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A microscopic theory is used to analyze optical gain in small semiconductor quantum dots. Based on a
numerical matrix diagonalization method and subsequent solution of the optical Bloch equations, it is found
that the quantum-dot gain is dominated by the stimulated transitions between biexciton and exciton states. The
calculation shows that Coulomb interaction and valence-band mixing effects significantly influence the spectral
and dynamic gain properties in strongly confined quantum dots.

I. INTRODUCTION

In almost all commercial semiconductor lasers the emitted
light is generated by the stimulated recombination of
electron-hole pairs in the high-density carrier plasma. Under
standard laser operation conditions the threshold carrier den-
sity is higher than the Mott density, so that bound electron-
hole states are ionized because of the exchange interaction
and screening of the attractive interband Coulomb potential.
Therefore, it is usually a reasonable approximation to model
the electron-hole plasma within the framework of the
screened Hartree-Fock approximation. Such a treatment of
the semiconductor gain medium allows us to explain many
experimental findings and enables us to model laser and am-
plifier devices which are based on III-V semiconductor
materials.1

On the other hand, since the late 1970s and early 1980s it
has been well known that optical gain in wide-gap bulk
semiconductors has significant excitonic and even biexci-
tonic contributions, at least under low-temperature operation
conditions.2,3 Indications for the influence of such strong
electron-hole correlations have also been discussed recently
in connection with laser action in II-VI quantum-well
structures.4 In these II-VI materials, the exciton binding en-
ergy is a few tens of meV, so that strong excitonic effects
should be present even at laser threshold densities.

A satisfactory theoretical understanding of electron-hole
correlation effects in bulk and quantum-confined semicon-
ductor structures and their influence on the optical gain does
not yet exist. This problem is not only interesting and chal-
lenging because of its many-body aspects but is also of sig-
nificance for device development and optimization. As a step
in the direction of understanding the influence of excitonic
correlation effects on the gain in quantum-confined semicon-
ductors, in this paper we study very small semiconductor
structures, i.e., quantum dots~QD’s!. The strongly confined
quantum dots are a model system for excitonic and biexci-
tonic gain contributions in their purest form since the quan-
tum confinement leads to a complete absence of continuum
states.

There is substantial interest in QD’s as evidenced by the
substantial number of theoretical and experimental studies

conducted to understand the linear and nonlinear optical
properties of such systems.5 These investigations revealed
many unique properties of QD’s compared with bulk semi-
conductors or semiconductor quantum wells. As an impor-
tant insight one recognized that with increasing quantum
confinement biexcitons play an increasingly important role in
determining the optical nonlinearities.6,7

In recent experimental studies on small CdSe quantum
dots, optical gain with a bandwidth of approximately 0.5 eV
has been observed.8 The detailed experimental study shows
that the gain in the effectively zero-dimensional QD system
differs significantly from that in bulk and quantum-well
structures. For example, in QD’s spectrally very broad opti-
cal gain can be realized from far below to well above the
fundamental band gap, whereas in bulk and quantum-well
structures plasma gain is possible only in the spectral region
between the renormalized gap and the electron-hole qua-
sichemical potential.

It is our goal in this paper to present and evaluate an
idealized but realistic model for excitonic lasing in QD’s. We
demonstrate that the various biexciton-to-exciton transitions
essentially determine the optical gain properties. To calculate
the gain spectra, we first compute the exciton and biexciton
states using a numerical matrix diagonalization method,7 in
which the Coulomb interaction, valence-band mixing,9 and
surface polarization effect10 are included. The optical transi-
tion dipole moments are obtained from the computed exciton
and biexciton wave functions. To study the optical gain dy-
namics and compute pump-probe spectra in the gain regime
we solve the spatially Fourier-transformed multilevel optical
Bloch equations. The results explain the broad gain spectra
observed experimentally and reveal some interesting qualita-
tive differences between the electron-hole plasma lasing
mechanism and the gain mechanism from a strongly corre-
lated excitonic system in a QD.

II. THEORETICAL MODEL

The linear and nonlinear optical properties in the spectral
region of the semiconductor band gap are determined by the
electron-hole excitations. If one studies an intrinsic semicon-
ductor system it is possible to describe the optical excitations
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using electron-hole-pair states, i.e., excitons, biexcitons, and
so on. This picture is especially useful in the case of small
quantum dots. It is because, for dot sizes comparable to or
smaller than the bulk exciton Bohr radius, the optical prop-
erties of QD’s near the absorption edge are dominated by the
exciton and biexciton states.5 In this case, if the pump photon
frequency is not high enough to excite electrons to the high-
energy quantum confinement states, only exciton and biexci-
ton states can be excited.

The electron-hole Hamiltonian can be written using the
exciton and biexciton projection operators,5,7

H05(
e

ex
eue&^eu1(

b
exx
b ub&^bu, ~1!

whereue& and ub& are the exciton and biexciton eigenstates.
The corresponding energy eigenvaluese x

e ande xx
b are deter-

mined from the one- and two-pair Schro¨dinger equations

~He1Hh1Veh!sx
e~s, j !fx

e~r x ,rh!5ex
esx

e~s, j !fx
e~re ,rh!,

~2!

and

~He1
1He2

1Hh1
1Hh2

1Ve1e2
1Vh1 ,h2

1Ve1 ,h1
1Ve2 ,h1

1Ve1 ,h2
1Ve2 ,h2

!sxx
b ~s1 ,s2 , j 1 , j 2!fxx

b ~re1,re2,rh1,rh2!

5exx
b sxx

b ~s1 ,s2 , j 1 , j 2!fxx
b ~re1,re2,rh1,rh2!, ~3!

wheref x
e andf xx

b are the spatial parts ands x
e ands xx

e are
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quantum number of the electrons andj is the spin of holes in
the top valence bands, i.e.,j56 3
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2. Furthermore,He and

Hh are the kinetic-energy Hamiltonians of electron and hole,
andV is the Coulomb-interaction Hamiltonian.

In wide-gap semiconductors, the effective-mass approxi-
mation is usually used to describe the energy dispersion of
the conduction band. In this approximationHe is given by
~we take\51 throughout this paper!
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whereme is the electron effective mass,Ve is the quantum
confinement potential for the conduction electron, andEg is
the band gap.

For the valence bands, however, the parabolic-band as-
sumption is usually not sufficient because of the strong spin-
orbit coupling existing in III-V and II-VI semiconductors.
The Luttinger Hamiltonian9,11 has been successfully applied
to describe the valence-band structure near theG point in
semiconductors with cubic symmetries and strong spin-orbit
interaction. Within the framework of thek•p theory, the
quantum-confined hole states in the presence of spin-orbit
interaction have been studied in QD’s with infinite12 or finite
confinement potential.13 A more sophisticated model for the
hole quantum confinement levels has also been calculated, in
which the spin-split-off bands are taken into account.14 Using
the so-called spherical approximation, where the Luttinger
parametersg25g3, the Luttinger Hamiltonian can be reduced

into the form in which the Hamiltonian becomes irreducible
under the full rotation group:11,12
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wherem0 is the free-electron mass,m52g2/g1, andg1 and
g25g3, are the Luttinger parameters.Vh is the quantum con-
finement potential for the hole. In the Hamiltonian~5!, p h

(2)

andJ~2! are the spherical tensors of rank 2 for the momentum
operatorph and the angular momentum operatorJ5 3

2, re-
spectively. Definitions of the spherical tensor operators and
the dot product of two spherical tensors can be found in the
Ref. 11. In order to keep the subsequent numerical calcula-
tions at a feasible level, in the present paper we restrict our
analysis to cases where it is reasonable to assume an infi-
nitely high quantum confinement potential and neglect the
spin-split-off bands.

The Coulomb interactionVq1 ,q2
in Eqs. ~2! and ~3! in-

cludes two contributions: the direct Coulomb interaction and
the surface polarization:10
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The surface polarization, which is caused by the induced
charges on the dielectric interface, is described by the
Hamiltonian10
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In these equations,Pl is the l th-order Legendre polynomial,
and«5«2/«1 with «2 ~«1! the dielectric constant inside~out-
side! the quantum dot.u is the angle between the position
vectorsr1 andr2. R is the radius of the microcrystal. The1
~2! sign in Eq.~6! is for the equal~opposite! charge sign of
the two particles.

In our calculations we first obtain the exciton and biexci-
ton eigenstates of Eqs.~2! and~3! using the numerical matrix
diagonalization method, which is discussed in the Appendix.
A summary of basic excitonic properties in quantum dots is
given in the Appendix. Using the exciton and biexciton en-
ergy levels and wave functions, we then calculate the optical
properties of QD’s by solving the multilevel optical Bloch
equations.

III. MULTILEVEL OPTICAL BLOCH EQUATIONS

For low-excitation conditions the nonlinear optical prop-
erties can be approximated using only the lowest-order non-
linear susceptibilityx~3!.7 The continuous-wave approxima-
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tion often makes it possible to obtain analytical expressions
of x~3!. Thus, for given exciton and biexciton energies and
dipole moments, one can calculate the optical nonlinearities
such as one-beam saturation, two-photon absorption, four-
wave mixing, and pump-probe spectra. However, for highly
excited systems such as the QD with gain the knowledge of
higher-order nonlinearities is necessary. Therefore, in order
to calculate optical response functions in the high-excitation
regime, we need to numerically solve the multilevel optical
Bloch equations.

In the presence of an external laser fieldE, the Hamil-
tonian becomes

H5H02(
e
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In Eq. ~7! m i j5di j •E, wheredi j is the dipole moment be-
tween the statesu i & and u j &. This dipole moment is propor-
tional to the interband dipole momentpcv and the overlap of
the electron and hole wave functions.7 The density matrix
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is then determined by Liouville’s equation
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Inserting Eq.~8! into Eq. ~9!, one obtains the equations of
motion for the density-matrix expansion coefficients,
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Using the solutions of these equations, the optical polariza-
tion is calculated as
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e
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The optical properties of QD’s, such as absorption/gain and
refractive index, are then determined by Eqs.~10! and ~11!.
The task is to solve Eqs.~2! and~3! to obtain the exciton and
biexciton energies« x

e and « xx
b and optical dipole moments

deo anddbe and then to solve Eqs.~10! and~11! to obtain the
optical gain spectra.

IV. OPTICAL GAIN IN QUANTUM DOTS

In the simplest theoretical description of quantum dots, in
which both Coulomb-interaction and valence-band-mixing
effects are neglected, only the transitions between the
quantum-confined electron and hole levels with identical en-
velope quantum numbers are dipole allowed. However, this
simple selection rule is substantially modified by the inclu-
sion of the valence-band mixing and electron-hole Coulomb
interaction. As shown in previous theoretical studies, the
strong coupling of the holes andd wave functions leads to
additional, dipole-allowed transitions near the lowest
electron-hole-pair excitation.12 The Coulomb interaction also
causes a series of additional, otherwise dipole-forbidden
transitions between exciton and biexciton states.7

Using the exciton and biexciton wave functions obtained
from the numerical matrix diagonalization, we calculate the
optical transition dipole moments between the exciton and
ground states and between the exciton and biexciton states,
respectively. In Fig. 1~a!, we show a simplified sketch of the
relevant exciton and biexciton levels near the absorption
edge. As shown by Xia,12 the transition between the ground
state and the stateu1s,1d3/2& is dipole allowed because of the
valence-band mixing. Here we denote the electron-hole-pair
states using only the quantum numbers of the most strongly
contributing unperturbed basis state. For example, in the ex-
citon ground state, the unperturbed basis isu1s,1s3/2& and the
real exciton wave function has its dominant contribution
from the state u1s,1s3/2& with significant mixing of
u1s,1d3/2&, u1s,2s3/2&, u1p,1p3/2&, etc.

The selection rules are somewhat more complicated for
the exciton-to-biexciton transitions. A schematic illustration
is shown in Fig. 1~a! where the original dipole-allowed states
are indicated by the solid arrows, whereas the additional
transitions induced by the valence-band mixing are indicated
by the dashed arrows. Those transitions which become di-
pole allowed as a consequence of the Coulomb interaction
are illustrated by the dotted arrows. The upward arrows rep-
resent the optical pump processes that create the population
inversion in the QD system. The downward arrows in Fig.
1~a! indicate those transitions between exciton and biexciton
states and between the exciton and the vacuum state which
contribute to the stimulated emission process. Although these
transitions can be understood already from symmetry argu-
ments, the relative strengths of the dipole moments can be
obtained only from numerical calculations.

In Fig. 1~b!, we plot the computed dipole moments and
the corresponding resonance frequencies. To calculate the di-
pole moments, we choose the size of the quantum dotR5
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1
2aB , me50.2m0 , g155.0, m50.75, and«2510 and«151.
The exciton units used in this section, such as the effective
Bohr radiusaB and effective Rydberg energyER are defined
explicitly in the Appendix. With the material parameters used
in this calculation, we findaB553 Å andER513.6 meV.

Some qualitative conclusions regarding the gain spectrum
can be drawn from Fig. 1.~i! If the biexciton states are ini-
tially populated, optical gain can be realized by stimulated
transitions between the biexciton and the exciton states.~ii !
Optical gain in a spectrally broad region is possible in such a
system, e.g., it can be seen from Fig. 1~b! that stimulated
emission can occur far below the absorption edge. This red-
shifted stimulated emission, in comparison to the absorption,
can be explained as follows: as a consequence of the positive
biexciton binding energy, the strong stimulated emission
from the ground-state biexcitonu1s,1s,1s3/2,1s3/2& to the
ground-state excitonu1s,1s3/2& has a lower energy than the
energetically lowest linear absorption process.

Furthermore, there are some comparatively weaker emis-
sion contributions that lead to gain energetically below the

transition between the ground-state biexciton and ground-
state exciton. These contributions result from transitions be-
tween the biexciton states and the excited exciton states. For
instance, the stimulated emission betweenu1s,1s,1s3/2,1s3/2&
and u1p,1p3/2& has a lower energy than the lowest exciton
absorption resonance.

There is some superficial similarity between the redshift
of gain in quantum dots and the band-gap-renormalization
phenomenon in bulk or quantum-well samples. Clearly, the
redshifts of optical gain in quantum dots and in extended
semiconductor structures are both caused by Coulomb corre-
lations. However, there is some basic difference, as one can
see from the simple argument that in quantum dots the red-
shifted gain mostly occurs because of the transitions between
the biexciton ground state and excited exciton states. In the
biexciton ground state, both electrons~holes! have antiparal-
lel spin and there is no exchange interaction. However, it is
the exchange interaction that makes a significant contribution
to the band-gap renormalization in bulk or quantum wells.

To quantify the above arguments, we performed a numeri-
cal study of the gain properties in quantum dots by solving
the multilevel optical Bloch equations, Eqs.~10!. The equa-
tions are spatially Fourier transformed according to the pump
and probe propagation directions. To extract only the leading
contributions the pump field is kept up to the second order
whereas the probe field is kept only in the first order. The
numerical integration is performed using a fourth-order
Runge-Kutta method.

In Fig. 2, we plot the calculated linear absorption spec-
trum ~solid curve! for the same parameters used in Fig. 1~b!.
The homogeneous dephasing time is chosen as 10 fs. The
first two absorption resonances correspond to the transitions
between the ground state andu1s,1s3/2& and u1s,1d3/2&.

To simulate the saturation and gain effects in optically
pumped quantum-dot systems, we also calculate the
absorption/gain spectra for various initial exciton and biex-

FIG. 1. ~a! Exciton and biexciton energy levels of a quantum
dot. u0& is the ground state.u1s,1s3/2& is the exciton ground state and
1s and 1s3/2 denote the orbital angular momentum quantum num-
bers of electron (1s) and hole ~1s3/2!, respectively.
u1s,1s,1s3/2,1s3/2& is the lowest biexciton state. The dark upward
arrows indicate the optical pump process and solid downward ar-
rows indicate the stimulated emissions that are dipole allowed with-
out the Coulomb-interaction or valence-band-mixing effect. The
dashed arrows show the stimulated recombination induced by the
valence-band-mixing effect and the dotted arrows show the stimu-
lated recombination induced by the Coulomb interaction.~b! Com-
puted dipole moments between the exciton states and ground state
~upper half! and between the biexciton states and exciton states
~lower half!. The material parameters areR50.5aB , me50.2m0 ,
g155.0,m50.75,«2510, and«151.

FIG. 2. Computed linear absorption~solid! and bleached
absorption/gain spectra~dashed! with various biexciton or exciton
populations. The material parameters are the same as in Fig. 1~b!.
The homogeneous dephasing time is chosen as 10 fs. From top to
bottom, dashed curves correspond to increasing biexciton or exciton
population. The arrow shows one-half of the maximum biexciton
energy that was populated in the calculation.
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citon distributions. We assume that the incoherent relaxation
processes cause a uniform distribution of the biexciton~ex-
citon! population over those states which are energetically
below the pump photon energy.

The series of dashed curves in Fig. 2 shows the results
obtained for different initial biexciton populations. Since we
only account for exciton and biexciton contributions in the
multilevel optical Bloch equations, Eqs.~10!, the absorption
is completely bleached if the biexciton population in a dot
reaches unity. However, in reality, the transitions between the
biexciton states and triexciton states contribute to an absorp-
tion background on the high-energy side. To include this ab-
sorption background in the gain spectrum, we also calculate
the linear absorption solely due to the transitions from the
ground state to the exciton states energetically higher than
the exciton stateu1p,1p3/2& and assume that these transitions
are not strongly influenced by the presence of the biexciton
states on the low-energy side of the spectrum. We want to
emphasize at this point that this partially phenomenological
treatment of the absorption background has no qualitative
impact on the gain region in Fig. 2 or on the subsequent
discussion of pump-probe spectra.

Assuming a situation where optical gain exists and excit-
ing the system with an additional strong pulse~sometimes
called a pump pulse!, we compute the probe spectra in the
gain regime. Experiments of this kind have been performed
for bulk semiconductors, as reported, e.g., in Ref. 15. For our
quantum-dot model we show in Fig. 3 the resulting differen-
tial transmission spectra~DTS! for various pump frequencies
and pump pulse intensities. The parameters are the same as
those used to calculate the lowest gain spectrum in Fig. 2.
Temporal overlap of the maxima of the strong pulse and the
probe pulse is assumed. The arrows in the different parts of
Fig. 3 indicate the respective energies of the strong pulse.

Our results show that the entire gain region is simulta-
neously depleted by the strong pulse, which is amplified
through stimulated photon emission. Furthermore, there ap-
pears stronger bleaching on the high-energy side of the gain
spectrum when the strong pulse is tuned to the low-energy

side of the gain@Figs. 3~d! and 3~c!#. In contrast to bulk or
quantum-well systems where carrier reequilibration has to
occur after the frequency-selective carrier removal through
the strong pulse, the gain depletion at all the frequencies
involved in the quantum-dot gain occurs on a very fast time
scale determined by the biexciton-to-exciton transition time,
independent of the pulse duration and of the pump-probe
delay. The reason for this behavior is the fact that the low-
energy pump photon bleaches not only the transition between
u1s,1s,1s3/2,1s3/2& and u1s,1s3/2& but simultaneously also the
transition betweenu1s,1s,1s3/2,1d3/2& andu1s,1d3/2& @see Fig.
1~a!#. This second transition is bleached even more strongly
than the first one if the pump photon is tuned below the first
transitions because the binding energy of the biexciton state
u1s,1s,1s3/2,1d3/2& is larger than that ofu1s,1s,1s,3/2,1s3/2&.
Since the stimulated emission occurs from the biexciton state
u1s,1s,1s3/2,1d3/2& one has simultaneous phase-space block-
ing of the transition betweenu1s,1s,1s3/2,1d3/2& and
u1s,1s3/2&, which is the major contributor to the gain on the
high-energy side of the spectrum.

To study the influence of the size distribution of quantum
dots, which often plays a major role in realistic systems, we
extend our analysis to include this inhomogeneous broaden-
ing effect. Figures 4 and 5 present the results corresponding
to Figs. 2 and 3, where we used the same material parameters
as in Fig. 2 but additionally assumed a Gaussian size distri-
bution with a standard deviation of 10%. The calculated lin-
ear absorption and gain are shown in Fig. 4. In comparison to
Fig. 2, we see that both absorption and gain spectra are sig-
nificantly broadened, as expected for an inhomogeneous sys-
tem.

Figure 5 shows the calculated DTS in the inhomoge-
neously broadened quantum-dot sample. The same pumping
parameters as in the strongest~lowest! gain spectrum in Fig.
3 have been used. As in Fig. 3, when the pump frequency is
tuned to the low-energy side of the gain spectrum, we find
the double-dip feature, which is even enhanced by the inho-

FIG. 3. Computed differential transmission spectra correspond-
ing to the lowest gain curve in Fig. 2. The time delay between the
pump and probe pulse is 0. The duration of the pump pulse is 50 fs.
The arrows indicate the center pump frequencies.

FIG. 4. Computed linear absorption~solid! and bleached
absorption/gain spectra~dashed! for dots with a Gaussian size dis-
tribution. The field and material parameters are the same as in Fig.
2. The width of the Gaussian size distribution is 0.1R. From top to
bottom, dashed curves correspond to increasing biexciton or exciton
population.
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mogeneous broadening. Characteristically for inhomoge-
neously broadened systems, we clearly see the hole-burning
effect in Figs. 5~b! and 5~c!, where the pump is tuned into the
gain region but below the absorption edge.

So far, our qualitative analysis and numerical calculations
clearly show the importance of the Coulomb interaction on
the gain properties in small quantum dots. However, our nu-
merical study also reveals that the commonly used parabolic-
band approximation, in which the valence-band-mixing ef-
fect is ignored, is a dangerous approximation. To show the
importance of the band mixing, we recalculated Figs. 4 and 5
using the parabolic-band approximation and the same mate-
rial and pump parameters as before. The resulting
absorption/gain spectra are shown in Fig. 6 and the DTS
corresponding to the strongest gain is plotted in Fig. 7. In

contrast to the rich structures seen in Fig. 5, Fig. 7 only
shows the simple hole-burning effect which naturally occurs
as a consequence of the inhomogeneous broadening. Thus,
although one might succeed in fitting absorption spectra us-
ing the parabolic-band approximation, the complicated na-
ture of experimental pump-probe spectra8 cannot be under-
stood without taking the valence-band nonparabolicity into
account.

V. EXPERIMENTAL RESULTS

In order to verify the model, femtosecond pump-probe
experiments have been performed. A 115-fs pump pulse at
560 nm with 7 nm full width at half maximum~FWHM!
excited a CdSe quantum-dot sample, which was held at 10
K. The average radius of the dots was about 25 Å~size
distribution 15%!, which is about half the exciton Bohr ra-
dius of CdSe. The dots were embedded in a borosilicate glass
matrix which was 200mm thick. After 5 ps, a white-light
femtosecond pulse probed the absorption. The change in the
absorption~2DaL! is plotted in Fig. 8 for various excitation
intensities. At low pump intensities, gain develops from the
low-energy side of the spectrum, extending at the highest
pump intensity from below 660 to 560 nm. At the highest
pump intensities, the magnitude of the low-energy gain ex-
ceeds the magnitude of the linearaL spectrum. The experi-
mental data agree very well with the theoretical calculations.
The inset to Fig. 8 shows the same experimental data as Fig.
8, except that the probe-beam absorptionaL is plotted in-
stead of the;aL signal. In the case of maximum pump
intensity I 0, the gain has a maximum value of;aL50.28
~22% of linear absorption!. Gain can be observed for the first
time in the spectra at a pump intensity ofI 0/32. From the
spectra it can be clearly seen that the maximum gain occurs
at different spectral positions compared to the peaks in the
linear absorption, therefore demonstrating that the gain does
not arise only from the inverted one-pair states.

VI. SUMMARY

In this paper, we present a microscopic model calculation
of the excitonic and biexcitonic lasing mechanism in small

FIG. 5. Computed differential transmission spectra correspond-
ing to the lowest gain curve in Fig. 4. The field and material pa-
rameters are the same as in Fig. 4. The time delay between the
pump and probe pulse is 0. The duration of the pump pulse is 50 fs.
The arrows indicate the center pump frequencies.

FIG. 6. Computed linear absorption~solid! and bleached
absorption/gain spectra~dashed! for dots with a Gaussian size dis-
tribution. The field and material parameters are the same as in Fig.
4 exceptm50.

FIG. 7. Computed differential transmission spectra correspond-
ing to the lowest gain curve in Fig. 5. The field and material pa-
rameters are the same as in Fig. 4 exceptm50.
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semiconductor quantum dots. Our calculations attribute the
optical gain to the stimulated emission involving transitions
between the quantum-confined biexciton states and the exci-
ton states. We calculate the optical response of quantum dots
by numerically solving the multilevel optical Bloch equa-
tions. The exciton and biexciton wave functions and eigenen-
ergies are determined using the numerical diagonalization
method, in which we need only bulk material parameters
such as the electron effective mass, the Luttinger parameters,
and dielectric constants of the semiconductor and host mate-
rial. The numerical matrix diagonalization allows us to in-
clude many important interactions, such as Coulomb and
valence-band-mixing effects.

The numerical results qualitatively explain the recently
observed optical gain spectra in CdS quantum dots.8 We
show that spectrally broad optical gain in small quantum dots
occurs as a consequence of the strong Coulomb correlations.
The biexcitonic processes make it possible to have gain spec-
trally below the absorption edge and above the pump photon
energy. Furthermore, our results clearly demonstrate that
Coulomb-interaction and valence-band-mixing effects have
characteristic signatures in the gain spectra.
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APPENDIX: EXCITON AND BIEXCITON STATES

Generally, the direct numerical solution of the differential
equations~2! and~3! is impractical if not completely impos-
sible for exciton or biexciton problems because of the com-
plicated interactions and boundary conditions. However, in

small quantum dots, where the dot radiiR are comparable to
or smaller than the exciton Bohr radius in the bulk sample,
the Coulomb interaction can be treated perturbatively with
respect to the quantum confinement energy. This fact allows
us to use the so-called numerical matrix diagonalization or
configuration-interaction method, to obtain numerically ac-
curate exciton and biexciton energies as well as the corre-
sponding wave functions. The details of the numerical matrix
diagonalization method are discussed in Ref. 7 for the
parabolic-band model. The underlying principle of this
method is that the kinetic-energy eigenstates form a complete
basis set in the Hilbert space which can be used to expand
the exact exciton or biexciton wave functions. In practice, it
is often possible to approximate the infinite Hilbert space by
a finite linear space, in which the finite Hamiltonian matrices
can be diagonalized numerically. The procedure of increas-
ing the number of linearly independent basis states leads to a
check of the desired numerical accuracy. To ensure numeri-
cal convergence, it becomes vital to choose appropriate basis
functions. One of the techniques that made our earlier com-
putations possible7 is to make use of the conservation of the
total angular momentum of the quantum-dot exciton or biex-
citon states in the presence of Coulomb interaction.

Unfortunately, if one goes beyond the parabolic-band ap-
proximation the orbital angular momentum of the exciton is
no longer a good quantum number because of thek•p inter-
actions. However, as long as we can neglect the warping
terms in the Luttinger Hamiltonian and apply the Hamil-
tonian ~5!, we can show that the total angular momentum
Fx5Se1Jh1Le1Lh is conserved. Here, we denote the in-
trinsic angular momentum of the conduction~valence! band
by se ~jh!, and the corresponding envelope angular momen-
tum by Le ~Lh!. Thus we have se5

1
2, j h5

3
2, and

Le ,Lh50,1,... . We choose the eigenstates of the total angu-
lar momentum operatorF as our basis states.

In general, we can express the exciton basis states as

une ,l e ,nh ,l h ;L,J;Fx ,Fxz&x

5( ^L,J;M ,JzuFx ,Fxz&^ l e ,l h ;me ,mhuL,M &

3^ 1
2 ,

3
2 ;sz , j zuJ,Jz&une ,l e ,me ;

1
2 ,sz&unh ,l h ,mh ;

3
2 , j z&.

~A1!

Here, the termŝl 1 ,l 2 ;m1 ,m2u l ,m& are the Clebsch-Gordan
coefficients in the Cordon-Shortly notation.16 We use the or-
bital quantum numbersn, l , andm and spin quantum num-
bers to denote the single-particle stateun,l ,m; 32 , j z& for the
hole andun,l ,m; 12 ,sz& for the electron. If the quantum con-
finement potential is assumed to be infinitely deep, the or-
bital wave function can be explicitly expressed in terms of
spherical Bessel functions and spherical harmonics.5

In a similar manner, we choose the eigenstates of the
biexciton total angular momentum operator, which is defined
as Fxx5Fe11Fe21Fh11Fh2, as the basis functions for the
expansion of the biexciton wave functions. In order to take
into account the proper antisymmetrization for identical fer-
mions, we follow the two-band calculation7 and construct the
basis states as

FIG. 8. Experimental differential absorption att55 ps for in-
creasing intensitiesI 0, I 0/2, I 0/4, I 0/8, etc.~I 0525 mJ/cm2, T510
K, pump wavelength5560 nm.! The inset shows the linear absorp-
tion ~solid! and the absorption spectra atI 0 ~dotted! and I 0/32
~dashed!.
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une1,l e1,ne2,l e2,nh1,l h1,nh2,l h2;Le ,Lh ,Se ,Jh ,Fe ,Fh ;Fxx ,Fxxz&xx

5( ^Fe ,Fh ;Fez,FhzuFxx ,Fxxx&une1,l e1,ne2,l e2;Le ,Se ;Fe ,Fez&eunh1,l h1,nh2,l h2;Lh ,Jh ;Fh ,Fhz&h . ~A2!

The electron~hole! pair states in Eq.~A2! are defined in the same way as the exciton basis states Eq.~A1!:

une1,l e2,ne1,l e2;Le ,S;Fe ,Fez&e5( ^Le ,S;Me ,SzuFe ,Fez&^ l e1,l e2;me1
,me2

uLe ,Me&

3^ 1
2 ,

1
2 ;sz1,sz2uS,Sz&une1,l e1,me1

; 12 ,s1&une2,l e2,me2
; 12 ,s2&

and

unh1,l h2,nh1,l h2;Lh ,J;Fh ,Fhz&h5( ^Lh ,J;Mh ,JzuFh ,Fhz&^ l h1,l h2;mh1
,mh2

uLh ,Mh&

3^ 3
2 ,

3
2 ; j z1, j z2uJ,Jz&unh1,l h1,mh1

; 32 , j 1&unh2,l h2,mh2
; 32 , j 2&.

In the linear space spanned by the basis functions~A1!
and ~A2!, both the matrix elements of the Luttinger Hamil-
tonian and the Coulomb interaction can be computed nu-
merically. For simplicity, we assume an infinitely deep quan-
tum confinement potential in our calculations; however, this
method can easily be extended to deal with a finite confine-
ment potential. The matrix elements of the Coulomb interac-
tion in the linear space spanned by the exciton basis states,
defined by Eq.~A1!, and biexciton basis states, defined by
Eq. ~A2!, can be computed numerically using a straightfor-
ward generalization of the method discussed in Ref. 7. The
matrix elements of the Hamiltonian~5! are calculated using
the Wigner-Eckart theorem,

^ jmuTq
~k!u j 8m8&5

1

A2 j11
^ j 8,k;2m;,qu j ,2m&^ j iT~k!i j 8&,

where T q
(k) is a spherical tensor operator of rankk, and

^ j iT(k)i j 8& are the so-called reduced matrix elements. The
reduced matrix elements of the momentum operatorP and
the angular momentumJ53

2 are given explicitly in Ref. 11.
The exciton states of interest for the analysis in the

present paper are the dipole-allowed states with angular mo-
mentumFx51. We construct the linear basis states for exci-
ton and biexciton states using the same single-particle orbital
wave functions used in Ref. 7. In the two-band calculation,
where onlyL50 exciton states are dipole allowed, we used
64 basis states to obtain reasonable numerical accuracy.

In the present calculations, the exciton states withL52
are coupled directly to the exciton states withL50 as a
consequence of the valence-band mixing, which induces the
coupling of s and d excitons. To haveFx51, we need the
one-pair states that have the angular momenta (L,J)5~0,1!,
~2,1!, and~2,2!. Using Eq.~A1!, we obtain 344 basis states.

There are two groups of biexciton states which are of
special interest in optical transitions:F50 and 2. These
states can be directly created in a dipole-allowed transition
from the dipole allowed one-pair states~with F51!. To ob-
tain the same numerical accuracy as in the exciton calcula-
tion also in the biexciton state calculation, the number of

biexciton basis states constructed using Eq.~A2! is of the
order of 105, which makes a straightforward complete nu-
merical calculation impossible. Therefore we used an evalu-
ation procedure where we selectively choose those basis
states that are directly coupled to the lowest basis state
through the Coulomb interaction. Since we only need to cal-
culate the biexciton states withF50 we can restrict the
analysis to 1556 biexciton basis states.

The biexciton binding energy in QD’s has been the sub-
ject of experimental and theoretical studies in recent
years.6,7,17The biexciton binding energy is defined as

DExx52ex
02exx

0 ,

wheree x
0 ande xx

0 are the ground-state energies of the exciton
and biexciton, respectively. Using the numerical matrix di-
agonalization method,DExx has been calculated within the
parabolic-band approximation.7 Here, we calculate the biex-
citon binding energy in the presence of the valence-band-
mixing effect. To simplify the subsequent discussion, we de-
fine the exciton Rydberg energy and Bohr radius as

ER5
m re

4

2«2
2 , aB5

«2
e2m r

,

respectively, where the reduced massmr is

m r5
memh

me1mh
, mh5

m0

g1
.

It should be pointed out here that the exciton units used in
this paper are not necessarily identical to the bulk exciton
parameters. This is because the effective hole mass defined
in this paper is neither the heavy-hole nor the light-hole mass
in the corresponding bulk sample.

We plot the computed biexciton binding energyDExx as a
function of the dot radiusR in Fig. 9. For these results we
choose the mass ratiome/mh50.5 and the dielectric constant
ratio«2/«151. The three curves in Fig. 9, from top to bottom,
correspond to different valence-band-mixing parameters
m50.9, 0.75, and 0.5. The increasing biexciton binding en-
ergy with increasingm can be understood as follows. Withm
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increasing, the heavy-hole mass increases and within the
parabolic-band approximation we have shown thatDExx in-
creases asme/mh decreases when other parameters are
unchanged.7 For the dot radii of interest, the numerical cal-
culation shows thatDExx is always positive.

Within the parabolic-band approximation, it can be
proven that the biexciton binding energy in a dot with van-
ishing radius is strictly positive.6 However, in the presence of
the valence-band-mixing effect, the unperturbed hole wave
function is no longer the same as the unperturbed electron
wave function. As a result, the first-order Coulomb correc-

tion to the binding energy is not exactly canceled as in the
parabolic-band approximation. Therefore the theoretical pos-
sibility exists that the binding energy becomes negative when
the radius is sufficiently small.

In the present calculation we could not find negative biex-
citon binding energies even for the smallest dots. We cannot
completely rule out that this result is caused by the accuracy
limitations of our numerical procedure. As mentioned above,
when we calculate the biexciton states, only the basis states
which are directly coupled to the lowest basis states are taken
into account. For example, we choose the stateu1s,1s,1s,1d&
as one of the two-pair basis states, which in turn is coupled
to the basis stateu2s,1s,1s,1d& through the Coulomb inter-
action. The second basis state,u2s,1s,1s,1d&, is coupled with
the stateu2s,1s,1d,1d&, through thes-d wave-function mix-
ing. However, the basis state,u2s,1s,1d,1d& is not included
in our calculation. Neglecting the states likeu2s,1s,1d,1d&
has no influence on the ground-state energy without either
the Coulomb interaction or valence-band mixing. However,
if both interactions are included, the basis states such as
u2s,1s,1d,1d& contribute to the higher-order energy correc-
tions. They become important only when the dot radius is so
small that the higher-order corrections of the biexciton bind-
ing energy, which is the difference of two large numbers,exx
andex , become important.

To verify this argument, we estimate the dot radius at
which the biexciton binding energy becomes negative using
perturbative analysis.6 Using the material parameters given
in this paper, we find that the biexciton binding energy is
positive ifR.0.05aB . Thus we conclude that for all realistic
dot sizes outside the molecular regime the biexciton binding
energy is always positive even in the presence of the
valence-band-mixing effect.
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FIG. 9. Computed biexciton binding energyDExx as a function
of dot sizeR. me/mh50.5, e2/e151, m50.6 ~solid!, m50.75 ~dot-
ted!, andm50.9 ~dashed!.
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