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A theoretical model for built-in thermal residual stresses in three concentric, transversely isotropic, cylinders
is presented. Marked differences between Nairn’s earlier isotropic result@Polym. Compos.6, 123 ~1985!# and
the current extension are demonstrated by means of examples.

I. INTRODUCTION

Consider a model composite~Fig. 1! made up of either
two or three cylinders. Perfect interfacial bonding is as-
sumed. The cylinders are assembled together at a relatively
high temperatureTref , and then cooled down to temperature
T. The problem consists in determining the stresses that de-
velop in the cylinders as the temperature decreases progres-
sively, down to temperatureT, given that they possess dif-
ferent elastic constants and coefficients of thermal
expansion. Various authors have addressed this problem.1–3

Here we develop a model that is more general than Nairn’s
results3 as all cylinders~not only the central cylinder! pos-
sess transversal isotropy. This type of anisotropy is a special-
ized case of orthotropy,4 namely, the~r ,u! plane is a plane of
isotropy. The issue of optimizing material characteristics to
minimize residual stresses in the cylinders, is addressed here
in selected examples, and more fully so elsewhere.5

A. One cylinder

Consider first asingle hollow cylinder with free ends,
subjected to the following conditions:~i! the axial strain is
constant, so that plane sections perpendicular to the axis re-
main plane during straining,~ii ! every cross section perpen-
dicular to the axis undergoes radial strains only. For a linear
elastic, isotropic cylinder under internal pressurePi and ex-
ternal pressurePo , the classical solution6 is
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szz5j ~a constant!, ~3!

wheresrr , suu , andszzare the radial, hoop, and longitudinal
stresses at a distancer from the symmetry axis, anda andb
are the internal and external radii of the cylinder.

B. Two cylinders

Next, consider two concentric cylinders, where the inter-
nal cylinder is solid rather than hollow, and where both cyl-
inders are transversely isotropic. The strain-stress relation-
ship takes the Duhamel-Neumann form~in cylindrical
coordinates!:6
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where n is the Poisson ratio,E is Young’s modulus, and
DT5T2Tref . As necessary, there are four independent elas-
tic constants and two thermal expansion coefficients. Trans-
verse isotropy is a convenient case since the form of the
stresses in the cylinders is the same as for the isotropic case3

~this is not true for other specialized cases of orthotropy!. For
the fiber, the internal pressure and radius are zero. Equations
~1!–~3! become

s rr
f 5suu

f 5Af , szz
f 5Cf , ~5!

whereAf andCf are constants. On the other hand, the pres-
sure on the outer surface of the external cylinder~the matrix!
is zero and Eqs.~1!–~3! become
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~6!

FIG. 1. Cross-sectional view of the concentric cylinder model.
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whereAm, Bm, andCm are constants, and the notations for
the internal and external radii are nowR1 andR2, instead of
a andb. The problem is reduced to the determination of the
five constantsAf , Cf , Am, Bm, and Cm. The radial stress
boundary conditions are associated with continuity of trac-
tions at interfaces: s rr

m50 at r5R2, s rr
m5s rr

f at r5R1. A
force balance in the longitudinal direction yields
s zz

mfm1s zz
f f f50, wheref f5(R1/R2)

2, andfm512f f .
Using Eqs.~5! and ~6!, the above conditions yield
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There are thus only two unknowns, namely,Am and Cm.
They can be determined by applying the strain-stress rela-
tions 4 with the interfacial no-slip conditions:e zz

f 5e zz
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r5R1 , andu r
f5u r

m at r5R1 ~u denotes the displacement!,
which, sinceur5r euu , is equivalent toe uu

f 5e uu
m at r5R1 .

These conditions, combined with the thermoelastic relations
4, yield two simultaneous equations with two unknowns:
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If the matrix is isotropic, theKi ’s reduce to the correspond-
ing matrix elements previously given by Nairn~see Table 3
in Ref. 3!. Solving Eqs.~8! yields
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~T2Tref!,
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By inserting these results into Eqs.~7!, the residual thermal
stresses in both the fiber and the matrix may be determined
from Eqs.~5! and ~6!.

C. Three cylinders

Now consider three concentric, transversely isotropic cyl-
inders~Fig. 1!. From Eqs.~1!–~3!, the stresses take the fol-
lowing form, noting that for the middle cylinder both internal
and external pressure exist:
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In the interphase: s rr
i 5Ai1Bi SR2

r D 2,
suu
i 5Ai2Bi SR2

r D 2, szz
i 5Ci ,

~16!
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TABLE I. Coefficients of the unknowns in the system~22! of
simultaneous equations.
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We now have eight unknowns:Af , Cf , Ai , Bi , Ci , Am, Bm,
andCm. The boundary conditions ares rr

f 5s rr
i at r5R1,

s rr
i 5s rr

m at r5R2, s rr
m50 at r5R3, and since there is no

applied force, a force balance in the longitudinal direction
yields s zz

mfm1s zz
i f i1s zz

f f f50, where f f5(R1/R3)
2,

fm512(R2/R3)
2, andf i512f f2fm . Using Eqs.~15!–

~17! the above boundary conditions yield the following rela-
tionships:
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There are now four unknown parameters:Am, Cm, Bi , and
Ci . They can be determined by combining Eqs.~4! with the
following continuity relations: e zz

f 5e zz
i at r5R1, e zz
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at r5R2 , u r
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AmQ11CmQ21BiQ31CiQ41S1~T2Tref!50,

AmQ51CmQ61BiQ71CiQ81S2~T2Tref!50,
~22!

AmQ91CmQ101BiQ111CiQ121S3~T2Tref!50,

AmQ131CmQ141BiQ151CiQ161S4~T2Tref!50.

TheQi ’s are given in Table I, and theSi ’s areS15a z
f2a z

i ,
S25a z

m2a z
i , S35a r

f2a r
i , andS45a r

m2a r
i . If the matrix

and the interface are isotropic, theQi ’s reduce to the matrix
elements calculated by Nairn~Table 2 in Ref. 3 where, in the
second term of the right-hand side ofQ13, there is a sign
difference between our expression and Nairn’s, due to a ty-
pographical error in Ref. 3!. The solution to the system 22 is
then given by

FIG. 2. The two-cylinder case: longitudinal thermal residual
stresses in the fiber and the matrix as a function of normalized
radial distance, using isotropic and transversely isotropic matrices
~data in Table II!.

TABLE II. Physical properties of the fiber and of the isotropic
and transversely isotropic matrices used in the two-cylinder ex-
ample. TEC means thermal expansion coefficient.

Property
Fiber

~AS graphite!

Isotropic
matrix

~3501-6 epoxy!
Anisotropic
matrix

Longitudinal Young’s
modulus,Ez ~GPa!

220 4.3 40

Transverse Young’s
modulus,Er ~GPa!

14 4.3 1

Longitudinal Poisson
ratio, nrz

0.2 0.34 0.34

Transverse Poisson
ratio, nu r

0.25 0.34 0.2

Longitudinal TEC
az ~ppm/°C!

20.36 40 1

Transverse TEC,
ar ~ppm/°C!

18 40 160

TABLE III. Physical properties of the fiber and of the isotropic and transversely isotropic matrices and
~soft! interphases used in the three-cylinder example. TEC means thermal expansion coefficient.

Property
Fiber

~AS graphite!
Isotropic matrix
~3501-6 epoxy!

Isotropic
interphase

Anisotropic
matrix

Anisotropic
interphase

Longitudinal Young’s
modulus,Ez ~GPa!

220 4.3 0.001 40 0.01

Transverse Young’s
modulus,Er ~GPa!

14 4.3 0.001 1 0.0001

Longitudinal Poisson
ratio, nrz

0.2 0.34 0.5 0.34 0.5

Transverse Poisson
ratio, nu r

0.25 0.34 0.5 0.2 0.5

Longitudinal TEC,
az ~ppm/°C!

20.36 40 170 1 50

Transverse TEC,
ar ~ppm/°C!

18 40 170 160 300
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D is the determinant of the unknowns in the system~22!, and
Di is the determinant obtained by replacing inD the ele-
ments of thei th column by the independent terms. Inserting
Eqs.~23! into Eqs.~18!–~21!, the stresses in the cylinders are
determined using Eqs.~15!–~17!.

II. DISCUSSION AND EXAMPLES

The solution proposed here strictly applies only to trans-
versely isotropic cylinders. Since infinite cylinders are as-
sumed, no shear stress develops, thus the no-slip boundary
condition is not in doubt. This might not be true with finite
cylinders, in which interfacial shear stresses might progres-
sively develop at high stress, from the cylinders’ ends. Fi-
nally, provided that the~anisotropic! strength of each cylin-
drical phase is known, the present treatment may lead to a
criterion for the occurrence of instabilities, such as fiber
buckling. To physically illustrate the differences between
Nairn’s solution3 and the present treatment, two examples
potentially relevant to fiber composites are now presented.

A. Example 1

Consider two concentric cylinders, the central one being
transversely isotropic, and the other being either isotropic in

Nairn’s case, or transversely isotropic in the present case.
The fiber properties in Table II are those of Hercules AS
graphite ~fiber radius53.5 mm!, as in Nairn;3 The matrix
properties are those of Hercules 3501-6 epoxy resin in the
isotropic case, again like Nairn, and those of a hypothetical
transversely isotropic matrix. Figure 2 shows the radial de-
pendence of the longitudinal stress~this component is the
most sensitive to a switch from isotropicity to anisotropicity!
when the volume fractionff is 0.5. We setDT521, to
calculate the stress buildup per degree of cooling~the total
buildup is found by multiplying the stress per degree of cool-
ing by the temperature change!. As seen, with this trans-
versely anisotropic matrix, both the fiber compressive and
matrix tensile stresses are significantly reduced, relative to
Nairn’s isotropic case. This may have significant design ben-
efit.

B. Example 2

The same conclusion is reached in the case of three con-
centric cylinders, in which the central one is transversely
isotropic, and the two others are either isotropic in Nairn’s
case, or transversely isotropic. Table III lists the data used.
These correspond to a ‘‘soft’’ interphase~the interphase
moduli are lower than those of the surrounding matrix, and
correspond roughly to an elastomerlike interphase!. Figure 3
shows the radial dependence of the longitudinal stress when
ff is 0.5 ~corresponding toR153.5mm!, fm50.4 ~R253.83
mm!, andfi50.1 ~R354.95mm!, thus an interphase thick-
ness of about 1/10 the fiber radius~Fig. 3!. The presence of
the transversely isotropic interphase has the desirable effect
to significantly reduce the~already weak! thermal residual
stresses in the fiber and the matrix. Results for a ‘‘stiff’’
interphase~moduli intermediate between those of the fiber
and the matrix!, presented in a complete study,5 reveal a
much larger interphase compressive stress in the isotropic
case, but similar to the soft interphase case shown here, a
significantly milder interphase stress in the transversely iso-
tropic case. Again, this may be significant from a component
design viewpoint.
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FIG. 3. The three-cylinder case: longitudinal thermal residual
stresses in the fiber, the interphase, and the matrix as a function of
normalized radial distance using isotropic and transversely isotropic
matrices and interphases~data in Table III!.
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