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Microscopic theory of optical gain in small semiconductor quantum dots
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A microscopic theory is used to analyze optical gain in small semiconductor quantum dots. Based on a
numerical matrix diagonalization method and subsequent solution of the optical Bloch equations, it is found
that the quantum-dot gain is dominated by the stimulated transitions between biexciton and exciton states. The
calculation shows that Coulomb interaction and valence-band mixing effects significantly influence the spectral
and dynamic gain properties in strongly confined quantum dots.

I. INTRODUCTION conducted to understand the linear and nonlinear optical
properties of such systemsThese investigations revealed

In almost all commercial semiconductor lasers the emittednany unique properties of QD’s compared with bulk semi-
light is generated by the stimulated recombination ofconductors or semiconductor quantum wells. As an impor-
electron-hole pairs in the high-density carrier plasma. Undetant insight one recognized that with increasing quantum
standard laser operation conditions the threshold carrier de§onfinement biexcitons play an increasingly important role in
sity is higher than the Mott density, so that bound electrondetermining the optical nonlinearitiés.
hole states are ionized because of the exchange interaction In recent experimental studies on small CdSe quantum
and screening of the attractive interband Coulomb potentiadots, optical gain with a bandwidth of approximately 0.5 eV
Therefore, it is usually a reasonable approximation to modellas been observédThe detailed experimental study shows
the electron-hole plasma within the framework of thethat the gain in the effectively zero-dimensional QD system
screened Hartree-Fock approximation. Such a treatment éfiffers significantly from that in bulk and quantum-well
the semiconductor gain medium allows us to explain manyptructures. For example, in QD’s spectrally very broad opti-
experimental findings and enables us to model laser and arf@ gain can be realized from far below to well above the
plifier devices which are based on Ill-V semiconductorfundamental band gap, whereas in bulk and quantum-well
materialst structures plasma gain is possible only in the spectral region

On the other hand, since the late 1970s and early 1980s etween the renormalized gap and the electron-hole qua-
has been well known that optical gain in wide-gap bulkSichemical potential.
semiconductors has significant excitonic and even biexci- It i our goal in this paper to present and evaluate an
tonic contributions, at least under low-temperature operatioffi€alized but realistic model for excitonic lasing in QD’s. We
conditions?? Indications for the influence of such strong demonstrate that the various biexciton-to-exciton transitions
electron-hole correlations have also been discussed recenfigSentially determine the optical gain properties. To calculate
in connection with laser action in II-VlI quantum-well the gain spectra, we first compute the exciton and biexciton
structured: In these 1I-VI materials, the exciton binding en- States using a numerical matrix diagonalization methard,
ergy is a few tens of meV, so that strong excitonic effectsvhich the Coulomb interaction, valence-band mixinand
should be present even at laser threshold densities. surface polarization effettare included. The optical transi-

A satisfactory theoretical understanding of electron-holelion dipole moments are obtained from the computed exciton
correlation effects in bulk and quantum-confined semiconnd biexciton wave functions. To study the optical gain dy-
ductor structures and their influence on the optical gain doe§2Mics and compute pump-probe spectra in the gain regime
not yet exist. This problem is not only interesting and chal-We solve the spatially Fourier-transformed multilevel optical
lenging because of its many-body aspects but is also of sig3loch equations. The results explain the broad gain spectra
nificance for device development and optimization. As a stefpPserved experimentally and reveal some interesting qualita-
in the direction of understanding the influence of excitonictive differences between the electron-hole plasma lasing
correlation effects on the gain in quantum-confined semiconmechanism and the gain mechanism from a strongly corre-
ductors, in this paper we study very small semiconductof@ted excitonic system in a QD.
structures, i.e., quantum dof®D’s). The strongly confined
guantum dots are a model system for excitonic and biexci-
tonic gain contributions in their purest form since the quan-
tum confinement leads to a complete absence of continuum The linear and nonlinear optical properties in the spectral
states. region of the semiconductor band gap are determined by the

There is substantial interest in QD’s as evidenced by thelectron-hole excitations. If one studies an intrinsic semicon-
substantial number of theoretical and experimental studieductor system it is possible to describe the optical excitations

Il. THEORETICAL MODEL
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using electron-hole-pair states, i.e., excitons, biexcitons, anihto the form in which the Hamiltonian becomes irreducible
so on. This picture is especially useful in the case of smallinder the full rotation groupt2
guantum dots. It is because, for dot sizes comparable to or
smaller than the bulk exciton Bohr radius, the optical prop- H N
erties of QD’s near the absorption edge are dominated by the h—2m,
exciton and biexciton statédn this case, if the pump photon .
frequency is not high enough to excite electrons to the highWNeréMo is the free-electron masg,=2y,/y,, and y, and
energy quantum confinement states, only exciton and biech/Z:”S' are the ITuttmger parametendy, is the_quantum cz‘gn-
ton states can be excited. inement potential for the hole. In the Hamiltonié®), py;
@ i
The electron-hole Hamiltonian can be written using the@ndJ'” are the spherical tensors of rank 2 for the mgmentum
exciton and biexciton projection operatars, operatorp, and the angular momentum operatbe3, re-
spectively. Definitions of the spherical tensor operators and
the dot product of two spherical tensors can be found in the
Ho=2, efle)(e|+ >, € |b)(b, (1)  Ref. 11. In order to keep the subsequent numerical calcula-
€ b tions at a feasible level, in the present paper we restrict our
analysis to cases where it is reasonable to assume an infi-
nitely high quantum confinement potential and neglect the
spin-split-off bands.
The Coulomb interactior\/quqz in Egs. (2) and (3) in-
(Het Hp+ Ve 05(5,)) #S(r 4, Th) = €205(5,])) 6S(Fe.Th), cludes two contril_)utipns: the direct Coulomb interaction and
2)  the surface polarizatiot

o
pi—g (P IP) [+ Vit (5)

where|e) and|b) are the exciton and biexciton eigenstates.
The corresponding energy eigenvalu€sand €2, are deter-
mined from the one- and two-pair Schiinger equations

2

and + e
Vqlqz(rql'rqz): _82|rq _rq | +Q1(rq1)+Ql(rq2)
(He, ¥ He, ¥ Hn +Hn, Ve e, Vi h,+ Ve, h, + Ve, i, o ! 2) ©
o *Qu(rg,.rg,)-
Ve, n, Ve, n) Tox(S1:82:11.12) B Tep ey My ) oo .
The surface polarization, which is caused by the induced
:6)k2x0->k2x(511321jlvj2)¢§x(relare2,rhlyrh2)a (3)  charges on the dielectric interface, is described by the
Hamiltoniart®

where ¢¢ and ¢, are the spatial parts ang and ¢, are
the corresponding spin parts of the exciton and biexciton e? r 12
wave functions, respectively. Hese=+3 denotes the spin Q=55 20 alg|
guantum number of the electrons agnis the spin of holes in
the top valence bands, i.g+==3,+3. FurthermoreH, and Q2 Y
Hy, are the kinetic-energy Hamiltonians of electron and hole, Fro)=— ol = 2} P,[cog @
andV is the Coulomb-interaction Hamiltonian. QAr1.r2) R Zo 'R Leost o),

In wide-gap semiconductors, the effective-mass approxi- h

c . ; ) ere
mation is usually used to describe the energy dispersion of
the conduction band. In this approximatith, is given by (e—1)(1+1)
(we takeAn=1 throughout this papgr “':m'

1 In these equationd?, is thelth-order Legendre polynomial
— 2 1| 3
He= 2me Vet Ve(re) +Eg, 4) ande=g,le; With &, (1) the dielectric constant insid@ut-

side the quantum doté is the angle between the position
wherem, is the electron effective mas¥, is the quantum  vectorsr, andr,. R is the radius of the microcrystal. The
confinement potential for the conduction electron, &yds (—) sign in Eq.(6) is for the equalopposité charge sign of
the band gap. the two particles.

For the valence bands, however, the parabolic-band as- In our calculations we first obtain the exciton and biexci-
sumption is usually not sufficient because of the strong spinton eigenstates of Eq&2) and(3) using the numerical matrix
orbit coupling existing in IlI-V and I[I-VI semiconductors. diagonalization method, which is discussed in the Appendix.
The Luttinger Hamiltoniah'* has been successfully applied A summary of basic excitonic properties in quantum dots is
to describe the valence-band structure nearlthgoint in  given in the Appendix. Using the exciton and biexciton en-
semiconductors with cubic symmetries and strong spin-orbigrgy levels and wave functions, we then calculate the optical

interaction. Within the framework of th&-p theory, the properties of QD's by solving the multilevel optical Bloch
quantum-confined hole states in the presence of spin-orbéquations.

interaction have been studied in QD’s with infifiter finite

confinement poten.ti&ﬁA more sophisticated model for the _1ll. MULTILEVEL OPTICAL BLOCH EQUATIONS
hole quantum confinement levels has also been calculated, in
which the spin-split-off bands are taken into accotitsing For low-excitation conditions the nonlinear optical prop-

the so-called spherical approximation, where the Luttingeerties can be approximated using only the lowest-order non-
parameters,= ys, the Luttinger Hamiltonian can be reduced linear susceptibilityy'®.” The continuous-wave approxima-
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tion often makes it possible to obtain analytical expression&Jsing the solutions of these equations, the optical polariza-
of . Thus, for given exciton and biexciton energies andtion is calculated as

dipole moments, one can calculate the optical nonlinearities
such as one-beam saturation, two-photon absorption, four-
wave mixing, and pump-probe spectra. However, for highly
excited systems such as the QD with gain the knowledge a
higher-order nonlinearities is necessary. Therefore, in orde
to calculate optical response functions in the high-excitatio
regime, we need to numerically solve the multilevel optical

(P)=2 doepeo(t)+ 2 derppelt). (1D
he optical properties of QD’s, such as absorption/gain and
efractive index, are then determined by E@)) and (11).

he task is to solve Eq$2) and(3) to obtain the exciton and

Bloch equations.
In the presence of an external laser fiéldthe Hamil-
tonian becomes

H:Ho_g Meole><o|_% #belb><e|_c-c- (7

In Eq. (7) wij=d;;-E, whered;; is the dipole moment be-
tween the statef) and|j). This dipole moment is propor-
tional to the interband dipole momept, and the overlap of
the electron and hole wave functioh¥he density matrix

P:P00|O><O| + 2 Pee’|e><e, | + 2 Pbb’|b><b,|
ee bb’

+ 2 (pede)ol +H.c)+ X (poelb)(e|+H.c)

+ 2, (ppalb){o] +H.c) ®)
is then determined by Liouville’s equation
_dp
g = [H.pl: 9

Inserting Eq.(8) into Eqg. (9), one obtains the equations of

motion for the density-matrix expansion coefficients,

dpeo
| Tzeipeo'*_g Me’opee’_% MebPbo™ MeoPoo
e/

. dpbe b
dt = (€3 Ei)Pbe_z ﬂbe’Pe’e"“E Mb’ePob’
e’ b’

+ MoePbo-

. dpee '
| dt :(fi_ ei JPee t Moe'Peo™ MeoPoe’

_Eb (MebPoer — Mber Peb) s (10

dppby /
: b _ b
. = (€ Exx)Pbb’+Ee (Mety Pbe™ MbePebr )

. dppo b
I dt :Expro_z (MbePeo™ MeoPbe)

e

Poo=1— g Pee™ % Pob -

biexciton energies:¢ and £2, and optical dipole moments
d., andd, and then to solve Eq$10) and(11) to obtain the
optical gain spectra.

IV. OPTICAL GAIN IN QUANTUM DOTS

In the simplest theoretical description of quantum dots, in
which both Coulomb-interaction and valence-band-mixing
effects are neglected, only the transitions between the
quantum-confined electron and hole levels with identical en-
velope quantum numbers are dipole allowed. However, this
simple selection rule is substantially modified by the inclu-
sion of the valence-band mixing and electron-hole Coulomb
interaction. As shown in previous theoretical studies, the
strong coupling of the hols andd wave functions leads to
additional, dipole-allowed transitions near the lowest
electron-hole-pair excitatiolf. The Coulomb interaction also
causes a series of additional, otherwise dipole-forbidden
transitions between exciton and biexciton stdtes.

Using the exciton and biexciton wave functions obtained
from the numerical matrix diagonalization, we calculate the
optical transition dipole moments between the exciton and
ground states and between the exciton and biexciton states,
respectively. In Fig. @a), we show a simplified sketch of the
relevant exciton and biexciton levels near the absorption
edge. As shown by Xi& the transition between the ground
state and the statés,1d,,) is dipole allowed because of the
valence-band mixing. Here we denote the electron-hole-pair
states using only the quantum numbers of the most strongly
contributing unperturbed basis state. For example, in the ex-
citon ground state, the unperturbed basids1s;,,) and the
real exciton wave function has its dominant contribution
from the state |1s,1s3,) with significant mixing of
|1s,1d35), |18,2557), [1p,1p32), etc.

The selection rules are somewhat more complicated for
the exciton-to-biexciton transitions. A schematic illustration
is shown in Fig. 1a) where the original dipole-allowed states
are indicated by the solid arrows, whereas the additional
transitions induced by the valence-band mixing are indicated
by the dashed arrows. Those transitions which become di-
pole allowed as a consequence of the Coulomb interaction
are illustrated by the dotted arrows. The upward arrows rep-
resent the optical pump processes that create the population
inversion in the QD system. The downward arrows in Fig.
1(a) indicate those transitions between exciton and biexciton
states and between the exciton and the vacuum state which
contribute to the stimulated emission process. Although these
transitions can be understood already from symmetry argu-
ments, the relative strengths of the dipole moments can be
obtained only from numerical calculations.

In Fig. 1(b), we plot the computed dipole moments and
the corresponding resonance frequencies. To calculate the di-
pole moments, we choose the size of the quantumRdet
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FIG. 1. (a) Exciton and biexciton energy levels of a quantum tranSItlon. between the grpunq-state biexciton anq .ground-
dot. |0y is the ground statéLs,1s,,) is the exciton ground state and state excﬂon. These contributions resu_lt from 'gransmons be-
1s and sy, denote the orbital angular momentum quantum num_f[ween the blexc_lton states a_nd_the excited exciton states. For
bers of electron (4 and hole (1sy,), respectively. instance, the stimulated emission betwélmls,lsa,z,lss,g.
| 15,15, 153,155/ is the lowest biexciton state. The dark upward and |1p31p3,2} has a lower energy than the lowest exciton
arrows indicate the optical pump process and solid downward ar@bsorption resonance.
rows indicate the stimulated emissions that are dipole allowed with- There is some superficial similarity between the redshift
out the Coulomb-interaction or valence-band-mixing effect. Theof gain in quantum dots and the band-gap-renormalization
dashed arrows show the stimulated recombination induced by thghenomenon in bulk or quantum-well samples. Clearly, the
valence-band-mixing effect and the dotted arrows show the stimuredshifts of optical gain in quantum dots and in extended
lated recombination induced by the Coulomb interactibh.Com-  semiconductor structures are both caused by Coulomb corre-
puted dipole moments between the exciton states and ground stdt&tions. However, there is some basic difference, as one can
(upper half and between the biexciton states and exciton stategee from the simple argument that in quantum dots the red-
(lower half. The material parameters aRe=0.5a5, me=0.2My,  shifted gain mostly occurs because of the transitions between
¥1=5.0, u=0.75,£,=10, ande; =1. the biexciton ground state and excited exciton states. In the

biexciton ground state, both electroffmles have antiparal-
tag, my=0.2m,, y,=5.0, u=0.75, ande,=10 ande;=1. lel spin and there is no exchange interaction. However, it is
The exciton units used in this section, such as the effectivéhe exchange interaction that makes a significant contribution
Bohr radiusag and effective Rydberg enerdyy are defined to the band-gap renormalization in bulk or quantum wells.
explicitly in the Appendix. With the material parameters used To quantify the above arguments, we performed a numeri-
in this calculation, we findig=53 A andEg=13.6 meV. cal study of the gain properties in quantum dots by solving

Some gualitative conclusions regarding the gain spectrurthe multilevel optical Bloch equations, Eq4.0). The equa-
can be drawn from Fig. 1i) If the biexciton states are ini- tions are spatially Fourier transformed according to the pump
tially populated, optical gain can be realized by stimulatedand probe propagation directions. To extract only the leading
transitions between the biexciton and the exciton stdiigs. contributions the pump field is kept up to the second order
Optical gain in a spectrally broad region is possible in such avhereas the probe field is kept only in the first order. The
system, e.g., it can be seen from Fidb)lthat stimulated numerical integration is performed using a fourth-order
emission can occur far below the absorption edge. This redRunge-Kutta method.
shifted stimulated emission, in comparison to the absorption, In Fig. 2, we plot the calculated linear absorption spec-
can be explained as follows: as a consequence of the positiveum (solid curve for the same parameters used in Fig)1
biexciton binding energy, the strong stimulated emissioriThe homogeneous dephasing time is chosen as 10 fs. The
from the ground-state biexcitohls,1s,1s5,,1S5,) to the  first two absorption resonances correspond to the transitions
ground-state excitofls,1s;,) has a lower energy than the between the ground state afi,1s;,,) and|1s,1dg.).
energetically lowest linear absorption process. To simulate the saturation and gain effects in optically

Furthermore, there are some comparatively weaker emiggumped quantum-dot systems, we also calculate the
sion contributions that lead to gain energetically below theabsorption/gain spectra for various initial exciton and biex-
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FIG. 3. Computed differential transmission spectra correspond- F|G. 4. Computed linear absorptiofsolid) and bleached
ing to the lowest gain curve in Fig. 2. The time delay between theaphsorption/gain spectr@ashed for dots with a Gaussian size dis-
pump and probe pulse is 0. The duration of the pump pulse is 50 fribution. The field and material parameters are the same as in Fig.
The arrows indicate the center pump frequencies. 2. The width of the Gaussian size distribution isR.Erom top to

bottom, dashed curves correspond to increasing biexciton or exciton
citon distributions. We assume that the incoherent relaxatiopopulation.
processes cause a uniform distribution of the biexcim
citon) population over those states which are energeticallyside of the gairfFigs. 3d) and 3c)]. In contrast to bulk or
below the pump photon energy. guantum-well systems where carrier reequilibration has to

The series of dashed curves in Fig. 2 shows the resultsccur after the frequency-selective carrier removal through
obtained for different initial biexciton populations. Since we the strong pulse, the gain depletion at all the frequencies
only account for exciton and biexciton contributions in theinvolved in the quantum-dot gain occurs on a very fast time
multilevel optical Bloch equations, Eq€L0), the absorption scale determined by the biexciton-to-exciton transition time,
is completely bleached if the biexciton population in a dotindependent of the pulse duration and of the pump-probe
reaches unity. However, in reality, the transitions between theelay. The reason for this behavior is the fact that the low-
biexciton states and triexciton states contribute to an absorgnergy pump photon bleaches not only the transition between
tion background on the high-energy side. To include this ab}1s,1s,1s5/5,1S5,) and|1s,1s;,) but simultaneously also the
sorption background in the gain spectrum, we also calculatgansition betweells,1s,1s,,1d5,) and|1s,1d4,) [see Fig.
the linear absorption solely due to the transitions from thel(a)]. This second transition is bleached even more strongly
ground state to the exciton states energetically higher thathan the first one if the pump photon is tuned below the first
the exciton stat¢lp,1ps,) and assume that these transitionstransitions because the binding energy of the biexciton state
are not strongly influenced by the presence of the biexcitomls,1s,1s3,,1d,) is larger than that of1s,1s,1s,5/5,1S5/,).
states on the low-energy side of the spectrum. We want t&ince the stimulated emission occurs from the biexciton state
emphasize at this point that this partially phenomenologicalls,1s,1s5/,,1d5,) one has simultaneous phase-space block-
treatment of the absorption background has no qualitativeng of the transition between|1s,1s,1s5,,1d5,) and
impact on the gain region in Fig. 2 or on the subsequentls,1s;,), which is the major contributor to the gain on the
discussion of pump-probe spectra. high-energy side of the spectrum.

Assuming a situation where optical gain exists and excit- To study the influence of the size distribution of quantum
ing the system with an additional strong pulemmetimes dots, which often plays a major role in realistic systems, we
called a pump pulge we compute the probe spectra in the extend our analysis to include this inhomogeneous broaden-
gain regime. Experiments of this kind have been performedng effect. Figures 4 and 5 present the results corresponding
for bulk semiconductors, as reported, e.g., in Ref. 15. For outo Figs. 2 and 3, where we used the same material parameters
guantum-dot model we show in Fig. 3 the resulting differen-as in Fig. 2 but additionally assumed a Gaussian size distri-
tial transmission specti@TS) for various pump frequencies bution with a standard deviation of 10%. The calculated lin-
and pump pulse intensities. The parameters are the same @ar absorption and gain are shown in Fig. 4. In comparison to
those used to calculate the lowest gain spectrum in Fig. Zig. 2, we see that both absorption and gain spectra are sig-
Temporal overlap of the maxima of the strong pulse and thaificantly broadened, as expected for an inhomogeneous sys-
probe pulse is assumed. The arrows in the different parts dem.

Fig. 3 indicate the respective energies of the strong pulse. Figure 5 shows the calculated DTS in the inhomoge-

Our results show that the entire gain region is simulta-neously broadened quantum-dot sample. The same pumping
neously depleted by the strong pulse, which is amplifiedparameters as in the strongéstwes) gain spectrum in Fig.
through stimulated photon emission. Furthermore, there a3 have been used. As in Fig. 3, when the pump frequency is
pears stronger bleaching on the high-energy side of the gaituned to the low-energy side of the gain spectrum, we find
spectrum when the strong pulse is tuned to the low-energthe double-dip feature, which is even enhanced by the inho-
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~ FIG. 5. Computed differential transmission spectra correspond- FIG. 7. Computed differential transmission spectra correspond-
ing to the lowest gain curve in Fig. 4. The field and material pa-ing to the lowest gain curve in Fig. 5. The field and material pa-
rameters are the same as in Fig. 4. The time delay between th@meters are the same as in Fig. 4 exqepD.

pump and probe pulse is 0. The duration of the pump pulse is 50 fs.
The arrows indicate the center pump frequencies. contrast to the rich structures seen in Fig. 5, Fig. 7 only
shows the simple hole-burning effect which naturally occurs
. - . as a consequence of the inhomogeneous broadening. Thus,
mogeneous broadening. Characteristically for inhomoges haugh one might succeed in fitting absorption spectra us-
neously broadened systems, we clearly see the hole-burningy the parabolic-band approximation, the complicated na-
effect in Figs. §b) and 5c), where the pump is tuned into the' yre of experimental pump-probe speétcannot be under-

gain region but below the absorption edge. ~ stood without taking the valence-band nonparabolicity into
So far, our qualitative analysis and numerical calculationgccount.

clearly show the importance of the Coulomb interaction on

the gain properties in small quantum dots. However, our nu- V. EXPERIMENTAL RESULTS

merical study also reveals that the commonly used parabolic- In order to verify the model, femtosecond pump-probe

e T S gxperments have been perore. A 11515 pup e
9 y 9 PP : 60 nm with 7 nm full width at half maximuntFWHM)

importance of the band mixing, we recalculated Figs. 4 and xcited a CdSe quantum-dot sample, which was held at 10
using the parabolic-band approximation and the same mate: e average radius of the dots \’Nas about 25ske

gz;ofr;.d /p“mp parametersh as pefge. The q rﬁSUIEt)'_T_%istribution 15%, which is about half the exciton Bohr ra-
ption/gain spectra are shown in Fig. 6 and the ius of CdSe. The dots were embedded in a borosilicate glass
corresponding to the strongest gain is plotted in Fig. 7. I%atrix which was 200um thick. After 5 ps, a white-light
femtosecond pulse probed the absorption. The change in the
absorption(—A L) is plotted in Fig. 8 for various excitation
intensities. At low pump intensities, gain develops from the
low-energy side of the spectrum, extending at the highest
pump intensity from below 660 to 560 nm. At the highest
pump intensities, the magnitude of the low-energy gain ex-
ceeds the magnitude of the lineat. spectrum. The experi-
mental data agree very well with the theoretical calculations.
The inset to Fig. 8 shows the same experimental data as Fig.
8, except that the probe-beam absorptien is plotted in-
stead of the~alL signal. In the case of maximum pump
intensity | 5, the gain has a maximum value efal =0.28
(22% of linear absorption Gain can be observed for the first
time in the spectra at a pump intensity lgf32. From the
spectra it can be clearly seen that the maximum gain occurs
at different spectral positions compared to the peaks in the
linear absorption, therefore demonstrating that the gain does
not arise only from the inverted one-pair states.

—

ABSORPTION/GAIN(arh. unit)

=

FIG. 6. Computed linear absorptiofsolid and bleached VI. SUMMARY
absorption/gain spectr@ashed for dots with a Gaussian size dis-
tribution. The field and material parameters are the same as in Fig. In this paper, we present a microscopic model calculation
4 exceptu=0. of the excitonic and biexcitonic lasing mechanism in small
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small quantum dots, where the dot raiere comparable to

Energy (eV) or smaller than the exciton Bohr radius in the bulk sample,

1.9 20 21 2.2 23 the Coulomb interaction can be treated perturbatively with
" i ' ' 120 respect to the quantum confinement energy. This fact allows
us to use the so-called numerical matrix diagonalization or

115 configuration-interaction method, to obtain numerically ac-
curate exciton and biexciton energies as well as the corre-
sponding wave functions. The details of the numerical matrix

2 diagonalization method are discussed in Ref. 7 for the

parabolic-band model. The underlying principle of this
105 method is that the kinetic-energy eigenstates form a complete
1 basis set in the Hilbert space which can be used to expand

11.0

-Aal

0 the exact exciton or biexciton wave functions. In practice, it
. . . . f L is often possible to approximate the infinite Hilbert space by
650 625 600 575 550 525 a finite linear space, in which the finite Hamiltonian matrices
Wavelength (nm) can be diagonalized numerically. The procedure of increas-
ing the number of linearly independent basis states leads to a
check of the desired numerical accuracy. To ensure numeri-
cal convergence, it becomes vital to choose appropriate basis
functions. One of the techniques that made our earlier com-
putations possibleis to make use of the conservation of the
total angular momentum of the quantum-dot exciton or biex-

iconduct tum dots. O lculati tribut thciton states in the presence of Coulomb interaction.
semiconductor guantum dots. Lur caiculations attrioute the Unfortunately, if one goes beyond the parabolic-band ap-

optical gain to the stlmulatgd emission involving transitions roximation the orbital angular momentum of the exciton is
between the quantum-confined biexciton states and the exci-

. o longer a good quantum number because okthpeinter-
ton states. We calcullate the opthal response of quantum doésétions. However, as long as we can neglect the warping
by numerically solving the multilevel optical Bloch equa !

. : S ; : " terms in the Luttinger Hamiltonian and apply the Hamil-
tions. The exciton and biexciton wave functions and €Igenen, hian (5), we can show that the total angular momentum

ergies are determined using the numerical diagonalizatio'q =S, +J,+L.+L,, is conserved. Here, we denote the in
X h e h . ' -

method, in which we nee_d only bulk matenal parameterg;,q;. angular momentum of the conducti6ralence band
such as the electron effective mass, the Luttinger parameter@y s (1), and the corresponding envelope angular momen-
and dielectric constants of the semiconductor and host mat(ﬁ-]m b)h/ ,L (Ly). Thus we haves.=1 j.=3 d
. ! o - : e (Lp)- =3, Jh=3 an
rial. The num_erlcal matrix dlag_onallzatlon allows us to in- ,Ln=0,1,.... We choose the eigenstates of the total angu-
Sggﬁc?gg d'r&?zﬁgnéﬁ'géféac“ons’ such as Coulomb an r momentum operatdf as our basis states.

The numerical results qualitatively explain the recently In general, we can express the exciton basis states as
observed optical gain spectra in CdS quantum 8dtee
show that spectrally broad optical gain in small quantum dotdNe le: Ml Loy, Fral
occurs as a consequence of the strong Coulomb correlations.
The biexcitonic processes make it possible to have gain spec-
trally below the absorption edge and above the pump photon =2 (L, JiM,J5|Fy, Fu)(le, I ;me, my|L, M)
energy. Furthermore, our results clearly demonstrate that
Coulomb-interaction and valence-band-mixing effects have (% 2:s,,j,|3,9,)Ne,le.Me; 2,50 Mn.ln.mn 200 5)-
characteristic signatures in the gain spectra.

FIG. 8. Experimental differential absorption &t5 ps for in-
creasing intensitiety, 1¢/2, 15/4, 1y/8, etc.(1,=25 mJ/cn, T=10
K, pump wavelengts560 nm) The inset shows the linear absorp-
tion (solid) and the absorption spectra b (dotted and Iy/32
(dashed

(A1)

Here, the termgl,,l,;m;,m,|l,m) are the Clebsch-Gordan
coefficients in the Cordon-Shortly notatichWe use the or-

We thank M. Lindberg and U. Woggon for helpful and Pital quantum numbers, |, andm and spin quantum num-
stimulating discussions. We acknowledge financial supporp€rs to denote the single-particle statel,m;3,j,) for the
from NSF, ARO, AFOSR, and the Deutsche Forschungsge?0le andn,l,m;3,s,) for the electron. If the quantum con-

meinschaft, partially through the Sonderforschungsbereicfinement potential is assumed to be infinitely deep, the or-
383. bital wave function can be explicitly expressed in terms of

spherical Bessel functions and spherical harmonics.

In a similar manner, we choose the eigenstates of the
biexciton total angular momentum operator, which is defined
as Fy,=Fe +Fe,+Fn +Fy,, as the basis functions for the

Generally, the direct numerical solution of the differential expansion of the biexciton wave functions. In order to take
equationg2) and(3) is impractical if not completely impos- into account the proper antisymmetrization for identical fer-
sible for exciton or biexciton problems because of the commions, we follow the two-band calculatiband construct the
plicated interactions and boundary conditions. However, irbasis states as
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:2 <Feth;Fezthz|Fxxanxx>|nelr|elane21|ez;LerSe;Fe’Fez>e|nhlv|hlvnh2’|h2;Lh v‘]h;Fh thz>h- (AZ)

The electron(hole) pair states in Eq(A2) are defined in the same way as the exciton basis stateGA\EY.
|nelvl ezynelalez; I—e ,S, Fe vFez>e: z <|—e !Sv Me 1SZ| Fe 1 Fez)('elyl ez; me11me2| Le 1 Me>

X <%,%;521,SZZ|S,SZ>| nelvl elymel;%vsl>|ne21|ezvmez; %!SZ>

and
|nh1-|h2-nh11|h2;|—h JiFh .th>h=2 (Ln,J:Mp,J,|Fy, 1th><|h11|h2;mhlvmh2||-h Mp)

X(3,3:02pi 2] 33200 n M 530 D Mk Ty M3 340 2)-

In the linear space spanned by the basis functigkly biexciton basis states constructed using ER) is of the
and (A2), both the matrix elements of the Luttinger Hamil- order of 16, which makes a straightforward complete nu-
tonian and the Coulomb interaction can be computed numerical calculation impossible. Therefore we used an evalu-
merically. For simplicity, we assume an infinitely deep quan-ation procedure where we selectively choose those basis
tum confinement potential in our calculations; however, thisstates that are directly coupled to the lowest basis state
method can easily be extended to deal with a finite confinethrough the Coulomb interaction. Since we only need to cal-
ment potential. The matrix elements of the Coulomb interaceulate the biexciton states witR=0 we can restrict the
tion in the linear space spanned by the exciton basis stateanalysis to 1556 biexciton basis states.
defined by Eq.Al), and biexciton basis states, defined by The biexciton binding energy in QD’s has been the sub-
Eq. (A2), can be computed numerically using a straightfor-ject of experimental and theoretical studies in recent
ward generalization of the method discussed in Ref. 7. Thgears®”1" The biexciton binding energy is defined as
matrix elements of the Hamiltoniai®) are calculated using

the Wigner-Eckart theorem, AE,=26,— €3y,
wheree? ande?, are the ground-state energies of the exciton
1 and biexciton, respectively. Using the numerical matrix di-

(m|T)j'm’y= Gk =m;,alj, —myG TN,

Rj+1 agonalization method)E,, has been calculated within the
parabolic-band approximatidnHere, we calculate the biex-

where Tgk) is a spherical tensor operator of rakk and  Citon binding energy in the presence of the valence-band-
<j||-|-(k)||j/> are the so-called reduced matrix elements. Thenixing effect. To simplify the subsequent discussion, we de-

reduced matrix elements of the momentum oper@and  [In€ the exciton Rydberg energy and Bohr radius as
the angular momenturd=3 are given explicitly in Ref. 11. e e

The exciton states of interest for the analysis in the R::Uvr_Z, aBzz_Z,
present paper are the dipole-allowed states with angular mo- 2¢; ey
mentumF,=1. We construct the linear ba;is states for exc_i'respectively, where the reduced massis
ton and biexciton states using the same single-particle orbital
wave functions used in Ref. 7. In the two-band calculation, MeMp, Mo
where onlyL =0 exciton states are dipole allowed, we used My = =
64 basis states to obtain reasonable numerical accuracy.

In the present calculations, the exciton states with2 It should be pointed out here that the exciton units used in
are coupled directly to the exciton states wlth=0 as a this paper are not necessarily identical to the bulk exciton
consequence of the valence-band mixing, which induces thparameters. This is because the effective hole mass defined
coupling of s andd excitons. To have=,=1, we need the in this paper is neither the heavy-hole nor the light-hole mass
one-pair states that have the angular momehtd)(=(0,1), in the corresponding bulk sample.

(2,1, and(2,2. Using Eg.(Al), we obtain 344 basis states. =~ We plot the computed biexciton binding eneyi,, as a

There are two groups of biexciton states which are offunction of the dot radiu® in Fig. 9. For these results we
special interest in optical transitionsF=0 and 2. These choose the mass ratin,/m,=0.5 and the dielectric constant
states can be directly created in a dipole-allowed transitiomatio e,/e;=1. The three curves in Fig. 9, from top to bottom,
from the dipole allowed one-pair statésith F=1). To ob-  correspond to different valence-band-mixing parameters
tain the same numerical accuracy as in the exciton calculgz=0.9, 0.75, and 0.5. The increasing biexciton binding en-
tion also in the biexciton state calculation, the number ofergy with increasing: can be understood as follows. With

= y mh = .
Me+ My, Y1
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10 tion to the binding energy is not exactly canceled as in the
parabolic-band approximation. Therefore the theoretical pos-
\ sibility exists that the binding energy becomes negative when
81\ the radius is sufficiently small.

\ In the present calculation we could not find negative biex-

\ citon binding energies even for the smallest dots. We cannot

o 6N completely rule out that this result is caused by the accuracy
f? \ limitations of our numerical procedure. As mentioned above,
=9 I when we calculate the biexciton states, only the basis states

i which are directly coupled to the lowest basis states are taken
into account. For example, we choose the sftasels, 1s,1d)

as one of the two-pair basis states, which in turn is coupled
to the basis statfs,1s,1s,1d) through the Coulomb inter-
action. The second basis std2s,1s,1s,1d), is coupled with
the statg2s,1s,1d,1d), through thes-d wave-function mix-
ing. However, the basis stats,1s,1d,1d) is not included
Rlag in our calculation. Neglecting the states likes,1s,1d,1d)
has no influence on the ground-state energy without either
FIG. 9. Computed biexciton binding energy,, as a function  the Coulomb interaction or valence-band mixing. However,

of dot sizeR. mg/m,=0.5, &;/e;=1, u=0.6 (solid), u=0.75(dot-  if poth interactions are included, the basis states such as
ted), and u=0.9 (dashed |2s,1s,1d,1d) contribute to the higher-order energy correc-

tions. They become important only when the dot radius is so
increasing, the heavy-hole mass increases and within themall that the higher-order corrections of the biexciton bind-
parabolic-band approximation we have shown th&t, in- ing energy, which is the difference of two large numbegs,
creases aan./m, decreases when other parameters arende,, become important.
unchanged. For the dot radii of interest, the numerical cal-  To verify this argument, we estimate the dot radius at
culation shows thaAE,, is always positive. which the biexciton binding energy becomes negative using

Within the parabolic-band approximation, it can be perturbative analysi$.Using the material parameters given

proven that the biexciton binding energy in a dot with van-in this paper, we find that the biexciton binding energy is
ishing radius is strictly positive However, in the presence of positive if R>0.05; . Thus we conclude that for all realistic
the valence-band-mixing effect, the unperturbed hole wavelot sizes outside the molecular regime the biexciton binding
function is no longer the same as the unperturbed electroenergy is always positive even in the presence of the
wave function. As a result, the first-order Coulomb correc-valence-band-mixing effect.
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