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Strained superlattices and heterojunctions subject to variable temperature exhibit changes in their elastic
and/or thermal strain and stress components, relative to their values at room temperature. We consider systems
grown in arbitrary directions, with thicknesses smaller than the critical value~undercritical systems!. In lowest
order, the changes are linear with the temperature. The dependence on temperature of the thermal expansion
coefficients is taken into account and shown to improve agreement with data. Criteria are established for
predicting the form of such changes in any combination of material constituents. Specific applications are
treated in detail and comparison is made with existing data from the literature. The effective linear thermal
expansion coefficients of the structure, parallel and perpendicular to the direction of growth, are formulated
explicitly. The present results are transcribed to the parallel problem of a hydrostatic pressure in the most
general case; this extends previously published work, which refers to material constituents with a lattice misfit
smaller than the bulk modulus misfit. The latter assumption is valid for most material combinations but not all.

I. INTRODUCTION

Strained superlattices~SL’s! and heterojunctions~HJ’s!
have been studied extensively in recent years under various
external conditions, a chief example being the tuning of
strains by a hydrostatic pressure.1–4 In this work we treat the
temperature dependence of strains and stresses in SL’s and
HJ’s grown along an arbitrary direction. Only terms linear in
the temperatureT are considered. Most, if not all, physical
properties of crystals exhibitT dependence, especially when
a phase transition is approached. In view of such physical
possibilities, the full treatment of the problem is rather com-
plicated and one can only approach it under certain simpli-
fying assumptions that allow the major macroscopic tem-
perature effects to be followed. In this context we assume,
throughout the present paper, that no phase transitions occur
in the temperature range considered, and that the thermal
expansion law and Hooke’s law are valid, i.e.,

a~T!5a~11bDT!, ~1a!

s i5Ci j« j . ~1b!

b is the linear thermal expansion coefficient~TEC! andCi j
are the components, in suppressed index notation, of the
elastic stiffness tensor. The latter are treated as independent
of T. We define asDT5T2T0 any temperature interval rela-
tive to an arbitrary reference valueT0 ~e.g., room tempera-
ture!. The lattice constant of the cubic crystal atT0 is de-
noted bya, while si and«j are, respectively, the stress and
strain tensor components. TheirT dependence is the main
subject of this investigation. In what follows,T0 will not be
shown explicitly as a functional variable, namely, we set
a(T0)[a; the same applies for any other parameter.

The entire analysis is based on the presence of isotropic
in-plane strains, which appear after growth in the layers of
HJ’s and SL’s and are due to mismatch of the constituents’
lattice constants~misfit strains! and/or differences in their

thermal expansion coefficients~thermal strains!. Whether
one or the other type of strain occurs in a particular system
depends on the thicknessh of the system, in relation to its
critical thicknesshc . The latter determines an upper limit for
coherent growth of the system.5 In undercritical systems,
which we consider here~i.e., h<hc!, the strains are uniform
over the entire volume of the layer and do not normally
depend on the growth temperatureTg . In overcritical sys-
tems (h.hc) the strains are of mixed type,misfit and ther-
mal, they depend onTg andh and are not uniform over the
layer’s volume. In excessively thick systems the strains are
purely thermal. Overcritical systems are more complicated in
this regard and will be studied in a future work.

In the work of Ref. 2, referred to as EA from now on, the
general criteria were established for predicting the behavior
underP of any strainedundercriticalSL or HJ grown along
an arbitrary direction. The entire analysis was based on the
assumption that the lattice misfitf5(a2/a1)21 ~percentage
difference of the lattice parameters of the two material con-
stituents! was smaller than the misfit of the corresponding
bulk moduli DB/B1, where DB5B22B1 . The latter as-
sumption is valid for most material combinations known and
was not stated explicitly in EA. Through the present results it
is possible to extend the work of EA onP effects to those
cases not covered therein. A close look into theP and T
effects allows one to transcribe the corresponding relations
between the two types of effects through the following sub-
stitutions,

P→2DT, Bn→1/3bn , DB→2db/3b1b2 , ~2!

whereDb5b22b1. It should be remembered thatP stands
for the absolute value of the pressure~.0! whereas
DT5T2T0 can take negative as well as positive values. In
view of these facts, thoseP results not appearing in EA will
be derived by use of~2! and inserted in the text following the
correspondingT results.
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This paper is based on certain results that have appeared
in previous publications and will not be repeated here. These
are: ~i! A compact method for transforming fourth-rank ten-
sor properties of cubic crystals from the system of crystallo-
graphic axesx1 ,x2 ,x3 , to any other system of orthogonal
axesx18 ,x28 ,x38 ~Ref. 6!. ~ii ! A detailed analysis of strains and
stresses, in undercritical cubic SL’s and HJ’s, which are
grown along an arbitrary direction.7–9 ~iii ! Tuning of such
strains and stresses by use of pressure.2 In what follows, all
primed~unprimed! quantities refer to the primed~unprimed!
system. The direction cosines ofxl8 relative tox1 ,x2 ,x3 are
designated byl l ,ml ,nl , l51,2,3, and are considered to be
known. The direction of growth is alongNix38 . The two
material constituents in SL’s are designated by the material
indicesn and n8, wheren852,1 whenn51,2, respectively.
For HJ’s, the epilayer~n51! takes the indexe, or no index at
all, and the substrate~n52! takes the indexs. More back-
ground information is included in the Appendix.

II. STRAINS IN UNDERCRITICAL SYSTEMS „h<hc…

The physical origin of the misfit strains in undercritical
systems is the mismatch between the lattice parameters of
the two materials involved. It is convenient to define the
lattice mismatch in a more symmetrical way than usually
found in the literature, i.e.,f n5(a22a1)/an . We examine
HJ’s and SL’s separately.

A. Heterojunctions

At the growth temperature (Tg) the layer grows on the
substrate coherently and remains in registry with it, parallel
to the plane, at all temperatures thereafter. The expansion or
contraction of the layer along any direction within the plane
is driven by the isotropic linear TEC of the substratebs . The
resulting in-plane elastic strain in the layer is

« i~T,T!5as~T!/a~T!21, ~3a!

whereas(T) anda(T) stand for the lattice constants of the
substrate and the layer atany temperatureT. It should be
noted that~3a! defines the strain«i of the layer at any tem-
peratureT, in terms of the layer’s lattice constant at the same
temperatureT. This is the meaning of the double appearance
of T on the left-hand side of~3a!. In this work we define the
strains relative to the lattice constant atT0, i.e.,

« i~T,T0!5as~T!/a~T0!215as~T!/a21. ~3b!

It is easy to show that

« i~T,T!.« i~T,T0!2bDT. ~3c!

At T5T0 the two definitions coincide, as expected. Instead
of b, the TEC of the layer, it is more appropriate to use the
mean value ofb in the regionDT5T2T0 , i.e.,

b̄DT5E
T0

T

b~T!dT. ~4!

Usually in the literature the distinction betweenb and b̄ is
overlooked. It will be shown in Sec. V that handling the TEC
properly, i.e., usingb̄ instead ofb, improves the agreement
between theory and experiment.

The remaining strain and stress components are related to
«i through elasticity theory~Appendix!. Equations~3! hold
for any direction of growth of the HJ and not just for growth
along@001# ~Ref. 8!. It is emphasized that the in-plane values
of the linear TEC,bi, and the lattice constant,ai, of the layer
coincide with those of the substrate,bs , andas , respectively.
In short, we can write for all temperatures

ai~T!5as~T!, ~5a!

b i~T!5bs~T!. ~5b!

The substrate itself remains cubic~isotropic! at all tempera-
tures. The normal-to-the-plane lattice constanta'(T) of the
layer is determined by elasticity theory8 and so is its normal-
to-the-plane TEC,b'(T).

B. Superlattices

The alternating layers of a SL have thicknesseshn and
lattice constantsan . At Tg the two layers grow on each other
coherently; at any other temperatureT they remain in regis-
try with each other, parallel to the plane, following a com-
mon in-plane lattice constantai(T), which is determined on
thermodynamical grounds and depends on the direction of
growth.9 This generates an in-plane isotropic elastic strain on
each layer that depends onai(T) and can be computed after
ai(T) is known. The connecting relations atT0 are

9

ai5
h1G1a11h2G2a2
h1G11h2G2

, ~6!

«n
i
5ai/an21, ~7!

whereGn are shear moduli~Appendix!. The valueai(T) at
TÞT0 is given by an expression similar to~6!, with all pa-
rameters substituted by their corresponding values atT ~see
Sec. III!. The counterpart of~3a! and ~3b! at anyT become

«n
i
~T,T!5ai~T!/an~T!21, ~8a!

«n
i
~T,T0!5ai~T!/an215«n

i
~T,T!1bnDT. ~8b!

Once again, instead ofbn it is more appropriate to use the
mean valueb̄n defined by an expression analogous to~4!.

The following SL parameters are defined and will be de-
rived in the following section:~i! The in-plane linear thermal
expansion coefficientbSL

i for the SL as a whole,~ii ! the
normal-to-the-plane expansion coefficientbn

' for either layer,
~iii ! a normal-to-the-plane expansion coefficient of the entire
systembSL

' , ~iv! the volume thermal expansion coefficient
bSL for the system as a whole. Analogous definitions hold for
the compressibilitieskSL

i , kn
' , kSL

' , KSL , and the bulk modu-
lus bSL , respectively.

III. GENERAL TREATMENT OF TEMPERATURE
EFFECTS

In this section we establish the linear relations between
the strain and stress components atT and those atT0. Given
that «n

i (T,T0) and «n
i (T,T) are simply connected~Sec. II!,

we restrict the discussion to«n
i (T,T0) and drop the parameter

T0. Superlattices are treated first; the results for HJ’s will be
given at the end of the section.
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If the temperature changes fromT0 to T5T01DT, the
lattice constants and the thicknesses will be modified. Then,
from ~6! we findai(T)

ai~T!5
h1~T!G1a1~T!1h2~T!G2a2~T!

h1~T!G11h2~T!G2

.
h1G1a1~11b1DT!1h2G2a2~11b2DT!

h1G11h2G2

5ai1
h1G1a1b11h2G2a2b2

h1G11h2G2
DT, ~9!

where we keep terms only to the lowest order ofDT. Equa-
tion ~9! is analogous to the one for the pressure-dependent
in-plane lattice constant developed in Ref. 2. The expression
for the in-plane isotropic strain«n

i (T) is obtained from~7!,
~8!, and~9!,

«n
i
~T!5

ai~T!

an
215«n

i
1@bn1~21!n8an

i
~db1bn8 f n!#DT

~10a!

5«n
i
@11~db1bn8 f n!DT/ f n#1bnDT ~10b!

5«n
i S 12

DT

DTm
D1bnDT, ~10c!

where

DTm5Tm2T052
f n

db1bn8 f n
. ~11!

The critical temperature Tm introduced in~11! is actually
independent ofn and will be discussed later. The numerical
parameteran

i is defined as

an
i
5~21!n8«n

i / f n5
hn8Gn8

h1G11h2G2
,1, ~12a!

with a1
i
1a2

i
51. The parameteran

' will be used shortly and
is defined as

an
'5~21!n«n

'/ f n5an
i
~D«̃n21!.0. ~12b!

It is recalled that«n
i etc. correspond toT0. The expressions in

the brackets of~10b! and~10c! represent the conversion fac-
tor, which transforms the strain and stress components atT0
to their counterparts atTÞT0 , not includingbnDT, the iso-
tropic contribution. Accordingly, the tetragonal distortion at
T is written as

D«n~T!5D«n@11~db1bn8 f n!DT/ f n# ~13a!

5D«nS 12
DT

DTm
D , ~13b!

whereD«n5«n
i
2«n

' is the tetragonal distortion atT0 ~see Ap-
pendix and Refs. 7 to 10 for explicit forms in various direc-
tions of growth!. Furthermore, the normal-to-the-plane
strains are

«n
'~T!5«n

i
~T!2D«n~T!

5«n
'1@bn1~21!nan

'~db1bn8 f n!#DT ~14a!

5«n
'@11~db1bn8 f n!DT/ f n#1bnDT

~14b!

5«n
'S 12

DT

DTm
D1bnDT. ~14c!

The shear strains and all nonzero stress components atT are
related to their counterparts atT0 in the same way as~13!
indicates, i.e.,

«n,48 ~T!5«n,48 S 12
DT

DTm
D , ~15a!

sn,68 ~T!5sn,68 S 12
DT

DTm
D , ~15b!

and likewise for«n,58 (T),sn,18 (T),sn,28 (T).
The physical meaning of the critical temperature is that at

Tm the tetragonal distortion of both layers becomes zero.
Indeed, setting the expression in brackets of~13a! equal to
zero yields the definition of~11!. At this temperature«n

'(Tm)
equals«n

i (Tm), and both unit cells recover their cubic shape.
The critical temperature exists for all material combinations,
in principle. According to~11!, it can be lower or higher than
T0, but in all cases it must be positive~Tm.0!. If, for a
particular material combination, Eq.~11! yields Tm,0, this
means that there is no real temperature at which the unit cells
of these materials, combined in an undercritical SL, recover
their cubic shape. Such situations will be discussed in Sec.
IV C. Notice, in Eqs.~10c!, ~14c!, the separation of the iso-
tropic strain contributionbnDT, due to volume thermal ex-
pansion, from the anisotropic part. The isotropic part is the
only contribution to the strains atT5Tm .

The same results can be obtained independently from the
generalized Hooke’s law at any temperatureT, written in the
primed system in the following form11

s i8~T!5Ci j8 @« j8~T!2b j8DT#, i , j51–6, ~16!

where the layer index is dropped for simplicity. In cubic
crystalsb j8 is isotropic, i.e.,b j8[b, and ~16! takes the fol-
lowing form

s i8~T!5Ci j8 H « j8~T!2bDT,

« j8~T!,
j51–3
j54–6. ~17!

Combining~17! with the conditions«18(T)5«28(T)[« i(T);
«38(T)[«n

'(T);«68(T)50,s38(T)5s48(T)5s58(T)50, yields
the same results obtained above by using the conversion fac-
tor of ~10b! or ~10c!.

Next we derive the linear TEC’s of the layers, for direc-
tions parallel and perpendicular to the direction of growth.
Such information may be particularly useful in analyzing
experimental data of x-ray diffraction under variable tem-
perature.

Because of the coherent growth and the fact thatb1Þb2,
in general, the TEC of the structure, as a whole, is aniso-
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tropic. To the lowest order ofDT, the in-plane and normal-
to-the-plane lattice constants are

ai~T!5ai~11bSL
i DT!, ~18a!

an
'~T!5an

'~11bn
'DT!. ~18b!

It is emphasized thatbSL
i governs the in-plane TEC of the

entire SL, whereasbn
' governs the TEC of each layern in the

direction of growth. An expression forbSL
i can be obtained

by combining~6!, ~9!, and~18a!,

bSL
i [

1

ai

dai~T!

dT
5
h1G1b1a11h2G2b2a2
h1G1a11h2G2a2

. ~19!

For bn
' we use the definitions

«n
i
~T!5

ai~T!

an
21, «n

'~T!5
an

'~T!

an
21, ~20!

which yield

an
'~T!5ai~T!2anD«n~T!, ~21a!

an
'5ai2anD«n . ~21b!

Upon combining~18b!, ~20!, and ~21! we obtain, in lowest
order,

bn
'5

1

an
'

dan
'~T!

dT
.bSL

i
2~db1bn8 f n!D«n / f n . ~22!

The normal-to-the-plane TEC of the entire SL, considered
as one entity, is easily shown to be

bSL
' 5

h1b1
'1h2b2

'

h11h2
. ~23!

The volume expansion coefficient of the entire SL is defined
as

bSL52bSL
i

1bSL
' . ~24!

The above results are easily adapted to HJ’s. Here
f5as/a21, db5bs2b, hs@h, and

« i5 f , «'5 f2D«, «s
i
5«s

'5D«s50, ai5as ,
~25a!

a i51, a'5D«̃21, as
i
5as

'50, ~25b!

whereD«5fD«̃. The expressions forD«̃ in various direc-
tions of growth are the same as for the corresponding SL’s
and can be found in Refs. 7–10. Explicit results for HJ’s will
be given in Sec. IV B.

Next, starting from~10!, we write the corresponding ex-
pressions for the effects of a pressure2P ~P.0!, following
the substitutions~2!, as discussed earlier. Now all linear di-
mensions of a cubic material contract by the factor (12P/
3B) and it is assumed that the shear moduliGn are indepen-
dent ofP. The P-dependent in-plane strainsrelative to the
P50 stateare

«n
i
~P!5

ai~P!

an
21

5«n
i
2

P

3B1B2
@Bn81~21!nan

i
~DB2 f nBn!#

~26a!

5«n
i F11

P

3B1B2f n
~DB2 f nBn!G2

P

3Bn
~26b!

5«n
i S 12

P

Pm
D2

P

3Bn
, ~26c!

where

Pm5
3B1B2f n

f nBn2DB
5

f n

f nkn81Dk
. ~27!

kn51/3Bn is the linear compressibility of layern and
Dk5k22k1. The brackets in~26b! and~26c! are the conver-
sion factors, which allow one to write

D«n~P!5D«nF11
P

3B1B2f n
~DB2 f nBn!G ~28a!

5D«nS 12
P

Pm
D ~28b!

5F«n
i
~P!1

P

3Bn
GD«̃n . ~28c!

«n
'~P!5«n

i
~P!2D«n~P!

5«n
'2

P

3B1B2
@Bn81~21!n8an

'~DB2 f nBn!#

~29a!

5«n
'F11

P

3B1B2f n
~DB2 f nBn!G2

P

3Bn
~29b!

5«n
'S 12

P

Pm
D2

P

3Bn
~29c!

5«n
i
~P!~12D«̃n!2

P

3Bn
D«̃n . ~29d!

Equations~26!–~29! differ from the corresponding ones in
EA by the presence of the termf nBn , which can be ne-
glected in the cases considered in EA. Mathematically, the
pressurePm can be positive, negative, or zero, according to
the definition~27!. When positive,Pm stands for the physi-
cally meaningfulcritical pressure, for which D«n(Pm)50.
The requirement forPm.0 is thatBn f n2DB and f n have the
same sign for either value ofn.

The compressibilitieskSL
i , kSL

' , KSL , and the bulk modu-
lus BSL have the same forms as in EA; the compressibility
kn

' now takes the form
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kn
'52

dan
'~P!

dP Yan
'5kSL

i
1~ f nkn2Dk!D«n / f n . ~30!

This differs from EA by thef nkn term, which can be ne-
glected in the cases considered in EA. In the case of HJ’s all
the above results are valid withh2@h1 . Explicit results will
be given in Sec. IV B.

IV. CLASSIFICATION OF UNDERCRITICAL
STRUCTURES

The results in Sec. III can be further simplified depending
on the relative magnitude of the two terms inside the paren-
theses in the right-hand side of~10!, ~11!, ~13!, and~14! for
T effects, or~26!–~29! for P effects. We consider the three
possible cases separately.

A. zf nz!zdb/bn8z

Most material combinations satisfy the condition
uf nu!udb/bn8u, e.g., AlAs/GaAs, AlAs/Ge, AlAs/ZnS, AlAs/
Si, GaAs/Ge, InSb/AlSb, InSb/CdTe, InSb/HgTe, ZnS/Si,
ZnSe/Si, and AlP/GaP, GaAs/GaP, GaAs/InAs, GaAs/Si,
GaP/Si, GaSb/AlSb, Ge/Si, InAs/GaSb, InAs/Si, ZnS/GaP,
ZnSe/AlAs, ZnSe/GaAs, ZnSe/Ge, ZnTe/AlSb, ZnTe/GaSb,
ZnTe/InAs.

The difference betweenf 1 and f 2 now can be ignored, i.e.,
we setf 1[ f and f 2. f 1 . Equations~10!–~15! become

«n
i
~T!5«n

i
1~bn1~21!n8an

i db!DT, ~31a!

D«n~T!5D«n~11dbDT/ f !, ~31b!

«n
'~T!5«n

'1@bn1~21!nan
'db#DT, ~31c!

«n,48 ~T!5«n,48 ~11dbDT/ f !, ~32a!

sn,68 ~T!5sn,68 ~11dbDT/ f !, etc., ~32b!

DTm5Tm2T052
f

db
5

a12a2
a1~b22b1!

. ~33!

The linear trends of«1
i (T) and«1

'(T) as a function ofT
are shown schematically in Fig. 1, with the strain axis placed
atT0. The following comments apply here:~i! The values«1

i

and «1
' at T0 have opposite signs.~ii ! The slopes of the

curves for «1
i (T) are always positive, whereas those for

«1
'(T) can be positive, zero, or negative.~iii ! The two lines
always intercept atTm , which may be higher thanT0 ~when
f /db,0!, equal toT0 ~f50!, or lower thanT0 ~f /db.0!; in
the latter case, the condition forTm to be physically mean-
ingful, Tm.0, is f /db,T0 and this is not always satisfied. If
f /db>T0 , the two lines never intercept andTm is simply a
mathematical parameter with no physical meaning.~iv!
There is no row in the Fig. 1 withdb50 since such material
combinations could not be consistent with the basic assump-
tion of uf nu!udb/bn8u. The functions«2

i (T), «2
'(T) can be dis-

cussed in the same way.2

The TEC parallel to the plane introduced in~19! continues
to hold, whereas~22!–~24! become

bn
'5bSL

i
2D«n

db

f n
~34a!

bSL
' 5

h1b1
'1h2b2

'

h11h2
5bSL

i
2
h1D«1 / f 11h2D«2 / f 2

h11h2
db,

~34b!

bSL52bSL
i

1bSL
' 53bSL

i
2
h1D«1 / f 11h2D«2 / f 2

h11h2
db.

~34c!

The above results combined with~25! yield for HJ’s

« i~T!5 f1bsDT, ~35a!

D«~T!5D«@11dbDT/ f #, ~35b!

«'~T!5«'1@bs2D«̃db#DT. ~35c!

The substrates change isotropically, i.e., all strains are equal
to bsDT. Thus

ai~T!5as
i
~T!5as

'~T!5as~T!5as~11bsDT!. ~36a!

Furthermore,~18b! and ~21a! give

a'~T!5a'~11b'DT!5as~T!2aD«~T!. ~36b!

The TEC’s for an HJ are obtained in a similar manner,

FIG. 1. Schematic presentation of the linear functions«1
i (T) and

«1
'(T) for material combinations satisfying the condition

uf nu!udb/bn8u. The critical temperatureTm can be higher than, lower
than, or equal toT0, the room temperature. For an HJ grown along
@001# the condition or inequality in row B becomes
2C12/C11,b/db. Analogous changes apply to rows C and D, re-
spectively.db stands forb22b1 or bs2b.
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bHJ
i

5bHJ
' 5bs

'5bs , ~37a!

b'5bs2dbD«/ f , ~37b!

bHJ53bs . ~37c!

The corresponding situation forP effects arises when
u f nu!uDB/Bnu. This is the case treated thoroughly in EA,
with f 1[ f and f 2. f 1 . Most material combinations belong
to this case, e.g., the entire second group tabulated before Eq.
~31a! and InAs/InP, InAs/AlSb, ZnS/ZnSe, GaP/InP. In this
case thef nBn term in DB2 f nBn can be dropped and the
results for SL’s and HJ’s are as in EA. Clearly, material com-
binations withDB50 cannot satisfy the conditionu f u!uDB/
Bu. Such are the cases included in row B of Fig. 1 and col-
umn B of Fig. 2 in EA; both should be ignored. The
combination InP/GaAs appearing in the compilation after
Eq. ~28! of EA should also be ignored as belonging to the
following subcategory. All other conclusions in EA remain
valid.

B. zf nz.zdb/bn8z

In this section we examine situations that satisfy the con-
dition u f nu.udb/bn8u. Fewer but well-known combinations
belong to this case, e.g., ZnSe/ZnTe, InAs/InP, ZnSe/ZnS,
ZnS/GaAs.

Now, the general results of Sec. III are directly applicable
without further simplifications. The linear trends of«1

i (T)

and«1
'(T) are shown in Fig. 2. There are now fifteen entries

according to the sign combinations off 1 and f 1b21db. Oth-
erwise, the same comments made after~33! continue to hold,
except that now it is Eq.~11! that determines whetherTm is
real and higher than, lower than, or equal toT0.

For HJ’s the results follow directly from Sec. III and~25!

« i~T!5 f1~11 f !bsDT, ~38a!

D«~T!5D«@11~db1 fbs!DT/ f # ~38b!

5@« i~T!2bDT#D«̃, ~38c!

«'~T!5«'1@b1~12D«̃!~db1 fbs!#DT ~38d!

5« i~T!~12D«̃!1bDTD«̃, ~38e!

«s
i
~T!5«s

'~T!5bsDT, D«s~T!50, ~39!

DT52
f

db1 fbs
, ~40!

bHJ
i

5bHJ
' 5bs

'5bs , ~41a!

bHJ53bs , ~41b!

b'5bs2~bs1db/ f !D«, db5bs2b. ~41c!

The corresponding situation forP effects arises when
u f nu.uDB/Bnu. The general results of Sec. III are directly
applicable without further simplifications. There are not so
many material combinations belonging to this category, e.g.,
InP/GaAs, GaAs/Ge, ZnTe/InSb, AlSb/ZnSe. The functions
«n

i (P) and «n
'(P) given by ~26! and ~29! for layer 1 are

shown schematically in Fig. 3. The slope of«1
i (P) is always

negative. The slope of«1
'(P) can be positive, zero, or nega-

tive. There are fifteen combinations for these slopes in pairs
according to the signs off 1 and f 1B12DB. The pressure
range in all cases is limited toP<Pmax, wherePmax is the
limit of linear effects; it is assumed, further, that no phase
transitions occur in that range. There are four configurations
where the two lines cross each other atPm~.0!. These are
the cases wheref 1 and f 1B12DB have the same sign. The
fifteen entries coincide one to one with those in Fig. 1 of EA,
except that rowB of the latter should be eliminated, as ex-
plained in Sec. IV A.

For HJ’s the results follow directly from Sec. III and~25!

« i~P!5 f2
P

3Bs
~11 f !, ~42a!

D«~P!5D«F11
P

3BBsf
~DB2 fB!G ~42b!

5F« i~P!1
P

3BGD«̃, ~42c!

FIG. 2. Same as Fig. 1 under the conditionuf nu.udb/bn8u. For
HJ’s along @001# the condition or inequality in row C becomes
2C12/C11,b/(db1 fbs). Analogous changes apply to rows D and
E, respectively.
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«'~P!5«'2
P

3BBs
@Bs1~D«̃21!~DB2 fB!# ~42d!

5« i~P!~12D«̃!2
P

3B
D«̃, ~42e!

«s
i
~P!5«s

'~P!52
P

3Bs
, D«s~P!50, ~43!

Pm5
3BBsf

fB2DB
, ~44!

kHS
i

5kHS
' 5ks

'5ks , ~45a!

KHS53ks51/BHS, ~45b!

k'5ks1~ fk2Dk!D«/ f , Dk5ks2k. ~45c!

C. zf nz@zdb/bn8z

This case is also rather rare, e.g., CdTe/GaP, ZnSe/GaSb,
AlAs/CdTe, GaP/InP.

All expressions for the strain and stress components can
be obtained by dropping the termdb from Eqs.~10!–~14!.
The results are

«n
i
~T!5«n

i
1@bn1~21!n8an

i bn8 f n#DT

5«n
i
~11bn8DT!1bnDT, ~46a!

D«n
i
~T!5D«n

i
~11bn8DT!, ~46b!

«n
'~T!5«n

'1@bn1~21!nan
'bn8 f n#DT

5«n
'~11bn8DT!1bnDT. ~46c!

Equations~15! are valid with

DTm521/bn8 . ~47!

In this caseTm stands for a mathematical parameter with no
physical meaning, sinceTm,0. Indeed, for all types of ma-
terialsb varies from 1026/K to 1025/K, henceTm is between
2105 and2106 K. The expansion coefficientsbSL

i , bSL
' , bSL

are as in Sec. III, with

bn
'5bSL

i
2bn8D«n . ~48!

Figure 4 shows schematically the linear trends of«1
i (T) and

«1
'(T). Notice the absence of thef50 row, which cannot
satisfy the conditionuf nu@udb/bn8u. Only four possibilities ex-
ist. In all cases the curves are practically parallel, since the
‘‘critical temperatures’’ now move to minus infinity.

For HJ’s the results follow directly from~38!–~41! after
dropping the termdb, or ~46! and ~47! together with~25!:

« i~T!5~b1bsf !DT, ~49a!

D«~T!5D«~11bsDT!, ~49b!

«'~T!5«'1@b1~12D«̃! fbs#DT, ~49c!

«s
i
~T!5«s

'~T!5bsDT, D«s~T!50, ~50!

FIG. 3. Same as Fig. 1 as a function ofP, under the condition
u f nu.uDB/Bnu. For HJ’s along@001# the condition imposed bya1

'

in row C becomes 3Bs.2C 12
e (11 f ). Analogous changes apply to

rows D and E.

FIG. 4. Same as Fig. 1 under the conditionuf nu@udb/bn8u. For
HJ’s along @001# the condition or inequality in row B becomes
2C12/C11,b/ fbs . Analogous changes apply to rows C and D, re-
spectively.
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DTm521/bs . ~51!

The TEC’s are as in Eqs.~41a! and ~41b!, and

b'5bs~12D«!. ~52!

The corresponding situation forP effects arises when
u f nu@uDB/Bnu. This case is also rather rare~AlSb/InAs, ZnS/
GaAs!. Here, the general results of Sec. III take the form

«n
i
~P!5«n

i
2

P

3B1B2
@Bn81~21!n8an

i f nBn#

5«n
i S 12

P

3Bn8
D2

P

3Bn
, ~53a!

D«n~P!5D«nS 12
P

3Bn8
D , ~53b!

«n
'~P!5«n

'2
P

3B1B2
@Bn81~21!nan

' f nBn#

5«n
'S 12

P

3Bn8
D2

P

3Bn
, ~53c!

Pm5
3B1B2f n

f nBn2DB
'3Bn8 . ~54!

At first glance~54! seems to imply that the critical pres-
surePm ~'3Bn8! is different for the two layers. This is a
mathematical consequence of the approximationu f u@uDB/
Bu. The exact formula forPm yields for both layers the same
value, which, in fact, is very close to 3Bn8. An analogous
comment holds for~47!.

The linear compressibilitieskSL
i , kSL

' , KSL , and the bulk
modulusBSL are as in Sec. II, while

kn
'5kLS

i
1knD«n . ~55!

Figure 5 shows schematically the trends of«1
i (P) and«1

'(P).
A total of four possibilities exist. Notice the absence of the
f50 column, which cannot satisfy the conditionu f u@uDB/
Bu. The critical pressurePm exists in principle for the four
cases, but it is so large~Pm@Pmax! that it bears no practical
importance. The physical reason for this is that the only way
to reduce, at reasonably low pressure (Pm), the large per-
centage difference between the two lattice constants, is to
have comparably large percentage difference between the
two elastic moduli; this is contrary to the present require-
ment. Therefore, the two lattice constants cannot be matched
at low values ofPm .

For HJ’s the results follow from Sec. III and~25!:

« i~P!5 f2
P

3Bs
~11 f !, ~56a!

D«~P!5D«S 12
P

3Bs
D , ~56b!

«'~P!5«'2
P

3BBs
@Bs1 fB~12D«̃!#, ~56c!

«s
i
~P!5«s

'~P!52
P

3Bs
, D«s~P!50, ~57!

wherePm is given by ~54!. The compressibilities are as in
~45a!, ~45b!, and

k'5ks1kD«. ~58!

Before closing this section, the following comment should
be made. The strain analysis presented here in cases IV A,
IV B, and IV C concerns each of the two layers indepen-
dently. Thus, in considering the conditionuf nu!udb/bn8u in
Sec. IV A, we have assumed that ifuf 1u!udb/b2u, it does not
necessarily mean thatuf 2u!udb/b1u. However, if we impose
the condition that the critical temperatures of both layers be
equal, it is easy to show, using~11!, that with the exemption
of some extreme cases, satisfaction of any of these condi-
tions is independent ofn andn8. Thus, classifying a combi-
nation according to Secs. IV A, IV B, or IV C, requires
checking either and only one of the two constituents of the
combination. These comments are valid for theP effects as
well.

V. APPLICATIONS

We have chosen three combinations of materials to apply
the present theoretical results, i.e., ZnSe/GaAs, ZnSe/ZnTe,
and ZnSe/GaSb corresponding to the categories of Secs.
IV A, IV B, and IV C, respectively.

We start with an undercritical ZnSe epilayer grown along
@001# on a GaAs substrate. Sincef[ f 1522.731023,0
anddb̄.22.631026/K,0 ~over the entire range covered by
the experimental data 100<T<500! the expected linear
trends for«i(T) and«'(T) are similar to those in Fig. 1, row
A, column f 1,0. The actual results, based on~31! and~35c!
are shown by solid lines in Fig. 6~a!. No intersection occurs
for any real value ofT sincef /db.1000 K.T05300 K @see

FIG. 5. Same as Fig. 3 under the conditionu f nu@uDB/Bnu. For
HJ’s along@001# the condition imposed bya1

' in row B becomes
Bs/ fB,2C12/C11. Analogous changes apply to rows C and D.
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comment~iii ! following ~33!#. The experimental points in the
same figure are taken from Ref. 12 where such data have
been obtained by x-ray diffraction techniques for HJ’s of
ZnSe/GaAs@001# with various thicknesses. The data corre-
spond to the smallest thickness used in Ref. 12, i.e.,h.0.2
mm. This value is near the critical thicknesshc.0.15 to 0.20
mm of this particular combination. The values of the various
parameters used for the computation area55.6687 Å,
as55.65325 Å, b̄56.631026/K, and b̄s5431026/K
~100<T<500!, C11581.0531011 GPa, C12548.831011

GPa, D«̃5112C12/C1152.18, «'5~12D«̃!«i
53.231023.

For completeness we calculate the TEC’s of the system at
Tg~5280 °C!.12 From ~37! we find bHJ

i
5bHJ

' 5bs

56.631026/K, b'51.231025/K, andbHJ5231025/K.
The agreement between computed and experimental re-

sults is satisfactory but can be further improved if theT
dependence ofb andbs is taken into account. Data forb(T)
of ZnSe and GaAs exist in literature in various places. We
have used the data from Ref. 13, shown by experimental
points in Figs. 7~a! and 7~b!, respectively. In order to apply
Eq. ~4! we need analytical functions forb(T) consistent with
such data. The solid lines in Figs. 7~a! and 7~b! represent
such fitted functions which, we have found, have the follow-
ing logarithmic forms

b~T!5~3.43 lnT212.4!31026/K

for ZnSe 100<T<500, ~59a!

b~T!5~2.1 ln T26.8!31026/K

for GaAs 100<T<500. ~59b!

The dashed portions of the curves correspond to extrapola-
tions not supported by actual data, and should therefore be
used with caution.

The final results based on the mean values ofb’s and Eqs.
~35a! and ~35c! are shown by dashed lines in Fig. 6~a!. The
new curves show an improved agreement with the data and
indicate the significance of properly handling theT depen-
dence of TEC’s. Further improvement can be expected if the
T dependence of the elastic constants is also taken into ac-
count. The same HJ of ZnSe/GaAs has also been studied
experimentally by Cuiet al.4 ~Raman scattering under pres-
sure!. The data are in very good agreement with the results of
Sec. IV A and discussed in detail in Ref. 2.

Next we consider the undercritical epilayer of ZnSe on a
ZnTe substrate under the same conditions as before. Here
f[ f 157.6%.0 and db1fbs51.131026/K.0; the ex-
pected linear trends for«i(T) and«'(T) are similar to those
in Fig. 2, row C, columnf 1.0. The actual results, based on
~38a! and ~38d! are shown by solid lines in Fig. 6~b!. We
have usedas56.1 Å, and the data forbs(T) from Ref. 13,
shown by experimental points in Fig. 8~a!. The analytical
function consistent with such data is shown by the solid line
in Fig. 8~a! and is best represented by the polynomial form

bs~T!5~a01a1T1a2T
21a3T

31a4T
41a5T

5!

31026/K ~ZnTe, 100<T<300!, ~60!

where a05231.212, a150.7983, a2526.767,
a352.931025, a4526.19331028, a550.523310210. No
intersection occurs for any real value ofT since
f /( fbs1db)>73104.T0 . The strains in this case appear
nearly insensitive to the changes ofT. We are not aware of
any experimental data forT or P effects in this or any other
undercritical combination belonging to this case.

Finally we consider an undercritical epilayer of ZnSe on a
GaSb substrate under the same conditions as before. Here
f[ f 157.5%.0 anda'51.18,b/fbs512.5; the expected

FIG. 6. Computed results based on the present analysis for the
three cases described in Sec. V. Solid~dashed! lines correspond to
T-independent~T-dependent! thermal expansion coefficients. The
data are from Ref. 12.

FIG. 7. Experimental points for the functionb(T) of ~a! ZnSe
and ~b! GaAs taken from Ref. 13. Fitted solid curves obey Eqs.
~59a! and ~59b!. The dashed lines correspond to extrapolations.

53 4749TEMPERATURE DEPENDENCE OF STRAINS AND STRESSES . . .



linear trends for«i(T) and«'(T) are similar to those in Fig.
4, row B. The actual results, based on~49a! and ~49c! are
shown by solid lines in Fig. 6~c!. We have usedas56.09593
Å and the data forbs(T) from Ref. 13, shown by experimen-
tal points in Fig. 8~b!. The analytical function consistent with
such data is shown by the solid line in Fig. 8~b! and repre-
sented by

bs~T!5~a01a1T1a2T
21a3T

3!31026/K

~GbSb, 100,T,300!, ~61!

where a0524.98267, a150.11039, a2523.6245931024,
a354.0365731027. No intersection occurs for any real value
of T sinceTm521/bs1T0,0. The strains are very insen-
sitive to any changes ofT. We are not aware of any experi-
mental data forT or P effects in this or any other undercriti-
cal combination belonging to this case.

VI. CONCLUSION

The effects of temperature on strained undercritical SL’s
and HJ’s grown along arbitrary directions have been exam-
ined in detail, in the temperature region where no phase tran-
sitions take place. The study refers to the temperature depen-
dence of elastic strains, stresses, and the linear thermal
expansion coefficients of the material system; it also includes
analogous pressure effects on strains, stresses, and linear
compressibilities, thus extending previously published work
by one of the authors. The elastic constants are treated as
temperature independent. As demonstrated with real ex-
amples~ZnSe/GaAs, ZnSe/ZnTe, ZnSe/GaSb!, it is neces-
sary to handle all thermal expansion coefficients through
their average values in the corresponding temperature re-
gions. An important conceptual parameter is the critical tem-
peratureTm , for which the unit cells recover their cubic
shapes. OverTm, the tetragonal distortions reverse signs; the
same applies to physical phenomena that depend linearly on
the strains, such as piezoelectric fields in III-V or II-VI
constituents.10 The critical temperature may be lower or
higher than room temperature. It may also be negative; in the

latter case the tetragonal distortions never reverse their signs.
Specific examples have been treated in detail. For ZnSe/
GaAs@001# the present computed results and the experimen-
tal data from the literature are in good agreement. The strains
in the case of ZnSe/GaAs show substantial variation with
temperature, contrary to the situations of ZnSe/ZnTe and
ZnSe/GaSb where the variations are negligible.

Raman spectroscopy is certainly a very direct technique
for observingT- and P-tuned strains in SL’s and HJ’s, as
demonstrated by the results of Cuiet al. ~Ref. 4!. Other tech-
niques are equally appropriate in this regard, e.g.,
photoluminescence,14–17 photoreflectance,3,18 piezo- and
electroreflectance.3 In these situations the effects ofT andP
on strains become evident through the corresponding
changes in the electronic structure of such systems.

The present work and the work in EA address the problem
of undercritical structures only. The situation in overcritical
systems is expected to be more involved since the strains are
of mixed character~lattice and thermal misfit!, they depend
on thickness, and they are not homogeneous within each
layer. Similar effects due to temperature and pressure varia-
tions are expected to occur and have, in fact, been observed
in numerous cases of overcritical systems. No systematic
theoretical treatment of such effects has been presented so
far, to our knowledge. An analogous treatment of these prob-
lems will be the subject of a future work.
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APPENDIX

The general results of this appendix have been described
in detail elsewhere7–9 and refer to fixed temperatureT0.
Wherever obvious, the layer indexn51,2 is omitted for sim-
plicity. We set«38[«' ~strain normal to the plane! and «18
5«28[« i ~in-plane isotropic strains discussed in the text!.

The reduced tetragonal distortion of the layerD«̃ is com-
puted directly froml 3,m3, n3 and the layer’s stiffnessesCi j ,

D«̃[D«/« i5~« i2«'!/« i

5
3B

D
@C44

2 1CC44~12T33!13C2~ l 3m3n3!
2#,

~A1!

whereB5(C1112C12)/3 is the bulk modulus, and

C5C112C1222C44, ~A2a!

Ti j5Tji5Tlmkr5 l llml kl r1mlmmmkmr1nlnmnknr ,
~A2b!

D5C11C44
2 1~CC44/2!~C111C12!~12T33!

1C2~C1112C121C44!~ l 3m3n3!
2. ~A2c!

Roman ~Greek! indices run from 1~1! to 6~3!. The shear
elastic modulusGn of the nth layer is determined from the
correspondingD«̃n

FIG. 8. Experimental points for the functionb(T) of ~a! ZnTe
and~b! GaSb taken from Ref. 13. Fitted solid curves obey Eqs.~60!
and ~61!.
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Gn53Bn~32D«̃n!. ~A3!

Gn is used for the evaluation ofa
i, «n

i , andbSL
i through Eqs.

~6!, ~7!, and ~19!, respectively. The nonzero strain-stress
components, in terms of«i, are

«'5~12D«̃!« i, ~A4!

2«238 5«485
3BC

D
@C44T341C~T31T342T35T36!#«

i, ~A5a!

2«318 5«585
3BC

D
@C44T351C~T32T352T36T34!#«

i, ~A5b!

s1853B« i2~C121CT31!D«1C~T14«481T15«58! ~A6a!

s2853B« i2~C121CT32!D«1C~T24«481T25«58! ~A6b!

s6852CT36D«1C~T25«481T14«58!. ~A6c!

All expressions given in this appendix can be used also for
HJ with h1!h2 .
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