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We investigate the stability, dynamical properties, and melting of a two-dimensional~2D! Wigner crystal
~WC! of classical Coulombic particles in a bilayer structure. Compared to the single-layer WC, this system
shows a rich phase diagram. Five different crystalline phases are stable; the energetically favored structure can
be tuned by changing either the interlayer distance or the particle density. Phase boundaries consist of both
continuous and discontinuous transitions. We calculated the phonon excitations of the system within the
harmonic approximation and we evaluated the melting temperature of the bilayer WC by use of a modified
Lindemann criterion, appropriate to 2D systems. We minimized the harmonic free energy of the system with
respect to the lattice geometry at different values of temperature/interlayer distance and we found no
temperature-induced structural phase transition.

INTRODUCTION

Classical charged particles confined in a single, two-
dimensional ~2D! layer localize into a hexagonal lattice
~Wigner crystal! for sufficiently large densities and low
temperatures.1 Such a single-layer Wigner crystal~SLWC!
has been realized, e.g., on the surface of liquid helium.2 Col-
loidal particles dissolved in water and placed between two
glass plates are another example of an experimental system
where classical particles exhibit Wigner crystallization.3

Electrons in 2D semiconductor heterostructures behave like
quantum particles, but a strong perpendicular magnetic field
quenches the kinetic energy, leading the system toward the
classical regime. The quest for the observation of such a
Wigner crystal has been the object of very intense work over
the last decades.4 The melting transition of the classical
SLWC, in particular, has attracted a large body of
investigation5 since the proposal of a dislocation-mediated
melting mechanism, leading to the prediction of a continuous
melting transition.6–8

Recently, a new 2D system has attracted the attention of
several groups, namely, the Wigner crystal in a bilayer struc-
ture. One of the peculiarities of the bilayer Wigner crystal
~BLWC!, compared to the SLWC, consists in the rich phase
diagram; it has been predicted that different crystalline struc-
tures are stable in different ranges of interlayer distance/
charge density.9–15

In the present paper we address the phase diagram of such
bilayer structures.13We consider a BLWC of Coulombic par-
ticles evenly distributed between the two layers. In a classi-
cal BLWC, the interparticle interaction can be characterized
by a unique dimensionless parameterh5dAn/2, whered is
the interlayer distance andn is the total charge density.h
represents the ratio between the interparticle interactionbe-
tweenthe layer andwithin each layer. Thus, in the classical
case, the Hamiltonian of the system is only a function of
h, which therefore determines completely the phase diagram
at T50. This is in contrast with the equivalent quantum
problem, whered andn do not scale out. The search for the
stable structure of a classical BLWC, atT50 and as a func-
tion of h, is made easier by the following considerations:~1!

due to the long-range interaction, the two lattices which oc-
cupy the two layers~sublattices! are staggered to maximize
the interparticle distance. Each lattice site sits at the center of
a cell in the opposite layer;~2! there are two trivial limiting
cases: ath50 the two sublattices reduce to a SLWC, which
is known to crystallize in a hexagonal lattice~one-
component hexagonal lattice!. At the opposite limit of large
h the two sublattices are weakly coupled and, therefore, the
stable structure is constituted by two staggered SLWC~stag-
gered hexagonal lattice!. By comparing the static energy of
several lattices, we find that five different phases are ener-
getically favored in different ranges ofh. The five struc-
tures, in order of increasingh, are a one-component hexago-
nal lattice~I!, a staggered rectangular lattice~II !, a staggered
square lattice~III !, a staggered rhombic lattice~IV !, and a
staggered hexagonal lattice~V!. These phases evolve one
into the other through both first- and second-order phase
transitions.

There exist already a number of investigations of the
T50 phase diagram of the classical BLWC in various
systems.9,11–13,15Some of the previous investigations of the
present system11,15did not identify all five phases. In Ref. 12,
the bilayer electron system which forms in a single wide
quantum well above a critical density16 was studied. In this
case, the transition from the single layer to the bi-layer~and,
at higher densities, to a higher number of layers! is of first
order, withh which jumps from 0 to;0.27; therefore, the
low-h phases I and II were not investigated in Ref. 12. Theo-
retical investigations suggest that also bilayer structures in
the quantum regime possess a complex phase diagram. In
Ref. 17 a structural instability is found in the strong coupling
regime, when the tunneling probability decreases below a
critical threshold as a consequence of layer separation. The
five phases described above have been predicted to exist in a
bilayer quantum Hall system.14 Other bilayer structures with
an even more complex phase diagram can be imagined, for
example, with different densities of the two layers.9,10

Phonon excitations of some of the above systems have
been partially investigated, within the harmonic
approximation.11,12,15Phonon frequencies have been used to
evaluate the zero-point energy and the critical density for
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cold melting of the quantum BLWC12,15also in the presence
of a magnetic field.

In this paper we address thenonzerotemperature phase
diagram of a classical BLWC, which has not been investi-
gated so far. With this aim, we have systematically investi-
gated, within the harmonic approximation, the phonon exci-
tations of each of the five structures. This allowed us not
only to determine the range of structural stability and the
behaviour of the acoustical and optical modes, which could
be subject to experimental observations, but also allowed us
to estimate the melting temperature of the crystal through the
Lindemann criterion. The latter states that melting takes
place when the mean square displacement of the crystallized
charges exceeds a certain fraction of the lattice parameter. It
should be noted that in 2D the mean square displacement
diverges logarithmically with the crystal size. On the other
hand, therelativemean square displacement between nearest
neighbors~NN’s! is a well-defined quantity and its value at
melting has been determined from simulations of 2D
crystals.18 Therefore, the latter quantity has been used in the
present paper to estimate the melting temperature. Our re-
sults show that, by changingh at constant temperature, one
can pass through alternating regions of crystalline and liquid
order.

The overlapping range of stability of different lattice
structures along theh axis suggests the possibility that
temperature-induced structural phase transitions take place
before the melting temperature is reached. To investigate this
last possibility, we have minimized the harmonic free energy
of different structures at increasing temperatures at fixedh,
and we have found no evidence of such a temperature-
induced structural phase transition.

The paper is organized as follows. In Sec. I we investigate
the zero temperature phase diagram. In Sec. II we calculate
the phonon excitations of the systems. The nonzero tempera-
ture phase diagram is investigated in Sec. III. Results are
discussed and summarized in the last section.

I. ZERO TEMPERATURE PHASE DIAGRAM

We consider a BLWC consisting ofN classical, spinless
particles with total charge densityn, evenly distributed over
the two layers. The same form of the Coulombic interaction
e2/r is assumed between particles in the same layer and in
different layers.

Electrons crystallized in the two layers constitute two sub-
lattices which are equivalent by symmetry. When necessary,
we denote the two sublattices byA andB. We consider only
the case of two layers of equal charge densityns5n/2 each;

therefore, in the limith→0, we recover a SLWC of density
n. We consider the BLWC as a 2D lattice ofN/2 unitary
cells, with two electrons per cell sitting on opposite layers.
The primitive vectors are denoted bya1 anda2 , and the basis
vectors are (0,0) andc; a1 , a2 , c, ns , and the vectorsb1 and
b2 generating the reciprocal lattice, are listed in Table I for
the five relevant phases. The equilibrium positions of the
crystallized electrons in layersA andB are, respectively,

RA5 ia11 ja2 , ~1!

RB5 ia11 ja21c, ~2!

wherei , j are integers. The total potential energy of the mo-
bile charges due to the intralayer and the interlayer interac-
tion is

Vp5
1

2 H (
RAÞRA8

e2

uRA2RA8 u
1 (

RBÞRB8

e2

uRB2RB8 u

12 (
RA ,RB

e2

@ uRA2RBu21d2#1/2J . ~3!

The factor 1/2 accounts for double counting. Since the two
layers are equivalent, and the origin can be chosen arbitrarily
if we neglect surface effects, there areN/2 equivalent terms
in each sum and the potential energy per particle
E5Vp /N, therefore, reads

E5 1
2 ~E01EI !, ~4!

where

E05 (
RÞ0

e2

R
~5!

represents the intralayer interaction energy, and

EI5(
R

e2

@ uR1cu21d2#1/2
~6!

is the interlayer interaction energy. HereR5 ia11 ja2 and
R5uRu.

We follow Bonsall and Maradudin19 and rewrite~5! as

E05e2 lim
r→0

F(
R

1

ur2Ru
2
1

r G , ~7!

TABLE I. Lattice parameters of the five geometries considered.a is the NN distance. For each phase, the primitive vectorsa1 anda2 , the
interlattice displacementc, the reciprocal lattice vectorsb1 and b2 , and the sublattice charge densityns are indicated. For phase II,
a2 /a1 is the aspect ratio. For phase IV,u is the angle betweena1 anda2 .

Phase a1 /a a2 /a c b1 /(2p/a) b2 /(2p/a) nsa
2

I. One-component hexagonal (1,0) (0,A3) (a11a2)/2 (1,0) (0,1/A3) 1/A3
II. Staggered rectangular (1,0) (0,a2 /a1) (a11a2)/2 (1,0) (0,a1 /a2) a1 /a2
III. Staggered square (1,0) (0,1) (a11a2)/2 (1,0) (0,1) 1
IV. Staggered rhombic (1,0) (cosu,sinu) (a11a2)/2 (1,2cosu/sinu) (0,1/sinu) 1/sinu
V. Staggered hexagonal (1,0) (1/2,A3/2) (a11a2)/3 (1,21/A3) (0,2/A3) 2/A3
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wherer is a 2D vector andr5ur u. It is convenient to define
the following two functions:20

T0~r ,q!5e2 iq•r(
R

eiq•~r2R!

ur2Ru
2
1

r
, ~8!

TI~r ,q!5e2 iq•r(
R

eiq•~r2R1c!

@ ur2R1cu21d2#1/2
, ~9!

from whichE0 andEI are obtained,

E05e2 lim
r→0

T0~r ,0!, ~10!

EI5e2TI~0,0!. ~11!

Due to the long-range nature of the interaction, the lattice
sums inT0 andTI converge slowly. The Ewald technique is
commonly used to overcome this difficulty, and consists in
splitting the slowly convergent sum into two parts: the con-
tribution of the first shells of neighbors is summed up in real
space, while the contribution of the outer shells is summed
up in reciprocal space. Both sums turn out to be rapidly
convergent. The transformation to rapidly convergent sums
over the real lattice vectorsR and the reciprocal lattice vec-
tors G is reported in Appendix A. Here we state the final
result

T0~r ,q!5Ans (
G

e2 i ~q1G!•rFS uq1Gu2

4pns
D1Ans(

RÞ0
e2 iq•RF~pnsur2Ru2!1AnsF~pnsr

2!2
1

r
, ~12!

TI~r ,q!5Ans (
G

e2 i ~q1G!•re2 iG•cCS uq1Gu2

4pns
,ph2D1Ans (

R
e2 iq•~R2c!F~p@nsur2R1cu21h2# !. ~13!

The functionsF(x) andC(x,y), defined in Appendix A, decay exponentially to zero for largex; therefore,T0 andTI contain
only rapidly convergent sums.

TheG50 term in the first sum on the right-hand side~rhs! of ~12! and ~13! gives rise to a divergent term inE0 and in
EI , ensuing from the lack of charge neutrality. These terms are balanced by the interaction with a positive background,
independently from the lattice geometry. Since the origin of the energy can be chosen arbitrarily, the divergent terms can be
separated out and neglected in the calculation of the energy. This is done in Appendix B and the final result is

E052e2AnsH (
RÞ0

F~pnsR
2!22J , ~14!

EI5e2AnsH(
R

F~p@nsuR1cu21h2# !1 (
GÞ0

eiG•cCS G2

4pns
,ph2D 12$ph erfcAph2e2ph2%J , ~15!

whereG5uGu and erfc(x) is the complementary error func-
tion defined in Appendix A.

We have calculatedE/e2An ~recall thatn52ns) for the
five different lattices listed in Table I. Phases I, III, and V are
‘‘rigid,’’ meaning that, for a fixed density, the cell is uniquely
determined. On the contrary, phases II and IV are ‘‘soft,’’
because each of them contains a parameter, the ratioa2 /a1
of the length of the primitive vectors~aspect ratio! and the
angle between them, respectively, which can take on continu-
ous values; at each value ofh, this parameter is determined
by energy minimization.

Figure 1 shows the calculated energy per particle of
phases I, III, and V as a function ofh; the energy of phases
II and IV would be nearly indistinguishable on the scale of
this figure and will be shown later in Fig. 2. As we discussed
in the Introduction, phase I is energetically favored at very
small h, and it reduces to the SLWC ath50. At h50 we
find E521.960 52e2An, which coincides with Ref. 19. At
the opposite limit of largeh the two sublattices become less
and less coupled and the favored geometry is composed of
two staggered SLWC’s~phase V!. Accordingly, the energy
converges to the valueE0521.960 52e2An/A2, where the
factor A2 accounts for the reduced charge density. In the

intermediate range ofh the energetically favored structure is
phase III. The geometry of the three phases is sketched in the
insets of Fig. 1, close to the range where they have the low-
est energy.

Within the regions delimited by the open dots in Fig. 1,

FIG. 1. Static energy per particle of phases I, III, and V. In the
insets we show the corresponding lattice geometries in which dots
and crosses identify the two sublattices.a1 and a2 are given in
Table I.
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the energetically favored structures are phases II and IV.
These intermediate phases allow the lattice to pass from
phase I to phase III, and from phase III to phase V, respec-
tively. Note that phase II contains phase I and phase III as
limiting cases, corresponding to the aspect ratios
a2 /a15A3 anda2 /a151, respectively. Analogously, phase
IV contains phase III as limiting case foru5p/2. Therefore,
the transitions I→II, II→III, and III→IV are continuous.
Note, on the other hand, that there is no continuous way to
pass from phase IV to phase V and, therefore, the transition
IV→V is of the first-order, i.e.,]E/]h exhibits a jump. Ap-
parently, this point has been overlooked in Ref. 12, where the
authors claim that the transition IV→V is continuous. The
necessity for a first-order phase transition when going from
phase III to phase V has also been discussed, by use of gen-
eral group theoretical arguments, by V. Fal’ko in Ref. 11.

Figure 2~a! shows the transition I→II→III on an enlarged
scale. Phase I is energetically favored only in a very small

range aroundh50. As h.0.006, in fact, a rectangular unit
cell with a2 /a1,A3 ~phase II! is energetically favored. In
the inset of Fig. 2~a! we show how the aspect ratioa2 /a1
evolves in a continuous way during the transition; phase I
evolves into phase III through an anisotropic shrinking of the
rectangular unit cell, and eventuallya2 /a151, correspond-
ing to phase III, is reached ath50.262.

The energy of phase IV is compared in Fig. 2~b! with the
energy of phases III and V. For 0.622,h,0.732 the stag-
gered rhombic lattice~phase IV! has the lowest energy. As
shown in the inset, increasingh the angleu between the cell
axes evolves continuously from 90°, corresponding to the
square lattice~phase III!, to 69.48°, and suddenly drops to
60°, which corresponds to phase V. The phase boundaries
found above agree well with those found in Refs. 11 and 12.

To conclude this section, we give the asymptotic expres-
sions of the static energy, for small and largeh,

E

e2An
521.960 521

1

2A2
@2ph20.600 434h212.867 13h4# for smallh, ~16!

E

e2An
52

1.960 52

A2
2

v

2A2
e2wh for largeh, ~17!

wherev523(A3/2)1/2 andw5(8p2/A3)1/2 in ~17!. Equa-
tions ~16! and ~17! reproduce the correct energy within 2%
for h,0.3 and within 0.2% forh.0.5, respectively. We
stress that the above expressions are not fitting functions, but
have been obtained by a series expansion of~15! with respect
to h in the relevant range. In Eq.~16! the linear term, ensu-
ing from the last term in Eq.~15!, is the only odd-order term
in the Taylor expansion and all higher-order terms are even;
the coefficients involve sums over the direct and the recipro-
cal lattices, which have been calculated numerically for the
lattice of phase I. The coefficients in Eq.~17! can be ob-
tained analytically, once one realizes that, for largeh, only
the first shell ofG’s needs to be retained in~15!; higher-

order terms are proportional toe2ph2 and decay faster for
largeh. In Ref. 12 two fitting expressions for the classical
energy were given; however, we found that none of them
have the correct limiting behavior.

II. DYNAMICAL PROPERTIES

In this section we calculate the frequencies of the phonon
excitations of the five different phases within the harmonic
approximation.

For a general lattice, the square of the phonon frequencies
are the eigenvalues of the dynamical matrix defined by21

@T~q; lk,l 8k8!#ab5
1

~mkmk8!
1/2

3(
l 8

fab~ lk,l 8k8!e2 iq•~Rlk2Rl 8k8!,

~18!

whereRlk is the position vector of thekth particle in thel th
cell of the crystal, andmk its mass. The quantities
f( lk,l 8k8) are the force constants defined by

fab~ lk,l 8k8!5]a]bf~Rlk2Rl 8k8!, ~19!

wheref(Rlk2Rl 8k8) is the two-body interparticle potential.
Here and in the following we use the notation
]aF(x)5]F(x8)/]xa8 ux5x8, wherexa is theath component
of the vectorx. Due to translational invariance, the force
constants satisfy the sum rule21

(
lk,l 8k8

fab~ lk,l 8k8!50. ~20!

Since each 2D unit cell of the BLWC contains two elec-
trons, the dynamical matrix is a 434 matrix which we write
in block form as

4594 53G. GOLDONI AND F. M. PEETERS



D5SDAA DAB

DBA DBBD , ~21!

whereDAA, DAB, DBA, andDBB are 232 matrices. Applying
~18! to the BLWC and using translational invariance, we
obtain the matrix elements ofDAA andDAB,

@DAA~q!#ab5
1

me
(
R

fab~R!e2 iq•R, ~22!

@DAB~q!#ab5
1

me
(
R

fab~R2c!e2 iq•~R2c!, ~23!

whereme is the electron mass, and the force constants are

fab~R!5]a]b

e2

R
, RÞ0, ~24!

and

fab~R2c!5]a]b

e2

@ uR2cu21d2#1/2
. ~25!

Using Eq.~20!, we find the force constant forR50

fab~R50!52F (
RÞ0

fab~R!1(
R

fab~R2c!G . ~26!

Furthermore, since the two sublattices are equivalent, we
haveDAA5DBB and, using Eq.~18!, DAB5@DBA#†.

It turns out to be convenient to define

@SAA~q!#ab52e2(
RÞ0

]a]b

e2 iq•R

R
, ~27!

@SAB~q!#ab52e2(
R

]a]b

e2 iq•~R2c!

@ uR2cu21d2#1/2
, ~28!

which can be obtained fromT0 andTI ,

@SAA~q!#ab52e2 lim
r→0

]a]bT0~r ,q!, ~29!

@SAB~q!#ab52e2]a]bTI~0,q!. ~30!

Then the matrix elements of the dynamical matrix can be
written

DAA~q!5
1

me
@SAA~0!1SAB~0!2SAA~q!#, ~31!

DAB~q!5
1

me
@2SAB~q!#. ~32!

Using the rapidly convergent form forT0 andTI , as given in
~12! and~13!, allows one to write down the matrix elements
of SAA andSAB explicitly,

@SAA~q!#ab5AnsH 2(
G

~q1G!a~q1G!bFS uq1Gu2

4pns
D 1 (

RÞ0
V̄ab~pnsR

2!e2 iq•R1dab

4

3
~pns!J , ~33!

@SAB~q!#ab5AnsH 2(
G

~q1G!a~q1G!bCS uq1Gu2

4pns
,ph2D e2 iG•c1(

R
V̄ab~pnsuR2cu2!e2 iq•~R2c!J , ~34!

FIG. 2. Detail of Fig. 1, showing the transitions:~a! I→II→III
and~b! III→IV→V. Also shown are the lattice geometries in which
full dots and crosses identify the two sublattices. Empty dots and
diamonds which indicate the sublattices of phases I~a! and III ~b!
are also reported for reference. The insets show how~a! the aspect
ratioa2 /a1 and~b! the sine of the angleu betweena1 anda2 evolve
during the transition.
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where we have defined

V̄ab~X2!5]a]bF~X2!

52pns$dabF8~X2!12pnsXaXbF9~X2!%.

~35!

In generalD is a complex Hermitian matrix. However,
since in the BLWC the two sites of each cell are occupied by
identical particles, it is possible to apply a unitary transfor-
mation which results in a real symmetric matrix.22 If we
denote withI2 the 232 identity matrix, the transformation

U5
1

A2
S I2 i I2
i I2 I2

D ~36!

results in

D5UDU215SDAA1 ImDAB ReDAB

ReDAB DAA2 ImDAB
D , ~37!

where ReDAB and ImDAB are the real and imaginary parts
of DAB . Note that ImDAB50 for a lattice with inversion
symmetry. This applies to all phases, except for phase V.

Finally, we solved the set of four linear equations

~D~q!2vq, j
2 I4!e~q, j !50, ~38!

whereI4 is the 434 identity matrix,vq, j is the frequency of
the j th phonon mode (j51, . . . ,4) with wave vectorq, and
e(q, j ) its eigenvector. Equation~38! is equivalent to the di-
agonalization of the 434 matrixD, which provides the four
eigenvaluesvq, j

2 at each pointq in reciprocal space. For a
lattice to be stable, it is necessary thatvq, j

2 .0.
Figure 3 shows the frequenciesvq, j ~or, whenvq, j

2 is
negative, its imaginary part! for phases~a! I, ~b! III, and ~c!
V, and their evolution withh. Frequencies are given in terms
of the characteristic frequencyv15e2n3/2/me , which de-
pends on the density and not on the lattice geometry. Phonon
dispersions are shown along the high symmetry directions in
reciprocal space. The high symmetry points are labeled ac-
cording to the insets. We recall that in a SLWC the transverse
acoustical~TA! and the longitudinal acoustical~LA ! modes
vanish at theG point asq andq1/2, respectively.19 Thus the
sound velocity of the LAmode is infinite. The latter behavior
is a general property of a 2D Coulomb plasma19 and does not
depend on the lattice geometry, nor ond, as is clear from a
comparison of the three panels in Fig. 3. The remaining two
~optical! modes ensuing from~38! are peculiar to the BLWC
and correspond to out-of-phase vibrations of electrons in op-
posite layers.

Starting from the top panel, it is shown in Fig. 3 that, as
h is increased, the TA mode of phase I softens until, above a
critical value ofh, the frequency becomes imaginary, indi-
cating a lattice instability. Forh between 0.262 and 0.622
phase III~square lattice! is energetically favored, according
to Fig. 2. We recall that in a SLWC the square lattice cannot
exist, since it has an imaginary TA branch.19 Figure 3~b!
shows, on the other hand, that in the BLWC the square lattice
is stable for a certain range ofh. For h below a critical
value, however, the TA branch softens along theG M direc-
tion and eventually becomes imaginary, as is expected from

the fact that in this limit the BLWC tends to the SLWC; at
the opposite limit of largeh, the TA branch softens along the
GX direction and eventually phase III becomes unstable, as
the BLWC tends to two separated SLWC’s.

Phase V is stable for largeh @Fig. 3~c!#. In the limit
h→` we have the phonon dispersion curves of two un-
coupled SLWC’s; therefore, in Fig. 3, each curve in the
h5` case is doubly degenerate and all modes approach zero
for q→0. For smallerh, optical modes with a finite fre-
quency at theG point appear; at the same time, the TA mode
becomes softer and, eventually, becomes imaginary at
h;0.6.

The sound velocity of the TA mode,
vTA5dvTA /dquq50 , along the in-plane directions (1,0) and
(1,1), and for the five phases, is shown in detail in Fig. 4.
The labels on top of the figure indicate the energetically fa-
vored phase in each range ofh, according to Figs. 1 and 2;
phase I is favored only in a very small range aroundh50
and, therefore, is not indicated. The vanishing of the low-

FIG. 3. Phonon dispersion curves for phase I~top panel!, phase
III ~middle panel!, and phase V~bottom panel!, and for several
values ofh, as indicated in the legends. Phonon frequencies are
shown along high symmetry directions in the Brillouin zones of the
three phases. In each panel, high symmetry points along the ab-
scissa are labeled according to the insets. Frequencies are given in
terms of the characteristic frequencyv1

25e2n3/2/me .
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frequency modes in certain directions, shown in Fig. 4, sets a
limit to the range of stability of each phase. Note that phases
II and III have a soft mode at a value ofh which coincides
with the value where the transition between the two phases
takes place~the vertical dotted line!. The same happens for
phases III and IV. Therefore, the range where phase III is
energetically favored coincides with the range of stability of
this phase. This has profound implications in determining the
BLWC phase diagram atTÞ0, as we will show in the next
section. Note also that in the range ofh where phase II is
energetically favored, both phases I and II are stable, i.e.,
they do not have imaginary phonon frequencies. Analo-
gously, in the range where phase IV is energetically favored,
both phases IV and V are stable. TheT50 phase diagram,
deduced from Figs. 1 and 2, and the range of stability, de-
duced from the softening of phonon modes, are summarized
in Fig. 5.

Figure 6 shows the evolution of the optical frequencies at
the G point, vopt, with h. For phases III and V the two
optical frequencies are degenerate. It has been noted that the
detection of the exponential decay of the optical modes at
largeh could serve as a fingerprint of the solid phase in a
bilayer structure.11 Note also the different behavior of the
optical modes between phases I and II, and between IV and
V, which may be used experimentally to distinguish between
the different possible phases.

The dependence of the sound velocity and of the optical
modes at theG point uponh has been fitted to simple ana-

lytical expressions in the low-h ~below ;0.2) and in the
large-h ~above;0.7) ranges. The sound velocityvTA ~see
Fig. 4! has been fitted to

vTAAn/v15p01p2h
21p4h

4 ~39!

for smallh, and to

vTAAn/v15p01p2h
221p4h

24 ~40!

for largeh. The coefficientspi for phases I, II~smallh), and
V ~large h) are reported in Table II. The frequenciesvopt
~see Fig. 6! have been fitted to

vopt/v15q01q2h
21q4h

4 ~41!

for smallh, and to

vopt/v15q1e
2q2h ~42!

for large h. For h;0.262, close to the boundary between
phases II and III, the optical modes of phase II have a sin-
gular behavior. In this range we have fittedvopt to

vopt/v15q01q1~q22h!q3. ~43!

The coefficientsqi are reported in Table III. The agreement
with the full calculations did not improve by adding odd
powers ofh in Eqs.~39!, ~40!, and~41!. All the above fitting
functions give the correct values with an accuracy better than
0.6% in the relevant ranges ofh.

FIG. 4. Sound velocity of the TA mode (v1
25e2n3/2/me) along

the ~1,0! ~solid lines! and~1,1! ~dashed lines! directions for the five
phases. The sound velocity of phase V is isotropic and the two
curves coincide. Vertical dotted lines indicate the phase boundaries,
according to Figs. 1 and 2; the labels on top of the figure indicate
which phase is energetically favored in each region.

FIG. 5. T50 phase boundaries~solid dots! and range of stabil-
ity ~crosses! of the five phases along theh axis.

FIG. 6. Optical frequencies at theG point for the five phases.
For each phase,vopt are reported in the whole range in which the
phase is stable. Vertical dotted lines indicate the phase boundaries;
the labels on top of the figure indicate which phase is energetically
favored in each region.

TABLE II. Fitting parameters for the sound velocityvTA in Eqs.
~39! and ~40!.

Smallh Largeh

@Eq. ~39!# @Eq. ~40!#

Phase I Phase II Phase V
~1,0! ~1,1! ~1,0! ~1,1!

p0 0.495 04 0.495 04 0.416 28
p2 -3.6871 0.748 1.6608 -3.5072 0.018 32
p4 -6.1097 -1.0444 1.5212 -21.192 -0.059 25
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In Fig. 7 we report the evolution withh of the phonon
density of state~DOS!. At each value ofh, we show the
DOS of the phase which is energetically favored at that
value. At h50 andh5` the energetically favored lattice
are, respectively, the SLWC lattice with densityn ~phase I!,
and two uncoupled SLWC’s with densityn/2 ~phase V!;
therefore, the corresponding DOS curves are equal up to a
factor 23/4 in the frequency scale. Note in Fig. 7 the peak of
optical frequencies which narrows ath;0.5, corresponding
to the range ofh where the in-plane component of the aver-
age interaction of one particle with its NN’s in the same layer
and in the opposite layer are similar. Also note the low-
frequency peak which moves to very low frequencies around
h;0.3 andh;0.7. This behavior is reminiscent of the soft-
ening of the TA mode of the square lattice~phase III! dis-
cussed above. The resulting high density of low-frequency
modes suggests that very large fluctuations of particles
around their equilibrium lattice sites are possible; corre-
spondingly, a low melting temperature is expected in prox-
imity of these points, as will be discussed in Sec. III.

III. PHASE DIAGRAM AND MELTING

In this section we will be concerned with the nonzero
temperature properties of the BLWC. First, we will use the
calculated phonon excitation frequencies to estimate the
melting temperatureTM via the Lindemann criterion. In prin-
ciple, only order of magnitude estimates ofTM are expected
from a harmonic theory, since anharmonic terms of the po-
tential become important when crystal vibrations are so large
that the lattice is near to dissolve. In the case of the SLWC,
apart from simulations, analytical methods have been suc-
cessfully used to calculateTM by including anharmonic
effects.20,23 These methods assume that melting proceeds
through the dislocation-mediated mechanism proposed by
Kosterlitz and Thouless,6 Halperin and Nelson,7 and Young8

~KTHNY theory!. The ingredient of these calculations is the
sound velocity of the TA mode of the lattice, which is as-
sumed isotropic in the KTHNY theory and which is indeed
the case in the simple hexagonal lattice of the SLWC, but not
in the BLWC, where the TA mode, in general, is anisotropic,
as is clear from Fig. 4. Therefore, in this work we will rely
on the simple Lindemann criterion. We shall see that, taking
the Lindemann parameterd, defined in Eq.~44! below, from
existing simulations, effectively includes anharmonic effects
into the theory to some extent.

The Lindemann criterion states that, in a lattice of density
n, melting occurs when

^u2&
r 0
2 5d2, ~44!

i.e., when the mean square displacement of a lattice site
around its equilibrium position̂u2& exceeds a certain frac-
tion of the mean interparticle distancer 051/Apn. The
bracketŝ •••& represent the thermodynamic average; in our
case the latter will be calculated within the harmonic theory.
The parameterd is an input to the criterion, to be obtained
from simulations or from some analytic theory. Equation
~44! has been verified in simulations of several 3D systems.24

It is known, however, that̂u2& is logarithmically divergent
in 2D. On the other hand, therelativemean square displace-
ment^uu(R)2u(R1a)u2&, whereu(R) andu(R1a) are the
displacement vectors at lattice siteR and at the NN site
R1a, wherea is the vector joining two NN’s, is finite. Cor-
respondingly, amodifiedLindemann criterion can be defined,

^uu~R!2u~R1a!u2&
r 0
2 5dm

2 . ~45!

TABLE III. Fitting parameters for the optical frequenciesvopt in Eqs.~41!, ~42!, and~43!.

Smallh Phase boundary Largeh

@Eq. ~41!# @Eq. ~43!# @Eq. ~42!#
Phase I Phase II Phase II Phase V

Low branch High branch Low branch High branch Low branch High branch

q0 1.0706 3.0379 1.0706 3.0379 q0 1.9549
q2 -3.5818 -7.6876 5.8313 -8.2276 q1 -2.0696 2.6527 5.7169
q4 6.6545 12.742 38.141 -44.859 q2 0.26252 0.26252 3.2168

q3 0.45103 0.48989

FIG. 7. Phonon DOS as a function of frequency for different
values ofh. For each value ofh, the DOS corresponding to the
energetically favored lattice is reported. Dashed lines indicate that a
‘‘soft’’ phase ~either II or IV! is stable at that value ofh.
v1
25e2n3/2/me .
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The value ofdm
2 at melting has been calculated in simula-

tions of melting in a SLWC and turned out to be.0.1.18 In
principle, dm may depend on the lattice geometry and the
nature of the interaction; however, the Lindemann parameter
has been found to be quite independent from the form of the
interaction both in 2D~Ref. 18! and in 3D~Ref. 24! systems;
therefore, we takedm

2 50.1, and independent fromh and

from the lattice geometry. Small variations ofdm would not
change our results qualitatively.

The correlation function̂ uu(R)2u(R1a)u2& is calcu-
lated within the harmonic theory.21 Each lattice site in the
BLWC has two types of NN’s, in general at a different dis-
tance, and the number and distance of the NN’s changes in a
continuous way withh. Accordingly, we calculate separately
two ~in general different! correlation functions,

L15
1

M1
(

a5x,y
(

m51, . . . ,M1

^uua
A~0!2ua

A~m!u2&5
4kBT

NmeM1
(
qj

@ex
A~q, j !#21@ey

A~q, j !#2

vq, j
2 (

m51, . . . ,M1

sin2
q•Rm

2
, ~46!

L25
1

M2
(

a5x,y
(

m51, . . . ,M2

^uua
A~0!2ua

B~m!u2&

5
kBT

NmeM2
(
qj

1

v2~q, j ! (
m51, . . . ,M1

$122@ex
A~q, j !ex

B~q, j !1ey
A~q, j !ey

B~q, j !#cosq•Rm%, ~47!

wherekB is the Boltzmann constant,ua
A(B) is theath com-

ponent of the displacement vector in layerA(B) calculated at
the origin~0! or at the position of themth NN, ea

A(B)(q, j ) is
the ath component of the eigenvector of thej th mode, at
point q, relative to the sublattice in layerA(B), Rm is the
relative lattice vector connecting one site to itsmth NN in
the same (L1) or in the opposite (L2) layer, and the sums
over m are extended to theM1 (M2) NN’s in the same
~opposite! sublattice.

Now we consider two limiting cases. Forh50,
^uu(R)2u(R1a)u2&5L11L2 , since all NN’s are equiva-
lent. At the opposite limit, h→`, ^uu(R)
2u(R1a)u2&5L1 , since the dynamics in one layer is not
influenced by the sublattice on the opposite layers. There-
fore, we write in general

^uu~R!2u~R1a!u2&5L11 f ~h!L2 , ~48!

where the functionf (h) satisfies

f ~0!51, f ~`!50. ~49!

As f (h) represents the influence of the oscillation in one
layer on the oscillations in the opposite layer, we takef (h)
proportional to the in-plane component of the Coulombic
force between two NN sites sitting in opposite layers. This is

F i~d!52
e2c

~c21d2!3/2
, ~50!

wherec5ucu. Taking f (h) proportional toF i(d), and im-
posing the conditions~49!, we have

f ~h!5
1

~11aph
2!3/2

, ~51!

where ap5(nc2)21 is a dimensionless geometric factor
which can be calculated from Table I.

Inserting Eq.~48! in ~45! and usingr 0
251/pns , we have

calculated the melting temperatureTM , which is reported in

Fig. 8 for the five phases. For the ‘‘soft’’ phases II and IV,
TM was calculated taking theT50 value of the aspect ratio
andu, respectively. This will be justified later.

In the studies of melting of the SLWC, the melting tem-
perature is usually given in terms of the dimensionless pa-
rameterGM5e2Apn/KTM ~the inverse of the vertical units
in Fig. 8!, the ratio between the average Coulombic potential
energy and the average kinetic energy. Experiments2 give
GM.131 and simulations25 give GM.128. Using the har-
monic value of the sound velocity atT50, the KTHNY
theory givesGM.79. Our calculation, which is performed
within the harmonic approximation, but usesdm taken from
simulations which, of course, include anharmonic effects,
gives kBTM /e

2Apn50.009 25 ath50, corresponding to
GM5108. Therefore, our calculation, although overestimates
TM , partially includes anharmonic effects. In a full anhar-

FIG. 8. Melting temperatureTM for the five phases. For the
‘‘soft’’ phases II and IV ~dashed lines! we used the value of the
continuously changing parameter, either the aspect ratioa2 /a1 or
the angle betweena1 anda2 , respectively, for which the energy is
at its minimum atT50.
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monic theory,L1 andL2 , which in the harmonic approxima-
tion scale linearly withT, would increase more rapidly,
especially close to the melting transition.

Figure 8 shows that the melting temperature has an oscil-
lating behavior as a function ofh. This is a consequence of
the vanishing of the TA phonon modes at the phase bound-
aries II/III and III/IV, as discussed in Sec. II. Therefore, for
fixed TÞ0 and as function ofh we observe that alternating
solid and liquid phases are possible, and the reentrant solid
phase has a different lattice geometry each time. Further-
more, note from the inset of Fig. 8 that, for large values of
h, TM approaches the melting temperature of a SLWC of
densityn/2 from below. In certain experimental realizations
of the BLWC it could be easier to changeh through a
change in the charge density, keepingd constant. Therefore,
in Fig. 9 we show the calculated melting temperature in units
of kBTMd/e

2Ap. Note that in the classical regime the phase
diagram is determined byh and a dimensionless tempera-
ture, eitherkBTM /e

2Apn or kBTMd/e
2Ap. In the quantum

regime, instead, the kinetic energy term depends on the den-
sity alone and, therefore, the phase diagram must be drawn
explicitly in the three-parameter space (d,n,T).

The presence of different lattice geometries which are
stable within the same range ofh suggests the possibility
that, increasingT at fixedh, the BLWC undergoes a struc-
tural phase transition, and, eventually, melts at a temperature
appropriate to the high temperature phase. For example, it
seems possible that forh,0.262 the BLWC evolves from
phase II~with some value of the aspect ratio which mini-
mizes the static energy atT50! to phase I~aspect ratio
A3), asT exceeds some critical value, and eventually melts
at aTM appropriate for phase I. To investigate such a possi-
bility we have minimized the free energy with respect to the
lattice geometry at fixedh andT. The harmonic approxima-
tion of the free energy in the high temperature limit is

F~j!5E~j!1kBT(
q, j

ln
\vq, j~j!

kBT
, ~52!

where j is a parameter which defines a distortion of the
lattice. There are two ranges ofh where more than one phase

is stable with respect to lattice vibrations~see Figs. 4 and 5!;
in the range 0.006,h,0.262 phase II is energetically fa-
vored, but also phase I is stable throughout this range. There-
fore, in this range, we minimizeF with respect to
j5a2 /a1 . In the range 0.622,h,0.732 phase IV is ener-
getically favored, but also phase V is stable; therefore, in this
range we takej5u. Integration over reciprocal space in~52!
was performed numerically. We found that in both ranges the
value ofj which minimizesF is practically independent of
the temperature and, therefore, coincides with theT50
value. In other words, the phase boundaries between the dif-
ferent geometries in Fig. 8 are represented by vertical lines.
Moreover, this justifies the fact that, in order to calculate
TM for the ‘‘soft’’ phases II and IV, we have used theT50
value for the aspect ratio andu, respectively.

CONCLUSIONS

The phase diagram of a classical BLWC, both atT50,
and atTÞ0, was investigated, within a harmonic approach,
by use of the Lindemann criterion and minimization of the
harmonic free energy. Five different crystalline geometries
are stable in different ranges of interlayer distance/charge
densities. Moreover, atT50 the five phases evolve one into
the other through both continuous and discontinuous transi-
tions. At TÞ0, alternating solid and liquid phases are pos-
sible, as one sweeps the interlayer distance or the charge
density. In particular, regions of liquid phase separate phase
II from phase III, and phase III from phase IV. This has been
shown to be a consequence of lattice instabilities induced by
the vanishing of phonon modes at the phase boundaries. On
the other hand, a first-order transition line separates IV from
phase V.

An additional intricacy of the phase diagram in the small-
h range has been pointed out by Vil’k and Monarkha.10 In
this limit the Hamiltonian~3! was mapped into the Hamil-
tonian of a binary mixture of particles sitting on a triangular
lattice and interacting through a dipole potential. Therefore
there is a possibility that a disordered phase appears, as the
temperature is increased. They find two phase transitions.
The low temperature~ordered! phase is equivalent to our
phase I. Above a critical temperatureT1 the lattice can be
seen as composed of three interpenetrating triangular lattices,
two of which are ordered and one is disordered. Above a
second critical temperatureT2 the lattice becomes com-
pletely disordered. Of course the order-disorder transition
vanishes ash→0, where the two sublattices become equiva-
lent.

A bilayer electron gas can easily be realized in semicon-
ductor heterostructures.16,26 Although our results have been
obtained for a classical system, they can give some indica-
tions on the phase diagram in quantum bilayer structures,
provided that temperature fluctuations are interpreted as
quantum fluctuations. Very recently, in Ref. 12 a reentrant
phase aroundh.2.6, analogous to ours in Fig. 8, was pre-
dicted in the (h,r s) phase diagram, wherer s is the dimen-
sionless inverse electron density. Furthermore, our analysis
of the phonon excitations and the analytical fitting that we
have developed retain their validity in the quantum regime.

In principle, the harmonic approximation used throughout
this work is expected to fail when the temperature ap-

FIG. 9. Same as Fig. 8, but withTM plotted in units of
(kBd/e

2Ap)21.
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proaches the melting temperature. However, we have shown
that, in theh50 case, we obtainTM in reasonable agreement
with numerical simulations and experiments on the SLWC;
therefore, we believe that inclusion of the anharmonic effects
would not change our results qualitatively, as far as the melt-
ing temperature is concerned. We believe also that the ap-
proximation of a structure-independent parameterdm in the
Lindemann criterion should not change the nature of our
findings. The harmonic approach could be a more severe
approximation in the calculation of the free energy and our
investigation, therefore, does not rule out completely the
possibility of temperature-induced structural phase transi-
tions.
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APPENDIX: A RAPIDLY CONVERGENT FORM
OF T0 AND TI

The slowly convergent sums over lattice sites appearing
in the definition ofT0 andTI @Eqs. ~8! and ~9!# cannot be
used in a numerical calculation. Therefore, they will be con-
verted into a rapidly convergent form using a generalization
of the Ewald method.20 Formally, we proceed as follows.
First, each term in the sum is decomposed in two terms,
using the identity

1

r
5
1

r
$ erf~«r !1 erfc~«r !%, ~A1!

where

erf~x!5
2

Ap
E
0

x

e2t2dt ~A2!

is the error function, erfc(x)512 erf(x) is the complemen-
tary error function, and« is an arbitrary constant. The reason
why we do so is that erfc(x) vanishes exponentially for
large values of the argument and, consequently, the lattice
sum with this function as argument is sufficiently rapidly
convergent. Then, the other lattice sum with argument
erf(x) is mapped onto a sum over the reciprocal lattice,
using the 2Du-function transformation.27

Using ~A1! and the definition ofT0 @Eq. ~8!#, we obtain

T05e2 iq•r(
R

eiq•~r2R!

ur2Ru
erf~«ur2Ru!

1 (
RÞ0

e2 iq•R

ur2Ru
erfc~«ur2Ru!1

erfc~«r !

r
2
1

r
.

~A3!

To convert the first sum on the rhs of~A3! into a rapidly
convergent form, we substitutej5t/l in the definition of the
error function, which results in

erf~«l!

l
5

2

Ap
E
0

«

e2l2j2dj, ~A4!

with l5ur2Ru. We plug~A4! into the first sum of~A3! and
we bring the sum under the integral. Next, we apply the 2D
u-function transformation,27

(
R

e2ur2Ruj2e2 iq•R5
nsp

j2 (
G

e2uq1Gu2/4j2e2 i ~q1G!•r,

~A5!

and the substitutiont5uq1Gu/2j, which transforms the first
term on the rhs of~A3! into

2pns(
G

e2 i ~q1G!•r
erfc~ uq1Gu/2«!

uq1Gu
. ~A6!

The final step is to choose a reasonable value for«, such that
the lattice sums have a sufficient rapid numerical conver-
gency. A convenient choice is«5r 0

215Apns. Defining the
function

F~x!5Ap

x
erfc~Ax! ~A7!

to simplify the final expression, we finally obtain Eq.~12!.
For TI we proceed in a similar way. Let

l25ur2R1cu21d2; using ~A1!, and the definition ofTI
@Eq. ~9!#, we have

TI5e2 iq•r(
R

eiq•~r2R1c!

l
@ erf~«l!1 erfc~«l!#. ~A8!

Using the identity~A4!, the 2D u-function transformation
~A5!, and the substitutiont5uq1Gu/2j, the first term in
~A8! becomes

4

Ap
pns(

G

e2 iG•ce2 i ~q1G!•r

uq1Gu E
uq1Gu/2«

`

e2d2uq1Gu2/4t2e2t2dt.

~A9!

The integral can be performed analytically; using

E
x

`

e2~ t21a2/t2!dt5
Ap

4 Fe2a erfcS x1
a

x D1e22a erfcS x2
a

x D G , ~A10!

inserting«5Apns, and defining the function

C~x,y!5
1

2
Ap

x
@eA4xy erfc~Ax1Ay!1e2A4xy erfc~Ax2Ay!#, ~A11!

we finally obtain Eq.~13!.

53 4601STABILITY, DYNAMICAL PROPERTIES, AND MELTING OF . . .



APPENDIX B: EXPLICIT EXPRESSIONS
FOR E0 AND EI

The energyE0 , calculated from Eq.~10!, contains the
divergent term

e2AnsFS G2

4pns
D
G50

5e2F2pns
G

2
2pns
G

erfS G

2Apns
D G

G50

5e2ns
2p

G U
G50

22e2Ans, ~B1!

where we have made use of the limit

lim
x→0

x21 erf~x!52/Ap. ~B2!

in the second line of~B1!. The divergent term in the last line
of ~B1! is independent of the lattice geometry and can be

neglected. In fact the divergency is exactly balanced by the
interaction energy of the electrons with a positive back-
ground located in the same layer,19

E0
b52e2nsE dr

r
52e2ns

2p

q
U
q50

. ~B3!

Equation~B2! can also be used to evaluate the contribu-
tion to E0 of the last two terms in Eq.~12!,

lim
r→0

FAnsF~pnsr
2!2

1

r G522Ans. ~B4!

Using ~B4! and the identityG52pns( ẑ3R), where ẑ is a
unit vector normal to the layers,E0 reduces finally to Eq.
~14!, which is equal to Eq.~2.15! of Ref. 19.E0/2 gives the
static energy per electron of a SLWC of densityns .

The divergent term inEI is

e2AnsCS G2

4pns
,ph2D

G50

5
e2pns
G H @eGh/Ans1e2Gh/Ans#

2FeGh/Ans erfS G

2Apns
1Aph D 1e2Gh/Ans erfS G

2Apns
2Aph D G J

G50

. ~B5!

The second term on the rhs takes the limit,

22e2pnsFe2ph2

pAns
1

h

Ans
erf~Aph!G , ~B6!

for G→0. The first term on the rhs of~B5! can be rewritten,

e2pnsF2e2Gh/Ans

G
1
eGh/Ans2e2Gh/Ans

G G
G50

5e2ns
2p

G
e2Gh/Ans U

G50

12e2pAnsh. ~B7!

Again, the divergent term on the rhs is independent of the
lattice geometry and can be neglected. In fact, this term is
exactly balanced by the interaction energy of an electron
with a positive background charge located at the opposite
layer,

EI
b52e2nsE dr

~r 21d2!1/2
52e2ns

2p

k
e2kh/Ans U

k50
,

~B8!

which balances the divergency. Therefore, we obtain

e2AnsCS G2

4pns
,ph2D

G50

52e2Ans$ph erfc~Aph!

2e2ph2%, ~B9!

and, finally, Eq.~15!.
The background charge does not need to sit in the same

layer of the mobile electrons. This would be, in fact, the
situation in the 2D electron gas realized in semiconductor
heterostructures, where the positive ions sit far from the in-
version layer. In this case the electrostatic energy has an
additional contribution 2pe2ns(d81d9), whered8, d9 are
the distances between the compensating layers and the elec-
tron layers. Since this additional contribution does not de-
pend on the interlayer distanced or on the lattice structure, it
can be neglected.
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