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We describe a model for metal-polymer interfaces based on the nondegenerate continuum model of Bra-
zovskii and Kirova for the electronic properties of polymers. The correct analytic equations for a bipolaron
lattice in this model are stated and the electronic properties of the bulk polymer, i.e., the energy-level structure,
the energy density, and the chemical potential as a function of electron density are obtained numerically. We
find that the bipolaron lattice is unstable at high densities when the intrinsic gap parameter exceeds a critical
fraction of the total energy gap. The electronic properties of the bulk polymer are used for modeling the
metal-polymer interface. The charge density near a metal-polymer interface is found from the electrostatic
potential and an analytic expression for the bipolaron chemical potential assuming that the contact is in
equilibrium with the polymer layer. Poisson’s equation is integrated to determine the electrostatic potential. We
find that a large charge density is transferred into the polymer layer if the Fermi level of the metal contact is
higher than the negative bipolaron formation energy per particle or lower than the positive bipolaron formation
energy per particle. The transferred charge lies very close to the metal-polymer interface as a bipolaron lattice
with charge density progressively decreasing away from the interface. The transferred charge gives rise to a
region of rapid ‘‘band bending,’’ pins the Fermi level, and establishes the effective Schottky energy barrier.
Upon increasing the metal Fermi level above the bipolaron formation energy per particle, the effective
Schottky barrier saturates at the energy difference between the polaron formation energy and the bipolaron
formation energy per particle. The model results are useful in interpreting recent measurements of internal
photoemission, device electroabsorption, and capacitance-voltage characteristics in polymer light-emitting di-
odes.

I. INTRODUCTION

Periodic superstructures of nonlinear excitations such as
soliton, polaron, and bipolaron lattices have been studied
within continuum models for both degenerate1 and nonde-
generate ground state polymers.2 The nondegenerate models
are relevant to most polymers under consideration for use in
optoelectronic and electronic devices. Conjugated polymers
with phenyl rings in their backbones, such as poly~phenylene
vinylene! ~PPV! and its derivatives, e.g., poly@2- methoxy,5-
~2’-ethyl-hexyloxy!-1,4 phenylene vinylene# ~MEH-PPV!
show pronounced electroluminescence.3,4 These polymers
are organic semiconductors with energy gaps that depend on
the molecular structure of the polymer. Polymer light-
emitting diodes~PLED’s! that emit throughout the visible
spectrum have been successfully fabricated, using PPV and
its derivatives.3–8 It is important to understand the nature of
the metal-polymer interface and charge transfer across it to
enhance the efficiency of these devices. To this end, a quan-
titative knowledge of the nature, density, and distribution of
charge at metal-polymer interfaces is important.

Charge transferred into a nondegenerate polymer creates
polarons and bipolarons. In the nondegenerate continuum
model, the energy per particle of two isolated polarons is
greater than that of a bipolaron, so there is binding of iso-

lated polarons to form bipolarons. Also in this model, a re-
pulsive elastic interaction between bipolarons leads to the
formation of a periodic structure, the bipolaron lattice.9 At
zero temperature, the bipolaron lattice is the stable state for
excess charge in the nondegenerate continuum model. The
bipolaron lattice solution was obtained by several authors in
different forms for nondegenerate polymer models.10–15 In
Ref. 10, the solution was derived using inverse spectral
theory, while Refs. 11,12 used the infinite lattice sum or the
Poisson summation technique. Reference 13 obtained the
grand potential and then used a simple ansatz to derive the
bipolaron lattice solution. In Ref. 14, the solution was ob-
tained for chains of finite length with periodic boundary con-
ditions. The set of equations for the bipolaron lattice solution
given in Refs. 10,15 is convenient for numerical calculations.
However, the analytical expressions that have been pub-
lished10,15 for the bipolaron lattice in the nondegenerate con-
tinuum model contain typographical errors.

In this paper, we describe the metal-polymer interface
based on the Brazovskii-Kirova~BK! nondegenerate con-
tinuum model for conjugated polymers. The principal exci-
tations in this model are polarons and bipolarons. We con-
sider the high density limit~at zero temperature! in which the
bipolarons form a lattice, because of their elastic interactions.
In a previous paper,16 we considered low density effects~at
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finite temperature! in which the charged excitations only in-
teract electrostatically. Brazovskii and Kirova have previ-
ously used the degenerate version of their model in the high
density, zero temperature limit to discuss a metal-polymer
interface using analytical methods.17 However, they only
presented the energy-level profiles schematically and did not
obtain the electronic energy-level structure numerically.

In our interface model, the energy of the metal Fermi
level relative to the bipolaron formation energy per particle
in the polymer determines the charge density near the con-
tact. The region of the polymer near a contact is assumed to
be in equilibrium with that contact. Charge is exchanged
between the contact and the polymer by forming a bipolaron
lattice if the metal Fermi level is above the negative bipo-
laron formation energy per particle or below the positive
bipolaron formation energy per particle. The nondegenerate
continuum model describes a single polymer chain and a
linear charge density (e/cm! per chain is determined by the
chemical potential. For MEH-PPV and other PPV deriva-
tives, the polymer chains are aligned primarily in the inter-
facial plane of the metal-polymer contact.18 We input the
experimentally determined two-dimensional density of poly-
mer chains and treat the chains as noninteracting~except
electrostatically! to determine the total charge density. The
one-dimensional bipolaron lattice, described by the nonde-
generate continuum model, is on each polymer chain and
thus lies in the interfacial plane. The linear charge density on
a polymer chain depends on the distance of that chain from
the metal interface. The total charge density at a given dis-
tance from the interface is the product of the linear charge
density in the polymer chain at that distance and the two-
dimensional density of polymer chains~which is independent
of position!. The charge distribution of the bipolaron lattices
in the polymer chains is compensated by an opposite screen-
ing charge in the metal contact. We determine the charge in
the polymer, at any given position, using the electrostatic
potential at that position, the relationship between the chemi-
cal potential of the bipolaron lattice and the linear charge
density in each polymer chain, and the two-dimensional den-
sity of polymer chains. Poisson’s equation is integrated self-
consistently to determine the electrostatic potential as a func-
tion of position.

We find that a large negative charge density is transferred
into the polymer if the chemical potential of a contact is
higher in energy than the negative bipolaron formation en-
ergy per particle and a large positive charge density is trans-
ferred into the polymer if the chemical potential of a contact
is lower in energy than the positive bipolaron formation en-
ergy per particle. The transferred charge remains close to the
metal-polymer interface and is screened by a charge of the
opposite sign in the metal. In these cases, the Fermi energy at
the polymer surface is effectively pinned at the bipolaron
formation energy, due to the transferred charge near the in-
terface. If the chemical potential of a contact lies between the
formation energy per particle of the two kinds of charged
bipolarons, there is no charge transfer at the metal-polymer
interface and the Fermi energy at the polymer surface is not
pinned by charge transfer. This is the kind of behavior that
has been recently observed at polymer-metal interfaces in
electroabsorption and internal photoemission experiments.19

The paper is organized as follows. In Sec. II, we present a

brief review of the nondegenerate continuum model of Bra-
zovskii and Kirova. The corrected equations for the bipo-
laron lattice solution to the model are stated, the algorithm
used to compute the energy levels of a bulk polymer is dis-
cussed, and numerical results for a bulk polymer are pre-
sented. In Sec. III, we describe a single metal-polymer inter-
face, numerical results found by integrating Poisson’s
equation coupled with the relation between the polymer
chemical potential and charge density are presented. We then
discuss a metal-polymer-metal structure, which is similar to
a polymer LED device. We summarize our conclusions in
Sec. IV. The mathematical details of the bipolaron lattice
solution and the intermediate steps in the derivation of the
corrected analytical expression for the total energy are in-
cluded in an Appendix.

II. NONDEGENERATE CONTINUUM MODEL

We describe the polymer using the~zero temperature!
nondegenerate continuum model of Brazovskii and Kirova.2

In this model, the energy gap arises from two sources: an
intrinsic contribution produced by the splitting between
bonding and antibonding electronic orbitals of the basic
~rigid! structure of the polymer, and a contribution from the
interaction of the electrons with a symmetry breaking atomic
distortion ~Peierls effect!. The first contribution is respon-
sible for the band gap in conventional semiconductors and
the second contribution is the same as that which produces
the energy gap in a degenerate ground state polymer like
trans-polyacetylene. The Hamiltonian is given by

H5E dxc†~x!$2 i\vFs3]x1@D~x!~s11 is2!/21H.c.#%

3c~x!1
1

p\vFlE dxD i
2~x!, ~1!

where

D~x!5De1D i~x!exp~ if!. ~2!

Here,De describes the intrinsic contribution to the energy
gap,D i(x) is the lattice distortion contribution to the energy
gap,f is the phase angle between the matrix elements de-
scribing the intrinsic contribution and the lattice distortion
contribution to the energy gap,c(x) is a two component
spinor describing the electronic field, ands i are the Pauli
spin matrices. The first term consists of two parts, the elec-
tronic kinetic energy and the electron-lattice interaction en-
ergy. The second term represents the elastic deformation en-
ergy of the polymer chain.

There are five material parameters in the BK model:
De , f; l which describes the magnitude of the electron-
phonon coupling and, therefore, the magnitude of the Peierls
contribution to the energy gap;W is the undimerized band-
width; andvF is the Fermi velocity. It is convenient to define
D0 , the energy gap parameter of the homogeneous state for
the corresponding degenerateDe50 model, andD, the en-
ergy gap parameter of the homogeneous state for the nonde-
generate model by
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D05W exp~21/l! ~3!

and

Decos~f!5l@D̄22De
2sin2~f!#1/2 ln~D̄/D0!. ~4!

The intrinsic contribution,De , breaks the degeneracy of
the ground state of the BK model and admits charged exci-
tations, which are polarons and bipolarons. Atomic relax-
ation around added charges~electrons and holes! occurs very
rapidly and results in a lower total energy of the polymer.
The energy per particle for two isolated polarons is greater
than the energy per particle needed to create a bipolaron.
Thus, there is additional binding of bipolarons relative to
isolated polaron pairs. Upon transferring a high density of
charge to the polymer, the lowest total energy configuration
is a periodic bipolaron lattice.

In this section, we state the corrected self-consistency
equations, which govern the formation of the bipolaron lat-
tice in the nondegenerate continuum model.10 From the self-
consistency equations, the effective single particle energy
gap and the bipolaron upper and lower bands are computed
at finite density. We also state the corrected energy per unit
length for the bipolaron lattice, from which we calculate the
chemical potential for the bipolaron lattice.

A. Self-consistency equations

The correct self-consistency equations@Eqs.~29! and~30!
of Ref. 10# are

F~b,t !2
Decosf

l

kE2
@2R~D1

2!#1/2
50, ~5!

and

05~E3
22D1

2!F~b,t !2~E3
22E2

2!P~b,r 82,t !

1
E2k

2
lnS D0

2

E3
21E2

22E1
2D , ~6!

whereF(b,t) andP(b,r 82,t) are incomplete elliptic inte-
grals of the first and third kind, respectively. Here
D15Desin(f), andR(x) is defined in Ref. 10 and in the
Appendix. The density of carriers per unit length in the bi-
polaron lattice~two carriers per bipolaron! is given by

n5
k

\vFK~r !
, ~7!

whereK(r ) is the complete elliptic integral of the first kind.
The values ofE1 , E2 , andE3 represent the lower and upper
bipolaron band edges and half the effective single particle
band gap, respectively. The elliptic modulus can be ex-
pressed in terms of these energies and is given by

r5AE3
22E2

2

E3
22E1

2, ~8!

and the conjugate modulus is

r 85A12r 2. ~9!

We also define

k5AE3
22E1

2, ~10!

b5sin21SE2

E3
D , ~11!

and

t5
E3

E2
r 8. ~12!

The energiesE1 , E2 , andE3 are computed from the self-
consistency equations with the density given by Eq.~7!. For
PPV-like polymers, the physically relevant value for the
phase angle isf50 ~i.e.,D150) and we restrict our atten-
tion to this case. It is convenient to define dimensionless
variablesh5E1 /E3 , z5E2 /E3 , ands5E3 /D̄. We define
the scaled densityn̄ by

n5
D̄

\vF
n̄. ~13!

To numerically determine the energies, we consider the self-
consistency equations and the scaled density to be functions
of the two variablesz and r 8 and obtain

n̄5
sA12z2

rK ~r !
, ~14!

s5
De

lD̄
A 12z2

z22r 82
1

F~b,t !
, ~15!

05F~b,t !2~12z2!P~b,r 82,t !

1
zA12z2

r
lnS D0r

sD̄A12r 82z2
D . ~16!

To find the band energiesE1 , E2 , and E3 at a given
density, we use Eq.~15! to eliminates and numerically
solve Eq.~16! for z at fixedr 8 in the interval 0<r 8<1. This
determinesz as a function ofr 8. We then use Eq.~14! to
determiner 8 for the given density. Oncer 8 is determined,
s is calculated using Eq.~15!, z is found using Eq.~16!, and
h is found fromh5Az22r 82/r .

B. Energy density and chemical potential

The correct bipolaron lattice energy per unit length@Eq.
~33! of Ref. 10# is given by
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W~n!/L5
1

\vFp H F~b,t !

E2k
@E1

2E2
22D1

2~E3
21E2

22E1
2!12D1

2kE~r !n\vF#1E2kE~b,t !12kE~r !n\vF

2
2Decosf

lK~r !

@2R~D1
2!#1/2

E3
22D1

2 PS E3
22E2

2

E3
22D1

2 ,r D 1
3

2 S E1
22E2

22
E3
2

3 D 1~D̄222D1
2!lnS D̄

D0
D 1

D̄2

2 J , ~17!

whereE(b,t) is the incomplete elliptic integral of the second
kind andP(a,r ) is the complete elliptic integral of the third
kind. Intermediate steps of the derivation are given in the
Appendix. Physically relevant parameters for PPV-like poly-
mers correspond tof50 and we restrict our attention to that
case.

It is convenient to define a dimensionless energy per unit
lengthw by

W~n!/L5
D̄2

\vF
w. ~18!

The scaled energy per unit length can be expressed as a
function of z and r 8,

w5
s2

p F z~z22r 82!

rA12z2
F~b,t !1

zA12z2

r
E~b,t !1

2~12z2!E~r !

r 2K~r !
1
3

2 S z22r 82

r 2
2z22

1

3D
22

z~z22r82!

rA12z2
F~b,t !

P~12z2,r !

K~r ! G1
1

p F lnS D̄

D0
D 1

1

2G . ~19!

The evaluation of the chemical potential is simplified by the
elimination of singularities if we rewrite the complete elliptic
integral of the third kind asP(12z2,r )/K(r )5H(z,r ),
where

H~z,r 8!511d@E~e,r !2E~r !F~e,r !/K~r !#. ~20!

Here,

d5
1

z
A 12z2

z22r 82

and

e5sin21SA12z2

r D .
The chemical potential is defined by

m5
dW@n#/L

dn
5D̄

dw

dn̄
~21!

and gives the energy per particle required to add a bipolaron
to the polymer. The total derivative of the scaled energy den-
sity is evaluated from the ratio of the total differential of the
scaled energy density,

dw5
]w

]z
dz1

]w

]r 8
dr8, ~22!

to the total differential of the scaled density,

dn̄5
]n̄

]z
dz1

]n̄

]r 8
dr8. ~23!

The chemical potential is given by

dw

dn̄
5S ]w

]z

dz

dr8
1

]w

]r 8

]n̄

]z

dz

dr8
1

]n̄

]r 8

D , ~24!

where the total derivative ofz must be calculated.
The total derivative ofz, with respect tor 8, can be cal-

culated from the self-consistency Eq.~16!,

dz

dr8
52

S ]G

]r 8D
z

S ]G

]z D
r 8

, ~25!

whereG is the right hand side of Eq.~16!. The partial de-
rivatives can be calculated and combining the results, we
obtain an analytic expression for the chemical potential.~See
the Appendix for the analytic derivatives of the incomplete
elliptic integral of the third kind.!

C. Numerical results for a bulk polymer

In the low density limitr 8→0, the self-consistency equa-
tions reduce to a pair of equations, which determine the
single bipolaron intragap level (E0) and the energy gap pa-
rameter for the homogeneous state~D̄!. The low density bi-
polaron formation energy per particle (Eb) can be found by
taking the zero density limit of the chemical potential,
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Eb5
D̄

p H 2A12z0
21

De

lD̄
lnS 11A12z0

2

12A12z0
2D J , ~26!

wherez0 is the zero density value ofz, which is equal to
E0/D̄. In the low density limit, the self-consistency equations
reduce to the single bipolaron equations and the chemical
potential to the single bipolaron formation energy per par-
ticle given by Onodera.9 There is an exact symmetry between
electron and hole type excitations, so we only present results
for electron type excitations.

In Fig. 1, we show the low density bipolaron intragap level (E0), the bipolaron formation energy per particle
(Eb) and the polaron formation energy,9 as a function of
De /D̄. The bandwidthW was fixed at 10 eV andl andDe

were constrained so thatD̄ was fixed at 1.284 eV. The ratio
of De /D̄ was varied. WhenDe /D̄ is equal to unity, the en-
ergy gap is determined entirely by the intrinsic splitting be-
tween bonding and antibonding levels, as in conventional
semiconductors. WhenDe /D̄ is zero, the energy gap of the
degenerate polymer is due entirely to the Peierls effect, as in
trans-polyacetylene. The quantityDe /D̄ ranges from zero to
unity and interpolates between a degenerate ground state
polymer and a conventional one-dimensional semiconductor,
respectively.

In Fig. 2, we show the average energy per particle~solid
line! and the chemical potential~dashed line! of the bipo-
laron lattice, in units ofEb , as a function of density. Both are
monotonically increasing functions of density. At low density
(n̄<1/3), both the average energy per particle and the
chemical potential are essentially equal toEb . In Fig. 3, we
show the energiesE1 ,E2 , andE3 ~solid lines! for two sets of
input parameters, as a function of the normalized density. In
Fig. 2 and the upper panel of Fig. 3, we have takenW510
eV, De50.1284 eV, andl50.4385. In the lower panel of
Fig. 3, we have takenW510 eV, De50.3849 eV, and
l50.3411. The Fermi velocity is 1.183108 cm/sec in all
calculations. The two cases in Fig. 3 correspond toDe /D̄

FIG. 2. Average energy per particle of the bipolaron lattice
~dashed line! and chemical potential of the bipolaron lattice~solid
line!, in units of the zero density bipolaron formation energy per
particleEb , as a function of the scaled dimensionless chain bipo-
laron density.

FIG. 3. The bipolaron energiesE1 , E2 , andE3 as a function of
the scaled dimensionless chain bipolaron density. In the upper
panel, the parameter values areDe50.1284 eV,l50.4385, and
W510 eV. The dashed line is the chemical potential. In the lower
panel, the parameter values areDe50.3849 eV,l50.3411, and
W510 eV. For the upper panelDe /D̄50.1 and the lower panel has
De /D̄50.3. In both casesD̄51.284 eV.

FIG. 1. Bipolaron formation energy per particle~dashed line!,
the bipolaron intragap level,~solid line! and the polaron formation
energy~dotted line!, as a function ofDe /D̄.
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equal to 0.1 and 0.3, respectively. Note that the single par-
ticle band gap and the bipolaron bandwidth increase with
increasing density. As one approaches low density, the bipo-
laron bandwidth decreases rapidly to zero and approaches the
single bipolaron intragap levelE15E25E0 and E3 ap-
proaches the single particle gap parameterD̄. In the high
density limit, we see that the behavior of the scaled energy
parameters is given byz→1, h→0 ands increases mono-
tonically with density.

In Fig. 3, the dotted lines are the computed chemical po-
tential for the two sets of input parameters as a function of
normalized density. In the upper panel, we note that
E2,m,E3 , which indicates the stability of the bipolaron
lattice for the complete density range considered. For
De /D̄50.3, the chemical potential crossesE3 at a finite criti-
cal densitync . This indicates that the bipolaron lattice is
unstable and further addition of charge into the system is not
in the form of relaxed bipolarons. In Fig. 4, we show the
critical density as a function ofDe /D̄, where we have indi-
cated the stable and unstable regions. Below the critical den-
sity nc for fixed De /D̄, the bipolaron lattice is stable and
above the critical density it is unstable. We find that the
bipolaron lattice is stable over the entire density range if
De /D̄ is less than about 0.25 for the present choice of the
parameters. IncreasingDe /D̄→1, the density range over
which the bipolaron lattice is stable decreases and ap-
proaches zero. This is the limit of a conventional one-
dimensional semiconductor, where the bipolaron is not a
stable excitation.

III. METAL-POLYMER INTERFACE

The metal-polymer interface is described using the bulk
electronic properties of the polymer computed from the non-
degenerate continuum model. The metal is characterized by
its work function. The polymer is characterized by the bipo-
laron chemical potentialm and the energiesE1 , E2 , and

E3 , which are specified as functions of density. The polymer
is assumed to be in local equilibrium with the metal near the
metal-polymer interface. The position of the metal Fermi
level relative to the bipolaron chemical potential determines
if charge transfer occurs at the interface. If the metal Fermi
level is above the negative or below the positive zero density
bipolaron chemical potential, then charge transfer to the
polymer from the metal occurs and a bipolaron lattice is
formed. This leaves a screening charge in the metal contact.
There is no background doping, so the only charge in the
polymer is from the metal contact.

The condition of local equilibrium allows the determina-
tion of the electrostatic potential throughout the polymer.
The electrostatic boundary conditions are that the electro-
static potential in the metal is zero and the electric field van-
ishes deep in the polymer. We solve Poisson’s equation for
the electrostatic potential and the electric field in the polymer
layer subject to these boundary conditions. Explicitly, we
integrate

d2f

dx2
52

4pr~f!

«
, ~27!

where r(f) is the charge density and« is the dielectric
constant of the bulk polymer. The charge density is given by

r~f!52en~f!D, ~28!

wheree is the magnitude of the electronic charge,n(f) is
the one-dimensional carrier density in the bipolaron lattice,
andD is the two-dimensional density of polymer chains. For
numerical calculations we take«53 and the density of poly-
mer chains determined experimentally for MEH-PPV,20

D51.231014 chains/cm2.
The charge density within the polymer depends on the

metal Fermi levels at the contacts and the electrostatic po-
tential, which must be calculated self-consistently from Pois-
son’s equation. The work function of the metal at the left
contactmL fixes the chemical potential at the polymer inter-
face, and therefore, determines the charge density in the
polymer at the interface~by inverting the chemical potential
expression for the density!. The charge density within the
polymer layer depends explicitly on the potential and is de-
termined by inverting the electrochemical potential at each
point in the polymer layer. The self-consistency is manifest,
since Poisson’s equation determines the electrostatic poten-
tial in the presence of the charged bipolarons, and the elec-
trochemical potential depends on the electrostatic potential
that determines the density of the bipolarons.

For the interface calculation, we fixW at 10 eV,
vF51.183108 cm/sec,l50.4385, andDe50.1284 eV. This
gives a value forD̄ of 1.284 eV, a value for the polaron
formation energy ofEp51.2 eV, and a value for the bipo-
laron formation energy per particleEb51.0 eV. All of the
energies are measured relative to the center of the zero den-
sity polymer gap.

In the upper panel of Fig. 5, we showE1„n(x)…,
E2„n(x)…, E3„n(x)…, andm„n(x)… and in the lower panel of
Fig. 5, we show E1„n(x)…2ef(x), E2„n(x)…2ef(x),
E3„n(x)…2ef(x), and m„n(x)…2ef(x) as a function of
distance from the interface for a metal chemical potential of
1.3 eV. The polymer chains lie in the interface plane so that

FIG. 4. The scaled critical density~i.e., the density where the
chemical potential crossesE3), as a function ofDe /D̄. We have
fixed D̄51.284 eV;l andDe are varied to adjustDe /D̄.
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the position axis in Fig. 5 corresponds to different chains
lying at different distances from the interface. Because the
metal chemical potential is larger than the bipolaron forma-
tion energy per particle, a high density of negative charge has
been transferred from the metal to the polymer. This charge
in the polymer is in the form of a one-dimensional bipolaron
lattice in the polymer chains lying in the plane of the inter-
face. There is a positive screening charge on the surface of
the metal contact, which compensates the charge in the poly-
mer. As seen in the upper panel of Fig. 5,E1„n(x)…,
E2„n(x)…, E3„n(x)…, andm„n(x)… go to their zero density
values far from the interface. As seen in the lower panel of
Fig. 5,m„n(x)…2ef(x) is constant as it must be at equilib-
rium.

The electric field near the interface is shown in the upper
panel of Fig. 6 and the charge density near the interface is
shown in the lower panel of Fig. 6 for various values of the
metal work function larger then the bipolaron formation en-
ergy per particle (Eb51.0 eV!. For realistic values of the
density of polymer chains, an extremely large charge density
is transferred into the polymer once the metal chemical po-
tential exceeds the bipolaron formation energy. This large
charge density results in extremely large electric fields,
which cause a rapid spatial variation inr(x). Because the
distances involved are on the molecular scale, a continuum
model cannot describe the spatial variation in detail. How-
ever, for most experimental situations, the details of the
charge distribution on the molecular scale are not of interest.
Essentially, there is a dipole layer at the metal-polymer in-
terface in which one plate of the dipole layer is the charged

bipolarons in the polymer and the other plate of the dipole
layer is the screening charge in the metal. The essential point
is that a very large charge transfer occurs once the metal
Fermi level exceeds the bipolaron formation energy and this
charge transfer causes a very large electric field over a short
distance. This point is emphasized in Fig. 7, which shows the
magnitude of the charge density~upper panel! and the elec-
tric field ~lower panel! in the polymer at the interface as a
function of the metal chemical potential. Both the charge
density and electric field rise abruptly to very large values, as
soon as the metal chemical potential exceeds the bipolaron
formation energy. The calculations presented here are for
zero temperature; at finite temperature activated charge
transfer occurs when the metal chemical potential is below
the bipolaron formation energy. Because the prefactor for the
activated charge transfer is very large, it is significant for the
metal chemical potential severalkBT below the bipolaron
formation energy.16

The spatial extent of the charged polymer region is very
small and not directly accessible experimentally. The most
interesting question about the charge transfer at the metal-
polymer interface is how it affects the relative energy levels
of states in the metal and states in the polymer beyond the
narrow charged region. Specifically, we want to know the
energy difference between the metal Fermi energy and the
polaron formation energy in the polymer.~The polaron is the
lowest energy singly charged transport state in the polymer.!
This energy difference is the analog of the Schottky energy
barrier at the interface between a metal and an inorganic
semiconductor. When the metal Fermi level is below the bi-

FIG. 5. E1 , E2 , E3 , andm„n(x)… ~dashed line! upper panel;
and E12ef(x), E22ef(x), E32ef(x), and m„n(x)…2ef(x)
~dashed line! lower panel; as a function of distance from the inter-
face.

FIG. 6. The electric field~upper panel! and the charge density
~lower panel! near the metal-polymer interface, as a function of
distance for various values of the metal work function,mL51.1,
1.2, 1.3, 1.4 eV, respectively.
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polaron formation energy per particle, there is no charge
transfer and the effective Schottky barrier energy at the
metal-polymer interface is just the energy difference between
the polaron formation energy in the polymer and the metal
Fermi energy. When the metal Fermi energy is above the
bipolaron formation energy per particle, the change in elec-
trostatic potential in the narrow charged region must be in-

cluded in the effective Schottky barrier energy. The
effective Schottky barrier energy thus becomes
ES5Ep2mL2ef(xc), whereES is the effective Schottky
barrier energy andf(xc) is the potential at the distance
(xc) at which the charge density has gone to zero. In Fig. 8,
ES is plotted as a function of the work function of the metal
(mL) measured from the zero density gap center. At midgap
(mL50), the effective Schottky barrier is the polaron forma-
tion energy andES decreases linearly with increasing work
function. When the metal work function coincides with the
bipolaron formation energy, charge is transferred into the
polymer layer and the Schottky barrier saturates. Further in-
crease of the metal work function does not affect the barrier
height, which is saturated at a value equal to the difference
between the polaron and bipolaron formation energies of
0.2 eV for the present choice of parameters. The results in
Fig. 8 are for zero temperature. At finite temperature, the
abrupt shoulder that occurs in Fig. 8 is rounded and the satu-
ration occurs severalkBT lower in energy than the bipolaron
formation energy per particle.16

A PLED device structure consists of a thin polymer film,
typically 50–100 nm, sandwiched between two different
metal contacts. One contact is a low work function metal and
thus electron injecting and the other contact is a high work
function metal and thus hole injecting. If a sufficiently large
forward bias is applied to the device, electrons and holes are
injected from the low and high work function contacts, re-
spectively. The electrons and holes recombine in the polymer
layer and emit light. From the description of the metal/
polymer contact above, it is clear that the PLED structure
can be divided into two contact regions, each of which is
very thin compared to the total structure, and a central re-
gion. At zero bias, the electric field is essentially constant in
the central region, because there is little or no charge in this
region. At zero bias, the total change in electrostatic potential
across the structure must equal the difference between the
work functions of the two contacts. The electrostatic poten-
tial drop in a contact region is equal to the difference in
energy between the work function and the bipolaron forma-
tion energy per particle, if charge transfer occurs or zero if it
does not. Increasing~decreasing! the Fermi level of the elec-
tron ~hole! injecting contact further above~below! the nega-
tive ~positive! bipolaron formation energy per particle only
increases the charge density transferred to the polymer and
thus increases the region of rapid ‘‘band bending.’’ There-
fore, the maximum potential drop across the central region of
the structure at zero bias is given by the difference in the
negative and positive bipolaron formation energies per par-
ticle. The maximum zero bias potential drop in the central
region is reduced by several timeskBT at finite temperature.

Applying an external bias to the device raises or lowers
the Fermi level of one contact relative to the other. A reverse
~forward! bias raises~lowers! the Fermi level of the high
work function contact relative to the low work function con-
tact. The magnitude of the electric fields, which result from
an applied bias, are vastly smaller than those which occur in
the contact regions and thus the structure, of the contact re-
gions is not significantly affected by the applied bias. The
increase in the potential drop across the structure which oc-
curs at reverse bias~decrease in potential drop at forward
bias!, is entirely in the central region of the structure and

FIG. 8. The effective Schottky barrier energy, as a function of
metal work functionmL . The change in slope occurs at the bipo-
laron formation energy per particle.

FIG. 7. The charge density~upper panel! and the electric field
~lower panel! in the polymer at the interface, as a function of metal
work functionmL .
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increases~decreases! the uniform electric field in the region.
This behavior has been verified by detailed calculations.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have presented an equilibrium model for
the metal-polymer interface. The electronic properties of the
polymer are determined within the nondegenerate continuum
model of Brazovskii and Kirova. We presented the corrected
bipolaron lattice solution to this model, both the self-
consistency and the energy density equations. These equa-
tions are solved numerically for the electronic levels and are
used to compute the bipolaron chemical potential for the
bulk polymer. We found that the bipolaron lattice solution is
stable below a critical bipolaron density, which is determined
by the value ofDe /D̄. For the parameters used, we found
that the bipolaron lattice is stable at all densities if the intrin-
sic gap is less than approximately 25% of the single particle
gap. If De /D̄ is greater than about 25%, there is a critical
density, above which the bipolaron lattice is unstable. This
critical density decreases with increasingDe /D̄. The critical
density goes to zero asDe /D̄ goes to unity.

The electronic energy levels and the bipolaron chemical
potential completely characterize the electronic structure of
the polymer within the nondegenerate continuum model.
These results are used to examine the metal-polymer inter-
face. Charge is transferred into the polymer from the metal
contact if the Fermi energy of the metal is above the negative
bipolaron formation energy per particle or below the positive
bipolaron formation energy per particle. The charge trans-
ferred to the polymer is in the form of a bipolaron lattice.
The spatial extent of the charge is limited to regions close to
the interface and results in a narrow region of rapid ‘‘band
bending.’’ The transferred charge pins the Fermi level of the
metal at the value of the bipolaron formation energy. Since
the effective Schottky barrier height at the interface is the
energy difference between the Fermi level of the metal and
the polaron formation energy after the region of rapid ‘‘band
bending,’’ Fermi level pinning is seen to saturate the effec-
tive Schottky barrier height at the difference between the
polaron and bipolaron formation energies.

A PLED structure consists of a thin polymer film between
two different metal contacts. The structure can be divided
into two contact regions, each of which is very thin com-
pared to the total structure, and a central region. The total
change in electrostatic potential across the structure must
equal the difference in metal work functions, plus the applied
bias. The structure of the contact regions is not affected by a
moderate external bias. The electrostatic potential drop in a
contact region is equal to the difference in the energy be-
tween the metal work function and the bipolaron formation
energy per particle, if charge transfer occurs, or zero if it
does not. The electric field is uniform~assuming no doping!
in the central region and the magnitude of the field can be
found by subtracting the potential drop in the contact regions
from the total potential and dividing by the structure thick-
ness. Capacitance-voltage measurements20 show that MEH-
PPV PLED structures have a central region, the thickness of
which is bias independent under low injection conditions and
approximately equal to the structure thickness, in which
there is an essentially uniform electric field. Electroabsorp-

tion and internal photoemission measurements19 show that
the effective Schottky barrier energies in MEH-PPV PLED
structures scale directly with the metal work function, until a
critical upper or lower value is reached, after which the ef-
fective Schottky barrier energy saturates and no longer de-
pends on the metal work function. The observed critical val-
ues are such that they can be associated with negative and
positive bipolaron formation energies per particle,
respectively.19 Thus, these experimental results support the
picture of the metal-polymer interface presented here. In the
limit De→0, our results reduce to the degenerate limit stud-
ied in Ref. 17.

In this work, the polymer chains were assumed to be
aligned parallel to the metal/polymer interface, because that
is the alignment found experimentally for soluble derivatives
of PPV.18As a result, the electric field is perpendicular to the
polymer chain and the chain can be taken to be at a constant
potential. The variation in the potential is between the poly-
mer chains. If the chains were aligned perpendicular to the
metal/polymer interface, the electric field would be parallel
to the polymer chains. Because the field is very large near the
interface, it might be expected to modify the internal struc-
ture of the bipolaron lattice. The main results presented here
would not change dramatically, however, because they are
based on very robust principles. When it is energetically fa-
vorable for charge to be transferred between the metal and
intrinsic electronic states of the polymer, which occur at high
density such as bipolarons, a large charge density is trans-
ferred. This transferred charge pins the Fermi energy at the
point where charge transfer first becomes energetically favor-
able.

The polymer was described using the nondegenerate con-
tinuum model at zero temperature. In this model the bipo-
laron lattice is the stable state for excess charge. In a model
which did not contain stable bipolarons, charge transfer
would be in the form of polarons. The electrostatics of
charge transfer to polarons would be similar to that for
charge transfer to bipolarons. There is one significant differ-
ence between the two cases however. Charge injection under
an applied external bias involves singly charged polaron
states as the charge carrying species. The existence of bipo-
larons, which can pin the Fermi level at a lower energy than
the polaron formation energy, leads to a minimum effective
Schottky barrier for charge injection. This minimum effec-
tive Schottky barrier is the difference in the formation energy
per particle of polarons and bipolarons.
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APPENDIX: CALCULATIONAL DETAILS

The ground state elastic energy for the Hamiltonian Eq.
~1! is given by

Welastic
G.S. 5

L

l\vFp
@~D̄22D1

2!1/22Decosf#2,
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and the ground state electronic energy is given by

Welectronic
G.S. 52

L

\vFp F S EL
2 2

D̄2

2 D 1
D̄2

2
ln
4EL

2

D̄2 G ,
whereEL is the energy corresponding to the upper momen-
tum cutoff. The elastic energy of the bipolaron lattice is
given by

Welastic
B.L. 5

L

l\vFp H De
2cos2f1@E3

21E2
22E1

22D1
2

22kE~r !n\vF#2
2Decosf

K~r !

@2R~D1
2!#1/2

E3
22D1

2

3PS E3
22E2

2

E3
22D1

2 ,r D J . ~A1!

The electronic energy of the bipolaron lattice is given by

W electronic
B.L. 5

L

\vFp H 2EL
2 1

1

2
~E3

22E2
21E1

2!1E2kE~b,t !1
1

2
@E1

22E3
22E2

212kE~r !n\vF# ln
4EL

2

D0
2

1
F~b,t !

E2k
@E1

2E2
22D1

2~E3
21E2

22E1
2!12D1

2kE~r !n\vF#J . ~A2!

Combining these four terms and taking the energy cutoff to
beEL5W exp(1)/2 gives the energy expression Eq.~17!.

There is an ambiguity in the literature in the definition of
the incomplete elliptic integral of the third kind. In the
above, we have used the following definition:

P~f,n,k!5E
0

sinf dx

~12nx2!A~12x2!~12k2x2!
. ~A3!

The derivatives ofP(f,n,k), with respect tok andn are,
respectively, given by

]P

]k
5

k

n2k2
P~f,n,k!2

k2

k82~n2k2! FE~f,k!

k

2
k sinf cosf

A12k2sin2f
G , ~A4!

]P

]n
5

1

2~12n!~k22n!
Fnsinf cosfA12k2sin2f

12n sin2f

1S 12
k2

n DF~f,k!2E~f,k!1S n22~11k2!

1
3k2

n DP~f,n,k!G2
1

n
P~f,n,k!. ~A5!

We have used the following integral:

I5E
a

u x2dx

Ax~x2a!~x2b!~x2c!
5

2

Ab~a2c!
Fb2F~f,k!

1~a22b2!P~f,n,k!1n~a2b!2
]P

]n G , ~A6!

wheren5a/b andu.a.b.c.0. In the derivation of the
second self-consistency condition and the electronic energy

of the bipolaron lattice, the third incomplete elliptic integral
for n.1 can be converted toN,1, using the formula

P~f,n,k!52P~f,N,k!1F~f,k!1
1

2p1
ln

D~f!1p1tanf

D~f!2p1tanf
,

~A7!

where N5k2/n, p15@(n21)(12N)#1/2 and D(f)
5(12k2sin2f)1/2.

The bipolaron lattice order parameter is defined by

D2~x!5
A2R~g!1A2R~D1

2!

g~x!2D1
2 , ~A8!

where

g~x!5E3
22k2r 2sn2~kx,r !

and

R~g!5~g2E1
2!~g2E2

2!~g2E3
2!

52r 4k6sn2~kx,r !cn2~kx,r !dn2~kx,r !. ~A9!

Here, sn(x,r ), cn(x,r ), and dn(x,r ) are Jacobi elliptic
functions21 and

D2
2~x!5E3

22E2
21E1

22D1
22k2r 2$cn2~kx,r !

1cn2@k~x1x0!,r #%.

4832 53P. S. DAVIDS, A. SAXENA, AND D. L. SMITH



1A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, Rev.
Mod. Phys.60, 781 ~1988!.

2S. A. Brazovskii and N. N. Kirova, Pis’ma Zh. E´ksp. Teor. Fiz.
33, 6 ~1981! @JETP Lett.33, 4 ~1981!#.

3J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K.
Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature
~London! 347, 539 ~1990!.

4D. Braun and A. J. Heeger, Appl. Phys. Lett.58, 1982~1991!.
5G. Grem, G. Leditzky, B. Ulrich, and G. Leising, Adv. Mater.4,
36 ~1992!.

6P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R.
Brown, R. H. Friend, and R. W. Gymer, Nature~London! 356,
47 ~1992!; M. Berggren, O. Ingana¨s, G. Gustafsson, J. Rasmus-
son, M. R. Andersson, T. Hjertberg, and O. Wennerstrom,ibid.
372, 444 ~1994!.

7A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend,
N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, Appl.
Phys. Lett.61, 2793 ~1992!; D. Braun, A. J. Heeger, and H.
Kromer, J. Electron. Mater.20, 945 ~1991!.

8G. Gustaffson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri,
and A. J. Heeger, Nature~London! 357, 477 ~1992!.

9Y. Onodera, Phys. Rev. B30, 775 ~1984!.
10S. A. Brazovskii, N. N. Kirova, and S. I. Matveenko, Zh. E´ksp.

Teor. Fiz.86, 743 ~1984! @Sov. Phys. JETP59, 434 ~1984!#.
11A. Saxena and J. D. Gunton, Phys. Rev. B35, 3914 ~1987!; 38,

8459 ~1988!.
12A. Saxena and W. Cao, Phys. Rev. B38, 7664~1988!.
13H. W. Streitwolf, Phys. Status Solidi B149, K13 ~1986!; H. Puff

and H. W. Streitwolf,ibid. 150, 147 ~1988!; Synth. Met.57,
4431 ~1993!.

14M. Dinter, Phys. Rev. B36, 9628~1987!; 39, 8423~1989!.
15S. A. Brazovskii and N. N. Kirova,Self-Localization of Electrons

and Periodic Superstructures in Quasi-1D Dielectrics, Soviet
Scientific Reviews~Harwood, New York, 1984!, Vol. 5.

16P. S. Davids, A. Saxena, and D. L. Smith, J. Appl. Phys.78, 4244
~1995!.

17S. A. Brazovskii and N. N. Kirova, Synth. Met.56, 2 ~1993!.
18D. McBranch, I. H. Campbell, D. L. Smith, and J. P. Ferraris,

Appl. Phys. Lett.66, 1175~1995!.
19I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris

~unpublished!.
20I. H. Campbell, D. L. Smith, and J. P. Ferraris, Appl. Phys. Lett.

66, 3030~1995!.
21I.S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and

Products~Academic Press, New York, 1980!.

53 4833BIPOLARON LATTICE FORMATION AT METAL-POLYMER . . .


