 h on the RS 6000 to generate an initial chain of 7936
steps.

Fitting our data withN ranging from 200 to 7936 steps to
the power lawAN2n through a log-log plot and using a
weighted least-squares fit,7 gave for^RN

2 &5ARN
2nR,

nR50.589660.0002, AR51.17160.004 ~2!

and for ^SN
2 &5ASN

2nS,

nS50.590860.0002, AS50.183460.0006. ~3!

Thesen values are smaller than our previous results7 for
N between 200 and 7168, which werenR50.590460.0003
and nS50.591460.0003. The difference is due to the fact

that, although the range ofN has not been significantly
changed, we have improved the statistics and accuracy of
^RN

2 & and ^SN
2 & in the range of relatively long chains

(N.3200). Therefore, the proportional weight of the results
in this range, when performing a weighted least-squares fit,
is larger in comparison with our previous analysis. This in-
dicates that the critical exponentn tends to decrease asN
increases. In order to show this trend more clearly we have

FIG. 1. ^RN
2 &/N2n vs log10N, using the renormalization-group

~Ref. 3! prediction 2n51.176. ^RN
2 & is the mean-square end-to-

end distance of anN-step SAW. Error bars are the standard devia-
tion.

FIG. 2. ^SN
2 &/N2n vs log10N, using the renormalization-group

~Ref. 3! prediction 2n51.176. ^SN
2 & is the mean-square radius of

gyration of anN-step SAW. Error bars are the standard deviation.

TABLE II. Estimates for the mean-square end-to-end distance
^RN

2 & and the mean-square radius of gyration^SN
2 &.

N ^RN
2 & ^SN

2 &

200 603.6661.27 95.4860.18
400 1 368.8763.04 217.7460.43
608 2 247.6165.11 357.7260.73
800 3 107.5067.35 494.6461.08
992 4 023.8869.63 640.6461.41
1 216 5 066.85612.43 807.7361.78
1 408 6 039.24614.78 963.9262.16
1 600 7 072.45615.99 1 127.0762.57
1 920 8 737.20621.61 1 391.5963.16
2 560 12 257.2631.7 1 951.0464.64
2 816 13 706.7635.6 2 188.6465.18
3 200 16 042.9642.0 2 559.1866.14
3 840 19 755.5638.0 3 151.5567.03
4 096 21 296.0639.9 3 401.3965.81
4 352 22 895.7636.0 3 654.9864.56
4 608 24 432.4640.2 3 910.4465.89
5 120 27 759.9653.0 4 435.6667.92
5 632 30 981.1660.5 4 950.0569.54
6 144 34 400.4665.1 5 487.73610.5
6 656 37 706.6678.4 6 028.44613.5
6 912 39 528.4666.7 6 323.21610.2
7 168 41 101.8675.7 6 581.99613.9
7 680 44 666.4673.6 7 145.1269.0
7 936 46 502.0675.5 7 422.16610.6
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divided our MC data into two groups:N<3200 and
N>3200. The critical exponents obtained from our MC data
with N<3200 are7

nR50.590860.0004, AR51.15360.007, ~4!

nS50.592160.0004, AS50.180360.0007,

and withN>3200 are

nR50.588260.0009, AR51.20060.020, ~5!

nS50.589160.0009, AS50.188760.0028.

It can be seen that then values which have been obtained for
N>3200 are significantly smaller than then values in the
range ofN<3200. The difference between the exponents in
Eq. ~4! and Eq.~5! is not within the statistical uncertainty of
the results, especially fornS . This provides evidence thatn
really decreases as the chain length is increased. A further
analysis of our results supports this observation.

As mentioned, the critical exponentn is expected to de-
crease towards an asymptotic limit asN→`, with the RG
results as the asymptotic value. In Figs. 1 and 2 we present
plots of ^RN

2 &/N1.176 and ^SN
2 &/N1.176 vs log10N. According

to Eq.~1! these plots should approach a plateau forN@1, as
the scaling law in Eq.~1! approaches the asymptotic power-
law behaviorC0N

2n with 2n51.176. The curves in Figs. 1
and 2 clearly flatten asN increases although they are too
scattered to prove the existence of a plateau. Figure 2, which
is somewhat less scattered, indicates that the asymptotic limit
for nS has not been recovered within the range of our MC
simulation.

Our MC data for^RN
2 & and ^SN

2 & have been fitted to the
power lawAN2n over the range ofN5M to N57936 steps
for different values of the lower boundM . The purpose of
this analysis is to show the decrease of the critical exponent
when the contribution of relatively short chains is gradually
eliminated. A similar analysis has been performed in Ref.

8~b! for chains up to 800 steps. Our results are presented in
Figs. 3 and 4~black circles! which exhibit 2nR and 2nS vs
log10M , respectively. The solid lines in Figs. 3 and 4 corre-
spond to the following indirect analysis. First, we obtained
the scaling parametersC0 andC1 in Eq. ~1! using our MC
data for^RN

2 & and^SN
2 &. Then, substituting these parameters

into Eq.~1!, we obtained new values of^RN
2 & and^SN

2 & in the
range 200–8000 steps. Finally, the fitting procedure which
was described above was repeated using the new values of
^RN

2 & and ^SN
2 & to obtain ‘‘smoothed’’ curves of the plots in

Figs. 3 and 4. The results of the indirect analysis~solid line!
are consistent with the results of the direct analysis~black
circles!. It can be seen that the curves in Figs. 3 and 4 de-
crease as the lower boundM is increased, thus supporting
our previous observations regarding the decrease of the criti-
cal exponentn. The curves also show thatnR obtained in the
range 1032104 steps is within the RG results
2n51.17660.002, whilenS in this range is still larger. The
averages ofnR and nS over the values obtained by direct
analysis withM ranging from 1920 to 4352~in this range the
curves in Figs. 3 and 4 are relatively flat! aren̄R50.5886 and
n̄S50.5896, and demonstrate the difference betweennR and
nS . Indeed, the results of previous MC simulations1,4–7 of
chains up to 104 steps, which were summarized in Table I,
show thatnS.nR . In addition, the results in Ref. 2 for the
scaling parameters in Eq.~1! support the observation that
nS approaches the asymptotic limit more slowly thannR .

In summary, we have extended previous MC simulation
of SAW’s on a simple-cubic lattice and improved the statis-
tics and accuracy in the range of relatively long chains. We
obtained the critical exponentsnR and nS of the mean-
squared end-to-end distance and the mean-square radius of
gyration, respectively, at different ranges of the chain lengths
between 200 and 7936 steps. Our results suggest that in the
range 1032104 steps nR is within the RG result
n50.58860.001, whilenS is still larger for the same num-
ber of steps.

FIG. 3. Black circles, a plot of 2nR , obtained through a log-log
fit of our MC data for^RN

2 & with N ranging fromM to 7936 steps,
vs log10M . Error bars are the standard deviation. Solid line, a plot
of 2nR , obtained through a log-log fit of the reproduced^RN

2 & val-
ues withN ranging fromM to 8000 steps, vs log10M .

FIG. 4. Black circles, a plot of 2nS , obtained through a log-log
fit of our MC data for^SN

2 & with N ranging fromM to 7936 steps,
vs log10M . Error bars are the standard deviation. Solid line, a plot
of 2nS , obtained through a log-log fit of the reproduced^SN

2 & val-
ues withN ranging fromM to 8000 steps, vs log10M .
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