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Thermal residual stress in composites with anisotropic interphases
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A theoretical model for built-in thermal residual stresses in three concentric, transversely isotropic, cylinders
is presented. Marked differences between Nairn’s earlier isotropic f&&litm. Compos6, 123(1985] and
the current extension are demonstrated by means of examples.

I. INTRODUCTION 1

- _Yo _Vu

Consider a model composit&ig. 1) made up of either € E E E. o ”
two or three cylinders. Perfect interfacial bonding is as- | _ | _ [ _ Yor 1 vy oo | 41 a | AT
sumed. The cylinders are assembled together at a relatively, °* E, E, E, ve ' '
high temperaturd ¢, and then cooled down to temperature €2z ” . 1 T2z @z
T. The problem consists in determining the stresses that de- -2 2
velop in the cylinders as the temperature decreases progres- E, E. E
sively, down to temperaturé, given that they possess dif- (4)

ferent elastic constants and coefficients of thermal . . L ,

expansion. Various authors have addressed this probigm, Where v is the Poisson ratioE is Young’s modulus, and
Here we develop a model that is more general than Nairn'd T = T~ Trer- AS nécessary, there are four independent elas-
result€ as all cylinders(not only the central cylindgmos- tic constants an_d two therm_al expansion coefficients. Trans-
sess transversal isotropy. This type of anisotropy is a special€rS€ 1Sotropy is a convenient case since the form of the
ized case of orthotropynamely, the(r,6) plane is a plane of stresses in the cylinders is the same as for the isotropic case
isotropy. The issue of optimizing material characteristics to{thiS i not true for other specialized cases of orthotjoppr
minimize residual stresses in the cylinders, is addressed hef@€ fiber, the internal pressure and radius are zero. Equations
in selected examples, and more fully so elsewfere. (1)~(3) become

f f f
A. One cylinder o, =0p,=A", ol =Cf, (5)

Consider first asingle hollow cylinder with free ends, whereA' andC' are constants. On the other hand, the pres-

subjected to the following cpnd|t|on$t) th? axial strain 'S sure on the outer surface of the external cylindiee matriy
constant, so that plane sections perpendicular to the axis ré-

. ; A . is zero and Eqs1)—(3) become
main plane during strainindji) every cross section perpen-

dicular to the axis undergoes radial strains only. For a linear
elastic, isotropic cylinder under internal pressiéxeand ex-
ternal pressur®,, the classical solutidhis
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r r

(b/r)2-1 1—(alr)?
-l (b/a)’-1 ' °1—(a/b)? @

Oy =

__(bIn?+1 1+ (alr)?
700=Pi (hra)7=1~ Po 1= (a2’ @

o,~& (a constany, 3

whereo,, , o4y, ando;,, are the radial, hoop, and longitudinal f
stresses at a distancdrom the symmetry axis, anal andb
are the internal and external radii of the cylinder.

B. Two cylinders

Next, consider two concentric cylinders, where the inter-
nal cylinder is solid rather than hollow, and where both cyl- . Matrix
inders are transversely isotropic. The strain-stress relation- e
ship takes the Duhamel-Neumann forfin cylindrical
coordinate}s6 FIG. 1. Cross-sectional view of the concentric cylinder model.
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whereA™, B™, andC™ are constants, and the notations for
the internal and external radii are nd®y andR,, instead of
a andb. The problem is reduced to the determination of the
five constantsAf, Cf, A™ B™ and C™. The radial stress
boundary conditions are associated with continuity of trac-
tions at interfaces: ¢1=0 atr=R,, cM=0, atr=R;. A
force balance in the longitudinal direction vyields
0 St 0 3,0¢=0, where=(Ry/Ry)?, and =1 ¢.
Using Eqgs.(5) and(6), the above conditions yield
AT Pm Pm
m_ f_ m f_ m
B . A A b C C by
There are thus only two unknowns, named)l' and C™.
They can be determined by applying the strain-stress rela-
tions 4 with the interfacial no-slip conditions:e!,= e, at
r=R,, anduf=uMatr=R, (u denotes the displacement
which, sinceu,=re,,, is equivalent toef,,= €T, atr=R;.

()
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In the interphase: o} =A'+B!

In the matrix: oy =A"+ Tz opp=A"— —,

In the fiber: o, =obh,=A",
R\?
T s

_ o Ry\2 _
dyy=A-B'|—| , oy,=C,

m Bm
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ol,=Cf, (15)

an=CM (17

TABLE I. Coefficients of the unknowns in the systei@2) of
simultaneous equations.

These conditions, combined with the thermoelastic relations
4, yield two simultaneous equations with two unknowns:

ATK;+CMKyo+M(T—T,) =0,

(8)
A"K 3+ C™K +Mo(T—T,e) =0,
where
m f
VZT VZT ¢m)
Ki=2| ==+ —= —|, 9
' (EL“ E 4 ®
1 1 ¢m>
Ko=—| ==+ — —|, 10
2 (EQ“ El & (10
1-vl ¢y 1—v0 1+ 1}
Ky=— RALNTS e k)
S[Eiaﬂf e TEr g W
m f
VZI‘ VZI’ ¢m
Ky=— 4 —¢ — 12
and
Mi=(at—aM), M,=(al—aM. (13

If the matrix is isotropic, thé&;’s reduce to the correspond-
ing matrix elements previously given by Nai(see Table 3
in Ref. 3. Solving Eqgs.(8) yields

K4M1— KoM,

An=— 0 22 ToT ),
K1K4_K2K3 ( ref)
KiMz—KsM,

By inserting these results into EqS), the residual thermal
stresses in both the fiber and the matrix may be determined
from Eqgs.(5) and (6).

C. Three cylinders

Now consider three concentric, transversely isotropic cyl-
inders(Fig. 1). From Egs.(1)—(3), the stresses take the fol-
lowing form, noting that for the middle cylinder both internal
and external pressure exist:
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TABLE Il. Physical properties of the fiber and of the isotropic
and transversely isotropic matrices used in the two-cylinder ex-
ample. TEC means thermal expansion coefficient.

Isotropic

Fiber matrix Anisotropic
Property (AS graphite (3501-6 epoxy  matrix
Longitudinal Young'’s 220 4.3 40
modulus,E, (GPa
Transverse Young's 14 4.3 1
modulus,E, (GP3
Longitudinal Poisson 0.2 0.34 0.34
ratio, v,
Transverse Poisson 0.25 0.34 0.2
ratio, vy,
Longitudinal TEC —0.36 40 1
@, (ppm/°Q
Transverse TEC, 18 40 160
o (ppm/°Q

We now have eight unknowns:Af, C', A' B, C', A", B™,
and C™ The boundary conditions are! =o!, atr=R,,
op=0o0 atr=R,, o'=0 atr =R, and since there is no
applied force, a force balance in the longitudinal direction
yields o0t 0 bodh + 0 L =0, where ¢ =(Ry/Ry)?,
dm=1—(Ry/R3)?, and ¢,=1— ¢;— ¢,,. Using Eqs.(15)—
(17) the above boundary conditions yield the following rela-
tionships:

LONGITUDINAL STRESS PER DEGREE (kPA)

FIG. 2. The two-cylinder case:
stresses in the fiber and the matrix as a function of normalized
radial distance, using isotropic and transversely isotropic matrices
(data in Table I).
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There are now four unknown parametefs”, C™, B', and
C'. They can be determined by combining Eg®. with the

followmg contlnwty relations: e;Z ezzatr Ry, =€),

tr=R,, ul=ul atr=R; andu™™ —u atr—Rz, which,

smce ur—re,,,,, are equivalent tcef,=€!, at r=R, and
€90=

€Yy atr =R,. The following system is obtained:

A"Q;+C"Qy+B'Qs+C'Qu+ Sy (T— Tre) =0,

A™Q5+C™Qg+B Q7+ C'Qg+ Sy(T—Te) =0,

AMQg+CMQyo+ B'Qp1+ C' Qi+ Sy(T—Te) =0,

A™Q13+C"Q14+B'Qust C'Qugt SA(T—Tref)=o
The Q;’s are given |n Table |, and thg’s areS;=

(22)

Clz,

S,=aMal, S;=afl-al, andS,=aMa!. Ifthe matrlx

and the interface are isotropic, tkg’s reduce to the matrix
elements calculated by Naiffiable 2 in Ref. 3 where, in the

second term of the right-hand side @f3, there is a sign

BM=—R3A™, (18)
Af=Am ¢:_1+B' % (19
A=A d):)f 7B (20)
cf —[sz +C ZJ (21)

TABLE IIl. Physical properties of the fiber and of the isotropic and transversely isotropic matrices and
(soff) interphases used in the three-cylinder example. TEC means thermal expansion coefficient.

Fiber Isotropic matrix  Isotropic  Anisotropic  Anisotropic
Property (AS graphite  (3501-6 epoxy interphase matrix interphase
Longitudinal Young'’s 220 4.3 0.001 40 0.01
modulus,E, (GP3
Transverse Young's 14 4.3 0.001 1 0.0001
modulus,E, (GP3
Longitudinal Poisson 0.2 0.34 0.5 0.34 0.5
ratio, v,
Transverse Poisson 0.25 0.34 0.5 0.2 0.5
ratio, vy,
Longitudinal TEC, —0.36 40 170 1 50
@, (ppm/°Q
Transverse TEC, 18 40 170 160 300

a, (ppm/°Q

difference between our expression and Nairn's, due to a ty-
pographical error in Ref.)3The solution to the system 22 is
then given by
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300 e - Nairn’s case, or transversely isotropic in the present case.

s softinterphase | The fi_ber _properti_es in Table I are tho§e30f Hercule_s AS
S graphite (fiber radius=3.5 um), as in Nairn; The matrix

100 - : i properties are those of Hercules 3501-6 epoxy resin in the

i isotropic case, again like Nairn, and those of a hypothetical
........................................ i transversely isotropic matrix. Figure 2 shows the radial de-
pendence of the longitudinal stre&his component is the
most sensitive to a switch from isotropicity to anisotropigity
when the volume fractiony; is 0.5. We setAT=-1, to

-200 4

LONGITUDINAL STRESS PER DEGREE (kPA)
3
o
T
1

-300 - 8 calculate the stress buildup per degree of coolithg total
— — Isotropi (Naim) i i iplvi -
w7 Roropie ot A entwoty | _bundup is found by multiplying the stress per degr_ee of cool
ing by the temperature changeé\s seen, with this trans-
_500 L 1 1 1 1 Il 1 1 1 H H 1 H 1
s o8 o7 08 05 10 11 12 13 12 s verst_aly am_sotroplc matrix, b(_)th_t_he fiber compressive and
NORMALIZED RADIAL POSITION matrix tensile stresses are significantly reduced, relative to

Nairn’s isotropic case. This may have significant design ben-
FIG. 3. The three-cylinder case: longitudinal thermal residual€fit.
stresses in the fiber, the interphase, and the matrix as a function of
normalized radial distance using isotropic and transversely isotropic

matrices and interphasédata in Table II). B. Example 2
The same conclusion is reached in the case of three con-
AM= — E m_ _ @ Bi=— % Ci=— E_ centric cylinders, in which the central one is transversely
D’ D’ D’ D isotropic, and the two others are either isotropic in Nairn’s

(23 case, or transversely isotropic. Table Il lists the data used.
D is the determinant of the unknowns in the syst@®, and  These correspond to a “soft” interphasghe interphase
D; is the determinant obtained by replacing nthe ele- moduli are lower than those of the surrounding matrix, and
ments of theith column by the independent terms. Insertingcorrespond roughly to an elastomerlike interphabegure 3
Egs.(23) into Egs.(18)—(21), the stresses in the cylinders are shows the radial dependence of the longitudinal stress when

determined using Eq$15)—(17). ¢ is 0.5(corresponding t&R;=3.5 um), ¢,,=0.4(R,=3.83
pm), and ¢, =0.1 (R3=4.95 um), thus an interphase thick-
Il. DISCUSSION AND EXAMPLES ness of about 1/10 the fiber radi(Sig. 3). The presence of

the transversely isotropic interphase has the desirable effect

The s_olut|on_ proppsed herg strlgtly qpplles only to transy, significantly reduce théalready weak thermal residual
versely isotropic cylinders. Since infinite cylinders are as-

sumed, no shear stress develops, thus the no-slip bounda]sré{resses in the fiber and the matrix. Results for a "stiff”
condition is not in doubt. This might not be true with finite erphase(moduli intermediate between those of the fiber

cylinders, in which interfacial shear stresses might progresf-ind the matrix, presented in a complete stityeveal a

sively develop at high stress, from the cylinders’ ends. Fi-mUCh Iarge_r interphase compressive stress in the isotropic
nally, provided that théanisotropig strength of each cylin- €ase€. but similar to the soft interphase case shown here, a
drical phase is known, the present treatment may lead to gpgn.n‘lcantly mlld_er mFerphase st.res_s_ in the transversely iso-
criterion for the occurrence of instabilities, such as fiberlfOPIC case. Again, this may be significant from a component
buckling. To physically illustrate the differences betweendesign viewpoint.
Nairn's solutiori and the present treatment, two examples
potentially relevant to fiber composites are now presented.

ACKNOWLEDGMENT

A. Example 1 This research was supported by the Basic Research Foun-

Consider two concentric cylinders, the central one beinglation administered by the Israel Academy of Sciences and
transversely isotropic, and the other being either isotropic irHumanities.

IH. Poritski, Physics, 406 (1934). Body (Holden-Day, San Francisco, 1963. 66.
2K. Brugger, Appl. Opt.10, 437 (1971). SH. D. Wagner and J. A. Nairfunpublishegl
3J. A. Nairn, Polym. Compos, 123(1985. 63, Timoshenko Strength of Materials, Part ll(Van Nostrand,

4S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic New York, 1930, pp. 528-536.



