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Strained superlattices and heterojunctions subject to variable temperature exhibit changes in their elastic
and/or thermal strain and stress components, relative to their values at room temperature. We consider systems
grown in arbitrary directions, with thicknesses smaller than the critical Walndercritical systemsin lowest
order, the changes are linear with the temperature. The dependence on temperature of the thermal expansion
coefficients is taken into account and shown to improve agreement with data. Criteria are established for
predicting the form of such changes in any combination of material constituents. Specific applications are
treated in detail and comparison is made with existing data from the literature. The effective linear thermal
expansion coefficients of the structure, parallel and perpendicular to the direction of growth, are formulated
explicitly. The present results are transcribed to the parallel problem of a hydrostatic pressure in the most
general case; this extends previously published work, which refers to material constituents with a lattice misfit
smaller than the bulk modulus misfit. The latter assumption is valid for most material combinations but not all.

I. INTRODUCTION thermal expansion coefficient§hermal strain. Whether
one or the other type of strain occurs in a particular system
Strained superlatticeéSL's) and heterojunctiongHJ's)  depends on the thickne$sof the system, in relation to its
have been studied extensively in recent years under variougitical thicknessh. . The latter determines an upper limit for
external conditions, a chief example being the tuning ofcoherent growth of the systetin undercritical systems,
strains by a hydrostatic pressufé.In this work we treat the which we consider heré.e., h<h,), the strains are uniform
temperature dependence of strains and stresses in SL's ander the entire volume of the layer and do not normally
HJ’s grown along an arbitrary direction. Only terms linear independ on the growth temperatufg. In overcritical sys-
the temperaturd are considered. Most, if not all, physical tems ©i>h.) the strains are of mixed typenisfit and ther-
properties of crystals exhibit dependence, especially when mal, they depend oy andh and are not uniform over the
a phase transition is approached. In view of such physicdhyer’s volume. In excessively thick systems the strains are
possibilities, the full treatment of the problem is rather com-purely thermal. Overcritical systems are more complicated in
plicated and one can only approach it under certain simplithis regard and will be studied in a future work.
fying assumptions that allow the major macroscopic tem- In the work of Ref. 2, referred to as EA from now on, the
perature effects to be followed. In this context we assumegeneral criteria were established for predicting the behavior
throughout the present paper, that no phase transitions occunderP of any strainedindercritical SL or HJ grown along
in the temperature range considered, and that the thermah arbitrary direction. The entire analysis was based on the

expansion law and Hooke’s law are valid, i.e., assumption that the lattice misfit=(a,/a;) —1 (percentage
difference of the lattice parameters of the two material con-
a(T)=a(1+ BAT), (139 stituentg was smaller than the misfit of the corresponding
bulk moduli AB/B,, where AB=B,—B;. The latter as-
0i=Cije;. (1)  sumption is valid for most material combinations known and
was not stated explicitly in EA. Through the present results it
B is the linear thermal expansion coefficigMEC) and C;; is possible to extend the work of EA dp effects to those

are the components, in suppressed index notation, of theases not covered therein. A close look into fheand T
elastic stiffness tensor. The latter are treated as independesifects allows one to transcribe the corresponding relations
of T. We define aa T=T— T, any temperature interval rela- between the two types of effects through the following sub-
tive to an arbitrary reference valug, (e.g., room tempera- stitutions,
ture). The lattice constant of the cubic crystal B is de-
noted bya, while o; ande; are, respectively, the stress and
strain tensor components. Théir dependence is the main
subject of this investigation. In what follow3, will not be
shown explicitly as a functional variable, namely, we setwhereAB=p3,—p;. It should be remembered thBt stands
a(Ty)=a,; the same applies for any other parameter. for the absolute value of the pressufe-0) whereas
The entire analysis is based on the presence of isotropid T=T—T, can take negative as well as positive values. In
in-plane strains, which appear after growth in the layers ofview of these facts, those results not appearing in EA will
HJ's and SL's and are due to mismatch of the constituentde derived by use d®) and inserted in the text following the
lattice constantgmisfit straing and/or differences in their correspondingl results.

P——AT, B,—1/38,, AB——48B/38.8,, (2
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This paper is based on certain results that have appeared The remaining strain and stress components are related to
in previous publications and will not be repeated here. These' through elasticity theoryAppendi®. Equations(3) hold
are: (i) A compact method for transforming fourth-rank ten- for any direction of growth of the HJ and not just for growth
sor properties of cubic crystals from the system of crystallo-along[001] (Ref. 8. It is emphasized that the in-plane values
graphic axesx;,x,,Xs, to any other system of orthogonal of the linear TEC', and the lattice constard!, of the layer
axesxp ,X;,X5 (Ref. 6. (ii) A detailed analysis of strains and coincide with those of the substrae,, andag, respectively.
stresses, in undercritical cubic SL's and HJ's, which areln short, we can write for all temperatures
grown along an arbitrary direction? (iii) Tuning of such

strains and stresses by use of presdurewhat follows, all al(T)=ay(T), (58
primed (unprimed quantities refer to the prime@nprimed e
system. The direction cosines »f relative tox,,x,,x; are B(T)=Bs(T). (50)

designated by, ,m, ,n, , A=1,2,3, and are considered to be The substrate itself remains culfisotropig at all tempera-
known. The direction of growth is alondyllix;. The two tures. The normal-to-the-plane lattice constah(T) of the
material constituents in SL's are designated by the materidhyer is determined by elasticity the8rgnd so is its normal-
indices v and v/, where »'=2,1 whenv=1,2, respectively. to-the-plane TECS"(T).

For HJ's, the epilayetr=1) takes the index, or no index at

all, and the substratév=2) takes the indexs. More back- B. Superlattices

ground information is included in the Appendix. The alternating layers of a SL have thickneskgsand

_ lattice constanta,, . At T, the two layers grow on each other
Il. STRAINS IN UNDERCRITICAL SYSTEMS  (h<h,) coherently; at any other temperatureghey remain in regis-

The physical origin of the misfit strains in undercritical Iry With each other, parallel to the plane, following a com-
systems is the mismatch between the lattice parameters §1on in-plane lattice constaat(T), which is determined on
the two materials involved. It is convenient to define thethermodynamical grounds and depends on the direction of
lattice mismatch in a more symmetrical way than usua||ygrowth. This generates an in-plane isotropic elastic strain on
found in the literature, i.e.f,=(a,—a,)/a,. We examine each layer that depends af(T) and can be computed after

HJ's and SL's separately. a'(T) is known. The connecting relations &} are’
h;G,a;+h,G.a
A. Heterojunctions al=——1 27272 (6)

At the growth temperatureT() the layer grows on the
substrate coherently and remains in registry with it, parallel el =alla,—1, (7)
to the plane, at all temperatures thereafter. The expansion or . |
contraction of the layer along any direction within the planeWhereG, are shear moduliAppendiy. The valuea(T) at

is driven by the isotropic linear TEC of the substr#ie The 17 To iS given by an expression similar {6), with all pa-
resulting in-plane elastic strain in the layer is rameters substituted by their corresponding valueb tee

Sec. Ill). The counterpart of3a) and(3b) at anyT become

(T, T)=a4T)/a(T)—-1, 3
AT, T)=a(Tya(T) (33 (T, T)=al(T)/a,(T)—1, 8a)
whereag(T) anda(T) stand for the lattice constants of the
substrate and the layer ahy temperatureT. It should be S'L(T,To)za”(T)/av—1=8‘L(T,T)+,3VAT- (8h)

noted that(3a) defines the straig' of the layer at any tem- o o _
peratureT, in terms of the layer’s lattice constant at the same®Nce again._instead g8, it is more appropriate to use the
temperaturd. This is the meaning of the double appearanceMean valugs, defined by an expression analogous4n

of T on the left-hand side dBa). In this work we define the The following SL parameters are defined and will be de-
strains relative to the lattice constantTy, i.e., rived in the following section(i) The in-plane linear thermal

expansion coefficiengy, for the SL as a whole(ii) the
(T, To)=ayT)/a(Ty)—1=ayT)/a—1. (3b)  normal-to-the-plane expansion coefficigit for either layer,
(iii) a normal-to-the-plane expansion coefficient of the entire
systemps, , (iv) the volume thermal expansion coefficient
I o _ B for the system as a whole. Analogous definitions hold for

(T T)=#(T,To) = BAT. 39 the compressibilitiexy, , x5, kg, , K., and the bulk modu-
At T=T, the two definitions coincide, as expected. Insteadus Bg, , respectively.
of B, the TEC of the layer, it is more appropriate to use the

It is easy to show that

mean value of3 in the regionAT=T—T,, i.e., lIl. GENERAL TREATMENT OF TEMPERATURE
; EFFECTS
BAT= . B(T)dT. 4 In this section we establish the linear relations between
0

_ the strain and stress componentd and those al,. Given
Usually in the literature the distinction betwegnand g is  that &!(T,Ty) and e!(T,T) are simply connecte@Sec. I),
overlooked. It will be shown in Sec. V that handling the TEC we restrict the discussion t(T, T,) and drop the parameter
properly, i.e., using3 instead ofg, improves the agreement T,. Superlattices are treated first; the results for HJ's will be
between theory and experiment. given at the end of the section.
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If the temperature changes fromy, to T=Ty+ AT, the

4743

en(T)=el(T)—Ae(T)

lattice constants and the thicknesses will be modified. Then,

from (6) we finda'(T)
h1(T)G1ay(T)+hy(T)Goay(T)
hi(T)G1+hy(T)G,

h:G,a1(1+ B1AT) +h,Gra,(1+ B,AT)
N h,;G;+h,G,

al(T)=

h,G,a,8,+h,GLa,6;

_ Al
a'+ h,G,+1,G, AT, (9

where we keep terms only to the lowest ordeAdf. Equa-

tion (9) is analogous to the one for the pressure-dependent
in-plane lattice constant developed in Ref. 2. The expression

for the in-plane isotropic strain!(T) is obtained from(7),
(8), and(9),

a'(T) ,
e (T)=———1=e,+[B,+(~1)" a\(8B+ B, f,)]AT
’ (109
=¢'[1+(88+ B, f,)ATIf, ]+ B,AT (10b)
:s(l—A—T +B,AT (100
v AT, v b
where
p— —_ fV
AT =Tm—To=— SBEET (11)

The critical temperature T, introduced in(11) is actually

=&, +[B,+(—1)"a,(88+B,f,)]AT (143

=gi[1+(8B+ B, f,)ATIT, ]+ B,AT
(14b)

+B,AT. (149

( AT
=gl|l1- —
v AT,
The shear strains and all nonzero stress componeitsusdt
related to their counterparts &t in the same way agl3)
indicates, i.e.,

AT

la=eld 15 (15
AT

o,6T)= GL,G( 1- F) : (15b)

and likewise fors, &(T),0,, 1(T), 0, AT).

The physical meaning of the critical temperature is that at
T, the tetragonal distortion of both layers becomes zero.
Indeed, setting the expression in bracketd183 equal to
zero yields the definition ofL1). At this temperature5(T,,)
equalss!(T,,), and both unit cells recover their cubic shape.
The critical temperature exists for all material combinations,
in principle. According ta11), it can be lower or higher than
Ty, but in all cases it must be positiid ,,>0). If, for a
particular material combination, E¢11) yields T,,<0, this
means that there is no real temperature at which the unit cells
of these materials, combined in an undercritical SL, recover
their cubic shape. Such situations will be discussed in Sec.
IV C. Notice, in Egs.(100), (140, the separation of the iso-

independent ob and will be discussed later. The numerical tropic strain contribution3, AT, due to volume thermal ex-

parameterr!, is defined as

h, G,

[ —— v — _
a,=(—1)" e, /f, h161+h262<

1, (129

with o +ab=1. The parametes- will be used shortly and
is defined as

@, =(~1)",/f,=d\(A5,~1)>0. (12D

pansion, from the anisotropic part. The isotropic part is the
only contribution to the strains &t=T,,.

The same results can be obtained independently from the
generalized Hooke's law at any temperatlitewritten in the
primed system in the following forh

o/ (T)=Cj[{(T)~B{AT], i,j=1-6, (16)
where the layer index is dropped for simplicity. In cubic
crystalsg; is isotropic, i.e.,3j =8, and(16) takes the fol-

Itis recalled that!, etc. correspond td,. The expressions in lowing form

the brackets of10b) and(10¢ represent the conversion fac-
tor, which transforms the strain and stress components at

to their counterparts &+ T, not includingB,AT, the iso-

tropic contribution. Accordingly, the tetragonal distortion at

T is written as

Ae (T)=Ag [1+(6B+ B, T,)AT/T,] (139
B ( AT
—ASV 1- A_Tm y (13b)

whereAe,=¢! —¢! is the tetragonal distortion &, (see Ap-

s/(T)— BAT,

-3
sj'(T), —6.

j=1
ol (T)=C; J.‘: " 17
Combining(17) with the conditionse (T)=£5(T)=g"(T);
e5(T=e5(T);e6(T)=0,05(T)=04(T)=0i(T)=0, yields
the same results obtained above by using the conversion fac-
tor of (10b) or (100).

Next we derive the linear TEC's of the layers, for direc-
tions parallel and perpendicular to the direction of growth.
Such information may be particularly useful in analyzing
experimental data of x-ray diffraction under variable tem-

pendix and Refs. 7 to 10 for explicit forms in various direc- perature.

tions of growth. Furthermore, the normal-to-the-plane

strains are

Because of the coherent growth and the fact fhat 3.,
in general, the TEC of the structure, as a whole, is aniso-



4744 T. D. WEN AND E. ANASTASSAKIS 53

tropic. To the lowest order cAT, the in-plane and normal- | a'(P)
to-the-plane lattice constants are g,(P)= — 1
a(T)=al(1+ By AT), (183 . P H
=e,— [B,,+(—1)"a (AB—f,B,)]
N N " 3B,B, v
a,(T)=a,(1+ B,AT). (18b)
(263
It is emphasized thaBl, governs the in-plane TEC of the
entire SL, whereag governs the TEC of each layeiin the ' P P
direction of growth. An expression fg85, can be obtained =&, 1+ 3557 (AB—1,B)) |~ 35
by combining(6), (9), and(183), 1=t Y (26b)
1 da'(T) _ G112 +hyGopra, (19 “ = p
SLU @l dT h,G,a;+h,Gra, = Sy( - P_> 35 (260
m 14
For 85 we use the definitions where
al(T) a,(T)
BM="""r1, si(M="2"-1 (20 L AP @
a‘V aV m fVBV_AB fVKV/+AK
which yield k,=1/3B, is the linear compressibility of layewr and
[P Ax=k,—K;. The brackets irf{26b) and(26¢) are the conver-
a,(M=a(T)—a,Ae,(T), (218 gjon factors, which allow one to write
a,=a'—a,Ae,. (21b =
Ae,(P)=As,[ 1+ z=—=— (AB-1,B,)| (283
Upon combining(18b), (20), and(21) we obtain, in lowest 3B.Baf,
order,
Ao 1-— (28b)
1 day(T) I Sl
tz‘%d—T:ﬁgL_(@B-F,BV,f,,)As,,/f,,. (22) "
P
| ~
The normal-to-the-plane TEC of the entire SL, considered =& P)+ 3B, Ae,. (280

as one entity, is easily shown to be

1 — _
 hpiehes eh(P)=el(P)~ Az, (P)

Y i (23 ’
hy+he — 6= o [But(—1)" @l (8B—1,8,)]
The volume expansion coefficient of the entire SL is defined 1=z
as (293
=2B5.+ Bs.- 24
Pa=2Bst Ps. 29 =&, 1+ oot (AB—fVB,,)}—3B (29b)
The above results are easily adapted to HJ's. Here S ’
f=aJ/a—1, 6§8=pBs—pB, hs>h, and J_( P ) P (290
:81/ _—_— - — C)
el=f, et=f-Aeg, 8l=8§=AsS=O, a'=ag, Pm/ 3B,
(253 b
— AT N AT
a'=1, a'=AF-1, al=al=0,  (25b —euP)1=4e,) " 35 A2y (299

where Ae=fAg. The expressions foAg in various direc- Equations(26)—(29) differ from the corresponding ones in
tions of growth are the same as for the corresponding SLU'EA by the presence of the terf,B,, which can be ne-
and can be found in Refs. 7—10. Explicit results for HJ's will glected in the cases considered in EA. Mathematically, the
be given in Sec. IV B. pressureP,, can be positive, negative, or zero, according to
Next, starting from(10), we write the corresponding ex- the definition(27). When positive P,, stands for the physi-
pressions for the effects of a pressur® (P>0), following  cally meaningfulcritical pressure for which Ae (P,,) =0.
the substitutiong2), as discussed earlier. Now all linear di- The requirement foP,,>0 is thatB,f,— AB andf , have the
mensions of a cubic material contract by the factor-@  same sign for either value of
3B) and it is assumed that the shear modgjiare indepen- The compressibilitiex, , x5, , Ks,, and the bulk modu-
dent of P. The P-dependent in-plane straimslative to the lus Bg have the same forms as in EA; the compressibility
P=0 stateare x5 now takes the form
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dai(P
Kh=— d; ) ab=wl +(f,k,—Ax)Ae,/f,. (30) >0 =0 f, <0
el - . /
This differs from EA by thef «, term, which can be ne- 4//4/ // /F
glected in the cases considered in EA. In the case of HJ's all 5 <0 fl T)'I" >, T ~ A
the above results are valid with,>h, . Explicit results will 7 Iel( " —
be given in Sec. IV B.
g 1~
IV. CLASSIFICATION OF UNDERCRITICAL o —= N el B
STRUCTURES A e

The results in Sec. Il can be further simplified depending
on the relative magnitude of the two terms inside the paren-
theses in the right-hand side ¢f0), (11), (13), and(14) for
T effects, or(26)—(29) for P effects. We consider the three
possible cases separately.

B,/3B | a
|
]
|
N
o

sp >0

L
1

& ~
A |ful<|5ﬂ/ﬂv'| = ~ T~
. L . . = = D
Most material combinations satisfy the condition AT~ | S~
If,|<|6BIB,|, e.g., AlAsIGaAs, AlAs/Ge, AIAs/ZnS, AlAs/ K |~

Si, GaAs/Ge, InSb/AISb, InSb/CdTe, InSb/HgTe, ZnS/Si,
ZnSe/Si, and AlIP/GaP, GaAs/GaP, GaAs/InAs, GaAs/Si,
GaP/Si, GaSb/AISb, Ge/Si, InAs/GaSh, InAs/Si, ZnS/GaP, FIG. 1. Schematic presentation of the linear functieid) and

ZnSelAlAs, ZnSe/GaAs, ZnSe/Ge, ZnTe/AlSb, ZnTe/GaSbg1(T) for material combinations satisfying the condition

ZnTel/lnAs. |f,|<|6B18,|- The critical temperatur&, can be higher than, lower
The difference betweefy andf, now can be ignored, i.e., than, or equal td, the room temperature. For an HJ grown along
we setf,=f andf,=f;. Equationg10)—(15) become [001] the condition or inequality in row B becomes
2C4/C11<B/8B. Analogous changes apply to rows C and D, re-
S‘L(T) — 8\7|/+ (Bv+ ( _ 1)V'a\L5B)AT, (31@ spectively.ﬁﬁ stands fOI',Bz—,Bl or ﬂs—ﬁ.
+
Ae(T)=Ae,(1+8BAT/T), (31b By=Bs—Ae, — (349
ey (M=e,+[B,+(~ 1), 8B1AT, (310
L :hlﬂi—’—hZBé _ I h1A81/f1+ hZASZ/fZ 5
e,4T)=¢€,(1+6BATIT), (329 SL h,+h, SL h,+h, '
(34b
o,6T)=0,41+6BATIT), etc., (32b
hiAeg /T +hyAe,/f
BsL=2Bs.+ Bs=3Bs — )
AT, — T, Tom - = 2172 (33 huths
mTmT T TSR (B By (349

The linear trends of)(T) ands%(T) as a function off The above results combined wi(B5) yield for HJ's

are shown schematically in Fig. 1, with the strain axis placed

atT,. The following comments apply heré) The values:} el(T)=f+BAT, (353
and s at T, have opposite signgii) The slopes of the
curves forej(T) are always positive, whereas those for Ae(T)=Ae[1+ 6BATI/H], (35b)
£1(T) can be positive, zero, or negatiu@i) The two lines
always intercept af ,,, which may be higher thaffi, (when e (T)=e"+[Bs— Az SB]AT. (350

f/6B<0), equal toT, (f=0), or lower thanT, (f/68>0); in

the latter case, the condition fdr, to be physically mean- The substrates change isotropically, i.e., all strains are equal

ingful, T,,>0, isf/88<T, and this is not always satisfied. If to B;AT. Thus

f/6B=T,, the two lines never intercept afg, is simply a

mathematical parameter with no physical meanifiy) a”(T)=aL(T)= ag(T)=aS(T) =ay(1+BAT). (363

There is no row in the Fig. 1 witld8=0 since such material

combinations could not be consistent with the basic assumgrurthermore(18b) and (213 give

tion of |f |<|88/B,/|. The functionss}(T), £5(T) can be dis-

cussed in the same Wéy. at(T)=a'(1+pB*AT)=a4T)—alAe(T). (36b
The TEC parallel to the plane introduced(ir9) continues

to hold, wherea$22)—(24) become The TEC's for an HJ are obtained in a similar manner,
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LJ: Bh=Bs=PBs., (373 ande7(T) are shown in Fig. 2. There are now fifteen entries
according to the sign combinations fafand f,8,+ §8. Oth-
B-=Bs— SBAslf, (37b) erwise, the same comments made af8& continue to hold,
except that now it is Eq(11) that determines whethér,, is
Bu=3Bs. (379  real and higher than, lower than, or equalTig
For HJ's the results follow directly from Sec. Ill arf@5)
The corresponding situation fdP effects arises when
|f,|<|AB/B,|. This is the case treated thoroughly in EA, e (T)=f+(1+f )BAT, (389
with f,=f and f,=f,. Most material combinations belong
to this case, e.qg., the entire second group tabulated before Eq. _
(318 and InAs/InP, InAs/AISb, ZnS/ZnSe, GaP/InP. In this As(T)=As[1+(5p+1Bg)AT/T] (38b)
case thef B, term in AB—f B, can be dropped and the .
results for SL's and HJ’s are as in EA. Clearly, material com- =[e'(T)- BATI]AE, (380

binations withAB=0 cannot satisfy the conditigfi|<|AB/

B|. Such are the cases included in row B of Fig. 1 and col-
umn B of Fig. 2 in EA; both should be ignored. The

combination InP/GaAs appearing in the compilation after
Eq. (28) of EA should also be ignored as belonging to the
following subcategory. All other conclusions in EA remain

valid.

B. If |=|8B/B.

In this section we examine situations that satisfy the con-
dition |f,|=|68/B,|. Fewer but well-known combinations
belong to this case, e.g., ZnSe/ZnTe, InAs/InP, ZnSe/ZnS,
ZnS/GaAs.

Now, the general results of Sec. IIl are directly applicable
without further simplifications. The linear trends ef(T)

eH(T)=e*+[B+(1—-A&)(5B8+TBs)]JAT (380

=g(T)(1—A&)+ BATAE, (380

eNT)=es(T)=BAT, Aeg(T)=0, (39)
f

AT=— ot (40)

Ho= Bhig=Bs = Bs, (413

Bri=3PBs, (41b)

B'=Bs—(BstoBlf )Ae, SB=Ps—p. (410

f >0 £, =0 f <0
1 d [ s The corresponding situation fdP effects arises when
e Lz , |f,|=|AB/B,|. The general results of Sec. Il are directly
A applicable without further simplifications. There are not so

fll.’.2+6[i >0

S

many material combinations belonging to this category, e.g.,
InP/GaAs, GaAs/Ge, ZnTe/InSh, AlSb/ZnSe. The functions
g!(P) and &1(P) given by (26) and (29) for layer 1 are
shown schematically in Fig. 3. The sloped{P) is always
negative. The slope aff(P) can be positive, zero, or nega-
tive. There are fifteen combinations for these slopes in pairs
according to the signs of,; and f;B;—AB. The pressure
range in all cases is limited tB<P,,,,, WhereP . is the
limit of linear effects; it is assumed, further, that no phase
transitions occur in that range. There are four configurations
where the two lines cross each otherPgi(>0). These are
the cases wheré, andf,B;—AB have the same sign. The
fifteen entries coincide one to one with those in Fig. 1 of EA,
except that rowB of the latter should be eliminated, as ex-
plained in Sec. IV A.

For HJ's the results follow directly from Sec. Il ari@5)

FIG. 2. Same as Fig. 1 under the conditidp=|58/8,/|. For
HJ's along[001] the condition or inequality in row C becomes
2C/C1<BI(8B+fBs). Analogous changes apply to rows D and
E, respectively.

P
e'(P)=f— 3Bs(1+f ), (423
Ae(P)=Ae 1+FBJ(AB—1‘B)} (42b)
= s"(P)+£ A (420
3B|7
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FIG. 3. Same as Fig. 1 as a function ®f under the condition
|f,|=|AB/B,|. For HJ's along001] the condition imposed by}
in row C becomes BS>2C$,(1+f ). Analogous changes apply to
rows D and E.

1L — ol -~ _
e"(P)=¢ SBBS[BS+(A8 1)(AB—fB)] (429
=8”(P)(1—A5)—£A§ (420
3B~
efP)=es(P)=—35. AeyP)=0, (43
S
_ 3BBf »
Pn=te—aB" 49
Klis= Kfis= K5 = K, (459
KHSZSKS:]./BHs, (45b)
kt=k+ (fk—AKk)Aelf, Axk=ks— k. (450

This case is also rather rare, e.g., CdTe/GaP, ZnSe/GaSb,

AlAs/CdTe, GaP/InP.

All expressions for the strain and stress components can

be obtained by dropping the terdB from Egs.(10)—(14).
The results are
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< B,/EB,
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1

B,/EB,|a

f >

a.L
1

> B, /18,

u_L
1

FIG. 4. Same as Fig. 1 under the conditidp>|56/8,/|. For
HJ’s along[001] the condition or inequality in row B becomes

2C,/C1<BI/fBs. Analogous changes apply to rows C and D, re-
spectively.

e(M=el+[B,+(—-1)"d B, f, AT

=& (1+ 8,/ AT)+B,AT, (469
Ael(Ty=A&!(1+8,,AT), (46b)
gy (M=, +[B,+ (1), 8, 1,]AT
=&, (1+ B,/ AT)+B,AT. (460
Equations(15) are valid with
ATm=—18,. (47)

In this caseT,, stands for a mathematical parameter with no
physical meaning, sinc€,,<0. Indeed, for all types of ma-
terials 8 varies from 109K to 107 %K, henceT,, is between
—10° and—10° K. The expansion coefficien&I , BsL» BsL
are as in Sec. Ill, with

B, =B85~ B, Ae,. (48)

Figure 4 shows schematically the linear trends:{{fT) and
£7(T). Notice the absence of the=0 row, which cannot
satisfy the conditionf ,|>|88/8,/|. Only four possibilities ex-
ist. In all cases the curves are practically parallel, since the
“critical temperatures” now move to minus infinity.

For HJ's the results follow directly froni38)—(41) after
dropping the termsg, or (46) and (47) together with(25):

el(T)=(B+Bsf )AT, (493
As(T)=As(1+BAT), (49b)
eH(T)=e"+[B+(1—A8)fBJAT, (499

el(T)=es(T)=BAT, AeyT)=0, (50)
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AT, =—-1/8;. (51 )
The TEC's are as in Eq$4139 and(41b), and £B <0 Te- L - A
" -~
€ (P) ~~
B-=By(1-Ae). (52 ’

The corresponding situation fdP effects arises when N[T— ’\
|f,|>|AB/B,|. This case is also rather ra@#lSb/InAs, ZnS/ S B
GaAs9. Here, the general results of Sec. Il take the form I I

-]
el (P)=sl - [B, +(~1)"'alf,B,] o
v v 3B;B," " vivey N m”lf- T
_ 1 P P 53 E: "“"' ____________ C
&7 3B, 3B, (533 °
p SR T
AsV(P)—As,,(l— 3BV,). (53 B B — D

P
en(P)=e,— 255 [B,+(—1)"a,f,B,]

3B.B,
FIG. 5. Same as Fig. 3 under the conditidp|>|AB/B,|. For
—etl1— P _ i (530 HJ's along[001] the condition imposed by in row B becomes
v 3B,/ 3B,’ BS/fB<2C;,/C4;. Analogous changes apply to rows C and D.
_ 3B1B>f, 3 | .
Pm_fVBV_ABN Bv" (54) SS(P):SS(P):_S_BS' AgS(P):Ov (57)

At first glance(54) seems to imply that the critical pres- WherePy, is given by (54). The compressibilities are as in
sureP,,, (=3B,) is different for the two layers. This is a (458, (45b), and
mathematical consequence of the approximatfitjs-|AB/
B|. The exact formula foP,, yields for both layers the same
value, which, in fact, is very close toB3,. An analogous
comment holds fof47).

The linear compressibilitiesy, , x5, , K, and the bulk
modulusBg, are as in Sec. Il, while

Kkt =kt kAe. (58

Before closing this section, the following comment should
be made. The strain analysis presented here in cases IV A,
IV B, and IV C concerns each of the two layers indepen-
dently. Thus, in considering the conditidh,|<|58/8,/| in
Sec. IV A, we have assumed that if|<|58/3,|, it does not
necessarily mean thdt,|<|58/8,|. However, if we impose
Figure 5 shows schematically the trends:§fP) andef(P).  the condition that the critical temperatures of both layers be
A total of four possibilities exist. Notice the absence of theequal, it is easy to show, usir@l), that with the exemption
f=0 column, which cannot satisfy the conditipfi{>|AB/  of some extreme cases, satisfaction of any of these condi-
B|. The critical pressur®,, exists in principle for the four tions is independent of and »'. Thus, classifying a combi-
cases, but it is so largé,,> P, that it bears no practical nation according to Secs. IVA, IVB, or IVC, requires
importance. The physical reason for this is that the only waychecking either and only one of the two constituents of the
to reduce, at reasonably low pressufe,f, the large per- combination. These comments are valid for theffects as
centage difference between the two lattice constants, is teell.
have comparably large percentage difference between the
two elastic moduli; this is contrary to the present require- V. APPLICATIONS

ment. Therefore, the two lattice constants cannot be matched o )
at low values ofP,,,. We have chosen three combinations of materials to apply

For HJ's the results follow from Sec. Il an@5): the present theoretical results, i.e., ZnSe/GaAs, ZnSe/ZnTe,
and ZnSe/GaSb corresponding to the categories of Secs.
IV A, IV B, and IV C, respectively.

kt=Klst+ K, A, . (55

el(P)=f— 3g. (1), (568 We start with an undercritical ZnSe epilayer grown along
S [001]_on a GaAs substrate. Sinde=f,=—2.7x10 %<0
P and 8B=—2.6x10 %K <0 (over the entire range covered by
As(P)=A8( 1- ﬁ) (56b)  the experimental data 160r<500) the expected linear
S

trends fore'(T) ande*(T) are similar to those in Fig. 1, row

P A, columnf;<0. The actual results, based B1) and(350

et (P)=g'— [Bo+fB(1—AB)], (560 are shown by solid lines in Fig.(8. No intersection occurs
3BB; for any real value off sincef/88=1000 K>T,=300 K[see
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commentiii ) following (33)]. The experimental points in the - . . ——

same figure are taken from Ref. 12 where such data have 101 T

been obtained by x-ray diffraction techniques for HJ's of

ZnSe/GaAq001] with various thicknesses. The data corre-

spond to the smallest thickness used in Ref. 12, he0.2 ~ 6 ZnSe 1

um. This value is near the critical thicknelss=0.15 to 0.20 j\‘ a

um of this particular combination. The values of the various Q 9 , :

parameters used for the computation are-5.6687 A, ;_'.: ] P

a,=5.65325 A, B=6.6x10 %K, and B,=4x10 °K o] -

(100<T<500, C,;;=81.05x10" GPa, C;,=48.8<x10" ]

GPa, Ag=1+2C,,/C,;=2.18, &' =(1—-A&)s'=3.2x10"3, Al GaAs

For completeness we calculate the TEC's of the system at ] b

T,(=280°0."* From (37 we find Bly=pBhH=PBs N

=6.6x10"%K, B-=1.2x10"°K, and B,;=2X10 /K. 0 200 600 1000
The agreement between computed and experimental re- Temperature (K)

sults is satisfactory but can be further improved if the
dependence g8 and 3; is taken into account. Data f@(T)

of ZnSe and GaAs exist in literature in various places. We
have used the data from Ref. 13, shown by experiment
points in Figs. 7a) and 7b), respectively. In order to apply

FIG. 7. Experimental points for the functig8(T) of (a) ZnSe
nd (b) GaAs taken from Ref. 13. Fitted solid curves obey Egs.
93 and(59b). The dashed lines correspond to extrapolations.

Eq. (4) we need analytical functions fg#(T) consistent with B(T)=(2.1InT—6.8)x 10 9/K
such data. The solid lines in Figs(af and 7b) represent ' '
such fitted functions which, we have found, have the follow- for GaAs 106=T=<500. (59b

ing logarithmic forms The dashed portions of the curves correspond to extrapola-

tions not supported by actual data, and should therefore be
s used with caution.

B(T)=(3.43 InT—12.4X10 /K The final results based on the mean valueg'sfand Egs.

for ZnSe 108<T<500, (599 (358 and (350 are shpwn by dashed lines in.FiQaB The
new curves show an improved agreement with the data and

indicate the significance of properly handling thedepen-
dence of TEC’s. Further improvement can be expected if the
T dependence of the elastic constants is also taken into ac-

00 o e " count. The same HJ of ZnSe/GaAs has also been studied
03] - & (T | experimentally by Cukt al? (Raman scattering under pres-
o ZnSe/GaAs sure. The data are in very good agreement with the results of

0.04 . Sec. IV A and discussed in detail in Ref. 2.

E?W' Next we consider the undercritical epilayer of ZnSe on a
Il — a i ZnTe substrate under the same conditions as before. Here

f=f,=7.6%>0 and §8+fB=1.1x10"9K>0; the ex-

§ o e'l'(T) 1 pected linear trends far'(T) ande*(T) are similar to those
@ in Fig. 2, row C, columrf,>0. The actual results, based on
e O ] (389 and (38d) are shown by solid lines in Fig.(8). We
= &b (T) ZnSe /ZnTe have useda,=6.1 A, and the data foB4(T) from Ref. 13,
n T ! 1 shown by experimental points in Fig(a88. The analytical
-12r b 1 function consistent with such data is shown by the solid line
_ g in Fig. 8@a) and is best represented by the polynomial form
12 e (T)
oL ! Bo(T)=(ao+ ar T+ ay T2+ as T3+ a, T4+ asT®)
0 L 1 X 10 8/K (ZnTe, 106<T=<300), (60)
T
6| £, () ZnSe/GaSb 4 \here  ap=-31.212, ,=0.7983, a,=—6.767,
=Y c1 @=29x107° ,=-6.193x10 % a5=0.523x10 . No
5 o5 s s TS =5 intersection occurs for any real value of since

f/(fBs+ 6B)=7Xx10">T,. The strains in this case appear
Temperature (T) nearly insensitive to the changes Bf We are not aware of
any experimental data far or P effects in this or any other

FIG. 6. Computed results based on the present analysis for thandercritical combination belonging to this case.
three cases described in Sec. V. Sdlidshed lines correspond to Finally we consider an undercritical epilayer of ZnSe on a
T-independen{T-dependent thermal expansion coefficients. The GaSbh substrate under the same conditions as before. Here
data are from Ref. 12. f=f,=7.5%>0 and o =1.18<g/f B;=12.5; the expected
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latter case the tetragonal distortions never reverse their signs.
Specific examples have been treated in detail. For ZnSe/
GaAs[001] the present computed results and the experimen-
tal data from the literature are in good agreement. The strains

61 7nTe 1 in the case of ZnSe/GaAs show substantial variation with
—_ ] temperature, contrary to the situations of ZnSe/ZnTe and
& n a | ZnSe/GaSb where the variations are negligible.
"’O ) Raman spectroscopy is certainly a very direct technique
<4l for observingT- and P-tuned strains in SL's and HJ's, as
o« demonstrated by the results of Qatial. (Ref. 4). Other tech-

] nigues are equally appropriate in this regard, e.g.,

4 photoluminescenc¥,"" photoreflectanc&!® piezo- and

b | electroreflectancéln these situations the effects &fand P
21 i on strains become evident through the corresponding
50 100 200 300 changes in the electronic structure of such systems.
Temperature (K) The present work and the work in EA address the problem

of undercritical structures only. The situation in overcritical
) _ _ systems is expected to be more involved since the strains are
FIG. 8. Experimental points for the functigh(T) of (&) ZnTe 4 mixed characteflattice and thermal misfif they depend

and(b) GaSb taken from Ref. 13. Fitted solid curves obey EGQ). on thickness, and they are not homogeneous within each
and(61). layer. Similar effects due to temperature and pressure varia-
tions are expected to occur and have, in fact, been observed
in numerous cases of overcritical systems. No systematic
theoretical treatment of such effects has been presented so
far, to our knowledge. An analogous treatment of these prob-
lems will be the subject of a future work.

linear trends for'(T) ande*(T) are similar to those in Fig.
4, row B. The actual results, based 6193 and (490 are
shown by solid lines in Fig.®). We have used =6.09593
A and the data foB(T) from Ref. 13, shown by experimen-
tal points in Fig. 8b). The analytical function consistent with
such data is shown by the solid line in Figh8and repre-
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where ay=—4.98267, a;=0.11039, a,=—3.6245%10 *, APPENDIX

a3=4.03657% 10 . No intersection occurs for any real value

of T sinceT,,=—1/B,+T,<0. The strains are very insen-  The general results of this appendix have been described
sitive to any changes 6f. We are not aware of any experi- in detail elsewhere® and refer to fixed temperatur€,.
mental data foil or P effects in this or any other undercriti- Wherever obvious, the layer index=1,2 is omitted for sim-

cal combination belonging to this case. plicity. We setej=e* (strain normal to the planeand &}
=g,=¢! (in-plane isotropic strains discussed in the text
VI. CONCLUSION The reduced tetragonal distortion of the layer is com-

) . puted directly fromi 5, m3, n; and the layer’s stiffnessés;
The effects of temperature on strained undercritical SL's

and HJ's grown along arbitrary directions have been exam- As=Aele'=(g"— &)l
ined in detail, in the temperature region where no phase tran-
sitions take place. The study refers to the temperature depen-
dence of elastic strains, stresses, and the linear thermal
expansion coefficients of the material system; it also includes
analogous pressure effects on strains, stresses, and linear
compressibilities, thus extending previously published workwhereB=(C,;+2C;,)/3 is the bulk modulus, and

by one of the authors. The elastic constants are treated as

temperature independent. As demonstrated with real ex- C=C11—C15—2Cyy, (A23q)
amples(ZnSe/GaAs, ZnSe/ZnTe, ZnSe/GaSh is neces-

sary to handle all thermal expansion coefficients through Tij=Tji = Tauxp=I\lull o= mm,mm,+nyn,n.n,,
their average values in the corresponding temperature re- (A2b)
gions. An important conceptual parameter is the critical tem- 5

peratureT,,, for which the unit cells recover their cubic A=C1Cyt(CCadf2)(Cpyt Crp)(1-Tay)

shapes. Over,,, the tetragonal distortions reverse signs; the 2 2

same applies to physical phenomena that depend linearly on T C(Cut 2C1o+ Cad(I3Mang)”. (A20)
the strains, such as piezoelectric fields in IlI-V or 1I-VI Roman (Greek indices run from 11) to 6(3). The shear
constituents® The critical temperature may be lower or elastic moduluss, of the 1th layer is determined from the
higher than room temperature. It may also be negative; in theorresponding\ s,

3B 2 2
:T[C44+CC44(1_T33)+3C (Ismgng)<],

(A1)



53 TEMPERATURE DEPENDENCE OF STRAINS AND STRESSE. . 4751

G,=3B,(3—Ag,). (A3) 0;=3Bg'—(C1p+CT3)Ae+C(Tyue,+ Tisel)  (ABQ)

G, is used for the evaluation af', ¢!, and Y, through Egs.
(6), (7), and (19), respectively. The nonzero strain-stress

H |
components, In terms Qf, are 0'&2388”_((:12“' CT32)A8+C(T248:1+T258é) (A6b)
et=(1—Ag)e", (A4)
! i 3BC H ! ! !
2e55= 847 [CaaT34t C(T31T34— TasTze)le’, (A5Q) 6= —CTaeAe+C(Toge gt Tises). (A6C)

BC All expressions given in this appendix can be used also for
28é1:8é:T [CaaTast C(TaTas— TaeTas) ]!, (ABb)  HJ with hy<h,.
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