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Localization and delocalization of an electron in biased and unbiased quantum wells driven by a
mono- and bichromatic laser field
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Localization (delocalization of an electron driven by laser in a biased quantum well is considered. The
initially trapped electron can be delocalized by the field if the bias energy is close but not equal to an integer
number of a photon energy. When the bias energy is exactly equal to an integer number of photon quanta,
dynamical localization occurs. A general analytical solution for a population difference is obtained. When the
electron is driven by a bichromatic field, localization regions are strongly dependent on the field incommen-
surability. The topology of localization exhibits stable and unstable regions originating from nonanalytical
behavior of the population with respect to the small incommensurability. This phenomenon resembles phase-
transition instabilities in the solid state. A low-frequency spectrum of electron oscillations consists of a low-
frequency mode and split lines. We also show frequency controlling of the time evolution of an electron dipole
moment on a phase shift between the two lasers. The low frequency can be increased or decreased, or it
oscillates with the phase shift depending on the laser intensity.

I. INTRODUCTION function does not obey Gibbs law any longer. It can be ma-
nipulated by the field shifting equilibrium from products to

The response of an electron in double quantum wells to aeactants and vice versa independent of the 1i&Despite
strong laser field has been a subject of recenthe strong electron-phonon interaction the electron oscillates
investigations:** In the case of no dissipation it has been petween the states in a pulsed field giving rise to an induced
shown numerically for two wells in Refs. 1-3 and analyti- coherence effedt:®
cally for two-level systems in Refs. 4-9 th_at an electron |n fact, in GaAs/ALGa;_,As quantum wells dissipation
oscillates coherently betwegn twq states with a frequency weak at low temperatures. This has been indirectly con-
(), that depends on a laser intensity firmed in experiments by observing quantum coherence of
Qy=AJ(a) 0 the electron in multiwell heterostructur&:20 The experi-

0 EAAR mental observation of absolute negative resistanpee-
whereA is an energy between the two lowest subbands, andicted by Dakhnovskii and Metiu in Ref. 22 is also in favor
Jo is the zeroth-order Bessel function. The parametés  of a weak dissipation mechanism at low temperatures. In-
defined as deed, under irradiation by a free electron laser, a negative
current appears even when a positive voltage is appied
“anti-Ohm” law). The theoretical prediction made has been
based on the model where the interaction with phonons has
been disregarded. Thus, as a good approximated we will
study electron dynamics in a nondissipative environment.
Weak dissipation leads to coherent decay at low temperature
while a pure exponential one is observable at high

E(t) = Eocog wot). 3) tempt_arature%f.1 Thg effect.of a wez_ak field on electron co_her—
ence in a weakly interacting Ohmic bath has been considered
At some values of the argumedg(a) =0, i.e.,Q,=0. This  recently by Makarov and Mak?’
means that the electron is trapped in one of the states. By In this work we study localization and delocalization of
changing the laser intensity, the electron can be delocal- the electron in biased quantum wells where the interaction
ized. with the bath has been neglected. As mentioned above this is
The effect of a dissipative environment changes a physia good first approximation. We will show that electron dy-
cal picturé®* qualitatively. In a cw field, electron density namics is strongly determined by the ratig wg, of the
decays exponentially in time with the rate dependent on théias energye, and photonfiwg. In the case of symmetric
laser parameters, electron-phonon coupling, the phonodouble wells, electron tunneling and induced dipole moment
spectrum, and the type of driving force. The intensity depenbehavior are considered in a bichromatic field. We demon-
dence of the rate constant is rather nonlinear exhibiting atrate a nonanalytical dependence of localization conditions
resonance structurd!? The reactant-product distribution on a small incommensurability in the field frequencies. We

2ugE
a= Mo o, @)

th

where uq is an electron dipole moment difference in the
initial and final quantum statek,; and wy are an amplitude
and frequency of the cw laser field
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will also study how a low-frequency irradiation spectrum

depends on a phase shift between the fields.

II. DELOCALIZATION GATES IN A PERIODICALLY
DRIVEN BIASED TWO-LEVEL SYSTEM

We study localization and delocalization of an electron in . € )
a two-level system driven by a time-independent and a cw ®*H'7 - T+asin(7)
field. The time-dependent behavior of the electron in such
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(13

A solution of Eq.(12) is seeked as a perturbation expansion
over the parameterA( wo)?, which is supposed to be small.
Expanding the kernel of Eq6) into a Fourier seriés

T= (l)ot.

€

+n
ﬁwo

T

(14

= _Z Jn(a)ex;{i

fields is equivalent to dynamics in a biased two-level system

driven by the periodic field.
The system is described by the following Hamiltonian:

A
== ox+V(oy,
whereV(t) is a driving force;o; (i=X,y,z) are the Pauli
matrices, and\ is a transition matrix elemer(splitting of
the lowest minibands According to Ref. 24, the time-
dependent probability may be defined as follows:

I

(4)

1+x(t)
5

where x(t) =(o,(t))11; (11) is an 11 matrix element of

P(t)= ©)

and assuming that the bias amplituéé: v, is close to a
resonance with the photon enemgyt wg, i.e.,

<(|ne|+1), (15)

€

—+n

ﬁwo 0
we collect only terms with the smallest denominat(is).
Keeping only these resonance terms in an expression for the
kernel, one finds that such a perturbation expansion can be
generated by the following convolutive integrodifferential
equation:

dx . 7 €
— — _ A2 _
dr J;) dTlCO{(fLwO +no X(’Tl), (16)

(r— 1)

o,. According to Ref. 4, one obtains the following masterwhereA denotes the renormalized tunneling splitting

equation for the population difference

dx_ 5 (¢
E__A Jodtlcos{F(t)_F(tl)]X(tl) (6)
with the initial condition
x(t=0)=1, (7)
where
t

A=AJ, (a). (17)

Equation(16) can be solved by a Laplace transféfrmvith
the initial condition(7)

(elfiwg+ng)2 A2
X(7)= —————+ —cog W, 7), (18
Wn Wn
wherew, is defined as
W= VA2 + (el iwo+ o). (19

The driving force consists of two parts: one is the constanta‘t the exact resonance, whes is equal tono numbers of

field with the amplitudes/2, and the other is a periodic func-

tion with the frequencyw, and amplitudeE,

€ E
V(t)= > + mcos{wot),

> ©

where u is a dipole moment difference between the initial

and final states. ThuB(t) is equal to

F(t)=et+a sin(wqt), (10
i HoEo
= hoy (11

Equation (6) may be presented in the equivalent integral

form as follows:

AV [
X(T):l_(_) Re dTleXF{iF(Tl)]
@o 0

% f OTldrzexti(Tz)]x(Tz). 12

Here we have introduced the following variable substitution:

guanta
X(t)= cos{AJnot). (20
In this case localization occurs when
JIn,=0, (21)

i.e., it is determined by zeros of theh-order Bessel func-
tion. In fact, the approach developed may be generalized to
an arbitrary periodic field with the period®wy. By ex-
panding the driving forc&/(t) into a Fourier series

V(t)= El V,cog nwot), (22)

n:
and making use of the resonance method for the analysis of
the power series for Eq12), one obtains a solution for the
population difference that formally has the same form as in
Eqg. (18) with a renormalized tunneling matrix element de-
fined as follows:

o0

A=A Y

my=—

2V,
nﬁ o

ﬁxn Jm(

m=—

) (23
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FIG. 1. The zero-frequency and the low-frequency components FIG. 2. The same as Fig. 1 excegti wy=0.95.

of the population differencéhe induced dipole momentx(0) and

x(wz) and the lowest-frequenoy; as the function of.. The con-  excellent fora>2. As the laser intensity is increased, the
tinuous lines are the numerical results. The values gfx(0), and  amplitudex(0) of the static component is diminished but it
X(u,) calculated using Eq(18) as shown as dots, squares, and neyer vanishegas it does fore/hwo=—1) whena ap-

crosses, respectivel=12.9 cm *, wo=100 cm %, e/fiwo=1. proaches the first zer@®.84 of J,, x(0) goes up to a maxi-
o . » mum value. At this point the electron is completely localized
wherem, satisfies the following condition: as predicted by Eq(18).
2 nm,=m. (29 I1l. ELECTRON LOCALIZATION IN A TWO-LEVEL
n

SYSTEM DRIVEN BY TWO FIELDS

According to Eq.(18), x(t) consists of two parts: one is a

S . : ; In this section we study a response of an electron in a
time-independent stationary part, and the other is an OSCIIIa-uantum double well driven by two lasers with frequencies
tory part with the frequencw,, defined by Eq(19). First of q y d

all, we have numerically tested the results described by Eq”1 2"d@2: We show how two lasers are capable of manipu-
(1é) finding the Fouriz/ar transformx(e), and Iottiny cIating electron localization and generating low-frequency ra-
IX(w)| as gfunction ofw. These pIotswhr;lve peapks whgose diation. Electron tunneling between two states is described
heights give the amplitude of the Fourier componeni of by the Hamiltonian in Eq(4). The time-dependent popula-

We have found that as long a8 wg<1 ande/fwy=— g, tion difference obeys the kinetic integrodifferential equation

the zero frequency and the low frequency have the highes(IG) with initial condition (7). The electric field is given by

amplitudes, being in qualitative agreement with BEi). For E(t)=E,cof w;t)+ E,co8 wt). (25)
a quantitative test, in Fig. 1 we plot the amplitude of the

zero-frequency-modédenoted asx(0)], the amplitude of ThenF(7) has the following form:

the low-frequency modgdenoted as(w,)], and the lowest- ) _

frequencyw, as a function of the intensity parameterThe F(r)=aysin(r)+azsin(1+v)7], (26)
numerical calculations were done fa/fiwy=1.00 and wherea, and v are defined as

Alwy=0.125. For these values E(L8) predictsx(0)=0,

x(wq)=1, andw;=A/wyJ;(a). We plot these predictions woEi

along with numerical results. As seen from Fig. 1, the ana- A= 2o (27)
Iytical results are reasonable fa>1, and excellent for !

a>2. The intensity dependence of the low frequency agrees 00—

extremely well with the values obtained numerically, except p=—2 "1 (28)
at low intensities. Indeed, Eq(19) predicts w;—0 as w1

a—0, while numerical results lead to a finite value. As the o5 giscussed in the previous section, in the region where
intensity of the laser field is increased0) becomes smaller (Alwy)2<1, the solution of Eq(6) or Eq.(12) may be ana-

while x(w,) increases. The sum of these two components ify ;e via the perturbation expansion with respect to the small
close to one. This means that the contribution from the Othef)arameterA/wl)z. By making use of an expansion into a

Fourier components is substantially suppressed, as predicted) rier seric®
by the theory. The coherent motion of charge density leads to

the intense low-frequency generation. The frequency varies o o

with a and approaches zero agets close to the first zero of exfiF(n)]= > > JIn,(a1)3n,(2)

Ji. Whenw;=0 (a=3.84 the low-frequency mode be- Ny=— Np=—=

comes static. X exp{[ny+ny(1+v)] 7}, (29)

The theory makes predictions also for the case when
e/lh wg is close to an integer. In Fig. 2 we compare the theoryand after integrating of Eq12), one obtains a series of os-
with numerical results fore/f wg+hny=—0.95. As in the cillating terms with amplitudes inversely proportional to
resonance case the agreement is rather gooéfot and their oscillating frequencies:
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o . . FIG. 4. The dark areas are localization regions in the parameter
FIG. 3. The dark areas are localization regions in the parametesr ace{a;,a ). v=0.1, Alw,=0.1, andwe=100 cm
space{v,a;}. a;=a,, Alw;=0.1, andwy=100 cm %, P 12 B 0 :

change 0.95 to a larger numbdut less than Ylor taker to

1 _ (30) longer times, the area will shrink.
[ni+na(1+v)][N3+ng(1+v)] The fact that forr=0 electron localization takes place is
not surprisingsee Refs. 4, 5, and 8However, the “fingers”
appearing in the upper part of Fig. 3 for larger values of

Terms with the largest amplitudes satisfy the following con-

ditions: , .
are unexpected. These regions are not continuously con-
n;+n,=0, nected to the circles on the=0 lines. This means that a
perturbation over smalb fails, i.e.,x(t) is a nonanalytical
nz+n,=0. (31  function of v. It can be clearly seen from the following sub-
Picking up only the terms with the smallest denominatorssuwtlon'
[satisfying condition(31)] in all orders of the perturbation F=vr (36)

expansion, one obtains the following solution:
Then

A
x(t)=cos<—f(r)) (32
w3

f(7)]. (37)

- 1/ A
X(7)=cog—|—
V\wq
For longer times, wheré>1 whenv—0, x(t) is a nonana-
T Iytical function of v.
_ 7.2
f(7)= fo Jol Vai+ai+2a;a,c08 vy)]. (33 In Fig. 4 we demonstrate localization regions in the plane

{a;,a,}. They form strips lined up along the zeros of the
If =0 the system is driven by one laser with the electricBessel function),. The larger the field intensity, the thicker

with

field amplitudeE=E;+E, (w;= w,= w). For this case the localization regions.
In Fig. 5 we show the low-frequency part of the Fourier
X(t)=cog AJg(a)t], (349 transform ofx(t). We give only the peak heights and posi-

wherea is defined by Eq(27). If Jo(2)=0 the leading part tions. The parameters for which the spectrum has been cal-

of x(t) becomes time independent and equals 1. This means
that the electron is trapped in one of the wells. B

We examine next what happens when the electron is (x1/7) Vo, =7cm
driven by two lasers withv|<1. We define localization in 0.081
one of the wells if

x(®)

—>| 2 cm®

Ix(7)|>0.95 for 7<500. (35)

95%. Complete localization means thdt) =1 at all times.
Sincex(7) depends on the parametas, a,, andA/w,,

we will now explore this multiparameter space selectively. In | , | L

Fig. 3 the dark regions show the parameter values in the 7 14 21 28 35 42 49
{v,a,} plane, for which localization conditiof85) is satis- Frequency (cm™)

fied. The results for negative values mfare symmetrical to

those for positiver. Sincev=0 means that only one laser  FG. 5. The low-frequency part of the Fourier spectrum of the

acts, the points along the axis are given by the condition induced dipole for the point in the parameter space marked by
|cog AJo(a)t]|>0.95 for <<500. This gives small regions ‘* + in Fig. 3. a;,=a,=4.5, A/w,;=0.1, andv=0.07. The spec-
centered around the roots of the equatiiyjia)=0. If we  trum has peaks atv=+ 5, whered=1 cm™ ..

. - . ) - 0.04
This condition requires the electron to be localized within | ‘
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inside the “finger.” Figure 5 shows a low-frequency har-
monic, 8, located neatrw=0 (6§=1 cm™ 1), and demon-
strates new harmonics at the frequenciés; — w,) = 5. As y 5{ sin(nw))

cog ap——— |- .

culated correspond to the cross in Fig. 3, which is a point 5{
co

sin( VT))

A
—) f(7)|=cog Br)cos( a,
w3

the parameters approach to the region of localizatibbe- (41)

comes smaller and ultimately vanishes; furthermore the = . hi d the f iga
shifted harmonics get closer and eventually collapse. Using in this and the formu

The low-frequency part of the spectrum can be under- sin(nvr) a o a
stood from Eq.(33). Indeed,f(7) given by Eq.(33) can be ¢ s( o ):JO(—” +2> JZm(—”) cogmnvr),
expanded &3 v/ m=1 nv
(42)
B sin(nvr) we obtain the Fourier components xfft) = cog (A/w,)f(D].
f(T)_JO(al)‘]O(aZ)T+n:2_w ah (38 \We show here only a few first terms
with - 1 -
x(1) =11 Jo(an)cos o)+ 53y [T Jo(an)
an=2(—1)"Jn(as)I(az). (39 n=1 n=2
The leading term in Eq(38) is x{cog(d+v)r]+cod(d—v)7]}+---. (43
51=3o(a1)Jo(3) 7, (40) This equation is not exact, it is a perturbative series, where

neglected terms are of the order df/;)?. For this reason
which grows[when Jg(a;)Jg(a,) # 0] indefinitely in time, the formula does not contain the higher-frequency compo-
while the other terms are restricted. Moreover the amplitudeents ofx(7) such as, for example, the shifted harmonics at
of J,(a1)Jn(az)/nv is small compared ta. Inserting(38)  the frequenciesw,. The formula predicts that the ampli-
into Eq. (32 and making use of cos tudes of the terms with the frequenciés v and §—v are
(a+b)=cosacodh—sinasinb repeatedly retaining the largest equal. The numerical results shown in Fig. 5 give nearly
term, the one containing cosines orfthe terms containing equal intensities as predicted.

sines are small with respect to the small paramates,), Taking the limity—0 in Eg. (38), which corresponds to
we obtain one laser with the intensity parameter a; + a,, leads to
f(1)— Jo(@)Jo(az) + anl (—1)"n(ap)dn(ay)  7=Jo(a)7. (44)
|
IV. PHASE-DEPENDENCE STARK SHIFT physical problem the solution of the Schinger equation
IN A TWO-LEVEL SYSTEM DRIVEN BY TWO LASERS depends onp.

In thi . . tiqate th le of | h The situation is more interesting when the system is
n this section we nvestigale the role of 1aser phaseyven py two lasers. The electric field of the two lasers,

when the electron-photon interaction is strong. Some phasﬁaving frequencyw andpw (p is an integeris
dependence of observable processes has been already found
in such systems. Potvliege and SrAfthave shown that the E(t)=E,coq wt+ ¢;) +E,cofpwt+ ).  (45)
ionization rate of the hydrogen atom is affected by the rela- _ , L
tive phase driving the system. Bavli and Méthave pointed The t|me, scale changes-t’ — ¢/w lead 1o the.elec.tnc field
out that the ability of the laser to maintain electron Iocaliza-ElCOS@t )+E,cospwt+ dpo—pg;). The Hamiltonian de-
tion is weakly dependent on the phase. If the electric field moend; on the parametei(p)= b2~ Pé1 and, therefore, th?

. lling the time evolution of the wave function
the laser has a time dependence adsf ¢) the transforma- energies controtiing . .
. , , , will also depend orp(p). By using the method applied for
o o St ne et i e ol s a1 Gevaton of EGs32and 53 we obian it o
from a time-dependent Schiimger equation. Nevertheless EfrequencyQ 's determined by the following equation:
calculation$ showing that the probability of finding the elec- Ol w=Jy(a;)dg(as)
tron driven by one laser in a given well dependsdare not
erroneous. In these calculations the electron was localized in = N
one well att=0, and this initial state, being a coherent su- +2n§=‘40 (=1)"np(ar)dn(az)cod #(p)]. (46)
perposition of eigenstates, changes when the time scale is
shifted. For example, for a two-level system whose energie$his equation is valid wheA/w<<1. This result is derived
with no laser field are; ande,, the initial statg1)+|2) at by expanding the equation of motion in powersiofw and
t=0 changes to efpoe, /fiw]|1)+exdide /fiw]|2). Since  resuming the fastest growing secular terms. In Fig. 6 we
the initial condition is an intrinsic part of a well formulated compare the low frequency calculated numerically to that
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FIG. 8. The dark regions indicate that the value of
FIG. 6. The frequency) of the slow mode of the induced ¢(3)=3¢,— ¢, anda for which 90% of the electron density is in
dipole as a function of the phase parametéR)= ¢,—2¢,. The the left well. E,=E;, w,=3w;.
laser frequencies ar@ and 2w, E;=E,, andA/w;=0.1.
V. CONCLUSIONS

predicted analytically by Eq46), and find excellent agree- e have considered the effect of a strong electric field on
ment. The phase parametg(p) is chosen forp=2. For  an electron injected into a quantum well for different types of
a;=3.5 anda,=a;/2 the low-frequency) varies by a factor electric fields and different types of quantum wells including
of 60. The frequency has always a maximum atbiased ones.
¢(2)= /2. As shown in Fig. 6¢) can oscillate with respect If the electron is initially localized in one of the biased
to ¢ (a,=5.0). At this laser intensity the frequency can bewells (the lowest ongit can be delocalized by an electric
even lower than the value with no phase shift. As shown irfield if the bias energy is close to an integer number photon
Fig. 7, localization can be reached by changing the phasgnergy (but not equal th e=nofiwy. Localization takes
difference even if the electron has not been localized by th@!ace again when the field is an exact resonance with the
field with no phase shift. Localization regions and the charpias. This localization is determined by a different physical
acter of the phase dependence of the low frequency is detef€aSon, |t. is dynamical localization. The |ntgn3|ty of the field
mined by the laser intensity. is determined by the zeros d;o(a), whereng is the number
Localization regiongover 90% of the electron density is Of absorbedemitted photons.
in the initial stat¢ are shown by the dark lines in Fig. 8 when  When the mismatch between the photon energy and the
w,=3w, andE,=E,. The inclusion of the phase between bias is small, the electron oscillates between the wells with
the fields can increase an area of localization. A few exiN€ frequency determined by both the mismatch and the split-

amples given above make it clear that the phase parametfifd renormalized by the Bessel function of theth order
¢(p) has a substantial influence on all properties of th Eq._(18)]. Analy_tlcal predictions were verified by exact nu-
driven electron. It effects not only the amplituées in the merical calculations. The results have been generalized to an

case of a weak fiejdbut also the frequency with which the artrtrary periodic f|eld.. o -
electron responds to the laser, n Sec. Il we congldered localization cpndltlons gnd a
low-frequency generation for the electron driven by a bichro-
matic field in a case when two frequencies are very close to
each other. Av=(w,— w;)/w,=0 the electron is localized
under conditions valid for the single field case. Ags in-
creased localization is no longer possible until higher values
of vy, are reached; then localization is possible again in the
extended regions of the parameter speaae Fig. 3. These
regions cannot be obtained from a simple power expansion
with »<<1. A population difference between the states is a
nonanalytical function of [see Eq.(37)]. Such behavior is
rather common in the physics of phase transitions where cor-
relation functions behave nonanalytically in the vicinity of a
transition point. The low-frequency spectrum has been stud-
ied as well. Figure 5 shows that a spectrum consists of a low
0 0.25 05 0.75 1 frequency and harmonics at the frequenciedw,
6(3) = (30, — ) (units of m) —wy) * 8. As the parameters approach to a region of local-
ization, 6 becomes smaller and smaller and ultimately van-
FIG. 7. The frequency) of the slow mode of the induced ishes; furthermore, the shifted harmonics get closer and
dipole as a function of the phase paramef¢8)=3¢,— ¢,. The  eventually collapsésee Fig. 5.
laser frequencies a@ and 2w, E,=E;/3, andA/w,=0.1. If there is a phase shift between the fields only an ampli-
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tude change is expected in an electron response when a wetilhuum spectrum for the typical value of barrier height of
field is applied. However, as shown in Sec. 1V, it is not so forV,=0.3 eV for Al,Ga, _,As/GaAs?® In this paper we con-
the strong fields. The phase shift affects a low-frequencyider rather weak fields when only 2—5 quanta are absorbed.
spectrum. The low frequency can be increased by 2 orders d¢for the barrier width of 50 A, ionization induced by the
magnitude for the intensity; =3.5 (a,=a;/2). However, static field begins whep,e=V,, i.e., the amplitude of the

for a;=5.0 it can be lowered by a factor of 3ee Fig. 6.  field should be less than>610° V/cm. Thus for such static
Moreover, the low frequency can oscillate with As shown  and alternative fields, ionization can be disregarded.

in Fig. 7, the electron can even be trapped by changing the
phase shift only keeping the intensity to be unchanged.

A two-level model considered in this work implies that
ionization by a static field and multiphoton absorption is ne- This work was supported by NSF CHE 91-12926. We are
glected. Indeed, if the photon energy is rather smallgrateful to Rob Coalson, Debi Evans, Jim Allen, and H.M. to
(~50-80 cm!) it needs 50-30 quanta to reach a con-Martin Holthaus for helpful discussions.
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