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Bipolaron lattice formation at metal-polymer interfaces
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We describe a model for metal-polymer interfaces based on the nondegenerate continuum model of Bra-
zovskii and Kirova for the electronic properties of polymers. The correct analytic equations for a bipolaron
lattice in this model are stated and the electronic properties of the bulk polymer, i.e., the energy-level structure,
the energy density, and the chemical potential as a function of electron density are obtained numerically. We
find that the bipolaron lattice is unstable at high densities when the intrinsic gap parameter exceeds a critical
fraction of the total energy gap. The electronic properties of the bulk polymer are used for modeling the
metal-polymer interface. The charge density near a metal-polymer interface is found from the electrostatic
potential and an analytic expression for the bipolaron chemical potential assuming that the contact is in
equilibrium with the polymer layer. Poisson’s equation is integrated to determine the electrostatic potential. We
find that a large charge density is transferred into the polymer layer if the Fermi level of the metal contact is
higher than the negative bipolaron formation energy per particle or lower than the positive bipolaron formation
energy per particle. The transferred charge lies very close to the metal-polymer interface as a bipolaron lattice
with charge density progressively decreasing away from the interface. The transferred charge gives rise to a
region of rapid “band bending,” pins the Fermi level, and establishes the effective Schottky energy barrier.
Upon increasing the metal Fermi level above the bipolaron formation energy per particle, the effective
Schottky barrier saturates at the energy difference between the polaron formation energy and the bipolaron
formation energy per particle. The model results are useful in interpreting recent measurements of internal
photoemission, device electroabsorption, and capacitance-voltage characteristics in polymer light-emitting di-
odes.

[. INTRODUCTION lated polarons to form bipolarons. Also in this model, a re-
pulsive elastic interaction between bipolarons leads to the
Periodic superstructures of nonlinear excitations such aformation of a periodic structure, the bipolaron latticat
soliton, polaron, and bipolaron lattices have been studiedero temperature, the bipolaron lattice is the stable state for
within continuum models for both degeneraand nonde- excess charge in the nondegenerate continuum model. The
generate ground state polymérshe nondegenerate models bipolaron lattice solution was obtained by several authors in
are relevant to most polymers under consideration for use idifferent forms for nondegenerate polymer mod8&tg? in
optoelectronic and electronic devices. Conjugated polymerRef. 10, the solution was derived using inverse spectral
with phenyl rings in their backbones, such as gphenylene theory, while Refs. 11,12 used the infinite lattice sum or the
vinylene (PPV) and its derivatives, e.g., pdB- methoxy,5- Poisson summation technique. Reference 13 obtained the
(2'-ethyl-hexyloxy-1,4 phenylene vinylere (MEH-PPV) grand potential and then used a simple ansatz to derive the
show pronounced electroluminesceriteThese polymers bipolaron lattice solution. In Ref. 14, the solution was ob-
are organic semiconductors with energy gaps that depend dained for chains of finite length with periodic boundary con-
the molecular structure of the polymer. Polymer light- ditions. The set of equations for the bipolaron lattice solution
emitting diodes(PLED’s) that emit throughout the visible given in Refs. 10,15 is convenient for numerical calculations.
spectrum have been successfully fabricated, using PPV artdowever, the analytical expressions that have been pub-
its derivativess® It is important to understand the nature of lished®°for the bipolaron lattice in the nondegenerate con-
the metal-polymer interface and charge transfer across it titnuum model contain typographical errors.
enhance the efficiency of these devices. To this end, a quan- In this paper, we describe the metal-polymer interface
titative knowledge of the nature, density, and distribution ofbased on the Brazovskii-KirovéBK) nondegenerate con-
charge at metal-polymer interfaces is important. tinuum model for conjugated polymers. The principal exci-
Charge transferred into a nondegenerate polymer creatéstions in this model are polarons and bipolarons. We con-
polarons and bipolarons. In the nondegenerate continuursider the high density limitat zero temperatuyén which the
model, the energy per particle of two isolated polarons ishipolarons form a lattice, because of their elastic interactions.
greater than that of a bipolaron, so there is binding of isodn a previous papéf we considered low density effectat
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finite temperaturein which the charged excitations only in- brief review of the nondegenerate continuum model of Bra-
teract electrostatically. Brazovskii and Kirova have previ-zovskii and Kirova. The corrected equations for the bipo-
ously used the degenerate version of their model in the higkaron lattice solution to the model are stated, the algorithm
density, zero temperature limit to discuss a metal-polymepised to compute the energy levels of a bulk polymer is dis-
interface using analytical methods.However, they only cussed, and numerical results for a bulk polymer are pre-
presented the energy-level profiles schematically and did ndtented. In Sec. Ill, we describe a single metal-polymer inter-
obtain the electronic energy-level structure numerically. ~ face, numerical results found by integrating Poisson’s
In our interface model, the energy of the metal Fermi®guation coupled with the relation between the polymer
level relative to the bipolaron formation energy per particIeChem'Cal potential and charge density are presented. We then

in the polymer determines the charge density near the Corg_iscuss a metal-polymer—metal structure, which is sir_’nilar to
tact. The region of the polymer near a contact is assumed g POlymer LED device. We summarize our conclusions in
be in equilibrium with that contact. Charge is exchange ec. IV. The mathematical details of the bipolaron lattice

between the contact and the polymer by forming a bipolaronC‘OIUtion and the_ intermediat_e steps in the derivation of t_he

lattice if the metal Fermi level is above the negative bipo_correctgd analytical expression for the tatal energy are in-

laron formation energy per particle or below the positivecluded in an Appendix.

bipolaron formation energy per particle. The nondegenerate

continuum model describes a single polymer chain and a Il. NONDEGENERATE CONTINUUM MODEL

linear charge densitye{cm) per chain is determined by the

chemical potential. For MEH-PPV and other PPV deriva- We describe the polymer using theero temperatupe

tives’ the po|ymer chains are a“gned primar”y in the inter-nondegenerate continuum model of Brazovskii and Ki&)va.

facial plane of the metal-polymer contdétWe input the In this model, the energy gap arises from two sources: an

experimentally determined two-dimensional density of poly-intrinsic contribution produced by the splitting between

mer chains and treat the chains as noninterac('g)g;ept bonding and antibonding electronic orbitals of the basic

electrostatically to determine the total charge density. The (rigid) structure of the polymer, and a contribution from the

one-dimensional bipolaron lattice, described by the nondeinteraction of the electrons with a symmetry breaking atomic

generate continuum model, is on each p0|ymer chain angistortion (Peierls ef‘fe(jt The first contribution is respon-

thus lies in the interfacial plane. The linear charge density orgible for the band gap in conventional semiconductors and

a polymer chain depends on the distance of that chain frorfhe second contribution is the same as that which produces

the metal interface. The total charge density at a given disthe energy gap in a degenerate ground state polymer like

tance from the interface is the product of the linear chargdrans-polyacetylene. The Hamiltonian is given by

density in the polymer chain at that distance and the two-

dimensional density of polymer chaifshich is independent

of position. The charge distribution of the bipolaron lattices H=J dxy" () —ihvpoady+[A(X) (o1 +iop)/2+H.c]}

in the polymer chains is compensated by an opposite screen-

ing charge in the metal contact. We determine the charge in 5

the polymer, at any given position, using the electrostatic =~ X #(X)+ WﬁUF)\f dxA{(x), @

potential at that position, the relationship between the chemi-

cal potential of the bipolaron lattice and the linear chargq,vhere

density in each polymer chain, and the two-dimensional den-

sity of polymer chains. Poisson’s equation is integrated self-

consistently to determine the electrostatic potential as a func-

tion of position. ] o o
We find that a large negative charge density is transferrefiere, A describes the intrinsic contribution to the energy

into the polymer if the chemical potential of a contact is gap,Ai(x) is the lattice distortion contrlbutlon-to the energy

higher in energy than the negative bipolaron formation endap, ¢ is the phase angle between the matrix elements de-

ergy per particle and a large positive charge density is transscnbl_ng _the intrinsic contribution an_d the lattice distortion

ferred into the polymer if the chemical potential of a contactcontribution to the energy gapj(x) is a two component

is lower in energy than the positive bipolaron formation en-Spinor describing the electronic field, awq are the Pauli

ergy per particle. The transferred charge remains close to th@Pin matrices. The first term consists of two parts, the elec-

meta'_polymer interface and iS Screened by a Charge Of thgonic kinetic enel‘gy and the electron-lattice intel‘aCtiOﬂ en-

opposite sign in the metal. In these cases, the Fermi energy &gy The second term represents the elastic deformation en-

the polymer surface is effectively pinned at the bipolaron€rgdy of the polymer chain.

formation energy, due to the transferred charge near the in- There are five material parameters in the BK model:

terface. If the chemical potential of a contact lies between thée. ¢; A Which describes the magnitude of the electron-

formation energy per particle of the two kinds of chargedPhonon coupling and, therefore, the magnitude of the Peierls

bipolarons, there is no charge transfer at the metal-polymetontribution to the energy gapy is the undimerized band-

interface and the Fermi energy at the p0|ymer surface is nd@/ldth, andv,: is the Fermi VelOCity. It is convenient to define

pinned by charge transfer. This is the kind of behavior thato, the energy gap parameter of the homogeneous state for

has been recently observed at polymer-metal interfaces ithe corresponding degeneratg=0 model, andA, the en-

electroabsorption and internal photoemission experiménts. ergy gap parameter of the homogeneous state for the nonde-
The paper is organized as follows. In Sec. Il, we present generate model by

A(x)=At+Aj(x)expli¢). @
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Ag=W exp —1/\) (3 r'=+y1-—r= 9)

and We also define

Acog ¢)=N[A2— A2sir($)1¥2In(A/A). (4)
° k=+E3—EZ, (10)

The intrinsic contributionA., breaks the degeneracy of
the ground state of the BK model and admits charged exci-
tations, which are polarons and bipolarons. Atomic relax- . [Ey
ation around added charg@sdectrons and holg®ccurs very B=sin l(E_) (11
rapidly and results in a lower total energy of the polymer. 3
The energy per particle for two isolated polarons is greatef, q
than the energy per particle needed to create a bipolaron.

Thus, there is additional binding of bipolarons relative to

isolated polaron pairs. Upon transferring a high density of Es

charge to the polymer, the lowest total energy configuration t
is a periodic bipolaron lattice.

In this section, we state the corrected self-consistency )
equations, which govern the formation of the bipolaron lat- The energie€,, E,, andE; are computed from the self-
tice in the nondegenerate continuum moldefrom the self- ~ consistency equations with the density given by &g. For
consistency equations, the effective single particle energfPV-like polymers, the physically relevant value for the
gap and the bipolaron upper and lower bands are computgifase angle i$=0 (i.e., A;=0) and we restrict our atten-
at finite density. We also state the corrected energy per unfton to this case. It is convenient to define dimensionless
length for the bipolaron lattice, from which we calculate thevariablesn=E;/Ez, {=E,/E3, ando=E3/A. We define
chemical potential for the bipolaron lattice. the scaled densitp by

= E—Zr . (12)

A. Self-consistency equations —

The correct self-consistency equatidis)s.(29) and(30) n=-——n. (13
of Ref. 10 are

To numerically determine the energies, we consider the self-
Accosp KE, consistency equations and the scaled density to be functions

FAY = A [—R(Ai)]mzo' ®) of the two variableg andr’ and obtain
and
_ oy1-¢?
n=———, (14
0=(E5-ADF(B.)—(ES-EDIL(A.r'21) rK(r)
L Bk, A ) © ,
— Nl ===z Be /128 1
2 E3+ES5—E P
3t E>—E] = A VZ=rEG (15

where F(B,t) andII(B,r'?,t) are incomplete elliptic inte-
grals of the first and third kind, respectively. Here

A,=Asin(¢), andR(x) is defined in Ref. 10 and in the 0=F(B,t)—(1—AII(B,r'? 1)
Appendix. The density of carriers per unit length in the bi-
polaron lattice(two carriers per bipolargnis given by 1-22 Agr
+ In| — . (16
r oAJ1—-r"2?
k
n=-—=-—, (7) , , .
hvpK(r) To find the band energieB,, E,, and E; at a given

. L ) . density, we use Eq(15) to eliminate ¢ and numerically
whereK(r) is the complete elliptic integral of the first kind. solve Eq.(16) for ¢ at fixedr ' in the interval G=r'<1. This

The values oE,, E,, andE; represent the lower and upper . ) ,
bipolaron band edges and half the effective single particlédjgi:m:zgrsg %sr ?h;unic\fg] c?érnéitweot:fg’ liJsS%eEtg(rm)ngod
band gap, respectively. The elliptic modulus can be ex- 9 Y. '

pressed in terms of these energies and is given by o is calculated using Eq1Y), is found using Eq(16), and

7 is found fromp=?—r"?/r.

[E3—E2
r= ﬁ' (8) B. Energy density and chemical potential
37 E1

The correct bipolaron lattice energy per unit len{f.
and the conjugate modulus is (33) of Ref. 17 is given by
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F(B,t
W(n)/L= (B )[EiEg—Ai(EngEg—E§)+2A§kE(r)nwa]+EzkE(/;,t)+2kE(r)nhuF
ﬁU[:’7T E2k
2Acosp [-R(ADIM (ES-EZ \ 3( . . B3\ - _, A2
_ K(D) E%—A% E%-Ai’r +§ El_EZ_? +(A —2A1)In A_o +? , (17)
|
whereE(3,t) is the incomplete elliptic integral of the second A2
kind andII(a,r) is the complete elliptic integral of the third W(n)/L= oW (18)
kind. Intermediate steps of the derivation are given in the F
Appendix. Physically relevant parameters for PPV-like poly-
mers correspond té¢=0 and we restrict our attention to that
case.
It is convenient to define a dimensionless energy per unithe scaled energy per unit length can be expressed as a
lengthw by function of { andr’,
|
o?| {(P—r? V1-2 2(1-%)E(r) 3 %—r'2 1
w=— M—)F(Byt)"'g ‘ E(B.1)+ ( 2§) ( )"’_ d {3
m| ry1-22 r r<K(r) 2 r 3
2_y2 maa-z2n] 1) (A} 1
—Zg(g )F(,B,t) 1= —|In| —|+=]. (19
ry1—22 K(r) T Ay 2
|
The evaluation of the chemical potential is simplified by theThe chemical potential is given by
elimination of singularities if we rewrite the complete elliptic
integral of the third kind aslT(1—¢2r)/K(r)=H(Z,r), ow dZ  aw
where dw | agzdr " ar
== =1 (24
H(Lr')=1+8[E(e,r)—E(r)F(e,r)/K(r)]. (20 dn &_n£+ﬂ_n
Here, g dr’ = or’
1 1-¢ where the total derivative of must be calculated.
0=-\72—12 The total derivative o, with respect tar’, can be cal-
gVt culated from the self-consistency E3.6),
and
G
(N4 (W)
e=sin ; . d¢ 3 ¢ (25
dr’ — [4G)\
The chemical potential is defined by a_g
rV

u= M:—d_v_v (21)  WhereG is the right hand side of Eq16). The partial de-
dn dn rivatives can be calculated and combining the results, we
and gives the energy per particle required to add a bipolarofbtain an analytic expression for the chemical potentse
to the polymer. The total derivative of the scaled energy denth® Appendix for the analytic derivatives of the incomplete
sity is evaluated from the ratio of the total differential of the elliptic integral of the third kind.
scaled energy density,

C. Numerical results for a bulk polymer

W oW
dw=—- d{+—=dr’, (22 In the low density limitr’ — 0, the self-consistency equa-
4 ar . . . . :
tions reduce to a pair of equations, which determine the
to the total differential of the scaled density, single bipolaron intragap leveEg) and the energy gap pa-
_ _ rameter for the homogeneous statg. The low density bi-
4= an dz an ar’ (23  Polaron formation energy per particlé) can be found by
a¢ ar’ taking the zero density limit of the chemical potential,
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FIG. 1. Bipolaron formation energy per partidldashed ling
the bipolaron intragap leve(solid line) and the polaron formation
energy(dotted ling, as a function ofA./A. ‘ . . . |
0
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FIG. 3. The bipolaron energids, , E,, andE; as a function of

. . L the scaled dimensionless chain bipolaron density. In the upper
where {, is the zero density value o, which is equal to panel, the parameter values akg=0.1284 eV,\ =0.4385, and

EofA. In the low density limit, the self-consistency equationsW: 10 eV. The dashed line is the chemical potential. In the lower
reduce to the single bipolaron equations and the chemicziqanel’ the parameter values ake=0.3849 eV,\=0.3411, and
potential to the single bipolaron formation energy per par\y_ 19 ev. For the upper pandl,/A=0.1 and the lower panel has
ticle given by OnoderdThere is an exact symmetry between A./A=0.3. In both casea—1 2984 eV
electron and hole type excitations, so we only present results® o ' '
for electron type excitations.
In Fig. 1, we show the low density bipolaron intragap level (Eo). the bipolaron formation energy per particle
(Ep)_and the polaron formation energyas a function of
A./A. The bandwidthW was fixed at 10 eV and and A,
6 . . 7 were constrained so that was fixed at 1.284 eV. The ratio
of A./A was varied. Wher\ /A is equal to unity, the en-
5| W)/ (LEn) — 4 ergy gap is determined entirely by the intrinsic splitting be-
ulEs = tween bonding and antibonding levels, as in conventional
semiconductors. WheA /A is zero, the energy gap of the
degenerate polymer is due entirely to the Peierls effect, as in
trans-polyacetylene. The quantify,/A ranges from zero to
unity and interpolates between a degenerate ground state
polymer and a conventional one-dimensional semiconductor,
respectively.

In Fig. 2, we show the average energy per partistaid
line) and the chemical potentidbiashed ling of the bipo-
laron lattice, in units ok}, as a function of density. Both are
monotonically increasing functions of density. At low density
(n<1/3), both the average energy per particle and the

0 1 9 3 chemical potential are essentially equaBg. In Fig. 3, we
n(B [hwp) show the energieg, ,E,, andE; (solid lineg for two sets of
input parameters, as a function of the normalized density. In

FIG. 2. Average energy per particle of the bipolaron lattice Fig. 2 and the upper panel of Fig. 3, we have takér 10
(dashed lingand chemical potential of the bipolaron lattitsolid €Y+ A.=0.1284 eV, and\=0.4385. In the lower panel of
line), in units of the zero density bipolaron formation energy perFig- 3, we have takeW=10 eV, A.=0.3849 eV, and
particle E,, as a function of the scaled dimensionless chain bipoA =0.3411. The Fermi velocity is 1.3810° cm/sec in all
laron density. calculations. The two cases in Fig. 3 correspondAtd A

DIMENSIONLESS UNITS
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E5, which are specified as functions of density. The polymer
T ' ' ' is assumed to be in local equilibrium with the metal near the
0.6 7 metal-polymer interface. The position of the metal Fermi
level relative to the bipolaron chemical potential determines
if charge transfer occurs at the interface. If the metal Fermi
level is above the negative or below the positive zero density
bipolaron chemical potential, then charge transfer to the
polymer from the metal occurs and a bipolaron lattice is
formed. This leaves a screening charge in the metal contact.
There is no background doping, so the only charge in the
polymer is from the metal contact.
02k i The condition of local equilibrium allows the determina-
tion of the electrostatic potential throughout the polymer.
The electrostatic boundary conditions are that the electro-
static potential in the metal is zero and the electric field van-
ishes deep in the polymer. We solve Poisson’s equation for
0, s ” "y o5 the electrostatic potential and the electric field in the polymer
AJE !ayer subject to these boundary conditions. Explicitly, we
integrate

0.4 UNSTABLE

n.(A/fvr)

STABLE

FIG. 4. The scaled critical density.e., the density where the d2¢ Amp(p)
chemical potential crossés;), as a function ofA./A. We have T (27
fixed A=1.284 eV,\ andA. are varied to adjush./A. X &

where p(¢) is the charge density and is the dielectric
equal to 0.1 and 0.3, respectively. Note that the single pareonstant of the bulk polymer. The charge density is given by
ticle band gap and the bipolaron bandwidth increase with
increasing density. As one approaches low density, the bipo- p(¢)=—en(¢)D, (28)

laron bandwidth decreases rapidly to zero and approaches th . : : .
single bipolaron intragap leveE;=E,=E, and E; ap- Wheree is the magnitude of the electronic chargg ) is

hes the sinal el sterin the hiah the one-dimensional carrier density in the bipolaron lattice,
proaches the singie particle gap parameierin the nig andD is the two-dimensional density of polymer chains. For
density limit, we see that the behavior of the scaled energ

ters is ai by 1 0 ando i humerical calculations we take=3 and the density of poly-
Foarlri{:‘:rzglleye\/:/istrisd%lr\wﬁi?y y—1, »—0 ando increases mono-  or chains determined experimentally for MEH-PBV,

. . . D =1.2x 10 chains/cnf.
In Fig. 3, the dotted lines are the computed chemical po-~ o charge density within the polymer depends on the
tential for the two sets of input parameters as a function 0Fnetal Fermi levels at the contacts and the electrostatic po-

normalized der_1$|ty_. I_n the upper p_anel, we note thattential, which must be calculated self-consistently from Pois-
E2.<'“<E3’ which indicates the_ stability of the_blpolaron son’s equation. The work function of the metal at the left
lattice for the complete density range considered. For

" ) o " contactu, fixes the chemical potential at the polymer inter-
A/A=0.3, the chemical potential crosségat a finite Criti- a0 and therefore, determines the charge density in the
cal densityn.. This mdu_:gtes that the _blpolaron Iattlce_ IS polymer at the interfacéby inverting the chemical potential
gnstable and further addl_tlon of charge |_nt0 the system is ”Oéxpression for the densjtyThe charge density within the
in the form of relaxed bipolarons. In Fig. 4, we show the yolymer layer depends explicitly on the potential and is de-
critical density as a function ak./A, where we have indi- termined by inverting the electrochemical potential at each
Cated the Stable andﬂnstable I’egionS. BeIOW the Critical derp'oint in the po|ymer |ayer_ The Se'f-consistency is manifest,
sity n. for fixed A./A, the bipolaron lattice is stable and since Poisson’s equation determines the electrostatic poten-
above the critical density it is unstable. We find that thetial in the presence of the charged bipolarons, and the elec-
bipolaron lattice is stable over the entire density range ifrochemical potential depends on the electrostatic potential
A/A is less than about 0.25 for the present choice of thehat determines the density of the bipolarons.
parameters. Increasing./A—1, the density range over  For the interface calculation, we fix¥ at 10 eV,
which the bipolaron lattice is stable decreases and apsg=1.18<10° cm/sech =0.4385, and\,=0.1284 eV. This
proaches zero. This is the limit of a conventional one-gives a value forA of 1.284 eV, a value for the polaron
dimensional semiconductor, where the bipolaron is not dormation energy off,=1.2 eV, and a value for the bipo-
stable excitation. laron formation energy per particlé,= 1.0 eV. All of the
energies are measured relative to the center of the zero den-
sity polymer gap.

In the upper panel of Fig. 5, we show;(n(x)),

The metal-polymer interface is described using the bulkE>(n(x)), Ez(n(x)), andx(n(x)) and in the lower panel of
electronic properties of the polymer computed from the non¥ig. 5, we show E;(n(x))—ed(x), E,(n(x))—ed(x),
degenerate continuum model. The metal is characterized 3;(n(x))—e¢(x), and u(n(x))—ed(x) as a function of
its work function. The polymer is characterized by the bipo-distance from the interface for a metal chemical potential of
laron chemical potentiakk and the energieg§,, E;, and 1.3 eV. The polymer chains lie in the interface plane so that

Ill. METAL-POLYMER INTERFACE
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FIG. 5. E;, E,, E3, and u(n(x)) (dashed ling upper panel;
and E;—e¢(x), E;—ed(x), Ez—ed(x), and u(n(x))—ed(x)
(dashed linglower panel; as a function of distance from the inter-
face.

FIG. 6. The electric fieldupper pangland the charge density
(lower panel near the metal-polymer interface, as a function of
distance for various values of the metal work functign,=1.1,
1.2, 1.3, 1.4 eV, respectively.

the position axis in Fig. 5 corresponds to different chainspipolarons in the polymer and the other plate of the dipole
lying at different distances from the interface. Because théayer is the screening charge in the metal. The essential point
metal chemical potential is larger than the bipolaron formais that a very large charge transfer occurs once the metal
tion energy per particle, a high density of negative charge hasermi level exceeds the bipolaron formation energy and this
been transferred from the metal to the polymer. This chargeharge transfer causes a very large electric field over a short
in the polymer is in the form of a one-dimensional bipolarondistance. This point is emphasized in Fig. 7, which shows the
lattice in the polymer chains lying in the plane of the inter- magnitude of the charge densitypper pangland the elec-
face. There is a positive screening charge on the surface afic field (lower panel in the polymer at the interface as a
the metal contact, which compensates the charge in the polyunction of the metal chemical potential. Both the charge
mer. As seen in the upper panel of Fig. B;(n(x)),  density and electric field rise abruptly to very large values, as
E,(n(x)), Es(n(x)), and u(n(x)) go to their zero density soon as the metal chemical potential exceeds the bipolaron
values far from the interface. As seen in the lower panel oformation energy. The calculations presented here are for
Fig. 5, u(n(x))—e@(x) is constant as it must be at equilib- zero temperature; at finite temperature activated charge
rium. transfer occurs when the metal chemical potential is below
The electric field near the interface is shown in the uppethe bipolaron formation energy. Because the prefactor for the
panel of Fig. 6 and the charge density near the interface iactivated charge transfer is very large, it is significant for the
shown in the lower panel of Fig. 6 for various values of themetal chemical potential severT below the bipolaron
metal work function larger then the bipolaron formation en-formation energy?®
ergy per particle E,=1.0 eV). For realistic values of the The spatial extent of the charged polymer region is very
density of polymer chains, an extremely large charge densitgmall and not directly accessible experimentally. The most
is transferred into the polymer once the metal chemical pointeresting question about the charge transfer at the metal-
tential exceeds the bipolaron formation energy. This larggpolymer interface is how it affects the relative energy levels
charge density results in extremely large electric fieldspf states in the metal and states in the polymer beyond the
which cause a rapid spatial variation iif{x). Because the narrow charged region. Specifically, we want to know the
distances involved are on the molecular scale, a continuurenergy difference between the metal Fermi energy and the
model cannot describe the spatial variation in detail. How-polaron formation energy in the polyméThe polaron is the
ever, for most experimental situations, the details of thdowest energy singly charged transport state in the polymer.
charge distribution on the molecular scale are not of interestThis energy difference is the analog of the Schottky energy
Essentially, there is a dipole layer at the metal-polymer in-barrier at the interface between a metal and an inorganic
terface in which one plate of the dipole layer is the chargedemiconductor. When the metal Fermi level is below the bi-
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cluded in the effective Schottky barrier energy. The
effective  Schottky barrier energy thus becomes
Es=Ep—uL—ed(Xx.), whereEg is the effective Schottky
barrier energy andp(x.) is the potential at the distance
(xc) at which the charge density has gone to zero. In Fig. 8,
Es is plotted as a function of the work function of the metal
(u) measured from the zero density gap center. At midgap
(u.=0), the effective Schottky barrier is the polaron forma-
tion energy andEg decreases linearly with increasing work
function. When the metal work function coincides with the
bipolaron formation energy, charge is transferred into the
polymer layer and the Schottky barrier saturates. Further in-
crease of the metal work function does not affect the barrier
height, which is saturated at a value equal to the difference
between the polaron and bipolaron formation energies of
0.2 eV for the present choice of parameters. The results in
Fig. 8 are for zero temperature. At finite temperature, the
abrupt shoulder that occurs in Fig. 8 is rounded and the satu-
ration occurs sever&z T lower in energy than the bipolaron
formation energy per particfé.

A PLED device structure consists of a thin polymer film,
typically 50-100 nm, sandwiched between two different
metal contacts. One contact is a low work function metal and
thus electron injecting and the other contact is a high work
function metal and thus hole injecting. If a sufficiently large
forward bias is applied to the device, electrons and holes are
injected from the low and high work function contacts, re-

(lower panel in the polymer at the interface, as a function of metal spectively. The electrons and holes recombine in the polymer

work functiony, .

layer and emit light. From the description of the metal/
polymer contact above, it is clear that the PLED structure

polaron formation energy per particle, there is no chargean be divided into two contact regions, each of which is
transfer and the effective Schottky barrier energy at thevery thin compared to the total structure, and a central re-
metal-polymer interface is just the energy difference betweegion. At zero bias, the electric field is essentially constant in
the polaron formation energy in the polymer and the metathe central region, because there is little or no charge in this
Fermi energy. When the metal Fermi energy is above theegion. At zero bias, the total change in electrostatic potential
bipolaron formation energy per particle, the change in elecacross the structure must equal the difference between the
trostatic potential in the narrow charged region must be inwork functions of the two contacts. The electrostatic poten-

0.5

Schottky Barrier (eV)

0.4

0.8

1.2 1.6
e (eV)

tial drop in a contact region is equal to the difference in
energy between the work function and the bipolaron forma-
tion energy per particle, if charge transfer occurs or zero if it
does not. Increasin@ecreasingthe Fermi level of the elec-
tron (hole) injecting contact further abovdbelow) the nega-
tive (positive bipolaron formation energy per particle only
increases the charge density transferred to the polymer and
thus increases the region of rapid “band bending.” There-
fore, the maximum potential drop across the central region of
the structure at zero bias is given by the difference in the
negative and positive bipolaron formation energies per par-
ticle. The maximum zero bias potential drop in the central
region is reduced by several timkgT at finite temperature.
Applying an external bias to the device raises or lowers
the Fermi level of one contact relative to the other. A reverse
(forward) bias raiseglowers the Fermi level of the high
work function contact relative to the low work function con-
tact. The magnitude of the electric fields, which result from
an applied bias, are vastly smaller than those which occur in
the contact regions and thus the structure, of the contact re-
gions is not significantly affected by the applied bias. The

FIG. 8. The effective Schottky barrier energy, as a function ofincrease in the potential drop across the structure which oc-
metal work functionu, . The change in slope occurs at the bipo- curs at reverse biaglecrease in potential drop at forward
laron formation energy per particle.

biag, is entirely in the central region of the structure and
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increasegdecreasasthe uniform electric field in the region. tion and internal photoemission measuremEnghiow that
This behavior has been verified by detailed calculations. the effective Schottky barrier energies in MEH-PPV PLED
structures scale directly with the metal work function, until a
IV. SUMMARY AND CONCLUSIONS critical upper or lower value is reached, after which the ef-
fective Schottky barrier energy saturates and no longer de-
In this paper, we have presented an equilibrium model fopends on the metal work function. The observed critical val-
the metal-polymer interface. The electronic properties of thaies are such that they can be associated with negative and
polymer are determined within the nondegenerate continuurpositive  bipolaron formation energies per particle,
model of Brazovskii and Kirova. We presented the correctedespectivelyt® Thus, these experimental results support the
bipolaron lattice solution to this model, both the self- picture of the metal-polymer interface presented here. In the
consistency and the energy density equations. These equénit A.—0, our results reduce to the degenerate limit stud-
tions are solved numerically for the electronic levels and aréed in Ref. 17.
used to compute the bipolaron chemical potential for the In this work, the polymer chains were assumed to be
bulk polymer. We found that the bipolaron lattice solution isaligned parallel to the metal/polymer interface, because that
stable below a critical bipolaron density, which is determineds the alignment found experimentally for soluble derivatives
by the value ofA./A. For the parameters used, we found of PPV!®As a result, the electric field is perpendicular to the
that the bipolaron lattice is stable at all densities if the intrin-polymer chain and the chain can be taken to be at a constant
sic gap is less than approximately 25% of the single particlgootential. The variation in the potential is between the poly-
gap. If A,/A is greater than about 25%, there is a criticalmer chains. If the chains were aligned perpendicular to the
density, above which the bipolaron lattice is unstable. Thignetal/polymer interface, the electric field would be parallel
critical density decreases with increasifg/A. The critical [0 the polymer chains. Because the field is very large near the
density goes to zero ase/A_goes to unity. interface, it r_mght be ex_pected to m_odlfy the internal struc-
The electronic energy levels and the bipolaron chemicafure of the bipolaron Iattlcg. The main results presented here
potential completely characterize the electronic structure of/©uld not change dramatically, however, because they are

the polymer within the nondegenerate continuum model’ ased on very robust principles. When it is energetically fa-

These results are used to examine the metal-polymer intey_orable for charge to be transferred between the metal and

face. Charge is transferred into the polymer from the meta'lmrin_SiC electronic states of the polymer, which occur at high
contact if the Fermi energy of the metal is above the negativ?ensgy_l_srllj.(:h as ?'pOI?er?]S’ a Iarge c;]halr:ge dgnsny IS trarrlls-
bipolaron formation energy per particle or below the positive erred. This transferred charge pins the Fermi energy at the
bipolaron formation energy per particle. The charge transPOINt where charge transfer first becomes energetically favor-
ferred to the polymer is in the form of a bipolaron lattice. abI%.] | d ibed using th d ¢

The spatial extent of the charge is limited to regions close tc%_ € po ):jmler ¥vas etSCI’I € tjsmgl fh'_“)” eé:;elntehra g_con-
the interface and results in a narrow region of rapid “band Inuum model at zero temperature. in this model the bipo-
bending.” The transferred charge pins the Fermi level of thdaron lattice is the stable state for excess charge. In a model

metal at the value of the bipolaron formation energy. Sincé"’hICh did not contain stable bipolarons, charge transfer

the effective Schottky barrier height at the interface is theWOUId be in the form of polarons. The'el'ectrostatlcs of
harge transfer to polarons would be similar to that for

energy difference between the Fermi level of the metal and

the polaron formation energy after the region of rapid “bandcharge transfer to bipolarons. There is one sigr_]if_icar_n differ-
bending,” Fermi level pinning is seen to saturate the effec-ENC€ be.tween the two cases however.. Charge injection under
n applied external bias involves singly charged polaron

tive Schottky barrier height at the difference between the""t i the ch . ies. Th ist f bi
polaron and bipolaron formation energies. IS ates ash' ﬁc arge c;ﬁrryléng s_plemels.t ? existence Oth Ipo-
A PLED structure consists of a thin polymer film between arons, which can pin the Fermi level at  lower energy than

two different metal contacts. The structure can be divideégehpa:?robn fo_rmzfatlonhenergy,_leziQS toTz;_mm!m_um effef;:tlve
into two contact regions, each of which is very thin com- chottky barrier for chargé njection. 1his minimum efiec-

pared to the total structure, and a central region. The totéive Schottky barrier is the difference in the formation energy
change in electrostatic potential across the structure mu

Qer particle of polarons and bipolarons.

equal the difference in metal work functions, plus the applied

bias. The structure of the contact regions is not affected by a ACKNOWLEDGMENT

moderate external bias. The electrostatic potential drop in a )

contact region is equal to the difference in the energy be- We thank I. H. Campbell and A. R. Bishop for several
tween the metal work function and the bipolaron formationStimulating discussions. This work was supported by the Los
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does not. The electric field is uniforfassuming no doping

in the central region and the magnitude of the field can be APPENDIX: CALCULATIONAL DETAILS

found by subtracting the potential drop in the contact regions

from the total potential and dividing by the structure thick- The ground state elastic energy for the Hamiltonian Eq.
ness. Capacitance-voltage measuremi@stsow that MEH- (1) is given by

PPV PLED structures have a central region, the thickness of

which is bias independent under low injection conditions and L

approximately equal to the structure thickness, in which G.S. [(Az—Af)llz—Aeco&;ﬁ]z,

there is an essentially uniform electric field. Electroabsorp- elastic \ iy par
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and the ground state electronic energy is given by

e

A% 4E?
+ 7“‘1?

L

hvpm

A2
2 A7
A

WG.S. 5

electronic

whereE, is the energy corresponding to the upper momen-

tum cutoff. The elastic energy of the bipolaron lattice is
given by
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The electronic energy of the bipolaron lattice is given by

EQ

IY;

E2)+2A%KE(r)nAvg] . (A2)

Combining these four terms and taking the energy cutoff taof the bipolaron lattice, the third incomplete elliptic integral

be E, =W exp(1)/2 gives the energy expression ELjr).

There is an ambiguity in the literature in the definition of
the incomplete elliptic integral of the third kind. In the
above, we have used the following definition:

dx
(1-nx®)J(1—-x3)(1-K3%?®)

The derivatives oflI(¢,n,k), with respect tk andn are,
respectively, given by

sing

(A3)

H(d),n,k):f

0

191'[ _ kz E(d’!k)
R G |
B k sing c-o&b , (Ad)
V1—k?sir ¢
21e 1 nsing cosp1—k?sir’ ¢
on  2(1—n)(K®=—n) 1—n sirf¢
2
+1- kF)F(¢,k>—E(¢,k>+ n—2(1+k?)
k2 1
+ H(¢,n,k)}—ﬁﬂ(¢,n,k)- (AS)

We have used the following integral:

x2dx

':L X(x—a)(x—b)(x—c) bla—c)

b2F(¢,k)

(AB)

11
+(a?—b?)II(¢,n,k)+ n(a—b)Z[;—n ,

wheren=a/b andu>a>b>c¢>0. In the derivation of the

second self-consistency condition and the electronic energy

for n>1 can be converted tN<1, using the formula

A(¢)+p tang
—In

1
T(.n.k)=—TI($.N.K)+F(h )+ 5 - W’)

where N=k?/n, p;=[(n—1)(1—N)]*?
=(1-Kksinf¢)*2.

The bipolaron lattice order parameter is defined by

and A(¢)

V=R(»)+V—-R(A))

2T g W
where
y(x)=E3—Kk?r?sm?(kx,r)
and
R(7)=(y—ED(y—E)(y—E3)
= —r%kBsr?(kx,r)cn®(kx,r)dn?(kx,r). (A9)

Here, sn(x,r), cn(x,r), and dn(x,r) are Jacobi elliptic
functiong! and

A3(X)=E5—E5+E7—A2—K2r?{cn?(kx,r)

+cn?[K(X+X),r1}.
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