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We present a generalized theoretical description of tR& & - p approach for determining the band struc-
ture of layered semiconductor structures for any growth direction, including strain and piezoelectric effects.
The definition of heavy, light, and splitoff hole states is extended to arbitrary growth directions in analogy to
the conventiona(001) case, by choosing an adapted set of basis functions. The choice of this basis allows a
qualitative understanding of the in-plane band structure and of the optical properties of strained and unstrained
structures. Besides, we solve tkep Hamiltonian by means of an efficient real-space method allowing us to
deal with arbitrary confining potentials. The theory is applied to unstrained, compressively strained, and
tensilely strained quantum wells. We find that confinement energies, warping, and in-plane effective masses
strongly depend on the direction of confinement and on strain. Piezoelectric effects further affect the dispersion
for all growth directions other thaf®01) and(011). We also find that the optical transition strength depends on
the in-plane light polarization for growth directions other tH@61) and (111).

[. INTRODUCTION perturbed periodic structure and put forward for the use in
QW structures by White and Sh&Mmand by Bastard!
Since the advent of molecular-beam epitag®ylBE),  Within this theory, a number of studies concerning non-
semiconductor material engineering has become a topic dP0J)-oriented QW's appeared in the literattr&?***[Refs.
great technological and fundamental interest. Initial work6 and 7 for(11N)-, Refs. 8 and 23 fof111)-, and Ref. 22 for
concentrated on the effects of size quantization, dominatett13-grown QW's|, but no comprehensive treatment for a
by the conduction band, but, later, it was shown that valencgeneric tikl) growth direction exists to our knowledge. In
band engineering by use of strained layetsould drasti- part_|cular, little has been done for nc_ﬁ@(—)l)-oner_lteq
cally affect and improve all optical propertidasers, LED'S strained QW structures, where strong piezoelectric fields

24
and provide goog-type electronic components for comple- occur. i ) .
mentary electronics. In Sec. Il we(i) generalize thé - p treatment to deal with

Another possibility, realized more recently, for tuning the @ generic likl) growth direction extending the definition of

electronic and optical properties is offered by the growth thﬁavy_ hole(hh), light ho(;e (Ih()j’ and fsglit(_)fflgso) states by
epitaxial layers on high-index plangise., other thar(00D]. ~ ©1'00Sing a symmetry-adapted set of basis functionsgive

The interest of norf@01)-oriented semiconductor structures a CO”.‘F’.'ete des_gnpuon of how tq Qeal with st.ram and piezo-
is  manyfold concerning growth and  impurities electricity, and(iii ) present an efficient numerical method of

incorporatior,  self-organized  growth, electronic 39'““‘10 O; tge mglt:_bandfl:ﬁmntonla? ba;s_ed on da real-;lpac?
propertie$” and lasing performancés? Here, we will fo- ~ @ISCretiz€d description of the wave function and capablée o

cus on the electronic and optical properties of semiconductoq?a“ng W't.h ar bitrary confining potentials, and thpse due to
quantum wel(QW) structures grown on novel index planes piezoelectric fields. In Sec. Il we present numerical results
also in the presence of strain "for unstrained GaAs/AlGa;_,As, compressively strained
On the experimental side there have been many reports %ﬁXSaAl—X'A‘/i/f‘I VGal—AV\AS W an\;jv htensnr(]aly h §tra||ned
successful high-quality growth aL1N)-oriented unstrained C2PAS1./Al yGai_yAs QW's. We show that the in-plane
GaAs/Al,Ga, ,As QW structures as evidenced by their sur- band structure and the optical properties can be qualitatively

face morphology, good optical properties, and high electrorY€"Y Well understood in terms of the generalized hh, Ih, and
and hole gas mobilitie¥-17An extremely high hole gas mo- so states and of the corresponding effective masses in per-
bility was observed in113-grown GaAs/AlGa, ,As QW pendicular direction. A particularly interesting observation is
structures. The threshold current density Qll])-xoriented the dependence of light absorption on the linear in-plane

QW's was found to be less than that(@01)-oriented oned polarization for low symmetry growth directions, in contrast

Good optical properties are also reported for compressivel{® the behavior of001)-grown QW structures. Finally, we

strained (111-oriented InGa; ,As/Al,Ga; (As QW ive a conclusive summary in Sec. IV.
structures®
The starting point for our theoretical investigations is the
k-p approach, which has been developed by Luttinger and The description of the formalism is divided into four
Kohn™ to deal with the problem of an electron moving in a steps. First, in Sec. Il A we formulate ttke p approach in a

Il. FORMALISM AND SOLUTION METHOD
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form which is independent of the growth direction, next, in :eik”'rH'(;z)(zr).J(rr) 2
Sec. Il B we extend the definition of heavy, light, and splitoff '
hole states, and the ensuing selection rules for optical transivhere the components @3(2'), $1(2')- - - pg(Z'), are the

tions by introducing a growth direction adapted set of baSi%nvelope functiongreplacing the plane Waveik;z') the
functions. The additional effects due to strain and piezoelec- G he Bloch basis f U d
tricity are examined in Sec. Il C and, finally, in Sec. Il D we components of(r’) are the Bloch basis functiof), an

describe an advantageous numerical method of solution d/yhere we Eave use(f:i the a[;]plromme_lrtlhon that these baS|_s func-
the multiband Hamiltonian problem. tions are the same for each layer. The eigenstates satisfy

He(z') (2 ) =Ed(Z'), (3)

whereHy(z') is the 8x8 k-p Hamiltonian which we write
in the following general form:

A. k-p Hamiltonian

In the eight-band Kane mod@lof the k-p theory ap-
proach for 1I-VI, 1lI-V, and group IV semiconductor bulk
materials the lowest conduction band states and the upper

valence band states at wave vectkraear thel’ point are Hk(z')= 2 k;Da'B(Z')k[,;-F 2 Fok!,
expanded in terms of the eight zone center eigenstates com- a.p=x"y" 7' a=x"y"z'
posed of the spatidl=0 conduction band basis function +V(z'), (4

|S) and of theL=1 valence band basis functiohs), |Y),

and|Z) plus spin. The spin-orbit coupling splits the sixfold where z’ is the coordinate in the growth directiok, =
degenerate valence band states into the fourfold degeneratel d/dz’ and whereD*?(z')=D#*(z') and F* are 8x8
J=3/2 states (g symmetry at energyE, and the twofold Hermitian matrices, which depend on the crystallographic
degeneratel=1/2 splitoff states ['; symmetry at energy growth direction. The diagonal matriX(z') =diad E.(z"),
Es=E,— A, WhereA  is the spin-orbit energy splitting. Ec(z').E,(2').E,(2"),E,(2').E,(2"),EsdZ'),.Es{2")] de-
The conduction band edgdat k=0) is located at scribes the potential profile in thg direction with disconti-

E.=E,+Eg4, whereE, is the energy gap. We choose the nuities at the interfaces due to the valence band offset and to
eight basis functions as follows: the differentEy and A, of adjacent layer materials. We use
primed indices for the coordinates to indicate that these are
us(r)=ug(r)=|St), the coordinates relative to a basis which is rotated with re-
spect to the usual simple cubic basis such #haandk, are
Uy(r)=uc(r) =1iS]), the coordinates in the growth directioh,k,l). We have that
r’'=Rr andk’=R k, whereR is an orthogonal transforma-
us(r)=|3/2,43/2) = upy (1) = V12X +iY1), tion matrix, which we choose as
Ug(r)=|3/2,— 312) = Upy (1) =i VIAX—iY |), cilh - cylk —cy(h*+k%)
R=| —c,k ¢ch 0 , (5)
u5(r)=|3/2,+ 1/2>=u|m(r) C3h C3k C3|
=i V16X +iY])—i\2/321), where ¢, = 1\IZh2+ 122+ (N2 K22, ¢,= 1\h?+ K2, and

c3=1//h?+k?+12 are normalization constants. With this

Ug(r)=[3/2,~1/2) choice the in-plane k; and kj directions are

2 2 ;
= Uy (1) = V1B X—iYT)+2/3Z]), (Ih,Ik,—h=—=k?) and (—k,h,0), respectively. Apart from
iy () | & z1) the growth direction, the matrice®*?(z’) depend on the
U7 (1) =]1/2,+ 1/2) = Ugg () conduction band effective mass; and on the_effective
masses at the valence band edges, expressed in terms of the
= JIBX+iY | )+1/3Z21), Luttinger parameters,, y,, andyz. The matrices® de-
scribe the coupling between conduction and valence band
Ug(r)=11/2,— 1/2)=ug, (1) states and depend on the p—matrix_ element
| o P=(SIpX)=(SIp,|Y)=(S|p;|2). In Appendix A, Hy is
=—iVU3X=iYT)+iv13Z]), (1) given explicitly for the most studied case tiztis along the

s . (001 direction of the simple cubic cell.
where ¢, hh, |h, and so indicate the conduction and the ; . .
heavy, light, and splitoff hole states, respectively. The inter- The Luttinger parameters are, in general, different for

. > . each layer and therefore dependzdn The p-matrix element
action with all other bands, away from the band gap, is takerb is, however, independent of the layer as a consequence of
into account perturbatively. ! '

In adapting thé-p approach to a layered structure, Wherethe assumption that the basis functidfisare equal for each

the periodicity in the growth directiote.g., thez’ direction layer. In this approximation, the matricés’ do not depend

is lost, the eigenstates at in-plane wave vektoare written on z'. The actual variation in the value 6t for different
o 9 p &t bulk materials is taken into accodhtby adjusting the pa-

rametery. on the diagonal of the conduction band part of the

3 Hamiltonian so that its eigenenergies yield a conduction

ry= ekl & (2 ui(r’ band effective mass Whlc_h is in a_lgr_eement Wlf[h the experi-
vr’) ;1 SiZHu(r’) mental value(see Appendix A A similar correction should
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also be applied for the zone center so band effective mass, B. Characterization of the hole states
but the effect of this is very small, especially for the upper and optical transition strength
valence subbands.

Once the Hamiltonian is known explicitly for th@®01)
growth direction it is straightforward to show that, by using
"=Rk, for any other bikl) growth direction the matrices

D*? andF® in Eq. (4) are given by

For layered structures grown in tH601) direction, the

4X4 LK Hamiltonian is diagonal & ;=0 and one can iden-
tify pure heavy holéhh) and light holeg(lh) states. By adding
the conduction and/or the splitoff bands, the hh states remain
pure but the |h states mix with the conduction and/or the so
states ak;=0. The mixing with the conduction states de-
Dﬁﬁ: 2 Rm,Dg(;f’R[;,lﬁ, (6) creases for increasingy and is small for all cases consid-

a'p’ ered in this paper. For |Ih states with a confinement energy

which is small relative ta\¢,, also the mixing with the so

N o a1 states is small, so that these states retain a strongly dominant

thZZ FooRar - () Ih character. One may expect this to be true also in presence
“ of strain since the strain Hamiltonian relative to the hh and Ih

We note that this transformation does not alter the set obasis functions is diagondkee Sec. Il & However, the
basis function(1). In Sec. Il B we will show that for the Strain Hamiltonian gives an additional, relatively strong, cou-
characterization of the hole states in QW structures growling between Ih and so states, so that, for strongly strained
along a direction other thaf®01) the basig1) is not a con- materials, even the highest |h states may be considerably
venient basis, but one should use a symmetry-adapted set ofixed with so states at the zone center.
basis functions, i.e., basis functions which are adapted to the For growth directions other thaf®01), the characteriza-
direction of growth. tion of the hole states is more complicated, since, in general,
When the energy gap between the conduction and theven the 44 LK Hamiltonian without strain, is not diago-
valence band is sufficiently large, the coupling between connal anymore akH’ =0, independent of the choice of the basis
duction and valence band states is small and can be takém). This means that, in general, one cannot find a transfor-
into account perturbatively. This leads to th& 6 Luttinger  mation which diagonalizes the Hamiltonian for each layer.
Kohn (LK) Hamiltoniart® for valence band states, expandedThis holdsa fortiori if the strain is included, as it will be
in terms of the six valence band basis functionsshown in Sec. Il C. Therefore, we need to answer the ques-
ug(r’)---ug(r’), to which we will refer as the LK basis in tion whether one can identify hh and |h statesgt0 also
the following. The complete 8 8 Hamiltonian is of the form  for growth directions other tha{®01). This is also important
to generalize the selection rules for optical transitions as we
will see at the end of this section.
; (8 Now, we show how, by a concomitant transformation of
the Hamiltonian and of the basis functiofi3, one can arrive
for all growth directions to a natural definition of hh, |h, and
and the 6<6 valence band part ¢, (z'), respectively, and SO states which have exactly Fhe same se!ection rules fqr light
ncoming parallel or perpendicular to the interfaces as in the

C is a 2X6 rectangular matrix which represents the secon : . .
. - . ; 001 case. The only difference will be that, with the excep-
(lineay) term on the right hand side of Eq#) and describes tion of the (001) and (111) directions, the hh and |h states

the coupling between conduction and valence band states

Then, using perturbation theory, the LK Hamiltonian is will not be exaqtly decpupled dtj=0. This ff"‘Ct will be_
shown to have interesting effects on the optical properties,

Hq(z") C
ct  H,(2)

H(2')=

whereH (z') andH,(z’) are the 2<2 conduction band part

found to be o . :
the most striking being a dependence of the matrix elements
T for optical transitions on the in-plane light polarization.
" / To this purpose, we find it convenient to go back to the
Hk(z')=H,(z')+ . 9
(2 =H,(2) Eq(z') © k-p Hamiltonian relative to the basisX), |Y), and |Z),

DyyAk), which does not take into account the spin-orbit
We note thatd «(z') does not contain anymore terms which coupling?’

linearly depend on the wave vector components, so that, in
its general form in the style d#) the second term vanishes.
As shown in Appendix A, Eq(9) amounts to a renormaliza-
tion of the Luttinger parameters.

TABLE |. GaAs perpendicular hh effective masses;
[Eq. (16)] for three families of fikl) growth directions.

Finally, if one is only interested in the upper valence sub- hkl) m* (hkl) m* (hkl) m*
bands and the splitoff gap, is large relative to the confine- Lo Lo Lo
ment energy of these states, then one may neglect the inflt11) 0.952 (011 0.690 (111 0.952
ence of the splitoff band and solve thx4 Luttinger Kohn (112 0.690 (012 0.531 (122 0.814
HamiltonianHg(z’) which is obtained fronH ¢(z') sim- (113 0.527 (013 0.451 (133 0.750
ply by deleting the last two rows and columns. The solutiong114) 0.463 (014 0.419 (144 0.724
are then expansions in terms of thdg basis (115 0.432 (015 0.404 (155 0.712
us(r’)---ug(r’). Note that a perturbative inclusion of the .
split-off band would lead to terms of order four in the wave (001 0.377 (002) 0.377 (011 0.690

vector components.
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LKZ+M (K +k?2) Nkyky Nkyk,
2 2 2
Dy k)= — Nkyky LkZ+ M (kZ+k2) Nkyk, (10
N KKy Nkky LkZ+M (kg+k2)

whereL, M, andN have the following relations with the |X’), |Y'), |Z') and where the spin-quantization axis coin-
Luttinger parameters: cides with the fikl) direction. Relative to these transformed
basis functions, which we will call the symmetry-adapted LK

2
L= h (y1+47,) basis in the following[the basis(1) is symmetry-adapted
2mg - "t 20 only for the(001) growth directior, the LK Hamiltonian can
be written as
hZ

M=2mo(y1—272), H' k=Hik+AHpy, (15
52 where the correction termAH,,, is due to the term
N=2—67s. (1) - (A%12mgy)6(y,— y3)ADy . We note that also in the

o

symmetry-adapted LK basis the spin-orbit coupling is diag-
The 6X6 LK Hamiltonian is obtained fronDyy > by calcu-  onal. SinceAHy,, is proportional toy,— y3, it vanishes in
lating the matrix elements relative to the LK basisthe axial approximatiorii.e., y,=y3). This means that, in
[us(r)- - -ug(r)], addingE, to all diagonal positions and in- the axial approximation, the in-plane band structure for a
cluding the spin-orbit coupling by adding A, to the last layered structure does not depend on the growth direction, so
two diagonal positions. Note that the spin-orbit coupling isthat we have to abandon the axial approximation to search
diagonal relative to the LK basis. The matiX; can be for changes depending on the growth direction. Interesting

separated in three terms as follows: changes can be expected, in particular when the well-acting
) material has a large difference betwegnand s, i.e., has a
h 2 T strongly warped bulk band structure. Explicit expressions for
D K)=—-— —2v5) kel 3+ 6y5kk o = . :
xvZK) 2mg (717272)K 5+ 673 the rotated Hamiltonian in the restricted four-dimensional hh

and Ih basis for the specific case(bfll) growth are given in
A aTL2 Ref. 6.
o072 ys)azg,y,z Calukal. (12 At this point, it makes sense to generalize the meaning of
hh, Ih, and so states for a layered structure grown in an
arbitrary direction fikl), defining them with respect to the
symmetry-adapted basis. We defingr’) andu,(r’) as ba-
sis functions for hh statesg(r’) andug(r') for Ih states and
the remaining two for so states. This is a natural definition,
since it yields exactly the same selection rules for optical
transitions with respect to incoming light parallel and per-
pendicular to the layers as for tH801) growth direction.
Moreover, the eigenstates @tzo can be expected to be
close to pure hh and l|h states for any growth direction ac-
DXYz(k)—>RDXYZ(Rflk’)RflzD)’(,Y,Z,(k’), (13 cording to this definition, sinc&Hy,, is in general small

. . _ relative toH x so that the mixing of hh and Ih states at the
It is easy to show that the first two terms on the right hand, ;o center is small.

side of the expressio(l2) are invariant by this transforma- e the definition of hh and Ih states is generalized, we

tion. In fact, omitting the constants, the first term transformstiret gerive analytical expressions for effective masses and

to k,,1R,|3R,1 fli, |,31’ arlld}he s.econsiltern; ransforms 10 1oy agsess how the mixing of hh and |h statek|at0

RR .k (.R k’)'R :k. k '(usmg R™"=R). The third depends on the growth direction. By use of the symmetry-

term is, in general, not invariant and transforms as adapted basis, the effective masses for hh and Ih bands in the
limit of uncoupled bands can be found from the diagonal

wherel is the 3<3 unit matrix ande,, &, andg, are the
orthonormal column unit vectors (1,0,0), (0,1,0), and
(0,0,1), respectively. If we transform the wave vector ac-
cording tok’ =Rk and at the same time apply an orthogonal
basis transformation of the basis functiops), |Y), and
|Z) to the rotated basis functionX’), |Y'), and|Z’) ac-
cording to the same transformatidd [Eq. (5)] such that
|2’y is oriented in the directionhkl), thenDyyAk) trans-
forms as

2 &Ko — Z R&,(R&,) TRg,R, k' gk’ terms ofH, . The effective masses in perpendicular direc-
aTHyE CRyTXY2 tion [i.e., (hkl) direction|, governing size quantization, are
L given by
= > &8k i+ ADyq(k), (14
e M =[71-272+3(v2= ya)dwl 5, (16)

whereADy, (k") represents the difference with the expres-

sion before the transformation. Corresponding to the trans-
formation R, we define the transformed basis functions
us(r’)- - -ug(r’) as in(1) but with |X), |Y), |Z) replaced by ~ where

mMin=[v1+ 272+ (y2— ya)dpl %, (17)
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dnn=2c2c3(h*+k*+h%k?)12+ 2c5c3h?k?, (19

dip=dp,+4cs(h*+k*+14)—4. (19

Extremal values occur for thg001) direction, where
M} hh=(71—272) "t and m¥,=(y1+27y,)"* and for the
(111)  direction, where m*,=(y;—2vy;) ! and
m¥,=(y1+2v3) 1. If we restrict ourselves to thgz plane,
extremal values occur for th@®01) and the(011) directions,
where in the latter case we havem},,
=(y1—72/2—3y5/2)" and m} = (y1+v2/2+3y5/2)"*

In the planes, spanned by any two of t#t®1), (111), and

(011 high symmetry directions, the effective masses behave
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ascertaining for which growth directions the hh and Ih states
are decoupled akﬁ=0, here we give it explicitly for

monotonously when going from one to the other high sym-

metry direction, as shown in Table | for the heavy hole ef-

fective masses of GaAs.
The in-plane effective massgserpendicular to thehkl)

direction] in the uncoupled band limit along the generic in-

plane directiom=(n;,n,,0) (wheren?+n3=1) are

Min(nN) = [n%¥int2ninyah oyl L, (20)

mMiip(n) = [nfyi+2nny v+ nsyi] 4, (21

where

Yan= Y1t v2+3(v2— va)din,

'Yhh 3(y2— 73)dm,v

Y= y1+ v2+3(ya— ya)diy, (22)

Y= v1— 2+ (v2— va)di,

Y= (v2— va)diy,

Yy _—

Ih (23

Y= v1— v2+ (v2— ya) iy,

and
X=c(1*h*+1%k*+ (h?+ k?)*)+ 2c3cah?k22— 1
dX¥=c3c,(hk3—h3k)13+c,c3(h3k—hid)l,
d¥Y=ci(h*+k* +2cicsh?k?12— 1 (24)
= dia+8cic3(h*+k*+h%k?)12,
diY=d —4c,c,c3(h2—k?)hk,

dyY=d¥Y+8c2c2h2K?. (25)

For (hkl) = (OOJ) whereR [Eq. (5)] is not well-defined, we
have to takedf=d{*=0 (a,8=x,y,2). The terms of the

kj=0
dll d12 d13
ADp=k.? do1 dpp dag, (26)
d31 d32 d33
where
di;=2c2c3(h*+k*+h%k?)1?,
dyp=2c3c3h%k?,
dag=ca(h*+k*+1%) -1
d1,=d,;= —c,c,c5(h?—k?)hkl,
diz=dg;=c,c3(h* + k4 —h?13—K23),
d,3=d3= — c,c3(h?—k?)hk. (27)

The k- p Hamiltonian relative to the symmetry-adaptEd
basis uj(r’)---ug(r') has pure hh and Ih eigenstates
at the zone center wheneved;,=d;3=d,;=0 and
d;;=d,,, since in that case we have a«u =0 that
(X' +iY’ |Hkp|X’—|Y Y=(X'+iY'|H,. plZ')=0 so that
the 4xX4 LK Hamiltonian is diagonal. Apart from th@01)
direction (where ADy;=0) this is only the case for the
(111 direction, where d;;=d»,=1/3, d33=—2/3, and
d,,=d;3=d»3=0. For all growth directions other thaf021)
and (111 there is a small residual couplingroportional to

— v3) between hh and Ih states. However, neglecting these
relatively small off-diagonal terms qu’| =0 provides a way
to label the hh and Ih states in an unique way according to
their confinement energy for any growth direction. The small
residual couplings between the hh and |h states, of the form
d?/dz'2, do not couple hh and |h states with opposite parity
in a symmetrical QW structure; since the coupling between
two states depends on their separation in energy, the stron-
gest coupling can be expected for the
hh; and the Ih state. However, in general, even in this case,
the states still have a dominant hh or |h chara¢srwe will
demonstrate in Sec. )l

For (hkl)=(111), the coupling of the hh and |h states with
the so and/or conduction band statekH’atEO is analogous to
the (001) case. For lgkl) different from (001) or (111) in-
stead, both hh and Ih states are coupled with the so states.
Although hh states do not couple directly with the conduc-
tion band, they do couple indirectly via the Ih states and so
states.

For the high symmetry direction€001) and (111) the
strain Hamiltonian relative to the symmetry-adaplgdasis
is diagonal(see Sec. Il Cand does not lead to mixing of the

form k (d/dz') also contribute to the in-plane effective hh and Ih states. For other directions, the strain induces fur-
mass, as we show in Appendix C, but in first order perturbather mixing between hh, Ih, and so states.

tion for a symmetric QW this contribution vanishes due to

the parity of the envelope function &f=0.
It is possible to obtaiA Dy, (k") explicitly in terms ofh,

We are now able to assess selection rules for dipolar op-
tical transitions for all growth directions in a unified way.
The probability for interband optical transitions from a va-

k, |, and of the wave vector components. For the purpose dence band state, (r') to a conduction band state.(r') is
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proportional to the squared absolute valuepgf= €’ .pl’}C' (00D, (011, and (111 growth directions, describes a rigid

where¢’ is the polarization vector of the light and rotation of the deformed crystal. We note that the presence of
a nonvanishing antisymmetric part 8findicates that there is
Poc={t,|P’|c) (28)  shear strain since an asymmetfiea) matrix cannot be di-

. . . agonalized by a real orthogonal basis transformation. The
is the dipolar matrix element between the wo states. Thgnayrix elements of are fixed by minimization of the mean
components of botk’ andp; . are expressed with respect to g|astic energy density with the constra@that the in-plane
the rotated basis. Taking both states as solutions of thggttice parameters match at the interf@eThe mean elastic

8x8 Hamiltonian in the symmetry-adapted basis and conenergy density for a heterostructure madé kayers is given
sidering light incoming perpendicular to the layefise., by

€,=0) we can write?®

— 1

e e U=12 du;, (32
Pre= 2 <u{|p'|u,-’>f ¢ (Z)l(2)dZ, (29 |
=t o whered, is the width of layerl, L=3,d,, and U, is the
where(ui’|p’|uj’)= 1/QonOUi'*(f')p'Uj'(f')dr' (with Q,  elastic energy density in layérgiven by
the volume of the bulk unit celland ¢1(z')- - - ¢g(z') are
the envelope function components occurring in the expan-
sion in terms of symmetry-adapted basis functions. If we
label the conduction, hh and Ih bound statekjat 0 by the ) ) )
integersn,, Ny, andny, according to their confinement en- + €lyy€iz2) T 2Cus €y €l €ly2), (33)
ergies, then, for a symmetric potenth(z'), we have that \yhere €1ap=1/2(S 45+ Sipa) and Cyy, Cyp, and Cyy are
Nc—Npp @nd ne—ny, should be even to have nonvanishing elastic constants. Note that the antisymmetric pa$ dbes
transition probabilities akj=0, as a consequence of the not contribute to the energy density. It only contributes in the
parity of the envelope functions. It is easy to show that thesense that it mayand for low symmetry growth directions it
eigenstates & =0 have the property that either the conduc-does lead to a lower minimal value for the elastic energy.
tion band envelope functions are even and the valence bandriting the zinc-blende primitive basis vectors for the lalyer
envelope functions odd or vice versa. The strongest transas
tions are those witm.—ny,=0 and those witm;,—n;=0. a . .
The above selection rules apply for any growth direction. b|1=§(vx+ Vy),

Furthermore, for(001)-oriented heterostructures, it is
well-known that the transition probability is independent of
the in-plane polarization of the light, sind@y,|py|¢.)|*=
[(,1pyl )P, and that the hie-transitions are about three
times stronger than the Ih- transitions, since blazﬂ(gyﬂ‘,z), (34)
Kuclpaylun =" 3[(uc|puyluim)|?. Conversely, for growth 2
directions other thaf001) and (111, due to the mixing be- \yhere 4 is the bulk lattice parameter for the layer the

tween hh and | states, the transition probabilities will not b&ymitive lattice basis vectors of the deformed material are
anymore independent of the linear polarization of the light ingiven by b =(1+S)by (i=1,2,3 and the six constraints
i i 1y

the plane, and the probability for the [, transition may due to the matching at the interface between the layarsd
be different from three times the probability for the COITe-| 4 1 can be written as

sponding Ih-c,, transition. This anisotropic behavior is dem-
onstrated in Sec. Il for the hihc, and Ih;-c4 transitions for b/:-A;=b/, ;- Ny,
various QW'’s.

1
2 2 2
U|—2C11(€|xx+5|yy €i22)  Cro €€yt €ixx€izz

a . .
b|2:E(VX+VZ)l

bji-Na=by, ;- Ny (35

C. Strain and piezoelectricit . A A .
P Y fori=1,2,3 wheren; andn, are two orthonormal vectors in

The deformation introduced by the lattice mismatch be+the plane of the layers, for example given by the first two
tween the constituent materials in a heterostructure is chafows of the rotation matriR [Eq. (5)] for growth directions

acterized by the deformation tens8y defined through other than001). The boundary conditions have to be applied
for all interfaces. Since the width of the substrate on which a

V= Z (5a,6+5a5)‘73' (30) layered structure is grown is usuglly very much larger Fhan
B=XYy.2 the layers of interest, the deformation in the substrate will be

negligible so that, if no relaxation takes place, the in-plane
lattice parameters of each layer will match to that of the
substrate and the minimization &f can be performed for
each layer separately, giving the deformation tensors layer
_ per layer.
S=eth, S For the high-symmetry001), (011), and(111) growth di-

where the symmetric pa# is the strain tensor and the anti- rections, the deformation tensor is symmetric, and thus equal
symmetric partA, which vanishes for the high symmetry to the strain tensor, and can be shown to have the form

wherev,, Vi, andV, are orthonormal vectors along the edges
of the simple cubic cell. For a generic growth directi@,
contains a symmetric and an antisymmetric Bart:
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€ O 0 Once the strain tensor is known, the strain Hamiltonian
HS" can be determined following Bir and PikéfDue to the

0 ex 0], strain, the momentum operatgr=—iAV transforms to

L 0 0 €, p’=(1+S) p. This affects the coupling matrix elements

_ - (SlpLIX) (SIp.lY) and (S|p.|Z) (a=x,y,z) between the

& 0 0 conduction and the valence band states and leads to slightly
0 ey €7, modified conduction and valence band effective ma$ses.

However, the dependence of the coupling between conduc-
L0 &z eyl tion and valence band states on strain is quite small in gen-
eral and therefore we shall neglect it in the following.

We choose to keep the energy of the conduction band
edge fixed and let the valence band edge vary with strain.
e e € (36 Note that the rel_ative positions of the various_ band edges for

Xy o TXXEXY different layers in a QW structure is determined by the va-
L €xy  €xy  Exxd lence band offsés).

From symmetry consideratiotfst follows that the strain
respectively. This simplifies the constrained minimization ofHamiltonian relative to the.=1 basis functiongX), |Y),

and

€xx €xy Exy

U by reducing the number of independent variables. and|Z), H}Y,, has the following form:
I s€xxt Mg( EyyT €22 Ns€xy Nsé€x;
H f&z: Ns€yx | s€yyt Ms( €xxt €27) Ns€y; ) (37)
Ns€7x Ns€zy | s€2,+ Mg €xxt eyy)

wherels, mg, andng are related to the hydrostatic deforma- and the |h band edge, respectively, breaking the degeneracy.
tion potentiala and to the uniaxial deformation potentidls Furthermore, there is a relatively strong strain-induced cou-

andd by pling between lh and so states.
For (hkl) # (001) the basis setl) is not the symmetry-
ls=—a+2b, adapted basis; for nof@02l)-oriented structures the strain
Hamiltonian relative to the symmetry-adapted basis can be
ms=—a-Db, found by first calculating it relative to the rotated basis func-
N 39 tions|X'), |Y'), and|Z’) according to

In Appendix B the strain Hamiltonian trelative to the LK Hy ., =RHG R (39
str

basi i in Eq.(1), Hyk is gi lic- . . . . .
asis{us(r) - - - Ug(r)] given in Eq.(1), Hic is given explic Jt is easy to show that the strain Hamiltonian relative to the

itly. This Hamiltonian has to be added to the valence ban . o
part of thek-p Hamiltonian. symmetry-adaptgréﬂ‘g basis for the hh and Ih states is diag-

For the (001) growth direction the strain Hamiltonian Qnal When_eveHX’Y’Z’.i.S diagongrl and the elements on the
relative to thel'g basis is diagonal. There is a constant en-first two diagonal positiongof Hy,.,,) are equal. In gen-
ergy shift—a(2e.+ €,,) of the whole valence bandhydro-  eral, this is only the case for tH{#11) growth directionapart

static term plus an additional shift-b(e,,— €,,) for the hh  from the (001 direction], where we findusing (36)]:

—3ae— V3de,y 0 0
H?(t’rY’Z’ = 0 —3aexy— \/§d €xy 0 . (40)
0 0 —3ae,+2\3dey

This form is similar to that for th€0021) direction and yields dominant terms of the strain Hamiltonian in the symmetry-
a constant energy shift 3ae,, for the valence band plus an adapted LK basis are the strain-induced shifts of the valence
additional shift+ \/§dexy for the hh and |h band edges, re- band edges, breaking the degeneracy of the hh and Ih band
spectively. As for the(001) direction, there is relatively edge in the same way as for ti@01) and (111) direction,
strong coupling between Ih and so states. and the relatively strong coupling between the |h and so
For growth directions other thaf001) and (111), the states, but in addition there are residual couplings between
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hh and Ih states and between hh and so states. However, in The piezoelectric polarization introduces dipole charges at

general, these residual couplings are considerably weakéne interface planes, which cause a piezoelectric fiel@his

than the Ih-so coupling. field, in turn, introduces another contribution to the polariza-
The presence of nonzero off-diagonal strain tensor comtion, so that the total polarizatio® becomes

ponents gives rise to an internal electric polarization, since

the zinc-blende structure allows the piezoelectric effect; for P=eoxE+P®, (45

;g?sm(fttr:értehe:r?ggl)thﬁ Sierf;f ge (t:; : Egiigsnt(i) QIL)/S fi(r)]rdigcr;)tvev(tjrj gllgeucwherex is the susceptipility of th_e material. Furthermore, we

by Nye3! we evaluate the components of the strain-induced'ave the electrodynamical relation:

piezoelectr@c polarizatiorP® relative to the simple cubic D=e,E+P (46)

frame as given by

s which together with Eq(45) leads to
Pa: eaﬁyﬁﬁ,}, (41)

— S
for a=x,y, andz wheree,g, are the piezoelectric con- D=eoe E+P, (47)
stants.eg, the components of the strain tensors, and we havgyhere ¢, = (1+ y) is the relative dielectric constant of the
used the summation convention on repeated indices. Making,aterial. The vector fieldD obeys Maxwell's equation

use of the fact that botk,, and eg, are symmetrical in  y.p=,_ which, assuming that there is no external charge
B andy, expressior{41) can be rewritten in Voigt's notation (j ¢ pe=0) leads to the boundary condition tHat is con-
as stant over the interface. Then from Eg7) we find the fol-
6 lowing relation for the electrostatic potenti@l(z’):
S _
Pa nzl €an€n; (42 dq)l+1_ |@ e
€ dz' 6rdZ’ - (PLI+1 Pil)v (48)

€,
where the indicesa=1-6 correspond t&x, Yy, 2z yz, Xz, °
and xy, respectively. For the zinc-blende crystal structure
the only nonzero piezoelectric  constants
€xa=€y5=E€,5=2€,,, and we have

'wherel labels the layers in the heterostructure. It follows that
a'€p(z') is a linear function ofz’ and that its derivative has
discontinuities at the interfaces. Thdn(z') is completely

fi ing the short circuit ition:

PS=e e, ixed by using the short circuit condition
L

Py=eues, fEL(Z’)dZ’ZO, (49
0

P3=exes, (43

wherelL is the total length of the sample. For a single QW,
From this the component & perpendicular to the layers is assuming that the well layer is in the interval

easily obtained: [(L=W)/2,(L+W)/2] and that the width of the barriers is
. very much larger than that of the well, so that the field in the
Pl =ex(hes+kes+leg)/cs. (44 bparriers is negligible, we obtain the following potential:
|

[ PS w

S S "e[0(L—W)/2)
€0€r 2 2’ el0, '
Pi L
D(z)= Z’—=|, Z e[(L-W)/2,(L+W)/2] , (50

€€, 2
PS W , /

e > Z’ e((L+W)/2,L]

whereP$ ande, are relative to the well layer. This expres-  The piezoelectric potentiab(z') must be added on the
sion is in agreement with previously published restit¥. diagonal of the Hamiltonian. For a structure which is inver-

It appears that the piezoelectric potential is strongest fofion symmetric with respect to the’ coordinate,®(z")
the (111 growth direction. For instance, for a 60 A breaks the symmetry and, as a consequence of this, the spin
IN g ,:Gag 7AS/Al ¢ ,Gag As QW grown in the(111) direc-  degeneracy of the states f@Jf#O-
tion, we evaluate a potential drop over the well of 99 meV, The total HamiltonianH'®(z"), containing thek-p part
whereas for the same QW grown in tfEL3 direction the and both contributions from the strain, is given by
potential drop is only 28.5 meV. For th@11) growth direc-
tion P, =0 and®(z') vanishes. HO(z)=H*P(z")+ H(Z' =)+ ®(Z')I 1, (51)
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where |, is the identity matrix of ordem, which is the and (55 can be evaluated piecewise on the small intervals
number of band edge basis function involved. andF andC can be expressed in terms of the values of the
envelope functions at the discrete poidts - - ¢y :
D. Solution method

To find the in-plane band structure near the band gap for a - B % “t -
QW structure, with or without strain, we have to solve a Foiidn,) = $nAnn P

. . . . nn'=1
coupled second order differential eigenvalue equation. To
this purpose, we propose a discretization method which is N
different from the straightforward finite difference method n _ =+ n
and which is known as the finite element method. Instead of Clvsn "")_n n2,1=1 $nBrr P, (57)

using finite difference expressions for the first and second
order derivatives of envelope functions at each point of avhereA is a sparse Hermitian band matrix of the ordeN
grid, the starting point of our method is to assume a lineakith m the number of envelope functions aBda real band
behavior of the envelope functions on intervals. By fixMg  matrix of the formT,®|,,, wherel, is the identity matrix of
pointsz; - - -z, not necessarily equidistant, within the total the orderm and Ty, is a real symmetric tridiagonal matrix of
interval [O,L] containing the QW structure, the envelope order N. More explicitly, we findB,,=1/3(A,_1+A) I
functions and their derivatives in the intengl<z'<z,, andB,,=1/6(A,)l, forn’=n=x1.
are written as In the case of a superlattice the band formAo&ndB is
lost because of the edge terms. From constrained optimiza-
- . (Z-2z)

, - - tion we finally obtain the following generalized eigenvalue
¢(Z ):¢n+ A—n(¢n+l_¢n)u (52) prob|em:

($ni1—dn) . .
) 1 7 7
$'(2)=—71—" (53 2 Ay =E 2 Buydn, (58)

n n'=1 n'=1
where the components o, = @(Zé) represent the values of for which we have to find the energy eigenvalues E of inter-
the envelope functions at the poirg$ andA,=z),,—2,. est, i.e., those lying in the energy range yielding confined
For QW structures, the total intervf0,L] is chosen such states. These eigenvalues can be found quite efficiently either
that for confined stategp(L/2=L/2)| is sufficiently small, by using 3téand matrix algorithms or by using the Lanczos
so that in practice we may put infinite potential barriers atalgorithm? The band routines cannot be used for superlat-

z'=L/2=L/2. Typically a value ofL=5W, with two barri-  tices.

ers of width 2V at both sides of a well of widtiW, is The significative advantage of the finite element method
sufficiently large for the structures considered in this paper.over the finite difference method is that discontinuities of the
We define the functionalE[JS(z’)] andC[@(z')] by potential and of the band parameters at the interface are

taken into account “exactly” and that there is “correct”
. L. R matching of the envelope functions at the interface. In the
F[¢(Z')]=f (2 )H™'p(2'), (54 finite difference method, the discontinuities have to be ap-
0 proximated by sharp slopes requiring an increased density of
L grid points at the interface. To avoid very large matrices it is
C[&(Z')]=f &' (2) (). (55  desirable to vary the distances between the grid points. In the
0 finite difference method this leads to a hon-Hermitian eigen-
From constrained optimization, we deduce that the solution¥2lue problt_am(SS); g_nalogously, non.—Herm|t|C|ty FeS“'t.S
. -, . -, also from discontinuities of the effective masses in going
of Interest - are thpse ¢(z') for which FL&(Z)]  fom one layer to the other. In the finite elements method
—EC[¢(z')] has stationary values. The need of second Orinstead, since the calculation of the matrix elemexs and
der*denvatlves of the envelope functions in the evaluation oignn, is done piecewise on small intervals which do not con-
F[¢(z')] can be avoided by partial integration using the facttain any discontinuities, the Hermiticity is maintained also
that the envelope functions vanish far away from the wellwhen considering variable distances between the grid points
Typically, k- p Hamiltonians contain operators of the form and when there are variations of the band parameters across
(d/dz') y(d/dz") and we can rewrite: the interfaces. This is a useful property, because, on the one
hand, it allows to enlarge the intervals in the barriers where
the envelope functions decay rapidly, reducing the order of
the eigenvalue problertb8) and, on the other hand, yields
automatically physically significant solutions.

J'L Tt i i ’
0 ¢i(z )dzl ‘ydzl ¢](Z )

L/ d d
_ T ’
=— | |==¢(@) | y=—¢i(2'). (56
fo (dZ’ d)'( )) de’ d)J( ). (56 IIl. RESULTS: BAND STRUCTURE, EFFECTIVE MASSES,

. . . . . . HOLE-MIXING, OPTICAL TRANSITION STRENGTHS
This relationship holds for superlattices as well, since, in that

case, the boundary terms vanish due to the periodic boundary We present results concerning the electronic structure of
conditions. By use 0£52), (53), and(56), the integralg54) single QW’s for various growth directions, with and without
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TABLE Il. Bulk parameters used in this paper. The value of interpolation, except for the energy gap which is assumed to
Ep=(2/mo)|P|? (see Appendix Ais taken equal to 22.71 eV for vary asEy=Egx+Egy(1—x)—Cx(1—x), with C=0.370
each of the layer materials considered in this paper. All parametergyr the Al,Ga;_,As, C=0.475 for the InGa;_,As and
are obtained from Ref. 35, except for the AlAs lattice parameterc=0.170 for the GaAs_,P, compounds and whergg,
from Ref. 36. and Eg, are the gaps of the pure materials. For the
GaAs/Al,Ga;_,As QW's, we use a valence band offset

GaAs  AlAs InAs GaP AE,/(AE4)=0.35. For the other structures, the valence
a(A) 56534 5.6614 6.0570 5.4506 band offset is determined by the method of van de WHlle.
Eq (eV) 1.519 3.13 0.418 2890 We assume that the band offset is independent of the growth
A, (eV) 0.341 0.321 0.380 0.080 direct?on?’8 However, we note that, in presence of strain, the
m 0.0665 00230 0.1240 0.1700 effecpve band offset for hh and Ih §tates slightly varies as a
9 6.85 3.45 19.67 4.05 function of the growth dl_rectl_ons since the effect of strain
. 210 0.68 8.37 049  depends on the growth directidh.
s 2.90 1.29 9.29 1.25 _
C, (102dynfcrd) 12110 1.2500 0.8329  1.4390 A. Unstrained quantum wells
C1, (102 dyn/cn?) 0.5480 0.5340 0.4526  0.6520 In this section, we present the electronic structure as a
C,4 (10' dyn/cn?) 0.6040 05420 0.3959 0.7143 function of the growth direction for a 120 A
a (eV) -7.00 -7.00 -6.00 -8.83 GaAs/Alp Gag ;As QW, where the well remains unstrained.
b (eV) -1.70 -1.70 -1.80 -1.50 We have checked that the effect of the strain in the barriers is
d (eV) -4.55 -4.55 -3.60 -460  negligible.
e 12.91 10.06 15.15 10.88 Figure 1 displays the valence subband dispersion for six
4 (1074 Clcm?) 01600 -01600 -0.0459 -0.1000 Qrowth directions along the two in-plane directions

(1'0’0") and (2'1'0"). We remind that primed indices are
relative to the rotated basis defined by the transforma®on
strain. In all cases, we assume a GaAs substrate d&d. (5)]. In all cases the subbands are obtained from the
that the in-plane lattice parameter of both well and6>x6 LK Hamiltonian, but for the(001) and the (113
barriers is always taken as that of GaAs. We considegrowth directions also the results obtained by using the
unstrained GaAs/AGa_,As, compressively strained 8X8 and the &4 model are shown for comparison. It can
In,Ga, _,As/Al Ga; _,As and tensilely strained be seen that the influence of the splitoff band is noticeable
GaPAs; /Al Ga; - As QW’s. In all cases the barriers are only on the lower subbands and at latgeand that inclusion
made of ALGa;_,As and are therefore only slightly of the conduction band has a very minute effect for this
strained. material. Furthermore, we observe that the confinement en-
All the relevant bulk structural and electronic constantsergies for hh states :kﬁ =0 are largest for th€001) direc-
used in this paper are given in Table’t*®The value ofP is  tion and smallest for thé€l11) direction. The opposite is true
taken equal for each layer material considered here and cofer |h states, resulting in the inversion of the;lland hh,
responds to a value ciip=(2/m0)|P|2 equal to 22.71 eV. levels; the confinement energy of the Iktate is smaller than
For ternary materials, these constants are obtained by line#nat of the hi only for the (001) direction. This behavior

(1/0/0/) (1/1/0/) (1/0/();)
T T
(0101) - (113)

E (eV)

-0.025 -

2 FIG. 1. Hole-dispersion along the (@’'0")
and (11'0") in-plane directions for a 120 A
GaAs/Aly ;Gag /As QW grown along either the
(00D, (012, (011, (111, (112, and(113) direc-
tions calculated by use of thex@6 LK Hamil-
tonian (solid liney. For the (001) and (113
growth directions, the results obtained by use of
the 8x8 (dotted line$ and the 4<4 (dashed
lines) k- p Hamiltonians also are shown. Closed
and open dots mﬁ:o indicate hh and Ih sub-
bands, respectively. The parabolic dotted lines are
best fits on the k"‘ intervals [0,7/2L] and
[0,7r/L] and the values written on it represent the
corresponding effective masses.

0.05 i A

E (eV)
-0.025

-0.05

0.170 /
-0.05  -0.025 0 0.025 0.05 005  0.025 0 0.025  0.05
(A7) k(A7)
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TABLE lII. Perpendicular hh and Ih effective masgé&ss.(16) and(17)] for the well- and barrier-acting
materials and the corresponding energy levels of the first four confined staﬂq’&@t of a 120 A
GaAs/Aly ;Gay ;As QW in the uncoupled band approximation. The values in brackets are the values obtained
from the full LK Hamiltonian, including the off-diagonal coupling terms.

(hkI) mivh  min, m i mi i = E, Es Es

(001 0.377 0.403 0.091 0.109 5.26 16.51 20.96 46.82
(5.26 (16.11 (20.96 (46.82

(011 0.690 0.731 0.082 0.097 3.09 12.33 17.87 27.69
(2.9) (11.39 (17.26 (24.5)

(111 0.952 1.004 0.079 0.094 2.30 9.21 18.31 20.72
(2.30 (9.21) (17.58 (20.72

(113 0.527 0.561 0.085 0.101 3.92 15.66 17.37 35.09

(3.80 (15.14 (16.99 (33.89

-1

: (59

can be quite well explained in terms of the perpendicular

effective masses obtained from E@$6) and(17). In Table m*hh(ﬁ):{
[ll, we give their numerical values for four growth directions

both for the well- and the barrier-acting material. Extremal
perpendicular effective masses occur for {881 and the ] ) h
(112) direction. Since the confinement energiekat 0 are (20) for the well and the barrier, respectively, aRd is the
roughly proportional to the inverses of the perpendicular‘megrated probability over the barriers for the wave function

masses, the results of Fig. 1 are qualitatively in agreemerftt k| =0. The same expression can be written for Ih sub-
with the masses in Table 1II. bands. If the valence band offset between well and barriers

If we use the effective masses of Table IIl and we neglecfnd the QW width are not too small thét is small for the
the off-diagonal terms in the Hamiltonian we obtain un-hh: state, so that it is a good approximation to set it to zero
coupled equations for hh and for Ih levels. Thehtnh,, N (59) yielding mj,(n) =mf;(n). For the QW considered
hhs, and Ih levels resulting ak| =0 within this approxi- here we findP,<0.03 for each growth direction. .
mation are also given in Table Ill and compared with the The in-plane effective masses for hh subbands as obtained
numerical values obtained from the full Hamiltoniaralues ~ from Eq.(20) for the well-acting material are given in Table
in brackets. In all cases, the uncoupled band values for thdV for four growth directions. These values deviate consid-
first three confined states differ by less than 1 meV from therably from the values obtained from the parabolic fits over
values obtained by solving the full Hamiltonian. This meansthe interval[0,7/2L], given in Fig. 1, and even from the
that very good approximations of the first hh and Ih energyvalues obtained from a numerical fitlgt~0 (values in pa-
levels atk"‘ =0 can be easily obtained for any growth direc- 'entheses in Table IV This is obviously due to the coupling
tion by solving the particle-in-a-box probl&hwith effective between the_ subbands, in particular, the coupllng introduced
masses given by EqéL6) and (17). by the matrix elements of_ the forM_d/dz’ _wh|ch strongly

Also, the in-plane effective masses depend considerabl§ouple hh and Ih states with opposite parity. In second order
on the direction of confinement, as can be seen from th@erturbation, this coupling gives a contribution proportional
parabolic fits in Fig. 1. These parabolas are obtained front0 k| to the energy, so that it forms a direct contribution to
best fits on the interval§0,7/2L] and [0,7/L], where the effective mass a¢ﬁ~o and also adds to the anisotropy.
L=120 A is the QW width. The lightest averaged in-planeFor a more precise approximation of the in-plane effective
effective mass is observed for ti#11) direction. Partially ~mass for the hp subband akj~0, one should take into
this is due to the fact that the second subband is also a h&ccount the interaction of this subband with the #ubband.
subband resulting in a decreased anticrossing effect betwedtevertheless the first order values listed in Table IV are use-
the first two subbands. ful guidelines, also for the anisotropy.

A first order approximation for the effective mass for the  The warping can be further studied by equal energy con-
hh subbands in the in-plane directionin the limit of un-  tour plots. In Fig. 2 we show the equal energy contours of the
coupled subbands is given by hh; subband for the same growth directions as in Fig. 1. The

TABLE IV. Parallel hh effective massd€q. (20)] in the (1'0'0’), (1’1'0"), and (01'0’) in-plane
directions for GaAs compared with the numerical values obtained from a ﬂct”’ato for a 120 A
GaAs/Aly :Gag /As QW (values in parentheses

1-P, Py

m*w ~ *xb,~
ihn(N)  Mijp(N)

wheremiii(n) andmﬁ‘hﬂ(ﬁ) are the values obtained from Eqg.

(hki) Mir(1'0'0") M p(171°0") Mi(0'170")
(001) 0.112(0.169 0.112(0.171) 0.112(0.169
(011) 0.099(0.108 0.105(0.137 0.112(0.181)
(111) 0.103(0.131) 0.103(0.133) 0.103(0.131)

(113 0.105(0.159 0.107(0.156 0.109(0.162




)‘:@‘

FIG. 2. Equal energy contour plots for the héubband obtained
by use of the &6 LK Hamiltonian for the same structure and

growth directions as in Fig. 1. The energy spacing of the contours

1 meV.
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We have also calculated the character of the eigenstates in
the generalized sense as a functionk@f. In Fig. 3 the
squared absolute values of the projections of the eigenstates
on the hh, Ih, and so symmetry-adapted basis functions
summed over the two spin states are shown for the first three
confined states for théd01), (011), (111), and(113) growth
directions. Apart from some quantitative variations, the re-
sults are quite similar for each growth direction.kjt=0 the
eigenstates have either a pure or a dominant hh or Ih char-
acter. Away fromkﬁ =0, the states start to have a strongly
mixed character. Since the subbands cannot cross, this mix-
ing can be partially explained in terms of anticrossing ef-
fects. A more careful study of the character of the states at
kﬁ=0 reveals that for thg001) and the(111) directions
these states are pure hh and Ih states apart from the mixing of
the |h states with the so states, which is very small for the
first confined lh state. For th@®11) and the(113) directions,
instead, there is mixing between hh and |h states also at
k”’=0, in agreement with the theory in Sec. Il B.

It appears that this mixing gives rise to a considerable
idependence of the optical transition matrix elempgpt on
the linear in-plane polarization of the light coming in perpen-
dicular to the layers. This anisotropy is shown for {&1)

(111 direction displays the most isotropic behavior, the@nd the(113 growth directions in Fig. 4 whergp,|* is

strongest warping occurring for th@11) and (012 direc-

plotted as a function olk" for the two helicities of circular

tions. For the latter two, the warping is already present apolarization as well as for linearly polarized light along the

kH’ ~0,
in Table IV.

in agreement with the uncoupled band values giverin-planex’ andy’ directions. The result for thed01) direc-

tion, which is similar to that of th€¢111) direction, is shown

Each of the pictures in Fig. 2 shows mirror symmetry, duefor comparison. The range &f vectors in Fig. 4 is compa-

to the fact that, in real space, for each of the growth direcrable to 14, , wherea,, is the excitonic Bohr radius in GaAs.

tions there is a mirror symmetry with respect to a plane perHere we have not explicitly determined the exciton wave
pendicular to the plane of the layers. In addition, tae1)  function, but since this wave function is, roughly speaking,
direction displays fourfold and thél11l) direction sixfold made up of states belonging kﬁ) vectors within the range 1/

symmetry, in agreement with the symmetry in real spacea, we can conclude from Fig. 4 that the in-plane anisotropy
The (112 and(113 directions both tend to fourfold symme- should not be removed by excitonic effects at least for the
try, as the(001) direction. The warping is somewhat stronger (011) growth direction. Experimental evidence of this behav-

for the (113 than for the(112 direction, the latter being
“closer” to the isotropic(111) direction.

ior has been very recently reported in Ref. 40 {6d1)-
grown structures.

(110101) (1/110/) (110101) (11110/) (1/010/) (1/110/) (110/01) (111101)
" (001) hhy | | (021 hhy | | (111) (113) hhy
1
0.5 | “F - - A N
L L AL P P FIG. 3. The hi(solid lines, Ih (dotted line3,
(001) thy || (011) hhg| | (112) hhy| | (113) hhy and so(dashed lings contributions to the inte-
[¢2)? grated squared wave function for the first three
. confined states as a function kf in the same
05 v - 17 e in-plane directions and for the same structure as
: in Fig. 1 for the (001), (011), (111), and (113
) L AL L . growth directions. Notice that the {Jrsubband is
1 — : B , the third subband for all growth directions but the
(001) hhg | | (011) lh; | [(113) (001).
|9
0.5 £ 4F .
0 =l L i £=l= - A=+ 1 ed o
0.05 0 0.05 0.05 0 0.05 0.05 0 0.05 0.05 0 0.05
ky (A7) ki (A1) ki (A7) ky (A7)
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R N B DR, P B U S FIG. 4. Squared absolute value of the optical
O e B e R il (e /‘43_“\ transition matrix elemenp, . for the two circular
L7 - _; Ve ALz Y R light polarizationgsolid line) and for linearly po-
: : oS MR larized light(dashed and dotted lines for polariza-
I : tion in thex’ andy’ directions, respectivelyin-
B ar ar ar 7 coming perpendicular to the layers, for the;hh
- ¢, (closed dotsand Ih;-c, transitions(open dotg
as a function oﬂ<H’ in the (1'0'0") (left hand
sidg and (01'0’) (right hand sidgin-plane di-

- I3 (113) = rections and for the same structures as in Fig. 1
oL el e Lot Ll L and the same growth directions as in Fig 3.
001 0 001001 0 001001 0 001001 0 001
ky(A7") k(A1) k(A1) k(A1)
Obviously, the anisotropy shown in Fig. 4 is due to an B. Compressively strained quantum well

in-plane anisotropy of the wave function. To check this point,

) . . A thin In,Ga; _,As layer grown on a GaAs substrate is
we expand the eigenstates in the following way:

compressively strained. In Fig. 6 we show the strain-induced
energy shifts of the hh, Ih, and so band edges as a function of
|y = > Fool(Z)|ao), (60)  the indium contenx for various growth directions, where the
i conduction band edge is taken fixed. Hence, the total energy
wherea=S,X’,Y’,Z' are the rotated spatial basis functions 9aP between the valence band edge and the conduction band

ando=1,] indicates the spin state. Furthermore, we define2dge is given by the hh shift indicated in Fig. 6 plus the
the probability function® (z') as energy gap for the unstrained matefialso depending or).
Again, the(001) and the(111) growth directions show ex-
, 2 tremal behavior. At equal lattice mismatch the shifts are
Pa(z )=§U: IFao(z')] (61 minimal for the (001) and maximal for the(111) growth
direction. By adding these shifts to the diagonal of the
for a«=S,X’,Y',Z'. Differences in the Pyx/(z') and Hamiltonian one can, neglecting all off-diagonal elements of
Py:(z') components indicate anisotropy of the wave func-the Hamiltonian, easily obtain good approximations for the
tion in the plane. For thed01) and (111 growth direction,  energy levels of the first hh and Ih confined statek/at 0
Px/(z')=Py:/(z') atkj=0. In Fig. 5, theP,(z') compo-  py solving the particle-in-a-box mod&with the masses ob-
nents are shown for the first hh and Ih confined states Etb"']ed from Eqs(lG) and (17) as we have shown in the
kj=0 for the (011) and (113 growth directions. The differ- previous section. For the Ih states, however, this approxima-
ences in theX” andY’ components are largest for th@l1)  tion is less reliable, because it neglects the strong strain-

case, in agreement with the stronger anisotropy of the trarinduced coupling between Ih and so states.
sition matrix element in this case.

O T
ARO[ T A T .
(eV) 05 - -"-____ - - _
(001) (011) T
-0.75 L 1 ] C l I l 3
0 T 1 T T T T ]
ARO[ AT \\‘
(eV) 05 - -'-___- e _'-__._'-.“'_
(113) | (111) -
-0.75 ¢ L L C L L
0 025 05 0.75 0 025 05 075 1
Indium content Indium content
FIG. 5. Probability functionsPy.(z’) (solid lineg, Py/(z') FIG. 6. Strain-induced energy shifts of h{solid lines,

(dotted lineg, andP,/(z') (dashed lines(see texk for the first hh  |h (dashed lines and so(dotted line$ band edges assuming a fixed
and Ih confined states & =0 for the same structure as in Fig. 1 conduction band edge for a compressively straing@5iy, _,)As
for the (011 and (113 growth directions. The center of the QW is layer grown on a GaAs substrate along tB81), (011, (111), and
taken as the origin of the’ coordinate. (113 directions.
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(11019!) (]]IIIOI) (IIOI?I)
L (oo1) L (011)

(Olllol) (IIOI?’)
) g

(0'1'd"y (1'd'0’) (1'1'0) . .
' -(115) T ] FIG_. 7. _Comparlson between _the m-pl_ane
A hole-dispersion of a 60 A compressively strained
) In g ,4Gag 7AS/Al o Gay fAs QW (solid lineg and
that of a 60 A unstrained GaAs/fgGag 4 AS
QW (dotted line$ grown along thg001), (011),
(111), and (113 direction. Closed and open dots
at kH’=0 indicate hh and Ih subbands, respec-
tively. The in-plane directions are indicated on

the upperx axis.

FEE /DN L
0.1 005 0 005 0.1 005 ¢ 005 0.1 005 0 005 0.1 005 0 005 0.1
Ry (A7) By (A™) Ry (A7) Ry (A7)

Figure 7 shows, for several growth directions, the in-planecjose tok{ =0 is shown for both the strained and the un-
band structure of a 60 A compressively strainedstrained QW’s. The mixing remains substantial and can even
INg.26Gay 75AS/Al o 4Gag gAs QW together with that of an un-  pe increased for the strained QW as in the cas€0af)
strained GaAs/A} s§5a.4As QW of the same width. In all  growth, due to the strain-induced couplings.
cases the zero of the energy is chosen as the hh band edgefurthermore, for th¢113 and(111) cases, the piezoelec-
level in the middle of the QWnote that the hh band edge is tric field causes a spin splitting which is rather small at
not constant in the well in presence of a piezoelectric potenkho but increases for largek/ vectors, due to the in-
tial). The Al content for the unstrained QW is chosen suchereased mixed character of the states. In fact, spin splitting
that both QW's have an almost equal band offset for the hiyapy only occur when states of different character start to mix,
band edge for all growth directions. This, together with thegince in our Hamiltonian there is no coupling between the
fact that the perpendicular effective masses obtained from. ., and the +m: states, because we have neglected the
Egs. (16) and (17) happen to be quite close for both well- ¢|atively smallk’ and k'3 terms which occur due to the
acting materials, is the reason why the hh energy levels argyersion asymmetry of the zinc-blende structure.
so close for strained and unstrained QW's except for the |, Fig. 9 we show the optical transition strengh |2 for
(111 directi'on due the strong piezoelectric field_occurringthe(OOD_’ (012)-, (112)-, and(113-grown strained QW’s. It
for the strained QW. For thel1ll) and (113 direction the  ghnear that the anisotropy, already observed for unstrained
strain causes a piezoelectric field which corresponds to ®W's in Fig. 4, is enhanced by strain. Moreover, while for
linear potential drop over the well of 99 and 28.5 meV, re-nsirained(00)-grown QW’s the ratio of the strengths for
spectively. Apparently the piezoelectric potential causes &h and Ih transitions a¢H'=o is roughly 3:1(see Fig. 4 this

significant shift only Of. those energy levels which fall in the is not at all the case for the strained QW. Both these effects
energy range over which the potential drop takes place. are due to the strong strain-induced coupling with the so

For all growth directions, the |h levels for the strained 2 ;
’ . nd. Th r for th rained(111)-grown
QW have moved downwards relative to those of the un-ba d e decrease h,c|” for the strained(111)-gro

strained QW. This is due to the larger shift of the |h bandQW Is due to the builtin piezoelectric field, which makes

edge but also to the lighter Ih perpendicular effective mass o

the Ing ,:Gag 75AS material. As a consequence, the anticross-
ing between the first two subbands, both hh-like, is weake
and the in-plane effective masses lighter. However, despit
the increased separation between the sibband and the Ih
subbands, the in-plane effective masses for theubband

at k|i~0 are still much heavier than the uncoupled band
values, as shown in Table V, where the effective masses
obtained from Eq(20) for the Ing,Gay7As material are

compared with the numerical values obtained by best fits at A situation of tensile strain occurs when, e.g., a
ki ~0 (values in parenthesesThe deviations are due to the GaPAs;_, layer is grown on a GaAs substrate. In Fig. 10

at electronic states and hole states tend to localize at oppo-
ite sides of the well. For the same reason we find the

have

C. Tensilely strained quantum well

also

c,-hh, transition(not shown in Fig. 9 forbidden for a sym-
hetric QW, to be about half as strong as thelh, transition.
Fhese transitions
experimentally'*? For the(113) direction both of these ef-

fects are much weaker, due to the weaker piezoelectric field.

observed

still large mixing with |Ih states. This is shown in Fig. 8, we show the hh, Ih, and so band edge energy shifts relative to
where the character distribution of the jhBubband states the unstrained bulk levels, for fixed conduction band edge, as

TABLE V. Parallel hh effective massd&q. (20)] in the (0'0"), (1'1'0’), and (01'0") in-plane
directions for Iy ,4Gag 7As compared with the numerical values obtained from a fitjat 0 for a 60 A

Ing 25Gag 7AS/Al 5 4Gag AS QW (values in parentheses

(hkl) Mi(1/070") min(1'10") mtn(01'0")
(001) 0.073(0.113) 0.073(0.119) 0.073(0.111)
(011) 0.070(0.076 0.071(0.095 0.072(0.127
(112) 0.069(0.104 0.069(0.104 0.069(0.104
(113 0.067(0.094 0.070(0.103 0.073(0.115
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. (IIOIOI) (111101) (IIOI'OI) (OI]IIOI) (001 ) (Olll) +
: R 0.5 - (001 = -~
|%na|® / 17 AE
095 | L \ (V) g.25 - - g
(001) ] (011) 0 Sl | e ! !
| L | | T T | T T —
1 “ -
T ~ . 0.5 |- (113 () .
T s e
0.95 L R i V) 025 | A T -
. (113) (111) 0 T I 4] I I
0.9 . ' L L 0 025 0.5 0.75 0 025 05 075 1
0.02 001 0 001002 001 0 0.010.02 Phosphide content Phosphide content
ky (A7 ky (A7)

tion as a function of smak| vectors for the hh subband for the
same strainedsolid lineg and unstraineddotted line$ structures,
the same in-plane directions and the same growth directions as idirections.

Fig. 7. Notice that, for th€011) growth direction, the strain has the

effect of increasing the mixing with Ih states.

a function of the phosphide contertfor various growth U
directions. In contrast to the case of compressive strain, th® a strong mixing between the hhand Ih, states for a

highest band edge

is the

Ih band

edge. For

FIG. 10. Strain-induced energy shifts of hisolid lineg,
FIG. 8. The hh contribution to the integrated squared wave functh (dashed lines and so(dotted line$ band edges assuming a fixed
conduction band edge for a tensilely strained &R, _,, layers
grown on a GaAs substrate along @®1), (011), (111), and(113

For growth directions other thaf®01) and (111) the re-
sidual hh-lh coupling in the Hamiltonian & =0 may lead

thegertain range ok values, when these two levels are close in

GaP,As;_,/Al ;. .Gag As QW’s which we consider in this energy. To check this effect, we show in Fig. 12 the calcu-
lated optical transition strengtfp, | at kj =0 for perpen-

section, this means that for sufficiently strong str@ie., for

large enough values of) the first confined state will have a dicular incoming circularly and linearly polarized light for
transitions from the first two confined hole states to the first
This is shown in Fig. 11, where the in-plane band struc-confined electronic state as a function of the phosphide con-
tentx in the interval[0.05,0.13 for the (011) growth direc-

Ih character.

ture is shown for th€111) growth direction forx=0.1 and
x=0.2. Whereas fox=0.1 the hh state is still slightly
above the Ih state, the situation is reversed for 0.2. This

slightly different values ok.

well due to the piezoelectric field is 33 meV fge=0.1 and

tion. In spite of the hh-lh coupling, there is a rather abrupt
inversion of the character of the states betweer0.100 and
inversion takes place for any growth directions, although ax=0.105. At both these values of the energy separation
between the first two confined states is less than 1 meV.
For the structure of Fig. 11 the potential drop over theHowever, whereas fax=0.1025 the first confined state has
99% hh character, fox=0.105 it has 94% |h character. An

65 meV forx=0.2. This causes strong spin splittings whereenhanced anisotropy is observed close to the inversion point.
the subbands anticross, in agreement with the fact, alreadyowever, experimentally it would be hard to detect the an-
mentioned, that spin splitting can only occur for states with dsotropy when the two levels are too close in energy.

mixed character g #0. Forx=0.2 the first two spin-split Finally, Fig. 13 shows the optical transition strength as a
lh subbands are well above the next subbands whence thdinction ofkﬁ for x=0.08 andx=0.12 for the(011) growth
relatively small spin splitting as compared to ttre 0.1 case. direction. Forx=0.08 the first confined state has a hh char-

T T T T r_ -—<f--=1 T T T T T T T T
— — L-- — S R —
----- - [ -'-—”---------
Ipvcl2 R S P = [ [ S S
T FIG. 9. Same as in Fig. 4 for a 60 A compres-
1 sively strained g ,:Gag 7sAS/Al g GaggAs QW.
It can be seen that compressive strain enhances
the anisotropic absorption for t811) and(113
directions and changes the ratio between the
- ar ar a4r - hh;-c, and the Ih-c, transitions in all cases.
(001) 10 (o11) 10 @) 10 (113) 7
0 1 I L. [ i | | | | | | | | | | |
0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01
k(A7) ky(A™) k(A1) k(A7)
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Inint 1qlnl x=0.08 x=0.12
(1'0’0") (0'1'0") PR — ] | |
0 T B ]
E (eV) pul? el q4r T-e-
ve z - | ’—"—_--k
-0.05 z :- " IR
2 | PYRS Tr
1 - -
-0.1 ; B 7
e \ | T 0. i
: £ T 1]
0 T T s B 4 PR
(111) S - L - ]
x=0.2 T -_:'. L—-"
E (eV) : ot : R i O AN L
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-0.05 - - k”(A—-l) k‘"(A_l)

FIG. 13. Same as in Fig. 4 for a 80 A tensilely strained
GaPAs,__,/Al ; GayggAs QW grown in the(011) direction for

-0.1 - /\ x=0.08 andx=0.12.
PN

-0.1 -0.05 0 0.05 0.1  |h, subband which causes the strong anticrossing with the
ky (A7) hh; subband. Fox=0.12 the I subband has become the
highest in energy and the anticrossing with thg shbband
FIG. 11. Hole-dispersion along the (@' 0’) and (01'0’) in- is strongly reduced.
plane directions for a 80 A tensilely strained

GaPAs; /Al GayAs QW grown along th€111) direction for IV. SUMMARY AND CONCLUSIONS
x=0.1 andx=0.2. Closed and open dots indicate hh and Ih sub-
bands ak| =0, respectively. We have presented a comprehensive theoretical treatment

of the electronic properties of strained and unstrained semi-
conductor QW structures grown along anyk() crystallo-

acter and lies 6.5 meV above the second confined state of Braphic directions. The numerical results, obtained by a very
character. Conversely, for=0.12, the I state lies 5.5 mev  efficient, real-space, approach to the solution of the multi-
above the hpstate. The behavior dp,|? for x=0.08 re- _band Hamiltonian, point out the interest of growth on novel
sults from the strong anticrossing between the first two sublndex planes for valence band engineering. Large differences
bands; whereas & =0 the first subband has hh character, it!" hole effective masses, warping and spin splittings are
becomes Ih-like immediately away frokj =0. This is due {:/’gl?ist% bgtr:;gu;r?o? ?sz)lﬁeg{%itﬁg?o?sraphlc directions as
to the strong couplinglinear in kﬁ) between the lh and the y b )

hh, states, yielding a positive in-plane effective mass of the We have also shown that, for any growth direction, one
2 Y gap P can identify dominant hh, Ih, and so states lqtzo by

choosing a symmetry-adapted set of basis functions which
5 yield exactly the same selection rules for optical transitions
' y as those used for the usu@01) growth direction.
" In the symmetry-adapted basis tkep part of the total
Hamiltonian can be separated in a part which is independent
of the growth direction and a “relatively small” correction
which varies with the growth direction, and which is respon-
sible for a coupling of the hh states with the Ih and so states
0.05 0.1 0.15 0.1 0.15 atk| =0 for growth directions other thai®01) and(111). An
Phosphide content ~ Phosphide content interesting consequence of this fact is the anisotropic behav-
ior of the optical absorption as a function of the linear in-
FIG. 12. Squared absolute value of the optical transition matrix-plane light poIarizgtion ,for perpgndicular incoming I_ight in
elementp, atkj=0 for the transitions of the first two confined the latter case. This anisotropy is enhanced by strain due to
hole states ¢; and ) to the first confined electronic state in a 80 the strain-induced coupling with the so states.
A GaPAs;_,_/Al ;.GagAs QW grown in the(011) direction as a Besides, we have derived analytical expressions for the
function of the phosphide contentfor circularly (solid line) and  €ffective masses in perpendicular and in-plane directions as a
linearly polarized light(dashed and dotted lines for polarization in function of the fkl) growth direction in the limit of un-
thex’ andy’ directions, respectively incoming perpendicular to coupled bands. Comparison to the exact numerical results
the layers. shows the usefulness of these analytical expressions, particu-

|Puc|?

1
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larly in what concerns the quantization energy. APPENDIX A

ACKNOWLEDGMENTS The 8x8 k- p HamiltonianH relative to the basis func-

. ) L tions(1) in Sec. Il A and wheré,, k,, andk, are the coor-
This work has been carried out within the European Com-; : o oo :
munity HC&M network for High Pressure Studies of Semi- _dmates in the(100), (010), and(001) directions, respectively,

conductors and Semiconductor Structures ERBCHRXCT> IVEN by
930321.
|
Ectyk® 0 Pk, 0 —ivEIPk, VEP'k.  \EP'k,  —ivEP'K.]
0 Ec+yk® 0 \Ipke WIPke  —iVEPk, —iViPk,  iP'k,
NS 0 E,+p+q 0 I m i1l —iy2m
0 \/gp’h 0 E,+p+q m' —I7 —i2mt —i\/gl’r
) , . _ (A1)
iVZP'k, Pk " m E,+p—q 0 ~iV2q N
ViP'k, iEPk, M - 0 Ec+p-q  —iViT  —iy2g
Pk, iVERk. AT iy2m iv2q V21 Esot P 0
iVIPk,  VEPK,  EmT B —iET V2 0 EsotP |
|
where . E
Y1i=7Y1— )
1 1 3Eg
ke =ky*iky,
~ Ep
k2 [mg  2E, Ep 7’2:72—6—Eg,
7T 2mg|mE  3E, 3(EgtAgy]
Ya= Ep A3
A V3= V3™ 6_Eg’ (A3)
P'=—P,
mg )
whereE,= (2/mp)|P|*.
The 6X6 LK HamiltonianH, « for valence band states is
P=(SIpyX)=(SIpy|Y)=(SIp.2), obtained from 66 valence band part dfi, by replacing
the modified Luttinger parameters in the expressié® by
52 the Luttinger parameters.
p=—y1 =—(K2+k2+k?), To ensure the hermiticity of the Hamiltonian we have
2m X Yy z
0 used the “symmetrized” fornf> which means that we ap-
plied the following substitutions:
__= hz 2 2 2
q__‘)’ZR(kx—’_ky_z'(z)v g2 d d
° e e (Ad)
dz2 "dz’dz’
ﬁZ
1=12\3%55 —(k—ik, )k, d i d i( d d
2Mo Yo\ T 5 Yt g5y (AS)
dz 2| ’dz 2\ 'dz dz
2
m= \/§ﬁ_(3,2k+k7 —j 2~73kxky). (A2) These substitutions Igad to well-defined boundary conditions
2mg of the envelope functions at the interfége Recently, alter-

native boundary conditions, obtained from an exact deriva-
The parametery,, y,, andy,; are the modified Luttinger tion of the envelope function theory, have been preseftited.
parameters which are related to the Luttinger parameters by Refs. 45 and 46, it was shown that these modified bound-
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ary conditions can lead to small differences in the subbandshe exact boundary conditions. The expressions for the effec-
Therefore we intend to adopt the exact form in the near futive masses Eq$16), (17), (20), and(21) remain unaffected.

ture. We note, however, that the results presented in this
paper do not change qualitatively by using the exact theory

and that the theoretical analysis of tkep Hamiltonian for

APPENDIX B
The strain Hamiltonian relative to the six dimensional va-

different growth directions can easily be adapted to deal withence band part of basid) is given by

*

(o W oW we _iwi
V3 V12 G G
o 1M i i we
2 V12 V3 V6 G
iw, WP (ri+4ry) 0 —i(ry—2r,) w3
V3 V12 6 V18 V2
str __
HLK_ Wl |W§ O (rl+4l’2) W2 _|(rl_2r2) ! (Bl)
V12 |3 6 V2 V18
Wy iWI i(r;—2rp) w3 (ri+ry) 0
V6 6 V18 2 3
iw; w3 Wy i(ry—2ry) 0 (ri+ry)
V6 6 V2 V18
where the constants, r,, w;, andw, are given by
r=(X+iY[HYX+iY)=—(2a—b) (et ) — (2a+2b) €,
Fo=(Z|H%Z) = — (a+b)(exxt €y) — (a—2b)e,,,
W= (X—TY|H¥X+iY)=3b(ex— €y,) +i21/3deyy,
Wo=(Z|HS|X+iY) = \3de,,+i3de,,. (B2)

We note that for growth directions other th&d01) this is not the strain Hamiltonian in the symmetry-adapted basis.

APPENDIX C

Here, we extend the calculation of the in-plane effective mass for hh subbands in the uncoupled band approximation for an
infinite square wel[Eq. (20)] to include also the terms linear tfdz’. Generally the eigenstates satisfy

52 2 d
2mo| )’ﬁﬁm —i(vhekyt %ﬁkﬁg +(ymkZ+ 2 yhbkoky + YE)ﬁk)’/z) +V(Z') | nn(Z') =Edp(Z'), (CY
where yfi=1/m¥,, is given by Egs.(16), yir, vil. and YE=6(yo— y3)df (C2

Yit are given by Eq(22), and whereyyf and {7 are given
by with

Vo= 6(v2— ya)di Xe=ciea 13+ k43— (h?+Kk?)1 ]+ 2c,c5c3h %K,
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dif=cic,ca(hk®—h3k)l +ciea(h®k—hk3).  (C3) oy g TN
Yhh™ Yhh ™ T, zz o
Then one can show that the in-plane effective mass in the Yhh

in-plane directionn=(n;,n,,0) (wheren?+n3=1) in the

limit of infinite barriers is given by
22 2 22 yy1—
MM =[N ¥hnt 2NN v+ na v 4
where

2
S (vhn)
hh™ 7hh ’
Avip

(7n)?
AXX_ XX ] C5
Yhh= Yhh —4 Yﬁﬁ (CH

Usually, vy, and {5 are small(proportional toy,— y3) rela-
tive to ¥, so that the contribution of the second terms in
Eq. (CH) to the effective mass is small. Similar expressions
can be derived for the Ih subbands.
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