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Localization ~delocalization! of an electron driven by laser in a biased quantum well is considered. The
initially trapped electron can be delocalized by the field if the bias energy is close but not equal to an integer
number of a photon energy. When the bias energy is exactly equal to an integer number of photon quanta,
dynamical localization occurs. A general analytical solution for a population difference is obtained. When the
electron is driven by a bichromatic field, localization regions are strongly dependent on the field incommen-
surability. The topology of localization exhibits stable and unstable regions originating from nonanalytical
behavior of the population with respect to the small incommensurability. This phenomenon resembles phase-
transition instabilities in the solid state. A low-frequency spectrum of electron oscillations consists of a low-
frequency mode and split lines. We also show frequency controlling of the time evolution of an electron dipole
moment on a phase shift between the two lasers. The low frequency can be increased or decreased, or it
oscillates with the phase shift depending on the laser intensity.

I. INTRODUCTION

The response of an electron in double quantum wells to a
strong laser field has been a subject of recent
investigations.1–14 In the case of no dissipation it has been
shown numerically for two wells in Refs. 1–3 and analyti-
cally for two-level systems in Refs. 4–9 that an electron
oscillates coherently between two states with a frequency
V0 that depends on a laser intensity

V05DJ0~a!, ~1!

whereD is an energy between the two lowest subbands, and
J0 is the zeroth-order Bessel function. The parametera is
defined as

a[
2m0E0

\v0
, ~2!

where m0 is an electron dipole moment difference in the
initial and final quantum states,E0 andv0 are an amplitude
and frequency of the cw laser field

E~ t !5E0cos~v0t !. ~3!

At some values of the argumentJ0(a)50, i.e.,V050. This
means that the electron is trapped in one of the states. By
changing the laser intensitya, the electron can be delocal-
ized.

The effect of a dissipative environment changes a physi-
cal picture10–14 qualitatively. In a cw field, electron density
decays exponentially in time with the rate dependent on the
laser parameters, electron-phonon coupling, the phonon
spectrum, and the type of driving force. The intensity depen-
dence of the rate constant is rather nonlinear exhibiting a
resonance structure.10,12 The reactant-product distribution

function does not obey Gibbs law any longer. It can be ma-
nipulated by the field shifting equilibrium from products to
reactants and vice versa independent of the bias.12,13Despite
the strong electron-phonon interaction the electron oscillates
between the states in a pulsed field giving rise to an induced
coherence effect.15,16

In fact, in GaAs/AlxGa12xAs quantum wells dissipation
is weak at low temperatures. This has been indirectly con-
firmed in experiments by observing quantum coherence of
the electron in multiwell heterostructures.17–20 The experi-
mental observation of absolute negative resistance21 pre-
dicted by Dakhnovskii and Metiu in Ref. 22 is also in favor
of a weak dissipation mechanism at low temperatures. In-
deed, under irradiation by a free electron laser, a negative
current appears even when a positive voltage is applied~an
‘‘anti-Ohm’’ law !. The theoretical prediction made has been
based on the model where the interaction with phonons has
been disregarded.22 Thus, as a good approximated we will
study electron dynamics in a nondissipative environment.
Weak dissipation leads to coherent decay at low temperature
while a pure exponential one is observable at high
temperatures.14 The effect of a weak field on electron coher-
ence in a weakly interacting Ohmic bath has been considered
recently by Makarov and Makri.23

In this work we study localization and delocalization of
the electron in biased quantum wells where the interaction
with the bath has been neglected. As mentioned above this is
a good first approximation. We will show that electron dy-
namics is strongly determined by the ratio,e/\v0 , of the
bias energy,e, and photon,\v0 . In the case of symmetric
double wells, electron tunneling and induced dipole moment
behavior are considered in a bichromatic field. We demon-
strate a nonanalytical dependence of localization conditions
on a small incommensurability in the field frequencies. We
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will also study how a low-frequency irradiation spectrum
depends on a phase shift between the fields.

II. DELOCALIZATION GATES IN A PERIODICALLY
DRIVEN BIASED TWO-LEVEL SYSTEM

We study localization and delocalization of an electron in
a two-level system driven by a time-independent and a cw
field. The time-dependent behavior of the electron in such
fields is equivalent to dynamics in a biased two-level system
driven by the periodic field.

The system is described by the following Hamiltonian:

Ĥ52
D

\
sx1V~ t !sx , ~4!

whereV(t) is a driving force;s i ( i5x,y,z) are the Pauli
matrices, andD is a transition matrix element~splitting of
the lowest minibands!. According to Ref. 24, the time-
dependent probability may be defined as follows:

P~ t !5
11x~ t !

2
, ~5!

where x(t)5^sz(t)&11; ~11! is an 11 matrix element of
sz . According to Ref. 4, one obtains the following master
equation for the population difference

dx

dt
52D2E

0

t

dt1cos@F~ t !2F~ t1!#x~ t1! ~6!

with the initial condition

x~ t50!51, ~7!

where

F~ t ![2E
0

t

dt1V~ t1!. ~8!

The driving force consists of two parts: one is the constant
field with the amplitudee/2, and the other is a periodic func-
tion with the frequencyv0 and amplitudeE0

V~ t !5
e

2
1

m0E0

2
cos~v0t !, ~9!

wherem0 is a dipole moment difference between the initial
and final states. ThusF(t) is equal to

F~ t !5et1a sin~v0t !, ~10!

a[
m0E0

\v0
. ~11!

Equation ~6! may be presented in the equivalent integral
form as follows:

x~t!512S D

v0
D 2 ReE

0

t

dt1exp@ iF ~t1!#

3E
0

t1
dt2exp@ iF ~t2!#x~t2!. ~12!

Here we have introduced the following variable substitution:

t5v0t. ~13!

A solution of Eq.~12! is seeked as a perturbation expansion
over the parameter (D/v0)

2, which is supposed to be small.
Expanding the kernel of Eq.~6! into a Fourier series25

expF i e

\v0
t1asin~t!G5 (

n52`

`

Jn~a!expF i S e

\v0
1nD t G ,

~14!

and assuming that the bias amplitudee/\v0 is close to a
resonance with the photon energyn0\v0 , i.e.,

U e

\v0
1n0U!~ un0u11!, ~15!

we collect only terms with the smallest denominators~15!.
Keeping only these resonance terms in an expression for the
kernel, one finds that such a perturbation expansion can be
generated by the following convolutive integrodifferential
equation:

dx

dt
52D̃2E

0

t

dt1cosF S e

\v0
1n0D ~t2t1!Gx~t1!, ~16!

whereD̃ denotes the renormalized tunneling splitting

D̃[DJn0~a!. ~17!

Equation~16! can be solved by a Laplace transform26 with
the initial condition~7!

x~t!5
~e/\v01n0!

2

wn
2 1

D̃2

wn
2cos~wnt!, ~18!

wherewn is defined as

wn[AD̃21~e/\v01n0!
2. ~19!

At the exact resonance, whenueu is equal ton0 numbers of
quanta

x~ t !5cos~DJn0t !. ~20!

In this case localization occurs when

Jn050, ~21!

i.e., it is determined by zeros of thenth-order Bessel func-
tion. In fact, the approach developed may be generalized to
an arbitrary periodic field with the period 2p/v0 . By ex-
panding the driving forceV(t) into a Fourier series

V~ t !5 (
n51

`

Vncos~nv0t !, ~22!

and making use of the resonance method for the analysis of
the power series for Eq.~12!, one obtains a solution for the
population difference that formally has the same form as in
Eq. ~18! with a renormalized tunneling matrix element de-
fined as follows:

D̃[D (
m152`

`

••• (
m52`

`

•••)
n

JmS 2Vn

n\v0
D , ~23!
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wheremn satisfies the following condition:

(
n

nmn5m. ~24!

According to Eq.~18!, x(t) consists of two parts: one is a
time-independent stationary part, and the other is an oscilla-
tory part with the frequencywn defined by Eq.~19!. First of
all, we have numerically tested the results described by Eq.
~18! finding the Fourier transformx(v), and plotting
ux(v)u as a function ofv. These plots have peaks whose
heights give the amplitude of the Fourier component ofx.
We have found that as long asD/v0!1 ande/\v052n0 ,
the zero frequency and the low frequency have the highest
amplitudes, being in qualitative agreement with Eq.~18!. For
a quantitative test, in Fig. 1 we plot the amplitude of the
zero-frequency-mode@denoted asx(0)], the amplitude of
the low-frequency mode@denoted asx(w1)], and the lowest-
frequencyw1 as a function of the intensity parametera. The
numerical calculations were done fore/\v051.00 and
D/v050.125. For these values Eq.~18! predictsx(0)50,
x(w1)51, andw15D/w0J1(a). We plot these predictions
along with numerical results. As seen from Fig. 1, the ana-
lytical results are reasonable fora.1, and excellent for
a.2. The intensity dependence of the low frequency agrees
extremely well with the values obtained numerically, except
at low intensities. Indeed, Eq.~19! predicts w1→0 as
a→0, while numerical results lead to a finite value. As the
intensity of the laser field is increased,x(0) becomes smaller
while x(w1) increases. The sum of these two components is
close to one. This means that the contribution from the other
Fourier components is substantially suppressed, as predicted
by the theory. The coherent motion of charge density leads to
the intense low-frequency generation. The frequency varies
with a and approaches zero asa gets close to the first zero of
J1 . When w150 ~a53.84! the low-frequency mode be-
comes static.

The theory makes predictions also for the case when
e/\v0 is close to an integer. In Fig. 2 we compare the theory
with numerical results fore/\v01n0520.95. As in the
resonance case the agreement is rather good fora.1 and

excellent fora.2. As the laser intensity is increased, the
amplitudex(0) of the static component is diminished but it
never vanishes~as it does fore/\v0521) when a ap-
proaches the first zero~3.84! of J1 , x(0) goes up to a maxi-
mum value. At this point the electron is completely localized
as predicted by Eq.~18!.

III. ELECTRON LOCALIZATION IN A TWO-LEVEL
SYSTEM DRIVEN BY TWO FIELDS

In this section we study a response of an electron in a
quantum double well driven by two lasers with frequencies
v1 andv2 . We show how two lasers are capable of manipu-
lating electron localization and generating low-frequency ra-
diation. Electron tunneling between two states is described
by the Hamiltonian in Eq.~4!. The time-dependent popula-
tion difference obeys the kinetic integrodifferential equation
~6! with initial condition ~7!. The electric field is given by

E~ t !5E1cos~v1t !1E2cos~v2t !. ~25!

ThenF(t) has the following form:

F~t!5a1sin~t!1a2sin@~11n!t#, ~26!

whereai andn are defined as

ai[
m0Ei

\v1
, ~27!

n[
v22v1

v1
. ~28!

As discussed in the previous section, in the region where
(D/v1)

2!1, the solution of Eq.~6! or Eq. ~12! may be ana-
lyzed via the perturbation expansion with respect to the small
parameter (D/v1)

2. By making use of an expansion into a
Fourier series25

exp@ iF ~t!#5 (
n152`

`

(
n252`

`

Jn1~a1!Jn2~a2!

3exp$@n11n2~11n!#t%, ~29!

and after integrating of Eq.~12!, one obtains a series of os-
cillating terms with amplitudes inversely proportional to
their oscillating frequencies:

FIG. 1. The zero-frequency and the low-frequency components
of the population difference~the induced dipole moment!, x(0) and
x(w1) and the lowest-frequencyw1 as the function ofa. The con-
tinuous lines are the numerical results. The values ofw1 , x(0), and
x(u1) calculated using Eq.~18! as shown as dots, squares, and
crosses, respectively.D512.9 cm21, v05100 cm21, e/\v051.

FIG. 2. The same as Fig. 1 excepte/\v050.95.

53 4659LOCALIZATION AND DELOCALIZTION OF AN ELECTRON . . .



1

@n11n2~11n!#@n31n4~11n!#
. ~30!

Terms with the largest amplitudes satisfy the following con-
ditions:

n11n250,

n31n450. ~31!

Picking up only the terms with the smallest denominators
@satisfying condition~31!# in all orders of the perturbation
expansion, one obtains the following solution:

x~ t !5cosS D

v1
f ~t! D ~32!

with

f ~t!5E
0

t

J0@Aa121a1
212a1a2cos~nt1!#. ~33!

If n50 the system is driven by one laser with the electric
field amplitudeE5E11E2 (v15v25v). For this case

x~ t !5cos@DJ0~a!t#, ~34!

wherea is defined by Eq.~27!. If J0(a)50 the leading part
of x(t) becomes time independent and equals 1. This means
that the electron is trapped in one of the wells.

We examine next what happens when the electron is
driven by two lasers withunu!1. We define localization in
one of the wells if

ux~t!u.0.95 for t,500. ~35!

This condition requires the electron to be localized within
95%. Complete localization means thatx(t)51 at all times.
Sincex(t) depends on the parametersa1 , a2 , andD/v1 ,
we will now explore this multiparameter space selectively. In
Fig. 3 the dark regions show the parameter values in the
$n,a1% plane, for which localization condition~35! is satis-
fied. The results for negative values ofn are symmetrical to
those for positiven. Sincen50 means that only one laser
acts, the points along then axis are given by the condition
ucos@DJ0(a)t#u.0.95 for t,500. This gives small regions
centered around the roots of the equationJ0(a)50. If we

change 0.95 to a larger number~but less than 1! or taket to
longer times, the area will shrink.

The fact that forn50 electron localization takes place is
not surprising~see Refs. 4, 5, and 8!. However, the ‘‘fingers’’
appearing in the upper part of Fig. 3 for larger values ofn
are unexpected. These regions are not continuously con-
nected to the circles on then50 lines. This means that a
perturbation over smalln fails, i.e., x(t) is a nonanalytical
function ofn. It can be clearly seen from the following sub-
stitution:

t̃5nt. ~36!

Then

x~ t̃ !5cosF1n S D

v1
D f ~ t̃ !G . ~37!

For longer times, wheret̃@1 whenn→0, x~t! is a nonana-
lytical function of n.

In Fig. 4 we demonstrate localization regions in the plane
$a1 ,a2%. They form strips lined up along the zeros of the
Bessel functionJ0 . The larger the field intensity, the thicker
the localization regions.

In Fig. 5 we show the low-frequency part of the Fourier
transform ofx(t). We give only the peak heights and posi-
tions. The parameters for which the spectrum has been cal-

FIG. 3. The dark areas are localization regions in the parameter
space$n,a1%. a15a2 , D/v150.1, andv05100 cm21.

FIG. 4. The dark areas are localization regions in the parameter
space$a1 ,a2%. n50.1, D/v150.1, andv05100 cm21.

FIG. 5. The low-frequency part of the Fourier spectrum of the
induced dipole for the point in the parameter space marked by
‘‘ 1 ’ ’ in Fig. 3. a15a254.5, D/v150.1, andn50.07. The spec-
trum has peaks atnn6d, whered51 cm21.
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culated correspond to the cross in Fig. 3, which is a point
inside the ‘‘finger.’’ Figure 5 shows a low-frequency har-
monic, d, located nearv50 (d51 cm21), and demon-
strates new harmonics at the frequenciesn(v12v2)6d. As
the parameters approach to the region of localization,d be-
comes smaller and ultimately vanishes; furthermore the
shifted harmonics get closer and eventually collapse.

The low-frequency part of the spectrum can be under-
stood from Eq.~33!. Indeed,f (t) given by Eq.~33! can be
expanded as25

f ~t!5J0~a1!J0~a2!t1 (
n52`

`

an
sin~nnt!

nn
~38!

with

an[2~21!nJn~a1!Jn~a2!. ~39!

The leading term in Eq.~38! is

dt[J0~a1!J0~a2!t, ~40!

which grows@when J0(a1)J0(a2)Þ0] indefinitely in time,
while the other terms are restricted. Moreover the amplitude
of Jn(a1)Jn(a2)/nn is small compared tot. Inserting~38!
into Eq. ~32! and making use of cos
(a1b)5cosacosb2sinasinb repeatedly retaining the largest
term, the one containing cosines only~the terms containing
sines are small with respect to the small parameterD/v1),
we obtain

cosF S D

v1
D f ~t!G.cos~dt!cosS a1 sin~nt!

n D •••
3cosS an sin~nnt!

nn D ••• . ~41!

Using in this and the formula25

cosS an sin~nnt!

nn D5J0S annn D12(
m51

`

J2mS annn D cos~mnnt!,

~42!

we obtain the Fourier components ofx(t)5cos@(D/v1)f(t)#.
We show here only a few first terms

x~t!5 )
n51

`

J0~an!cos~dt!1
1

2
J1~a1!)

n52

`

J0~an!

3$cos@~d1n!t#1cos@~d2n!t#%1•••. ~43!

This equation is not exact, it is a perturbative series, where
neglected terms are of the order of (D/v1)

2. For this reason
the formula does not contain the higher-frequency compo-
nents ofx(t) such as, for example, the shifted harmonics at
the frequenciesnv1 . The formula predicts that the ampli-
tudes of the terms with the frequenciesd1n and d2n are
equal. The numerical results shown in Fig. 5 give nearly
equal intensities as predicted.

Taking the limitn→0 in Eq. ~38!, which corresponds to
one laser with the intensity parametera5a11a2, leads to

f ~t!→H J0~a1!J0~a2!12(
n51

`

~21!nJn~a1!Jn~a2!J t5J0~a!t. ~44!

IV. PHASE-DEPENDENCE STARK SHIFT
IN A TWO-LEVEL SYSTEM DRIVEN BY TWO LASERS

In this section we investigate the role of laser phases
when the electron-photon interaction is strong. Some phase
dependence of observable processes has been already found
in such systems. Potvliege and Smith27 have shown that the
ionization rate of the hydrogen atom is affected by the rela-
tive phase driving the system. Bavli and Metiu2 have pointed
out that the ability of the laser to maintain electron localiza-
tion is weakly dependent on the phase. If the electric field of
the laser has a time dependence cos(vt1f) the transforma-
tion t→t82f/v changes]t→]t8, cos (vt1f)→cos(vt8).
Thus a shift in the origin of the time scale eliminates phase
from a time-dependent Schro¨dinger equation. Nevertheless
calculations2 showing that the probability of finding the elec-
tron driven by one laser in a given well depends onf are not
erroneous. In these calculations the electron was localized in
one well att50, and this initial state, being a coherent su-
perposition of eigenstates, changes when the time scale is
shifted. For example, for a two-level system whose energies
with no laser field aree1 ande2 , the initial stateu1&1u2& at
t50 changes to exp@ ife1 /\v#u1&1exp@ife2 /\v#u2&. Since
the initial condition is an intrinsic part of a well formulated

physical problem the solution of the Schro¨dinger equation
depends onf.

The situation is more interesting when the system is
driven by two lasers. The electric field of the two lasers,
having frequencyv andpv (p is an integer! is

E~ t !5E1cos~vt1f1!1E2cos~pvt1f2!. ~45!

The time scale changest→t82f/v lead to the electric field
E1cos(vt8)1E2cos(pvt1f22pf1). The Hamiltonian de-
pends on the parameterf(p)5f22pf1 and, therefore, the
energies controlling the time evolution of the wave function
will also depend onf(p). By using the method applied for
the derivation of Eqs.~32! and ~33! we obtain that low-
frequencyV is determined by the following equation:

V/v5J0~a1!J0~a2!

12(
n50

`

~21!nJnp~a1!Jn~a2!cos@f~p!#. ~46!

This equation is valid whenD/v!1. This result is derived
by expanding the equation of motion in powers ofD/v and
resuming the fastest growing secular terms. In Fig. 6 we
compare the low frequency calculated numerically to that
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predicted analytically by Eq.~46!, and find excellent agree-
ment. The phase parameterf(p) is chosen forp52. For
a153.5 anda25a1/2 the low-frequencyV varies by a factor
of 60. The frequency has always a maximum at
f(2)5p/2. As shown in Fig. 6,V can oscillate with respect
to f (a255.0). At this laser intensity the frequency can be
even lower than the value with no phase shift. As shown in
Fig. 7, localization can be reached by changing the phase
difference even if the electron has not been localized by the
field with no phase shift. Localization regions and the char-
acter of the phase dependence of the low frequency is deter-
mined by the laser intensity.

Localization regions~over 90% of the electron density is
in the initial state! are shown by the dark lines in Fig. 8 when
v253v1 andE25E1 . The inclusion of the phase between
the fields can increase an area of localization. A few ex-
amples given above make it clear that the phase parameter
f(p) has a substantial influence on all properties of the
driven electron. It effects not only the amplitude~as in the
case of a weak field! but also the frequency with which the
electron responds to the laser.

V. CONCLUSIONS

We have considered the effect of a strong electric field on
an electron injected into a quantum well for different types of
electric fields and different types of quantum wells including
biased ones.

If the electron is initially localized in one of the biased
wells ~the lowest one! it can be delocalized by an electric
field if the bias energy is close to an integer number photon
energy ~but not equal to!, e[n0\v0 . Localization takes
place again when the field is an exact resonance with the
bias. This localization is determined by a different physical
reason, it is dynamical localization. The intensity of the field
is determined by the zeros ofJn0(a), wheren0 is the number
of absorbed~emitted! photons.

When the mismatch between the photon energy and the
bias is small, the electron oscillates between the wells with
the frequency determined by both the mismatch and the split-
ting renormalized by the Bessel function of then0th order
@Eq. ~18!#. Analytical predictions were verified by exact nu-
merical calculations. The results have been generalized to an
arbitrary periodic field.

In Sec. III we considered localization conditions and a
low-frequency generation for the electron driven by a bichro-
matic field in a case when two frequencies are very close to
each other. Atn5(v22v1)/v150 the electron is localized
under conditions valid for the single field case. Asn is in-
creased localization is no longer possible until higher values
of n th are reached; then localization is possible again in the
extended regions of the parameter space~see Fig. 3!. These
regions cannot be obtained from a simple power expansion
with n!1. A population difference between the states is a
nonanalytical function ofn @see Eq.~37!#. Such behavior is
rather common in the physics of phase transitions where cor-
relation functions behave nonanalytically in the vicinity of a
transition point. The low-frequency spectrum has been stud-
ied as well. Figure 5 shows that a spectrum consists of a low
frequency and harmonics at the frequenciesn(v1
2v2)6d. As the parameters approach to a region of local-
ization, d becomes smaller and smaller and ultimately van-
ishes; furthermore, the shifted harmonics get closer and
eventually collapse~see Fig. 5!.

If there is a phase shift between the fields only an ampli-

FIG. 6. The frequencyV of the slow mode of the induced
dipole as a function of the phase parameterf(2)5f222f1 . The
laser frequencies arev and 2v, E15E2 , andD/v150.1.

FIG. 7. The frequencyV of the slow mode of the induced
dipole as a function of the phase parameterf(3)53f12f2 . The
laser frequencies arev and 2v, E25E1/3, andD/v150.1.

FIG. 8. The dark regions indicate that the value of
f(3)53f12f2 anda for which 90% of the electron density is in
the left well.E25E1 , v253v1 .
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tude change is expected in an electron response when a weak
field is applied. However, as shown in Sec. IV, it is not so for
the strong fields. The phase shift affects a low-frequency
spectrum. The low frequency can be increased by 2 orders of
magnitude for the intensitya153.5 (a25a1/2). However,
for a155.0 it can be lowered by a factor of 3~see Fig. 6!.
Moreover, the low frequency can oscillate withf. As shown
in Fig. 7, the electron can even be trapped by changing the
phase shift only keeping the intensity to be unchanged.

A two-level model considered in this work implies that
ionization by a static field and multiphoton absorption is ne-
glected. Indeed, if the photon energy is rather small
(;50–80 cm21) it needs 50–30 quanta to reach a con-

tinuum spectrum for the typical value of barrier height of
Vg.0.3 eV for AlxGa12xAs/GaAs.

28 In this paper we con-
sider rather weak fields when only 2–5 quanta are absorbed.
For the barrier width of 50 Å, ionization induced by the
static field begins whenm0e5Vg , i.e., the amplitude of the
field should be less than 63105 V/cm. Thus for such static
and alternative fields, ionization can be disregarded.
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