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We present a generalized theoretical description of the 838 k•p approach for determining the band struc-
ture of layered semiconductor structures for any growth direction, including strain and piezoelectric effects.
The definition of heavy, light, and splitoff hole states is extended to arbitrary growth directions in analogy to
the conventional~001! case, by choosing an adapted set of basis functions. The choice of this basis allows a
qualitative understanding of the in-plane band structure and of the optical properties of strained and unstrained
structures. Besides, we solve thek•p Hamiltonian by means of an efficient real-space method allowing us to
deal with arbitrary confining potentials. The theory is applied to unstrained, compressively strained, and
tensilely strained quantum wells. We find that confinement energies, warping, and in-plane effective masses
strongly depend on the direction of confinement and on strain. Piezoelectric effects further affect the dispersion
for all growth directions other than~001! and~011!. We also find that the optical transition strength depends on
the in-plane light polarization for growth directions other than~001! and ~111!.

I. INTRODUCTION

Since the advent of molecular-beam epitaxy~MBE!,
semiconductor material engineering has become a topic of
great technological and fundamental interest. Initial work
concentrated on the effects of size quantization, dominated
by the conduction band, but, later, it was shown that valence
band engineering by use of strained layers1–3 could drasti-
cally affect and improve all optical properties~lasers, LED’s!
and provide goodp-type electronic components for comple-
mentary electronics.

Another possibility, realized more recently, for tuning the
electronic and optical properties is offered by the growth of
epitaxial layers on high-index planes@i.e., other than~001!#.
The interest of non-~001!-oriented semiconductor structures
is manyfold, concerning growth and impurities
incorporation,4 self-organized growth,5 electronic
properties,6,7 and lasing performances.7–9 Here, we will fo-
cus on the electronic and optical properties of semiconductor
quantum well~QW! structures grown on novel index planes,
also in the presence of strain.

On the experimental side there have been many reports of
successful high-quality growth of~11N!-oriented unstrained
GaAs/AlxGa12xAs QW structures as evidenced by their sur-
face morphology, good optical properties, and high electron
and hole gas mobilities.10–17An extremely high hole gas mo-
bility was observed in~113!-grown GaAs/AlxGa12xAs QW
structures.4 The threshold current density of~111!-oriented
QW’s was found to be less than that of~001!-oriented ones.9

Good optical properties are also reported for compressively
strained ~111!-oriented InxGa12xAs/Al yGa12yAs QW
structures.18

The starting point for our theoretical investigations is the
k•p approach, which has been developed by Luttinger and
Kohn19 to deal with the problem of an electron moving in a

perturbed periodic structure and put forward for the use in
QW structures by White and Sham20 and by Bastard.21

Within this theory, a number of studies concerning non-
~001!-oriented QW’s appeared in the literature6–8,22,23@Refs.
6 and 7 for~11N!-, Refs. 8 and 23 for~111!-, and Ref. 22 for
~113!-grown QW’s#, but no comprehensive treatment for a
generic (hkl) growth direction exists to our knowledge. In
particular, little has been done for non-~001!-oriented
strained QW structures, where strong piezoelectric fields
occur.24

In Sec. II we~i! generalize thek•p treatment to deal with
a generic (hkl) growth direction extending the definition of
heavy hole~hh!, light hole (lh), and splitoff ~so! states by
choosing a symmetry-adapted set of basis functions,~ii ! give
a complete description of how to deal with strain and piezo-
electricity, and~iii ! present an efficient numerical method of
solution of the multiband Hamiltonian based on a real-space
discretized description of the wave function and capable of
dealing with arbitrary confining potentials, and those due to
piezoelectric fields. In Sec. III we present numerical results
for unstrained GaAs/AlxGa12xAs, compressively strained
In xGa12xAs/Al yGa12yAs and tensilely strained
GaPxAs1-x/Al yGa12yAs QW’s. We show that the in-plane
band structure and the optical properties can be qualitatively
very well understood in terms of the generalized hh, lh, and
so states and of the corresponding effective masses in per-
pendicular direction. A particularly interesting observation is
the dependence of light absorption on the linear in-plane
polarization for low symmetry growth directions, in contrast
to the behavior of~001!-grown QW structures. Finally, we
give a conclusive summary in Sec. IV.

II. FORMALISM AND SOLUTION METHOD

The description of the formalism is divided into four
steps. First, in Sec. II A we formulate thek•p approach in a
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form which is independent of the growth direction, next, in
Sec. II B we extend the definition of heavy, light, and splitoff
hole states, and the ensuing selection rules for optical transi-
tions by introducing a growth direction adapted set of basis
functions. The additional effects due to strain and piezoelec-
tricity are examined in Sec. II C and, finally, in Sec. II D we
describe an advantageous numerical method of solution of
the multiband Hamiltonian problem.

A. k–p Hamiltonian

In the eight-band Kane model25 of the k•p theory ap-
proach for II-VI, III-V, and group IV semiconductor bulk
materials the lowest conduction band states and the upper
valence band states at wave vectorsk near theG point are
expanded in terms of the eight zone center eigenstates com-
posed of the spatialL50 conduction band basis function
uS& and of theL51 valence band basis functionsuX&, uY&,
and uZ& plus spin. The spin-orbit coupling splits the sixfold
degenerate valence band states into the fourfold degenerate
J53/2 states (G8 symmetry! at energyEv and the twofold
degenerateJ51/2 splitoff states (G7 symmetry! at energy
Eso5Ev2Dso, whereD so is the spin-orbit energy splitting.
The conduction band edge~at k50) is located at
Ec5Ev1Eg , whereEg is the energy gap. We choose the
eight basis functions as follows:

u1~r !5uc↑~r !5uS↑&,

u2~r !5uc↓~r !5u iS↓&,

u3~r !5u3/2,13/2&5uhh↑~r !5A1/2uX1 iY↑&,

u4~r !5u3/2,23/2&5uhh↓~r !5 iA1/2uX2 iY↓&,

u5~r !5u3/2,11/2&5ulh↑~r !

5 iA1/6uX1 iY↓&2 iA2/3uZ↑&,

u6~r !5u3/2,21/2&

5ulh↓~r !5A1/6uX2 iY↑&1A2/3uZ↓&,

u7~r !5u1/2,11/2&5uso↑~r !

5A1/3uX1 iY↓&1A1/3uZ↑&,

u8~r !5u1/2,21/2&5uso↓~r !

52 iA1/3uX2 iY↑&1 iA1/3uZ↓&, ~1!

where c, hh, lh, and so indicate the conduction and the
heavy, light, and splitoff hole states, respectively. The inter-
action with all other bands, away from the band gap, is taken
into account perturbatively.

In adapting thek•p approach to a layered structure, where
the periodicity in the growth direction~e.g., thez8 direction!
is lost, the eigenstates at in-plane wave vectorki8 are written
as

c~r 8!5(
i51

8

eiki8r i8f i~z8!ui~r 8!

5eiki8r i8fW ~z8!•uW ~r 8!, ~2!

where the components offW (z8), f1(z8)•••f8(z8), are the

envelope functions~replacing the plane waveeikz8z8), the
components ofuW (r 8) are the Bloch basis function~1!, and
where we have used the approximation that these basis func-
tions are the same for each layer. The eigenstates satisfy

HK~z8!fW ~z8!5EfW ~z8!, ~3!

whereHK(z8) is the 838 k•p Hamiltonian which we write
in the following general form:

HK~z8!5 (
a,b5x8,y8,z8

ka8D
ab~z8!kb81 (

a5x8,y8,z8
Faka8

1V~z8!, ~4!

where z8 is the coordinate in the growth direction,kz85
2 i d/dz8 and whereDab(z8)5Dba(z8) and Fa are 838
Hermitian matrices, which depend on the crystallographic
growth direction. The diagonal matrixV(z8)5diag@Ec(z8),
Ec(z8),Ev(z8),Ev(z8),Ev(z8),Ev(z8),Eso(z8),Eso(z8)] de-
scribes the potential profile in thez8 direction with disconti-
nuities at the interfaces due to the valence band offset and to
the differentEg andDso of adjacent layer materials. We use
primed indices for the coordinates to indicate that these are
the coordinates relative to a basis which is rotated with re-
spect to the usual simple cubic basis such thatz8 andkz8 are
the coordinates in the growth direction (h,k,l ). We have that
r 85R r andk 85R k, whereR is an orthogonal transforma-
tion matrix, which we choose as

R5F c1lh c1lk 2c1~h
21k2!

2c2k c2h 0

c3h c3k c3l
G , ~5!

where c151/Al 2h21 l 2k21(h21k2)2, c251/Ah21k2, and
c351/Ah21k21 l 2 are normalization constants. With this
choice the in-plane kx8 and ky8 directions are
( lh,lk,2h22k2) and (2k,h,0), respectively. Apart from
the growth direction, the matricesDab(z8) depend on the
conduction band effective massmc* and on the effective
masses at the valence band edges, expressed in terms of the
Luttinger parametersg1 , g2 , andg3 . The matricesFa de-
scribe the coupling between conduction and valence band
states and depend on thep-matrix element
P5^SupxuX&5^SupyuY&5^SupzuZ&. In Appendix A, HK is
given explicitly for the most studied case thatz8 is along the
~001! direction of the simple cubic cell.

The Luttinger parameters are, in general, different for
each layer and therefore depend onz8. Thep-matrix element
P is, however, independent of the layer as a consequence of
the assumption that the basis functions~1! are equal for each
layer. In this approximation, the matricesFa do not depend
on z8. The actual variation in the value ofP for different
bulk materials is taken into account26 by adjusting the pa-
rametergc on the diagonal of the conduction band part of the
Hamiltonian so that its eigenenergies yield a conduction
band effective mass which is in agreement with the experi-
mental value~see Appendix A!. A similar correction should
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also be applied for the zone center so band effective mass,
but the effect of this is very small, especially for the upper
valence subbands.

Once the Hamiltonian is known explicitly for the~001!
growth direction it is straightforward to show that, by using
k85Rk, for any other (hkl) growth direction the matrices
Dab andFa in Eq. ~4! are given by

Dhkl
ab 5 (

a8b8
Raa8D001

a8b8Rb8b
21 , ~6!

Fhkl
a 5(

a8
F001

a8 Ra8a
21 . ~7!

We note that this transformation does not alter the set of
basis function~1!. In Sec. II B we will show that for the
characterization of the hole states in QW structures grown
along a direction other than~001! the basis~1! is not a con-
venient basis, but one should use a symmetry-adapted set of
basis functions, i.e., basis functions which are adapted to the
direction of growth.

When the energy gap between the conduction and the
valence band is sufficiently large, the coupling between con-
duction and valence band states is small and can be taken
into account perturbatively. This leads to the 636 Luttinger
Kohn ~LK ! Hamiltonian19 for valence band states, expanded
in terms of the six valence band basis functions
u3(r 8)•••u8(r 8), to which we will refer as the LK basis in
the following. The complete 838 Hamiltonian is of the form

HK~z8!5FHc~z8! C

C† Hv~z8!
G , ~8!

whereHc(z8) andHv(z8) are the 232 conduction band part
and the 636 valence band part ofHK(z8), respectively, and
C is a 236 rectangular matrix which represents the second
~linear! term on the right hand side of Eq.~4! and describes
the coupling between conduction and valence band states.
Then, using perturbation theory, the LK Hamiltonian is
found to be

HLK~z8!5Hv~z8!1
C†C

Eg~z8!
. ~9!

We note thatHLK(z8) does not contain anymore terms which
linearly depend on the wave vector components, so that, in
its general form in the style of~4! the second term vanishes.
As shown in Appendix A, Eq.~9! amounts to a renormaliza-
tion of the Luttinger parameters.

Finally, if one is only interested in the upper valence sub-
bands and the splitoff gapDso is large relative to the confine-
ment energy of these states, then one may neglect the influ-
ence of the splitoff band and solve the 434 Luttinger Kohn
HamiltonianHG8(z8) which is obtained fromHLK(z8) sim-
ply by deleting the last two rows and columns. The solutions
are then expansions in terms of theG8 basis
u3(r 8)•••u6(r 8). Note that a perturbative inclusion of the
split-off band would lead to terms of order four in the wave
vector components.

B. Characterization of the hole states
and optical transition strength

For layered structures grown in the~001! direction, the
434 LK Hamiltonian is diagonal atki50 and one can iden-
tify pure heavy hole~hh! and light hole~lh! states. By adding
the conduction and/or the splitoff bands, the hh states remain
pure but the lh states mix with the conduction and/or the so
states atki50. The mixing with the conduction states de-
creases for increasingEg and is small for all cases consid-
ered in this paper. For lh states with a confinement energy
which is small relative toDso, also the mixing with the so
states is small, so that these states retain a strongly dominant
lh character. One may expect this to be true also in presence
of strain since the strain Hamiltonian relative to the hh and lh
basis functions is diagonal~see Sec. II C!. However, the
strain Hamiltonian gives an additional, relatively strong, cou-
pling between lh and so states, so that, for strongly strained
materials, even the highest lh states may be considerably
mixed with so states at the zone center.

For growth directions other than~001!, the characteriza-
tion of the hole states is more complicated, since, in general,
even the 434 LK Hamiltonian without strain, is not diago-
nal anymore atki850, independent of the choice of the basis
~1!. This means that, in general, one cannot find a transfor-
mation which diagonalizes the Hamiltonian for each layer.
This holdsa fortiori if the strain is included, as it will be
shown in Sec. II C. Therefore, we need to answer the ques-
tion whether one can identify hh and lh states atki850 also
for growth directions other than~001!. This is also important
to generalize the selection rules for optical transitions as we
will see at the end of this section.

Now, we show how, by a concomitant transformation of
the Hamiltonian and of the basis functions~1!, one can arrive
for all growth directions to a natural definition of hh, lh, and
so states which have exactly the same selection rules for light
incoming parallel or perpendicular to the interfaces as in the
~001! case. The only difference will be that, with the excep-
tion of the ~001! and ~111! directions, the hh and lh states
will not be exactly decoupled atki850. This fact will be
shown to have interesting effects on the optical properties,
the most striking being a dependence of the matrix elements
for optical transitions on the in-plane light polarization.

To this purpose, we find it convenient to go back to the
k•p Hamiltonian relative to the basisuX&, uY&, and uZ&,
DXYZ(k), which does not take into account the spin-orbit
coupling:27

TABLE I. GaAs perpendicular hh effective massesm'hh*
@Eq. ~16!# for three families of (hkl) growth directions.

(hkl) m'hh* (hkl) m' hh* (hkl) m'hh*

~111! 0.952 ~011! 0.690 ~111! 0.952
~112! 0.690 ~012! 0.531 ~122! 0.814
~113! 0.527 ~013! 0.451 ~133! 0.750
~114! 0.463 ~014! 0.419 ~144! 0.724
~115! 0.432 ~015! 0.404 ~155! 0.712
. . . . . . . . .
~001! 0.377 ~001! 0.377 ~011! 0.690
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DXYZ~k!52F Lkx21M ~ky
21kz

2! Nkxky Nkxkz

Nkykx Lky
21M ~kx

21kz
2! Nkykz

Nkzkx Nkzky Lkz
21M ~kx

21ky
2!
G , ~10!

whereL, M , andN have the following relations with the
Luttinger parameters:

L5
\2

2m0
~g114g2!,

M5
\2

2m0
~g122g2!,

N5
\2

2m0
6g3. ~11!

The 636 LK Hamiltonian is obtained fromDXYZ by calcu-
lating the matrix elements relative to the LK basis
@u3(r )•••u8(r )#, addingEv to all diagonal positions and in-
cluding the spin-orbit coupling by adding2Dso to the last
two diagonal positions. Note that the spin-orbit coupling is
diagonal relative to the LK basis. The matrixDXYZ can be
separated in three terms as follows:

DXYZ~k!52
\2

2m0
F ~g122g2!k

2I 316g3kk
T

16~g22g3! (
a5x,y,z

êaêa
Tka

2 G , ~12!

where I 3 is the 333 unit matrix andêx , êy, and êz are the
orthonormal column unit vectors (1,0,0), (0,1,0), and
(0,0,1), respectively. If we transform the wave vector ac-
cording tok85Rk and at the same time apply an orthogonal
basis transformation of the basis functionsuX&, uY&, and
uZ& to the rotated basis functionsuX8&, uY8&, and uZ8& ac-
cording to the same transformationR @Eq. ~5!# such that
uZ8& is oriented in the direction (hkl), thenDXYZ(k) trans-
forms as

DXYZ~k!→RDXYZ~R
21k8!R21[DX8Y8Z8

8 ~k8!. ~13!

It is easy to show that the first two terms on the right hand
side of the expression~12! are invariant by this transforma-
tion. In fact, omitting the constants, the first term transforms
to k82RI3R

215k82I 3 , and the second term transforms to
RR21k8(R21k8)TR215k8k8T ~using R215RT). The third
term is, in general, not invariant and transforms as

(
a5x,y,z

êaêa
Tka

2→ (
a,b,g5x,y,z

Rêa~Rêa!TRbaRgak8bk8g

[ (
a5x,y,z

êaêa
Tk8a

21DDhkl~k8!, ~14!

whereDDhkl(k8) represents the difference with the expres-
sion before the transformation. Corresponding to the trans-
formation R, we define the transformed basis functions
u38(r 8)•••u88(r 8) as in~1! but with uX&, uY&, uZ& replaced by

uX8&, uY8&, uZ8& and where the spin-quantization axis coin-
cides with the (hkl) direction. Relative to these transformed
basis functions, which we will call the symmetry-adapted LK
basis in the following@the basis~1! is symmetry-adapted
only for the~001! growth direction#, the LK Hamiltonian can
be written as

H8LK5HLK1DHhkl , ~15!

where the correction termDHhkl is due to the term
2 (\2/2m0)6(g22g3)DDhkl . We note that also in the
symmetry-adapted LK basis the spin-orbit coupling is diag-
onal. SinceDHhkl is proportional tog22g3 , it vanishes in
the axial approximation~i.e., g25g3). This means that, in
the axial approximation, the in-plane band structure for a
layered structure does not depend on the growth direction, so
that we have to abandon the axial approximation to search
for changes depending on the growth direction. Interesting
changes can be expected, in particular when the well-acting
material has a large difference betweeng2 andg3 , i.e., has a
strongly warped bulk band structure. Explicit expressions for
the rotated Hamiltonian in the restricted four-dimensional hh
and lh basis for the specific case of~h11! growth are given in
Ref. 6.

At this point, it makes sense to generalize the meaning of
hh, lh, and so states for a layered structure grown in an
arbitrary direction (hkl), defining them with respect to the
symmetry-adapted basis. We defineu38(r 8) andu48(r 8) as ba-
sis functions for hh states,u58(r 8) andu68(r 8) for lh states and
the remaining two for so states. This is a natural definition,
since it yields exactly the same selection rules for optical
transitions with respect to incoming light parallel and per-
pendicular to the layers as for the~001! growth direction.
Moreover, the eigenstates atki850 can be expected to be
close to pure hh and lh states for any growth direction ac-
cording to this definition, sinceDHhkl is in general small
relative toHLK so that the mixing of hh and lh states at the
zone center is small.

Once the definition of hh and lh states is generalized, we
first derive analytical expressions for effective masses and
then assess how the mixing of hh and lh states atki850
depends on the growth direction. By use of the symmetry-
adapted basis, the effective masses for hh and lh bands in the
limit of uncoupled bands can be found from the diagonal
terms ofHLK8 . The effective masses in perpendicular direc-
tion @i.e., (hkl) direction#, governing size quantization, are
given by

m'hh* 5@g122g213~g22g3!dhh#
21, ~16!

m' lh* 5@g112g21~g22g3!dlh#
21, ~17!

where
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dhh52c1
2c3

2~h41k41h2k2!l 212c2
2c3

2h2k2, ~18!

dlh5dhh14c3
4~h41k41 l 4!24. ~19!

Extremal values occur for the~001! direction, where
m'hh* 5(g122g2)

21 and m' lh* 5(g112g2)
21 and for the

~111! direction, where m'hh* 5(g122g3)
21 and

m' lh* 5(g112g3)
21. If we restrict ourselves to theyz plane,

extremal values occur for the~001! and the~011! directions,
where in the latter case we havem'hh*
5(g12g2/223g3/2)

21 and m' lh* 5(g11g2/213g3/2)
21.

In the planes, spanned by any two of the~001!, ~111!, and
~011! high symmetry directions, the effective masses behave
monotonously when going from one to the other high sym-
metry direction, as shown in Table I for the heavy hole ef-
fective masses of GaAs.

The in-plane effective masses@perpendicular to the (hkl)
direction# in the uncoupled band limit along the generic in-
plane directionn̂5(n1 ,n2 ,0) ~wheren1

21n2
251) are

mihh* ~n!5@n1
2ghh

xx12n1n2ghh
xy1n2

2ghh
yy#21, ~20!

mi lh* ~n!5@n1
2g lh

xx12n1n2g lh
xy1n2

2g lh
yy#21, ~21!

where

ghh
xx5g11g213~g22g3!dhh

xx,

ghh
xy53~g22g3!dhh

xy,

ghh
yy5g11g213~g22g3!dhh

yy , ~22!

g lh
xx5g12g21~g22g3!dlh

xx,

g lh
xy5~g22g3!dlh

xy ,

g lh
yy5g12g21~g22g3!dlh

yy , ~23!

and

dhh
xx5c1

4
„l 4h41 l 4k41~h21k2!4…12c1

2c2
2h2k2l 221,

dhh
xy5c1

3c2~hk
32h3k!l 31c1c2

3~h3k2hk3!l ,

dhh
yy5c2

4~h41k4!12c1
2c2

2h2k2l 221, ~24!

dlh
xx5dhh

xx18c1
2c3

2~h41k41h2k2!l 2,

dlh
xy5dhh

xy24c1c2c3
2~h22k2!hkl,

dlh
yy5dhh

yy18c2
2c3

2h2k2. ~25!

For (hkl) 5 ~001!, whereR @Eq. ~5!# is not well-defined, we
have to takedhh

ab5dlh
ab50 (a,b5x,y,z). The terms of the

form ki8 (d/dz8) also contribute to the in-plane effective
mass, as we show in Appendix C, but in first order perturba-
tion for a symmetric QW this contribution vanishes due to
the parity of the envelope function atki850.

It is possible to obtainDDhkl(k8) explicitly in terms ofh,
k, l , and of the wave vector components. For the purpose of

ascertaining for which growth directions the hh and lh states
are decoupled atki850, here we give it explicitly for
ki850:

DDhkl5kz8
2F d11 d12 d13

d21 d22 d23

d31 d32 d33
G , ~26!

where

d1152c1
2c3

2~h41k41h2k2!l 2,

d2252c2
2c3

2h2k2,

d335c3
4~h41k41 l 4!21,

d125d2152c1c2c3
2~h22k2!hkl,

d135d315c1c3
3~h4l1k4l2h2l 32k2l 3!,

d235d3252c2c3
3~h22k2!hk. ~27!

The k•p Hamiltonian relative to the symmetry-adaptedG8

basis u38(r 8)•••u68(r 8) has pure hh and lh eigenstates
at the zone center wheneverd125d135d2350 and
d115d22, since in that case we have atki850 that
^X81 iY8uĤk–puX82 iY8&5^X81 iY8uĤk–puZ8&50 so that
the 434 LK Hamiltonian is diagonal. Apart from the~001!
direction ~where DD00150) this is only the case for the
~111! direction, where d115d2251/3, d33522/3, and
d125d135d2350. For all growth directions other than~001!
and ~111! there is a small residual coupling~proportional to
g22g3) between hh and lh states. However, neglecting these
relatively small off-diagonal terms atki850 provides a way
to label the hh and lh states in an unique way according to
their confinement energy for any growth direction. The small
residual couplings between the hh and lh states, of the form
d2/dz82, do not couple hh and lh states with opposite parity
in a symmetrical QW structure; since the coupling between
two states depends on their separation in energy, the stron-
gest coupling can be expected for the
hh1 and the lh1 state. However, in general, even in this case,
the states still have a dominant hh or lh character~as we will
demonstrate in Sec. III!.

For (hkl)5~111!, the coupling of the hh and lh states with
the so and/or conduction band states atki850 is analogous to
the ~001! case. For (hkl) different from ~001! or ~111! in-
stead, both hh and lh states are coupled with the so states.
Although hh states do not couple directly with the conduc-
tion band, they do couple indirectly via the lh states and so
states.

For the high symmetry directions~001! and ~111! the
strain Hamiltonian relative to the symmetry-adaptedG8 basis
is diagonal~see Sec. II C! and does not lead to mixing of the
hh and lh states. For other directions, the strain induces fur-
ther mixing between hh, lh, and so states.

We are now able to assess selection rules for dipolar op-
tical transitions for all growth directions in a unified way.
The probability for interband optical transitions from a va-
lence band statecv(r 8) to a conduction band statecc(r 8) is
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proportional to the squared absolute value ofpvc[ê8•pvc8 ,
whereê8 is the polarization vector of the light and

pvc8 5^cvup8ucc& ~28!

is the dipolar matrix element between the two states. The
components of bothê8 andpvc8 are expressed with respect to
the rotated basis. Taking both states as solutions of the
838 Hamiltonian in the symmetry-adapted basis and con-
sidering light incoming perpendicular to the layers~i.e.,
ez50) we can write:28

pvc8 . (
i , j51

8

^ui8up8uuj8&E
2`

`

f
v i

8*
~z8!fc j8 ~z8!dz8, ~29!

where^ui8up8uuj8&5 1/V0 *V0
ui8* (r 8)p8uj8(r 8)dr 8 ~with V0

the volume of the bulk unit cell! andf18(z8)•••f88(z8) are
the envelope function components occurring in the expan-
sion in terms of symmetry-adapted basis functions. If we
label the conduction, hh and lh bound states atki850 by the
integersnc , nhh, andnlh according to their confinement en-
ergies, then, for a symmetric potentialV(z8), we have that
nc2nhh and nc2nlh should be even to have nonvanishing
transition probabilities atki850, as a consequence of the
parity of the envelope functions. It is easy to show that the
eigenstates atki850 have the property that either the conduc-
tion band envelope functions are even and the valence band
envelope functions odd or vice versa. The strongest transi-
tions are those withnc2nhh50 and those withnc2nlh50.
The above selection rules apply for any growth direction.

Furthermore, for ~001!-oriented heterostructures, it is
well-known that the transition probability is independent of
the in-plane polarization of the light, sincez^cvupxucc& z25
z^cvupyucc& z2, and that the hh-c transitions are about three
times stronger than the lh-c transitions, since
z^ucupx/yuuhh& z25 3z^ucupx/yuulh& z2. Conversely, for growth
directions other than~001! and ~111!, due to the mixing be-
tween hh and lh states, the transition probabilities will not be
anymore independent of the linear polarization of the light in
the plane, and the probability for the hhn-cn transition may
be different from three times the probability for the corre-
sponding lhn-cn transition. This anisotropic behavior is dem-
onstrated in Sec. III for the hh1-c1 and lh1-c1 transitions for
various QW’s.

C. Strain and piezoelectricity

The deformation introduced by the lattice mismatch be-
tween the constituent materials in a heterostructure is char-
acterized by the deformation tensorS, defined through

v̂a85 (
b5x,y,z

~dab1Sab!v̂b , ~30!

wherev̂x , v̂y, andv̂z are orthonormal vectors along the edges
of the simple cubic cell. For a generic growth direction,S
contains a symmetric and an antisymmetric part:24

S5e1A, ~31!

where the symmetric parte is the strain tensor and the anti-
symmetric partA, which vanishes for the high symmetry

~001!, ~011!, and ~111! growth directions, describes a rigid
rotation of the deformed crystal. We note that the presence of
a nonvanishing antisymmetric part ofS indicates that there is
shear strain since an asymmetric~real! matrix cannot be di-
agonalized by a real orthogonal basis transformation. The
matrix elements ofS are fixed by minimization of the mean
elastic energy density with the constraint~s! that the in-plane
lattice parameters match at the interface~s!. The mean elastic
energy density for a heterostructure made ofl layers is given
by

Ū5
1

L(l dlUl , ~32!

where dl is the width of layerl , L5( ldl , andUl is the
elastic energy density in layerl given by

Ul5
1

2
C11~e lxx

2 1e lyy
2 1e lzz

2 !1C12~e lxxe lyy1e lxxe lzz

1e lyye lzz!12C44~e lxy
2 1e lxz

2 1e lyz
2 !, ~33!

where e lab51/2(Slab1Slba) and C11, C12, and C44 are
elastic constants. Note that the antisymmetric part ofS does
not contribute to the energy density. It only contributes in the
sense that it may~and for low symmetry growth directions it
does! lead to a lower minimal value for the elastic energy.
Writing the zinc-blende primitive basis vectors for the layerl
as

bl15
al
2

~ v̂x1 v̂y!,

bl25
al
2

~ v̂x1 v̂z!,

bl35
al
2

~ v̂y1 v̂z!, ~34!

whereal is the bulk lattice parameter for the layerl , the
primitive lattice basis vectors of the deformed material are
given by bl i8 5(I1Sl)bl i ~i51,2,3! and the six constraints
due to the matching at the interface between the layersl and
l11 can be written as

bl i8 •n̂15bl11i8 •n̂1,

bl i8 •n̂25bl11i8 •n̂2 ~35!

for i51,2,3 wheren̂1 andn̂2 are two orthonormal vectors in
the plane of the layers, for example given by the first two
rows of the rotation matrixR @Eq. ~5!# for growth directions
other than~001!. The boundary conditions have to be applied
for all interfaces. Since the width of the substrate on which a
layered structure is grown is usually very much larger than
the layers of interest, the deformation in the substrate will be
negligible so that, if no relaxation takes place, the in-plane
lattice parameters of each layer will match to that of the
substrate and the minimization ofŪ can be performed for
each layer separately, giving the deformation tensors layer
per layer.

For the high-symmetry~001!, ~011!, and~111! growth di-
rections, the deformation tensor is symmetric, and thus equal
to the strain tensor, and can be shown to have the form
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F exx 0 0

0 exx 0

0 0 ezz
G ,

F exx 0 0

0 eyy eyz

0 eyz eyy
G ,

and

F exx exy exy

exy exx exy

exy exy exx
G , ~36!

respectively. This simplifies the constrained minimization of
Ū by reducing the number of independent variables.

Once the strain tensor is known, the strain Hamiltonian
Hstr can be determined following Bir and Pikus.30 Due to the
strain, the momentum operatorp52 i\“ transforms to
p85(I1S)21p. This affects the coupling matrix elements
^Supa8 uX& ^Supa8 uY& and ^Supa8 uZ& (a5x,y,z) between the
conduction and the valence band states and leads to slightly
modified conduction and valence band effective masses.29

However, the dependence of the coupling between conduc-
tion and valence band states on strain is quite small in gen-
eral and therefore we shall neglect it in the following.

We choose to keep the energy of the conduction band
edge fixed and let the valence band edge vary with strain.
Note that the relative positions of the various band edges for
different layers in a QW structure is determined by the va-
lence band offset~s!.

From symmetry considerations30 it follows that the strain
Hamiltonian relative to theL51 basis functionsuX&, uY&,
and uZ&, HXYZ

str , has the following form:

HXYZ
str 5F l sexx1ms~eyy1ezz! nsexy nsexz

nseyx l seyy1ms~exx1ezz! nseyz

nsezx nsezy l sezz1ms~exx1eyy!
G , ~37!

wherel s , ms , andns are related to the hydrostatic deforma-
tion potentiala and to the uniaxial deformation potentialsb
andd by

l s52a12b,

ms52a2b,

ns5A3d. ~38!

In Appendix B the strain Hamiltonian relative to the LK
basis@u3(r )•••u8(r )# given in Eq.~1!, HLK

str is given explic-
itly. This Hamiltonian has to be added to the valence band
part of thek•p Hamiltonian.

For the ~001! growth direction the strain Hamiltonian
relative to theG8 basis is diagonal. There is a constant en-
ergy shift2a(2exx1ezz) of the whole valence band~hydro-
static term! plus an additional shift6b(exx2ezz) for the hh

and the lh band edge, respectively, breaking the degeneracy.
Furthermore, there is a relatively strong strain-induced cou-
pling between lh and so states.

For ~hkl! Þ ~001! the basis set~1! is not the symmetry-
adapted basis; for non-~001!-oriented structures the strain
Hamiltonian relative to the symmetry-adapted basis can be
found by first calculating it relative to the rotated basis func-
tions uX8&, uY8&, anduZ8& according to

HX8Y8Z8
str

5RHXYZ
str R21. ~39!

It is easy to show that the strain Hamiltonian relative to the
symmetry-adaptedG8 basis for the hh and lh states is diag-
onal wheneverHX8Y8Z8

str is diagonal and the elements on the
first two diagonal positions~of HX8Y8Z8

str ) are equal. In gen-
eral, this is only the case for the~111! growth direction@apart
from the ~001! direction#, where we find@using ~36!#:

HX8Y8Z8
str

5F 23aexx2A3dexy 0 0

0 23aexx2A3dexy 0

0 0 23aexx12A3dexy

G . ~40!

This form is similar to that for the~001! direction and yields
a constant energy shift23aexx for the valence band plus an
additional shift7A3dexy for the hh and lh band edges, re-
spectively. As for the~001! direction, there is relatively
strong coupling between lh and so states.

For growth directions other than~001! and ~111!, the

dominant terms of the strain Hamiltonian in the symmetry-
adapted LK basis are the strain-induced shifts of the valence
band edges, breaking the degeneracy of the hh and lh band
edge in the same way as for the~001! and ~111! direction,
and the relatively strong coupling between the lh and so
states, but in addition there are residual couplings between
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hh and lh states and between hh and so states. However, in
general, these residual couplings are considerably weaker
than the lh-so coupling.

The presence of nonzero off-diagonal strain tensor com-
ponents gives rise to an internal electric polarization, since
the zinc-blende structure allows the piezoelectric effect; for
symmetry reasons this effect appears only for growth direc-
tions other than~001!. Using the conventions indicated, e.g.,
by Nye,31 we evaluate the components of the strain-induced
piezoelectric polarizationPs relative to the simple cubic
frame as given by

Pa
s5eabgebg ~41!

for a5x,y, and z where eabg are the piezoelectric con-
stants,ebg the components of the strain tensors, and we have
used the summation convention on repeated indices. Making
use of the fact that botheabg and ebg are symmetrical in
b andg, expression~41! can be rewritten in Voigt’s notation
as

Pa
s5 (

n51

6

eanen , ~42!

where the indicesn51–6 correspond toxx, yy, zz, yz, xz,
and xy, respectively. For the zinc-blende crystal structure,
the only nonzero piezoelectric constants are
ex45ey55ez652exyz and we have

Px
s5ex4e4 ,

Py
s5ex4e5 ,

Pz
s5ex4e6 , ~43!

From this the component ofPs perpendicular to the layers is
easily obtained:

P'
s 5ex4~he41ke51 l e6!/c3 . ~44!

The piezoelectric polarization introduces dipole charges at
the interface planes, which cause a piezoelectric fieldE. This
field, in turn, introduces another contribution to the polariza-
tion, so that the total polarizationP becomes

P5e0xE1Ps, ~45!

wherex is the susceptibility of the material. Furthermore, we
have the electrodynamical relation:

D5e0E1P ~46!

which together with Eq.~45! leads to

D5e0e rE1Ps, ~47!

where e r5(11x) is the relative dielectric constant of the
material. The vector fieldD obeys Maxwell’s equation
“•D5re , which, assuming that there is no external charge
~i.e., re50) leads to the boundary condition thatD' is con-
stant over the interface. Then from Eq.~47! we find the fol-
lowing relation for the electrostatic potentialF(z8):

e0S e r
l11dF l11

dz8
2e r

l dF l

dz8 D52~P' l11
s 2P' l

s !, ~48!

wherel labels the layers in the heterostructure. It follows that
F(z8) is a linear function ofz8 and that its derivative has
discontinuities at the interfaces. ThenF(z8) is completely
fixed by using the short circuit condition:

E
0

L

E'~z8!dz850, ~49!

whereL is the total length of the sample. For a single QW,
assuming that the well layer is in the interval
@(L2W)/2,(L1W)/2# and that the width of the barriers is
very much larger than that of the well, so that the field in the
barriers is negligible, we obtain the following potential:

F~z!55
2

P'
s

e0e r

W

2
, z8P@0,~L2W!/2!,

P'
s

e0e r
S z82

L

2D , z8P@~L2W!/2,~L1W!/2#

P'
s

e0e r

W

2
, z8P~~L1W!/2,L#

, ~50!

whereP'
s ande r are relative to the well layer. This expres-

sion is in agreement with previously published results.23,34

It appears that the piezoelectric potential is strongest for
the ~111! growth direction. For instance, for a 60 Å
In0.25Ga0.75As/Al 0.4Ga0.6As QW grown in the~111! direc-
tion, we evaluate a potential drop over the well of 99 meV,
whereas for the same QW grown in the~113! direction the
potential drop is only 28.5 meV. For the~011! growth direc-
tion P'50 andF(z8) vanishes.

The piezoelectric potentialF(z8) must be added on the
diagonal of the Hamiltonian. For a structure which is inver-
sion symmetric with respect to thez8 coordinate,F(z8)
breaks the symmetry and, as a consequence of this, the spin
degeneracy of the states forki8Þ0.

The total HamiltonianH tot(z8), containing thek•p part
and both contributions from the strain, is given by

H tot~z8!5Hk•p~z8!1Hstr~z85 !1F~z8!I m, ~51!
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where I m is the identity matrix of orderm, which is the
number of band edge basis function involved.

D. Solution method

To find the in-plane band structure near the band gap for a
QW structure, with or without strain, we have to solve a
coupled second order differential eigenvalue equation. To
this purpose, we propose a discretization method which is
different from the straightforward finite difference method
and which is known as the finite element method. Instead of
using finite difference expressions for the first and second
order derivatives of envelope functions at each point of a
grid, the starting point of our method is to assume a linear
behavior of the envelope functions on intervals. By fixingN
pointsz18•••zN8 , not necessarily equidistant, within the total
interval @0,L# containing the QW structure, the envelope
functions and their derivatives in the intervalzn8,z8<zn118
are written as

fW ~z8!5fW n1
~z82zn8!

Dn
~fW n112fW n!, ~52!

fW 8~z8!5
~fW n112fW n!

Dn
, ~53!

where the components offW n5fW (zn8) represent the values of
the envelope functions at the pointszn8 andDn5zn118 2zn8 .
For QW structures, the total interval@0,L# is chosen such
that for confined statesufW (L/26L/2)u is sufficiently small,
so that in practice we may put infinite potential barriers at
z85L/26L/2. Typically a value ofL55W, with two barri-
ers of width 2W at both sides of a well of widthW, is
sufficiently large for the structures considered in this paper.

We define the functionalsF@fW (z8)# andC@fW (z8)# by

F@fW ~z8!#5E
0

L

fW †~z8!HtotfW ~z8!, ~54!

C@fW ~z8!#5E
0

L

fW †~z8!fW ~z8!. ~55!

From constrained optimization, we deduce that the solutions
of interest are thosefW (z8) for which F@fW (z8)#
2EC@fW (z8)# has stationary values. The need of second or-
der derivatives of the envelope functions in the evaluation of
F@fW (z8)# can be avoided by partial integration using the fact
that the envelope functions vanish far away from the well.
Typically, k•p Hamiltonians contain operators of the form
(d/dz8) g (d/dz8) and we can rewrite:

E
0

L

f i
†~z8!

d

dz8 S g
d

dz8
f j~z8! D

52E
0

LS d

dz8
f i
†~z8! Dg

d

dz8
f j~z8!. ~56!

This relationship holds for superlattices as well, since, in that
case, the boundary terms vanish due to the periodic boundary
conditions. By use of~52!, ~53!, and~56!, the integrals~54!

and ~55! can be evaluated piecewise on the small intervals
andF andC can be expressed in terms of the values of the
envelope functions at the discrete pointsfW 1•••fW N :

F~ ...,fW n ,...!5 (
n,n851

N

fW n
†Ann8f

W
n8

C~ ...,fW n ,...!5 (
n,n851

N

fW n
†Bnn8f

W
n8, ~57!

whereA is a sparse Hermitian band matrix of the ordermN
with m the number of envelope functions andB a real band
matrix of the formTn^ I m , whereI m is the identity matrix of
the orderm andTN is a real symmetric tridiagonal matrix of
order N. More explicitly, we findBnn51/3(Dn211Dn)I m
andBnn851/6(Dn)I m for n85n61.

In the case of a superlattice the band form ofA andB is
lost because of the edge terms. From constrained optimiza-
tion we finally obtain the following generalized eigenvalue
problem:

(
n851

N

Ann8f
W
n85E (

n851

N

Bnn8f
W
n8, ~58!

for which we have to find the energy eigenvalues E of inter-
est, i.e., those lying in the energy range yielding confined
states. These eigenvalues can be found quite efficiently either
by using band matrix algorithms or by using the Lanczos
algorithm.33 The band routines cannot be used for superlat-
tices.

The significative advantage of the finite element method
over the finite difference method is that discontinuities of the
potential and of the band parameters at the interface are
taken into account ‘‘exactly’’ and that there is ‘‘correct’’
matching of the envelope functions at the interface. In the
finite difference method, the discontinuities have to be ap-
proximated by sharp slopes requiring an increased density of
grid points at the interface. To avoid very large matrices it is
desirable to vary the distances between the grid points. In the
finite difference method this leads to a non-Hermitian eigen-
value problem ~58!; analogously, non-Hermiticity results
also from discontinuities of the effective masses in going
from one layer to the other. In the finite elements method
instead, since the calculation of the matrix elementsAnn8 and
Bnn8 is done piecewise on small intervals which do not con-
tain any discontinuities, the Hermiticity is maintained also
when considering variable distances between the grid points
and when there are variations of the band parameters across
the interfaces. This is a useful property, because, on the one
hand, it allows to enlarge the intervals in the barriers where
the envelope functions decay rapidly, reducing the order of
the eigenvalue problem~58! and, on the other hand, yields
automatically physically significant solutions.

III. RESULTS: BAND STRUCTURE, EFFECTIVE MASSES,
HOLE-MIXING, OPTICAL TRANSITION STRENGTHS

We present results concerning the electronic structure of
single QW’s for various growth directions, with and without
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strain. In all cases, we assume a GaAs substrate so
that the in-plane lattice parameter of both well and
barriers is always taken as that of GaAs. We consider
unstrained GaAs/AlxGa12xAs, compressively strained
In xGa12xAs/Al xGa12xAs and tensilely strained
GaPxAs1-x/Al yGa12yAs QW’s. In all cases the barriers are
made of AlxGa12xAs and are therefore only slightly
strained.

All the relevant bulk structural and electronic constants
used in this paper are given in Table II.35,36The value ofP is
taken equal for each layer material considered here and cor-
responds to a value ofEp5(2/m0)uPu2 equal to 22.71 eV.
For ternary materials, these constants are obtained by linear

interpolation, except for the energy gap which is assumed to
vary asEg5Eg1x1Eg2(12x)2Cx(12x), with C50.370
for the AlxGa12xAs, C50.475 for the InxGa12xAs and
C50.170 for the GaAs12xPx compounds and whereEg1
and Eg2 are the gaps of the pure materials. For the
GaAs/AlxGa12xAs QW’s, we use a valence band offset
DEv /(DEg)50.35. For the other structures, the valence
band offset is determined by the method of van de Walle.37

We assume that the band offset is independent of the growth
direction.38 However, we note that, in presence of strain, the
effective band offset for hh and lh states slightly varies as a
function of the growth directions since the effect of strain
depends on the growth direction.39

A. Unstrained quantum wells

In this section, we present the electronic structure as a
function of the growth direction for a 120 Å
GaAs/Al0.3Ga0.7As QW, where the well remains unstrained.
We have checked that the effect of the strain in the barriers is
negligible.

Figure 1 displays the valence subband dispersion for six
growth directions along the two in-plane directions
(180808) and (181808). We remind that primed indices are
relative to the rotated basis defined by the transformationR
@Eq. ~5!#. In all cases the subbands are obtained from the
636 LK Hamiltonian, but for the~001! and the ~113!
growth directions also the results obtained by using the
838 and the 434 model are shown for comparison. It can
be seen that the influence of the splitoff band is noticeable
only on the lower subbands and at largeki8 and that inclusion
of the conduction band has a very minute effect for this
material. Furthermore, we observe that the confinement en-
ergies for hh states atki850 are largest for the~001! direc-
tion and smallest for the~111! direction. The opposite is true
for lh states, resulting in the inversion of the lh1 and hh2
levels; the confinement energy of the lh1 state is smaller than
that of the hh2 only for the ~001! direction. This behavior

FIG. 1. Hole-dispersion along the (180808)
and (181808) in-plane directions for a 120 Å
GaAs/Al0.3Ga0.7As QW grown along either the
~001!, ~012!, ~011!, ~111!, ~112!, and~113! direc-
tions calculated by use of the 636 LK Hamil-
tonian ~solid lines!. For the ~001! and ~113!
growth directions, the results obtained by use of
the 838 ~dotted lines! and the 434 ~dashed
lines! k•p Hamiltonians also are shown. Closed
and open dots atki850 indicate hh and lh sub-
bands, respectively. The parabolic dotted lines are
best fits on theki

8 intervals @0,p/2L# and
@0,p/L# and the values written on it represent the
corresponding effective masses.

TABLE II. Bulk parameters used in this paper. The value of
Ep5(2/m0)uPu2 ~see Appendix A! is taken equal to 22.71 eV for
each of the layer materials considered in this paper. All parameters
are obtained from Ref. 35, except for the AlAs lattice parameter
from Ref. 36.

GaAs AlAs InAs GaP

a ~Å! 5.6534 5.6614 6.0570 5.4506
Eg ~eV! 1.519 3.13 0.418 2.890
Dso ~eV! 0.341 0.321 0.380 0.080
mc* 0.0665 0.0230 0.1240 0.1700
g1 6.85 3.45 19.67 4.05
g2 2.10 0.68 8.37 0.49
g3 2.90 1.29 9.29 1.25
C11 (10

12 dyn/cm2) 1.2110 1.2500 0.8329 1.4390
C12 (10

12 dyn/cm2) 0.5480 0.5340 0.4526 0.6520
C44 (10

12 dyn/cm2) 0.6040 0.5420 0.3959 0.7143
a ~eV! -7.00 -7.00 -6.00 -8.83
b ~eV! -1.70 -1.70 -1.80 -1.50
d ~eV! -4.55 -4.55 -3.60 -4.60
e r 12.91 10.06 15.15 10.88
l 14 (10

24 C/cm2) -0.1600 -0.1600 -0.0459 -0.1000
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can be quite well explained in terms of the perpendicular
effective masses obtained from Eqs.~16! and ~17!. In Table
III, we give their numerical values for four growth directions
both for the well- and the barrier-acting material. Extremal
perpendicular effective masses occur for the~001! and the
~111! direction. Since the confinement energies atki850 are
roughly proportional to the inverses of the perpendicular
masses, the results of Fig. 1 are qualitatively in agreement
with the masses in Table III.

If we use the effective masses of Table III and we neglect
the off-diagonal terms in the Hamiltonian we obtain un-
coupled equations for hh and for lh levels. The hh1 , hh2 ,
hh3 , and lh1 levels resulting atki850 within this approxi-
mation are also given in Table III and compared with the
numerical values obtained from the full Hamiltonian~values
in brackets!. In all cases, the uncoupled band values for the
first three confined states differ by less than 1 meV from the
values obtained by solving the full Hamiltonian. This means
that very good approximations of the first hh and lh energy
levels atki

850 can be easily obtained for any growth direc-
tion by solving the particle-in-a-box problem21 with effective
masses given by Eqs.~16! and ~17!.

Also, the in-plane effective masses depend considerably
on the direction of confinement, as can be seen from the
parabolic fits in Fig. 1. These parabolas are obtained from
best fits on the intervals@0,p/2L# and @0,p/L#, where
L5120 Å is the QW width. The lightest averaged in-plane
effective mass is observed for the~111! direction. Partially
this is due to the fact that the second subband is also a hh
subband resulting in a decreased anticrossing effect between
the first two subbands.

A first order approximation for the effective mass for the
hh subbands in the in-plane directionn̂ in the limit of un-
coupled subbands is given by

mihh* ~ n̂!5F 12Pb

mihh*
w~ n̂!

1
Pb

mihh*
b~ n̂!

G21

, ~59!

wheremihh*
w(n̂) andmihh*

b(n̂) are the values obtained from Eq.
~20! for the well and the barrier, respectively, andPb is the
integrated probability over the barriers for the wave function
at ki850. The same expression can be written for lh sub-
bands. If the valence band offset between well and barriers
and the QW width are not too small thenPb is small for the
hh1 state, so that it is a good approximation to set it to zero
in ~59! yielding mihh* (n̂)5mihh*

w(n̂). For the QW considered
here we findPb,0.03 for each growth direction.

The in-plane effective masses for hh subbands as obtained
from Eq. ~20! for the well-acting material are given in Table
IV for four growth directions. These values deviate consid-
erably from the values obtained from the parabolic fits over
the interval@0,p/2L#, given in Fig. 1, and even from the
values obtained from a numerical fit atki8;0 ~values in pa-
rentheses in Table IV!. This is obviously due to the coupling
between the subbands, in particular, the coupling introduced
by the matrix elements of the formki8d/dz8 which strongly
couple hh and lh states with opposite parity. In second order
perturbation, this coupling gives a contribution proportional
to ki8

2 to the energy, so that it forms a direct contribution to
the effective mass atki8;0 and also adds to the anisotropy.
For a more precise approximation of the in-plane effective
mass for the hh1 subband atki8;0, one should take into
account the interaction of this subband with the lh2 subband.
Nevertheless the first order values listed in Table IV are use-
ful guidelines, also for the anisotropy.

The warping can be further studied by equal energy con-
tour plots. In Fig. 2 we show the equal energy contours of the
hh1 subband for the same growth directions as in Fig. 1. The

TABLE III. Perpendicular hh and lh effective masses@Eqs.~16! and~17!# for the well- and barrier-acting
materials and the corresponding energy levels of the first four confined states atki850 of a 120 Å
GaAs/Al0.3Ga0.7As QW in the uncoupled band approximation. The values in brackets are the values obtained
from the full LK Hamiltonian, including the off-diagonal coupling terms.

(hkl) m'hh* w m'hh* b m' lh*
w m' lh*

b E1 E2 E3 E4

~001! 0.377 0.403 0.091 0.109 5.26 16.51 20.96 46.82
~5.26! ~16.11! ~20.96! ~46.82!

~011! 0.690 0.731 0.082 0.097 3.09 12.33 17.87 27.69
~2.91! ~11.37! ~17.26! ~24.51!

~111! 0.952 1.004 0.079 0.094 2.30 9.21 18.31 20.72
~2.30! ~9.21! ~17.58! ~20.72!

~113! 0.527 0.561 0.085 0.101 3.92 15.66 17.37 35.09
~3.80! ~15.14! ~16.98! ~33.85!

TABLE IV. Parallel hh effective masses@Eq. ~20!# in the (180808), (181808), and (081808) in-plane
directions for GaAs compared with the numerical values obtained from a fit atki8;0 for a 120 Å
GaAs/Al0.3Ga0.7As QW ~values in parentheses!.

~hkl! mihh* (180808) mi hh* (181808) mihh* (081808)

~001! 0.112~0.168! 0.112~0.171! 0.112~0.168!
~011! 0.099~0.108! 0.105~0.137! 0.112~0.181!
~111! 0.103~0.131! 0.103~0.131! 0.103~0.131!
~113! 0.105~0.155! 0.107~0.156! 0.109~0.162!
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~111! direction displays the most isotropic behavior, the
strongest warping occurring for the~011! and ~012! direc-
tions. For the latter two, the warping is already present at
ki8;0, in agreement with the uncoupled band values given
in Table IV.

Each of the pictures in Fig. 2 shows mirror symmetry, due
to the fact that, in real space, for each of the growth direc-
tions there is a mirror symmetry with respect to a plane per-
pendicular to the plane of the layers. In addition, the~001!
direction displays fourfold and the~111! direction sixfold
symmetry, in agreement with the symmetry in real space.
The ~112! and~113! directions both tend to fourfold symme-
try, as the~001! direction. The warping is somewhat stronger
for the ~113! than for the~112! direction, the latter being
‘‘closer’’ to the isotropic~111! direction.

We have also calculated the character of the eigenstates in
the generalized sense as a function ofki8 . In Fig. 3 the
squared absolute values of the projections of the eigenstates
on the hh, lh, and so symmetry-adapted basis functions
summed over the two spin states are shown for the first three
confined states for the~001!, ~011!, ~111!, and~113! growth
directions. Apart from some quantitative variations, the re-
sults are quite similar for each growth direction. Atki850 the
eigenstates have either a pure or a dominant hh or lh char-
acter. Away fromki850, the states start to have a strongly
mixed character. Since the subbands cannot cross, this mix-
ing can be partially explained in terms of anticrossing ef-
fects. A more careful study of the character of the states at
ki850 reveals that for the~001! and the ~111! directions
these states are pure hh and lh states apart from the mixing of
the lh states with the so states, which is very small for the
first confined lh state. For the~011! and the~113! directions,
instead, there is mixing between hh and lh states also at
ki850, in agreement with the theory in Sec. II B.

It appears that this mixing gives rise to a considerable
dependence of the optical transition matrix elementpvc on
the linear in-plane polarization of the light coming in perpen-
dicular to the layers. This anisotropy is shown for the~011!
and the~113! growth directions in Fig. 4 whereupvcu2 is
plotted as a function ofki8 for the two helicities of circular
polarization as well as for linearly polarized light along the
in-planex8 andy8 directions. The result for the~001! direc-
tion, which is similar to that of the~111! direction, is shown
for comparison. The range ofki8 vectors in Fig. 4 is compa-
rable to 1/ab , whereab is the excitonic Bohr radius in GaAs.
Here we have not explicitly determined the exciton wave
function, but since this wave function is, roughly speaking,
made up of states belonging toki8 vectors within the range 1/
ab we can conclude from Fig. 4 that the in-plane anisotropy
should not be removed by excitonic effects at least for the
~011! growth direction. Experimental evidence of this behav-
ior has been very recently reported in Ref. 40 for~011!-
grown structures.

FIG. 2. Equal energy contour plots for the hh1 subband obtained
by use of the 636 LK Hamiltonian for the same structure and
growth directions as in Fig. 1. The energy spacing of the contours is
1 meV.

FIG. 3. The hh~solid lines!, lh ~dotted lines!,
and so~dashed lines! contributions to the inte-
grated squared wave function for the first three
confined states as a function ofki8 in the same
in-plane directions and for the same structure as
in Fig. 1 for the ~001!, ~011!, ~111!, and ~113!
growth directions. Notice that the lh1 subband is
the third subband for all growth directions but the
~001!.
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Obviously, the anisotropy shown in Fig. 4 is due to an
in-plane anisotropy of the wave function. To check this point,
we expand the eigenstates in the following way:

uc&5(
as

Fas~z8!uas&, ~60!

wherea5S,X8,Y8,Z8 are the rotated spatial basis functions
ands5↑,↓ indicates the spin state. Furthermore, we define
the probability functionsPa(z8) as

Pa~z8!5(
s

uFas~z8!u2 ~61!

for a5S,X8,Y8,Z8. Differences in the PX8(z8) and
PY8(z8) components indicate anisotropy of the wave func-
tion in the plane. For the~001! and ~111! growth direction,
PX8(z8)5PY8(z8) at ki850. In Fig. 5, thePa(z8) compo-
nents are shown for the first hh and lh confined states at
ki850 for the ~011! and ~113! growth directions. The differ-
ences in theX8 andY8 components are largest for the~011!
case, in agreement with the stronger anisotropy of the tran-
sition matrix element in this case.

B. Compressively strained quantum well

A thin In xGa12xAs layer grown on a GaAs substrate is
compressively strained. In Fig. 6 we show the strain-induced
energy shifts of the hh, lh, and so band edges as a function of
the indium contentx for various growth directions, where the
conduction band edge is taken fixed. Hence, the total energy
gap between the valence band edge and the conduction band
edge is given by the hh shift indicated in Fig. 6 plus the
energy gap for the unstrained material~also depending onx!.
Again, the~001! and the~111! growth directions show ex-
tremal behavior. At equal lattice mismatch the shifts are
minimal for the ~001! and maximal for the~111! growth
direction. By adding these shifts to the diagonal of the
Hamiltonian one can, neglecting all off-diagonal elements of
the Hamiltonian, easily obtain good approximations for the
energy levels of the first hh and lh confined states atki850
by solving the particle-in-a-box model21 with the masses ob-
tained from Eqs.~16! and ~17! as we have shown in the
previous section. For the lh states, however, this approxima-
tion is less reliable, because it neglects the strong strain-
induced coupling between lh and so states.

FIG. 4. Squared absolute value of the optical
transition matrix elementpvc for the two circular
light polarizations~solid line! and for linearly po-
larized light~dashed and dotted lines for polariza-
tion in thex8 andy8 directions, respectively!, in-
coming perpendicular to the layers, for the hh1-
c1 ~closed dots! and lh1-c1 transitions~open dots!
as a function ofki8 in the (180808) ~left hand
side! and (081808) ~right hand side! in-plane di-
rections and for the same structures as in Fig. 1
and the same growth directions as in Fig 3.

FIG. 5. Probability functionsPX8(z8) ~solid lines!, PY8(z8)
~dotted lines!, andPZ8(z8) ~dashed lines! ~see text! for the first hh
and lh confined states atki850 for the same structure as in Fig. 1
for the ~011! and~113! growth directions. The center of the QW is
taken as the origin of thez8 coordinate.

FIG. 6. Strain-induced energy shifts of hh~solid lines!,
lh ~dashed lines!, and so~dotted lines! band edges assuming a fixed
conduction band edge for a compressively strained InxGa(12x)As
layer grown on a GaAs substrate along the~001!, ~011!, ~111!, and
~113! directions.
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Figure 7 shows, for several growth directions, the in-plane
band structure of a 60 Å compressively strained
In0.25Ga0.75As/Al 0.4Ga0.6As QW together with that of an un-
strained GaAs/Al0.58Ga0.42As QW of the same width. In all
cases the zero of the energy is chosen as the hh band edge
level in the middle of the QW~note that the hh band edge is
not constant in the well in presence of a piezoelectric poten-
tial!. The Al content for the unstrained QW is chosen such
that both QW’s have an almost equal band offset for the hh
band edge for all growth directions. This, together with the
fact that the perpendicular effective masses obtained from
Eqs. ~16! and ~17! happen to be quite close for both well-
acting materials, is the reason why the hh energy levels are
so close for strained and unstrained QW’s except for the
~111! direction due the strong piezoelectric field occurring
for the strained QW. For the~111! and ~113! direction the
strain causes a piezoelectric field which corresponds to a
linear potential drop over the well of 99 and 28.5 meV, re-
spectively. Apparently the piezoelectric potential causes a
significant shift only of those energy levels which fall in the
energy range over which the potential drop takes place.

For all growth directions, the lh levels for the strained
QW have moved downwards relative to those of the un-
strained QW. This is due to the larger shift of the lh band
edge but also to the lighter lh perpendicular effective mass of
the In0.25Ga0.75As material. As a consequence, the anticross-
ing between the first two subbands, both hh-like, is weaker
and the in-plane effective masses lighter. However, despite
the increased separation between the hh1 subband and the lh
subbands, the in-plane effective masses for the hh1 subband
at ki8;0 are still much heavier than the uncoupled band
values, as shown in Table V, where the effective masses
obtained from Eq.~20! for the In0.25Ga0.75As material are
compared with the numerical values obtained by best fits at
ki8;0 ~values in parentheses!. The deviations are due to the
still large mixing with lh states. This is shown in Fig. 8,
where the character distribution of the hh1 subband states

close toki850 is shown for both the strained and the un-
strained QW’s. The mixing remains substantial and can even
be increased for the strained QW as in the case of~011!
growth, due to the strain-induced couplings.

Furthermore, for the~113! and~111! cases, the piezoelec-
tric field causes a spin splitting which is rather small at
ki8;0 but increases for largerki8 vectors, due to the in-
creased mixed character of the states. In fact, spin splitting
can only occur when states of different character start to mix,
since in our Hamiltonian there is no coupling between the
2mj and the1mj states, because we have neglected the
relatively smallk8 and k83 terms which occur due to the
inversion asymmetry of the zinc-blende structure.

In Fig. 9 we show the optical transition strengthupvcu2 for
the ~001!-, ~011!-, ~111!-, and~113!-grown strained QW’s. It
appears that the anisotropy, already observed for unstrained
QW’s in Fig. 4, is enhanced by strain. Moreover, while for
unstrained~001!-grown QW’s the ratio of the strengths for
hh and lh transitions atki850 is roughly 3:1~see Fig. 4!, this
is not at all the case for the strained QW. Both these effects
are due to the strong strain-induced coupling with the so
band. The decrease ofupvcu2 for the strained~111!-grown
QW is due to the built-in piezoelectric field, which makes
that electronic states and hole states tend to localize at oppo-
site sides of the well. For the same reason we find the
c1-hh2 transition~not shown in Fig. 9!, forbidden for a sym-
metric QW, to be about half as strong as thec1-lh1 transition.
These transitions have also been observed
experimentally.41,42 For the~113! direction both of these ef-
fects are much weaker, due to the weaker piezoelectric field.

C. Tensilely strained quantum well

A situation of tensile strain occurs when, e.g., a
GaPxAs12x layer is grown on a GaAs substrate. In Fig. 10
we show the hh, lh, and so band edge energy shifts relative to
the unstrained bulk levels, for fixed conduction band edge, as

FIG. 7. Comparison between the in-plane
hole-dispersion of a 60 Å compressively strained
In0.25Ga0.75As/Al 0.4Ga0.6As QW ~solid lines! and
that of a 60 Å unstrained GaAs/Al0.58Ga0.42As
QW ~dotted lines! grown along the~001!, ~011!,
~111!, and~113! direction. Closed and open dots
at ki850 indicate hh and lh subbands, respec-
tively. The in-plane directions are indicated on
the upperx axis.

TABLE V. Parallel hh effective masses@Eq. ~20!# in the (180808), (181808), and (081808) in-plane
directions for In0.25Ga0.75As compared with the numerical values obtained from a fit atki8;0 for a 60 Å
In0.25Ga0.75As/Al 0.4Ga0.6As QW ~values in parentheses!.

~hkl ! mihh* (180808) mihh* (181808) mihh* (081808)

~001! 0.073~0.111! 0.073~0.111! 0.073~0.111!
~011! 0.070~0.076! 0.071~0.095! 0.072~0.127!
~111! 0.069~0.104! 0.069~0.104! 0.069~0.104!
~113! 0.067~0.094! 0.070~0.103! 0.073~0.115!
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a function of the phosphide contentx for various growth
directions. In contrast to the case of compressive strain, the
highest band edge is the lh band edge. For the
GaPxAs12x/Al 0.4Ga0.6As QW’s which we consider in this
section, this means that for sufficiently strong strain~i.e., for
large enough values ofx! the first confined state will have a
lh character.

This is shown in Fig. 11, where the in-plane band struc-
ture is shown for the~111! growth direction forx50.1 and
x50.2. Whereas forx50.1 the hh1 state is still slightly
above the lh1 state, the situation is reversed forx50.2. This
inversion takes place for any growth directions, although at
slightly different values ofx.

For the structure of Fig. 11 the potential drop over the
well due to the piezoelectric field is 33 meV forx50.1 and
65 meV forx50.2. This causes strong spin splittings where
the subbands anticross, in agreement with the fact, already
mentioned, that spin splitting can only occur for states with a
mixed character atki8Þ0. Forx50.2 the first two spin-split
lh subbands are well above the next subbands whence their
relatively small spin splitting as compared to thex50.1 case.

For growth directions other than~001! and ~111! the re-
sidual hh-lh coupling in the Hamiltonian atki850 may lead
to a strong mixing between the hh1 and lh1 states for a
certain range ofx values, when these two levels are close in
energy. To check this effect, we show in Fig. 12 the calcu-
lated optical transition strengthupvcu2 at ki850 for perpen-
dicular incoming circularly and linearly polarized light for
transitions from the first two confined hole states to the first
confined electronic state as a function of the phosphide con-
tent x in the interval@0.05,0.15# for the ~011! growth direc-
tion. In spite of the hh-lh coupling, there is a rather abrupt
inversion of the character of the states betweenx50.100 and
x50.105. At both these values ofx the energy separation
between the first two confined states is less than 1 meV.
However, whereas forx50.1025 the first confined state has
99% hh character, forx50.105 it has 94% lh character. An
enhanced anisotropy is observed close to the inversion point.
However, experimentally it would be hard to detect the an-
isotropy when the two levels are too close in energy.

Finally, Fig. 13 shows the optical transition strength as a
function ofki8 for x50.08 andx50.12 for the~011! growth
direction. Forx50.08 the first confined state has a hh char-

FIG. 8. The hh contribution to the integrated squared wave func-
tion as a function of smallki8 vectors for the hh1 subband for the
same strained~solid lines! and unstrained~dotted lines! structures,
the same in-plane directions and the same growth directions as in
Fig. 7. Notice that, for the~011! growth direction, the strain has the
effect of increasing the mixing with lh states.

FIG. 9. Same as in Fig. 4 for a 60 Å compres-
sively strained In0.25Ga0.75As/Al 0.4Ga0.6As QW.
It can be seen that compressive strain enhances
the anisotropic absorption for the~011! and~113!
directions and changes the ratio between the
hh1-c1 and the lh1-c1 transitions in all cases.

FIG. 10. Strain-induced energy shifts of hh~solid lines!,
lh ~dashed lines!, and so~dotted lines! band edges assuming a fixed
conduction band edge for a tensilely strained GaPxAs(12x) layers
grown on a GaAs substrate along the~001!, ~011!, ~111!, and~113!
directions.
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acter and lies 6.5 meV above the second confined state of lh
character. Conversely, forx50.12, the lh1 state lies 5.5 meV
above the hh1 state. The behavior ofupvcu2 for x50.08 re-
sults from the strong anticrossing between the first two sub-
bands; whereas atki850 the first subband has hh character, it
becomes lh-like immediately away fromki850. This is due
to the strong coupling~linear inki8) between the lh1 and the
hh2 states, yielding a positive in-plane effective mass of the

lh 1 subband which causes the strong anticrossing with the
hh1 subband. Forx50.12 the lh1 subband has become the
highest in energy and the anticrossing with the hh1 subband
is strongly reduced.

IV. SUMMARY AND CONCLUSIONS

We have presented a comprehensive theoretical treatment
of the electronic properties of strained and unstrained semi-
conductor QW structures grown along any (hkl) crystallo-
graphic directions. The numerical results, obtained by a very
efficient, real-space, approach to the solution of the multi-
band Hamiltonian, point out the interest of growth on novel
index planes for valence band engineering. Large differences
in hole effective masses, warping and spin splittings are
found to be induced by the crystallographic directions as
well as by strain and piezoelectric fields.

We have also shown that, for any growth direction, one
can identify dominant hh, lh, and so states atki850 by
choosing a symmetry-adapted set of basis functions which
yield exactly the same selection rules for optical transitions
as those used for the usual~001! growth direction.

In the symmetry-adapted basis thek•p part of the total
Hamiltonian can be separated in a part which is independent
of the growth direction and a ‘‘relatively small’’ correction
which varies with the growth direction, and which is respon-
sible for a coupling of the hh states with the lh and so states
atki850 for growth directions other than~001! and~111!. An
interesting consequence of this fact is the anisotropic behav-
ior of the optical absorption as a function of the linear in-
plane light polarization for perpendicular incoming light in
the latter case. This anisotropy is enhanced by strain due to
the strain-induced coupling with the so states.

Besides, we have derived analytical expressions for the
effective masses in perpendicular and in-plane directions as a
function of the (hkl) growth direction in the limit of un-
coupled bands. Comparison to the exact numerical results
shows the usefulness of these analytical expressions, particu-

FIG. 11. Hole-dispersion along the (180808) and (081808) in-
plane directions for a 80 Å tensilely strained
GaPxAs12x/Al 0.4Ga0.6As QW grown along the~111! direction for
x50.1 andx50.2. Closed and open dots indicate hh and lh sub-
bands atki850, respectively.

FIG. 12. Squared absolute value of the optical transition matrix-
elementpvc at ki850 for the transitions of the first two confined
hole states (c1 andc2) to the first confined electronic state in a 80
Å GaPxAs12x5/Al 0.4Ga0.6As QW grown in the~011! direction as a
function of the phosphide contentx for circularly ~solid line! and
linearly polarized light~dashed and dotted lines for polarization in
the x8 and y8 directions, respectively!, incoming perpendicular to
the layers.

FIG. 13. Same as in Fig. 4 for a 80 Å tensilely strained
GaPxAs125x/Al 0.4Ga0.6As QW grown in the ~011! direction for
x50.08 andx50.12.
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larly in what concerns the quantization energy.
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APPENDIX A

The 838 k•p HamiltonianHK relative to the basis func-
tions ~1! in Sec. II A and wherekx , ky , andkz are the coor-
dinates in the~100!, ~010!, and~001! directions, respectively,
is given by

3
Ec1gck

2 0 A1
2P8k1 0 2 iA2

3P8kz A 1
6P8k2 A 1

3P8kz 2 iA1
3P8k2

0 Ec1gck
2 0 A1

2P8k2 A 1
6P8k1 2 iA2

3P8kz 2 iA1
3P8k1 A 1

4P8kz

A 1
2P8*k2

0 Ev1p1q 0 l m iA 1
2 l 2 iA2m

0 A 1
2P8*k1

0 Ev1p1q m† 2 l † 2 iA2m† 2 iA 1
2 l

†

iA 2
3P8*kz A 2

3P8*k2
l † m Ev1p2q 0 2 iA2q iA 3

2 l

A 1
6P8*k1 iA 2

3P8*kz m† 2 l 0 Ev1p2q 2 iA 2
3 l

† 2 iA2q

A 1
3P8*kz iA 1

3P8*k2
2 iA 1

2 l
† iA2m iA2q iA 2

3 l Eso1p 0

iA 1
3P8*k1 A 1

3P8*kz iA2m† iA 1
2 l 2 iA 3

2 l
† iA2q 0 Eso1p

4 ~A1!

where

k65kx6 iky ,

gc5
\2

2m0
Fm0

mc*
2
2Ep

3Eg
2

Ep

3~Eg1Dso!
G ,

P85
\

m0
P,

P5^SupxuX&5^SupyuY&5^SupzuZ&,

p52g̃1

\2

2m0
~kx

21ky
21kz

2!,

q52g̃2

\2

2m0
~kx

21ky
222kz

2!,

l5 i2A3g̃3

\2

2m0
~kx2 iky!kz ,

m5A3
\2

2m0
~ g̃2k1k22 i2g̃3kxky!. ~A2!

The parametersg̃1 , g̃2 , and g̃3 are the modified Luttinger
parameters which are related to the Luttinger parameters by

g̃15g12
Ep

3Eg
,

g̃25g22
Ep

6Eg
,

g̃35g32
Ep

6Eg
, ~A3!

whereEp5 (2/m0)uPu2.
The 636 LK HamiltonianHLK for valence band states is

obtained from 636 valence band part ofHK by replacing
the modified Luttinger parameters in the expressions~A2! by
the Luttinger parameters.

To ensure the hermiticity of the Hamiltonian we have
used the ‘‘symmetrized’’ form,43 which means that we ap-
plied the following substitutions:

g
d2

dz2
→

d

dz
g
d

dz
, ~A4!

2 ig
d

dz
→2

i

2 H g,
d

dzJ 52
i

2 S g
d

dz
1

d

dz
g D . ~A5!

These substitutions lead to well-defined boundary conditions
of the envelope functions at the interface~s!. Recently, alter-
native boundary conditions, obtained from an exact deriva-
tion of the envelope function theory, have been presented.44

In Refs. 45 and 46, it was shown that these modified bound-
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ary conditions can lead to small differences in the subbands.
Therefore we intend to adopt the exact form in the near fu-
ture. We note, however, that the results presented in this
paper do not change qualitatively by using the exact theory
and that the theoretical analysis of thek•p Hamiltonian for
different growth directions can easily be adapted to deal with

the exact boundary conditions. The expressions for the effec-
tive masses Eqs.~16!, ~17!, ~20!, and~21! remain unaffected.

APPENDIX B

The strain Hamiltonian relative to the six dimensional va-
lence band part of basis~1! is given by

HLK
str53

r 1
2

0
2 iw2*

A3
w1*

A12
w2*

A6
2 iw1*

A6

0
r 1
2
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2 iw1
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2 i ~r 122r 2!
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A3
0

~r 114r 2!
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iw1*
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3
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iw1
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i ~r 122r 2!
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3

4 , ~B1!

where the constantsr 1 , r 2 , w1 , andw2 are given by

r 15^X1 iYuĤstruX1 iY&52~2a2b!~exx1eyy!2~2a12b!ezz,

r 25^ZuĤstruZ&52~a1b!~exx1eyy!2~a22b!ezz,

w15^X2 iYuĤstruX1 iY&53b~exx2eyy!1 i2A3dexy ,

w25^ZuĤstruX1 iY&5A3dexz1 iA3deyz . ~B2!

We note that for growth directions other than~001! this is not the strain Hamiltonian in the symmetry-adapted basis.

APPENDIX C

Here, we extend the calculation of the in-plane effective mass for hh subbands in the uncoupled band approximation for an
infinite square well@Eq. ~20!# to include also the terms linear ind/dz8. Generally the eigenstates satisfy

\2

2m0
F2ghh
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dz82
2 i ~ghh

xzkx81ghh
yzky8!

d

dz8
1~ghh

xxkx8
212ghh

xykx8ky81ghh
xxky8

2!1V~z8!Gfhh~z8!5Efhh~z8!, ~C1!

where ghh
zz[1/m'hh* is given by Eqs.~16!, ghh

xx , ghh
xy, and

ghh
yy are given by Eq.~22!, and whereghh

xz andghh
yz are given

by

ghh
xz56~g22g3!dhh

xz

ghh
yz56~g22g3!dhh

yz ~C2!

with

dhh
xz5c1

3c3@h
4l 31k4l 32~h21k2!3l #12c1c2

2c3h
2k2l ,
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dhh
yz5c1

2c2c3~hk
32h3k!l1c2

3c3~h
3k2hk3!. ~C3!

Then one can show that the in-plane effective mass in the
in-plane directionn̂5(n1 ,n2 ,0) ~wheren1

21n2
251) in the

limit of infinite barriers is given by

mihh* ~n!5@n1
2ĝhh

xx12n1n2ĝhh
xy1n2

2ĝhh
yy#21, ~C4!

where

ĝhh
xx5ghh

xx2
~ghh

xz!2

4ghh
zz ,

ĝhh
xy5ghh

xy2
ghh
xzghh

yz

4g hh
zz ,

ĝhh
xx5ghh

xx2
~ghh

yz!2

4ghh
zz . ~C5!

Usually,ghh
xz andghh

yz are small~proportional tog22g3) rela-
tive to ghh

zz , so that the contribution of the second terms in
Eq. ~C5! to the effective mass is small. Similar expressions
can be derived for the lh subbands.
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