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Stability, dynamical properties, and melting of a classical bilayer Wigner crystal
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We investigate the stability, dynamical properties, and melting of a two-dimeng@BalWigner crystal

(WC) of classical Coulombic particles in a bilayer structure. Compared to the single-layer WC, this system
shows a rich phase diagram. Five different crystalline phases are stable; the energetically favored structure can
be tuned by changing either the interlayer distance or the particle density. Phase boundaries consist of both
continuous and discontinuous transitions. We calculated the phonon excitations of the system within the
harmonic approximation and we evaluated the melting temperature of the bilayer WC by use of a modified
Lindemann criterion, appropriate to 2D systems. We minimized the harmonic free energy of the system with
respect to the lattice geometry at different values of temperature/interlayer distance and we found no
temperature-induced structural phase transition.

INTRODUCTION due to the long-range interaction, the two lattices which oc-
cupy the two layergsublatticey are staggered to maximize
Classical charged particles confined in a single, two-the interparticle distance. Each lattice site sits at the center of
dimensional (2D) layer localize into a hexagonal lattice a cell in the opposite layef2) there are two trivial limiting
(Wigner crystal for sufficiently large densities and low cases: aty=0 the two sublattices reduce to a SLWC, which
temperatured.Such a single-layer Wigner cryst&LWC) is known to crystalize in a hexagonal latticeone-
has been realized, e.g., on the surface of liquid hefi@ol- component hexagonal latticeAt the opposite limit of large
loidal particles dissolved in water and placed between twoy the two sublattices are weakly coupled and, therefore, the
glass plates are another example of an experimental systestable structure is constituted by two staggered SLi&tag-
where classical particles exhibit Wigner crystallizatfon. gered hexagonal lattiteBy comparing the static energy of
Electrons in 2D semiconductor heterostructures behave likgeveral lattices, we find that five different phases are ener-
quantum particles, but a strong perpendicular magnetic fielgetically favored in different ranges of. The five struc-
quenches the kinetic energy, leading the system toward thgires, in order of increasing, are a one-component hexago-
classical regime. The quest for the observation of such aal lattice(l), a staggered rectangular lattide), a staggered
Wigner crystal has been the object of very intense work ovesquare lattice(lll ), a staggered rhombic lattiqgV), and a
the last decades.The melting transition of the classical staggered hexagonal lattig®’). These phases evolve one
SLWC, in particular, has attracted a large body ofinto the other through both first- and second-order phase
investigation since the proposal of a dislocation-mediatedtransitions.
melting mechanism, leading to the prediction of a continuous There exist already a number of investigations of the
melting transitiorf.® T=0 phase diagram of the classical BLWC in various
Recently, a new 2D system has attracted the attention afystems:*!-131°Some of the previous investigations of the
several groups, namely, the Wigner crystal in a bilayer strucpresent systef!°did not identify all five phases. In Ref. 12,
ture. One of the peculiarities of the bilayer Wigner crystalthe bilayer electron system which forms in a single wide
(BLWC), compared to the SLWC, consists in the rich phasequantum well above a critical densifywas studied. In this
diagram; it has been predicted that different crystalline strucease, the transition from the single layer to the bi-lajgerd,
tures are stable in different ranges of interlayer distanceat higher densities, to a higher number of layeassof first
charge density- ™ order, with » which jumps from 0 to~0.27; therefore, the
In the present paper we address the phase diagram of sugiw-7 phases I and Il were not investigated in Ref. 12. Theo-
bilayer structures’ We consider a BLWC of Coulombic par-  retical investigations suggest that also bilayer structures in
ticles evenly distributed between the two layers. In a classithe quantum regime possess a complex phase diagram. In
cal BLWC, the interparticle interaction can be characterizedRef. 17 a structural instability is found in the strong coupling
by a unique dimensionless parametgr d\/n/2, whered is regime, when the tunneling probability decreases below a
the interlayer distance and is the total charge density;  critical threshold as a consequence of layer separation. The
represents the ratio between the interparticle interadi®mn five phases described above have been predicted to exist in a
tweenthe layer andwithin each layer. Thus, in the classical bilayer quantum Hall systeff.Other bilayer structures with
case, the Hamiltonian of the system is only a function ofan even more complex phase diagram can be imagined, for
7, which therefore determines completely the phase diagrarexample, with different densities of the two layérs.
at T=0. This is in contrast with the equivalent quantum Phonon excitations of some of the above systems have
problem, wheral andn do not scale out. The search for the been partially investigated, within the harmonic
stable structure of a classical BLWC, B0 and as a func- approximation::*21°Phonon frequencies have been used to
tion of %, is made easier by the following consideratiofi3:  evaluate the zero-point energy and the critical density for
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TABLE I. Lattice parameters of the five geometries consideagd.the NN distance. For each phase, the primitive veapenda,, the
interlattice displacement, the reciprocal lattice vectors; and b,, and the sublattice charge density are indicated. For phase II,
a,/a, is the aspect ratio. For phase I¥,is the angle betweea, anda,.

Phase a/a a/a c b, /(2m/a) b, /(27/a) na®
I. One-component hexagonal (1,0) (0,V3) (ay+a,)/2 (1,0) (0,143) 13
Il. Staggered rectangular (1,0) /a;) (a1 +ay)/2 (1,0) (0a4/ay) a,la,
lll. Staggered square (1,0) (0,1) ay(+ay)/2 (1,0) (0,1) 1
IV. Staggered rhombic (1,0) (c6sing) (g tay)/2 (1,— cosvisinb) (0,1/sim9) 1/sing
V. Staggered hexagonal (1,0) (1/2,\5/2) (a;+ay)/3 (1, 1/\/5) (0,2/\/5) 2/\/§

cold melting of the quantum BLWA2also in the presence therefore, in the limity— 0, we recover a SLWC of density
of a magnetic field. n. We consider the BLWC as a 2D lattice bif2 unitary

In this paper we address thmnzerotemperature phase cells, with two electrons per cell sitting on opposite layers.
diagram of a classical BLWC, which has not been investi-The primitive vectors are denoted by anda,, and the basis
gated so far. With this aim, we have systematically investi-vectors are (0,0) and a;, a,, ¢, ng, and the vectorb; and
gated, within the harmonic approximation, the phonon excib, generating the reciprocal lattice, are listed in Table | for
tations of each of the five structures. This allowed us nothe five relevant phases. The equilibrium positions of the
only to determine the range of structural stability and thecrystallized electrons in laye’s andB are, respectively,
behaviour of the acoustical and optical modes, which could
be subject to experimental observations, but also allowed us Ra=ia;+jay, D)
to estimate the melting temperature of the crystal through the
Lindemann criterion. The latter states that melting takes
place when the mean square displacement of the crystallized

charges exceeds a certain fraction of the lattice parameter. fherei,j are integers. The total potential energy of the mo-

should be noted that in 2D the mean square displacememile charges due to the intralayer and the interlayer interac-
diverges logarithmically with the crystal size. On the othertjon is

hand, theelative mean square displacement between nearest

RB:ial+ja2+C, (2)

neighbors(NN’s) is a well-defined quantity and its value at 1 g2 e2

melting has been determined from simulations of 2D Vp=§ > TRa—RY | + > Ra—RJ|

crystalst® Therefore, the latter quantity has been used in the Ra=Ry IRATRAl g R IRe~Re

present paper to estimate the melting temperature. Our re- 2

sults show that, by changing at constant temperature, one +2 Z € 3)
A . . .. R.—R |2+ dZ] 172

can pass through alternating regions of crystalline and liquid RaRs LIRA—Rs

order.

The overlapping range of stability of different lattice The factor 1/2 accounts for double counting. Since the two
structures along they axis suggests the possibility that layers are equivalent, and the origin can be chosen arbitrarily
temperature-induced structural phase transitions take pladewe neglect surface effects, there adé2 equivalent terms
before the melting temperature is reached. To investigate thiss each sum and the potential energy per particle
last possibility, we have minimized the harmonic free energye=V/,, /N, therefore, reads
of different structures at increasing temperatures at fixed
and we have found no evidence of such a temperature- E= 5(Eo+E), (4)
induced structural phase transition.

The paper is organized as follows. In Sec. | we investigatevhere
the zero temperature phase diagram. In Sec. Il we calculate

the phonon excitations of the systems. The nonzero tempera- e?

ture phase diagram is investigated in Sec. Ill. Results are ; R ®)
discussed and summarized in the last section.
represents the intralayer interaction energy, and

I. ZERO TEMPERATURE PHASE DIAGRAM 5

e
. - : . _ 6
We consider a BLWC consisting & classical, spinless E ; —W[|R+C| + a7 (6)

particles with total charge density, evenly distributed over

the two layers. The same form of the Coulombic interactloniS the interlayer interaction energy. HeRe=ia, +ja, and
e?/r is assumed between particles in the same layer and ip R=|R|.

different layers.

Electrons crystallized in the two layers constitute two sub-
lattices which are equivalent by symmetry. When necessary,
we denote the two sublattices ByandB. We consider only Eo=e?lim
the case of two layers of equal charge densify n/2 each; r—0

We follow Bonsall and Maradudifi and rewrite(5) as

i

X [r=R| r @)

1 1},
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wherer is a 2D vector and =|r|. It is convenient to define E,=€?T,(0,0). (11

the following two functiong® . . .
9 Due to the long-range nature of the interaction, the lattice

@d (=R q sums inTy and T, converge slowly. The Ewald technique is

To(r,q)=e"'% rE TR T (8)  commonly used to overcome this difficulty, and consists in
splitting the slowly convergent sum into two parts: the con-

Qi (r—R+0) tribution of the first shells of neighbors is summed up in real

T(r.q)=e"19T> s (99  space, while the contribution of the outer shells is summed
[[r—R+c|*+d”] up in reciprocal space. Both sums turn out to be rapidly

convergent. The transformation to rapidly convergent sums

from which E, andE, are obtained, . X :
0 ! over the real lattice vectof® and the reciprocal lattice vec-

Eo=e?limT(r,0), (10) tors G is reported in Appendix A. Here we state the final
r0 result
|

+G 2

To(r,q)= \/_2 e i(a+G) rCI)('q | +\/—E e 19RP 7-rn5|r—R|2)+\/_<I>(7-rnsr2)—— (12)
. . +G|? .

Ti(r@=yng X e (a7 C remiCow "lm' |+ \ng 2 e 0D (mnglr — R+ ¢l + 7). (13

S

The functiongd (x) andW¥(x,y), defined in Appendix A, decay exponentially to zero for laxg¢herefore, T, andT, contain
only rapidly convergent sums.

The G=0 term in the first sum on the right-hand sites) of (12) and (13) gives rise to a divergent term i, and in
E,, ensuing from the lack of charge neutrality. These terms are balanced by the interaction with a positive background,
independently from the lattice geometry. Since the origin of the energy can be chosen arbitrarily, the divergent terms can be
separated out and neglected in the calculation of the energy. This is done in Appendix B and the final result is

E0=2e2\/n—s+ RZO (I)(TrnSRZ)—Z], (14)
+

2

) G
Ei=eVng X ®(a[ngR+c2+ 72+ e'G'°‘I’(4 +2{myerfemy—e T}, (15
R G#0

T
S

whereG=|G| and erfck) is the complementary error func- intermediate range of the energetically favored structure is

tion defined in Appendix A. phase Ill. The geometry of the three phases is sketched in the
We have calculate@/e?\/n (recall thatn=2n,) for the insets of Fig. 1, close to the range where they have the low-
five different lattices listed in Table I. Phases I, Ill, and V are €St energy.

“rigid,” meaning that, for a fixed density, the cell is uniquely ~ Within the regions delimited by the open dots in Fig. 1,
determined. On the contrary, phases Il and IV are “soft,”

because each of them contains a parameter, the agfi@, 1.4 O
of the length of the primitive vector&@spect ratip and the . .
angle between them, respectively, which can take on continu- I J572 BN Vi
ous values; at each value gf this parameter is determined g -16) 4 %L n :

by energy minimization. %
Figure 1 shows the calculated energy per particle of ®

~

phases I, lll, and V as a function of; the energy of phases = sl .« e -

Il 'and IV would be nearly indistinguishable on the scale of ¢ i

this figure and will be shown later in Fig. 2. As we discussed oo« | v

in the Introduction, phase | is energetically favored at very ool

small », and it reduces to the SLWC at=0. At =0 we '2'?).0 02 0d 0.6 0.8 Lo

find E=—1.960 52%\/n, which coincides with Ref. 19. At 1

the opposite limit of large; the two sublattices become less

and less coupled and the favored geometry is composed of FIG. 1. Static energy per particle of phases I, Ill, and V. In the

two staggered SLWC'sphase V. Accozrdingly, the energy jnsets we show the corresponding lattice geometries in which dots
converges to the valuEy=—1.960 52%\n/\2, where the  and crosses identify the two sublattices. and a, are given in
factor \2 accounts for the reduced charge density. In theTable I.
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the energetically favored structures are phases Il and IMange around;=0. As >0.006, in fact, a rectangular unit
These intermediate phases allow the lattice to pass frorgell with a2/a1<\/§ (phase 1) is energetically favored. In
phase | to phase lll, and from |_ohase Il to phase V, respecihe inset of Fig. 22) we show how the aspect rati, /a;
tively. Note that phase Il contains phase | and phase Ill agyolves in a continuous way during the transition; phase |
limiting  cases, corresponding to the aspect ratiosyolves into phase Il through an anisotropic shrinking of the
a,/a;=/3 anda,/a,=1, respectively. Analogously, phase rectangular unit cell, and eventualéy/a;=1, correspond-
IV contains phase Il as limiting case fé= 7/2. Therefore, ing to phase IlI, is reached at=0.262.

the transitions - 11, Il —1ll, and Ill—IV are continuous. The energy of phase IV is compared in FigbRwith the

Note, on the other hand, that there is no continuous way t%nergy of phases Ill and V. For 0.622)<0.732 the stag-

pass from phase IV to phase V and, therefore, the transmoaered thombic latticéphase IV has the lowest energy. As

IV—V is of the first-order, i.e.gE/dn exhibits a jump. Ap- . . : ;
parently, this point has been overlooked in Ref. 12, where thghOWn in the inset, increasingthe angled between the cell

authors claim that the transition "V is continuous. The X3 evolves continuously from 90°, corresponding to the

necessity for a first-order phase transition when going fronpdyare lattice(phase I, to 69.48°, and suddenly drops to

phase Ili to phase V has also been discussed, by use of gefid_+ Which corresponds to phase V. The phase boundaries
eral group theoretical arguments, by V. Fal'ko in Ref. 11. found above agree well with those found in Refs. 11 and 12.

Figure 2a) shows the transition-b 11— Il on an enlarged _ To conclude t_his section, we give the asymptotic expres-
scale. Phase | is energetically favored only in a very smalfions of the static energy, for small and large

E 1
=—1.960 52+ —=[27 75— 0.600 434>+ 2.867 13;*] for smally, 16)
n 2J§[ ] & 3] 7 (
E 1.96052 v oy | a7
=— — e or lart s
e 2 22 9

wherev = —3(1/3/2)"2 andw= (8% /3)"2 in (17). Equa-

tions (16) and (17) reproduce the correct energy within 2% [ T(d:1x,!l 'K')]aﬁ:(mT,)l/?

for »<<0.3 and within 0.2% foryp>0.5, respectively. We o

stress that the above expressions are not fitting functions, but

have been obtained by a series expansiaid §fwith respect

to # in the relevant range. In E@16) the linear term, ensu-

ing from the last term in Eq.15), is the only odd-order term

in the Taylor expansion and all higher-order terms are evenyhereR, s the position vector of theth particle in thelth

the coe_ff|C|ents_|nvoIve sums over the direct anq the reciproge|l of the crystal, andm, its mass. The quantities

cal lattices, which have been calculated numerically for they | |7 «') are the force constants defined by

lattice of phase I. The coefficients in E(L7) can be ob-

tained analytically, once one realizes that, for lasgeonly

the first shell ofG’s needs to be retained ifl5); higher- Gap(lk) k') =0,405H(R— Ry 1), (19

order terms are proportional ® ™7 and decay faster for ) ) . )

large 7. In Ref. 12 two fitting expressions for the classical Where¢(Ri.—Ry,/) is the two-body interparticle potential.

energy were given; however, we found that none of thenfieré and in the following we use the notation

have the correct limiting behavior. I F(X)=dF (X")I X! |=x, Wherex, is the ath component
of the vectorx. Due to translational invariance, the force
constants satisfy the sum réte

x> bap(li,l" ke 1 RiRie),
|’

(18)

II. DYNAMICAL PROPERTIES

o | 2 daplln]')=0. (20
In this section we calculate the frequencies of the phonon PEErG
excitations of the five different phases within the harmonic
approximation. Since each 2D unit cell of the BLWC contains two elec-

For a general lattice, the square of the phonon frequenciegsons, the dynamical matrix is a44 matrix which we write
are the eigenvalues of the dynamical matrix definetf by  in block form as
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1 .
[D(@)]ap= 2 bap(RIETTF, (22
e R
-1.600
1 .
[D*%(@)]ap=1—2 bap(R=)e R0, (23
| = -1.625 e R
o wherem, is the electron mass, and the force constants are
o
= -1.650 e
‘ bap(R)=dadp . R#0, (24
16751 F and
"/ 1 1 1 2
0.150 0.175 0.200 0.225 0.250 %g(R—C):r?ar?p—mzHR_d T (25
N Using Eq.(20), we find the force constant faR=0
1.390F T i T ' -
e |V
[(b) bap(R=0)=~| ¥ ¢ s(RI+S ds(R-0)|. (26
------------ \ o RZ0 R
-1.395F . 2 o o - : i
'“’ ° Furthermore, since the two sublattices are equivalent, we
; v B ox 1 haveD**=DBB and, using Eq(18), DAB=[DBA]".
S 400k M It turns out to be convenient to define
K R 1 ay
Nq) // ] 22 e—iq~R
S ’ : SAA =—€ (? (7 ) 2
= 1,405 _/// E 0.937 | [S™(D]ap & %eBTR (27)
L V3 e—i9:(R—0)
0.60 0.65 0.70 0.75 B _ 2
e . [S*%(@)]ap=—€"2 e
0.60 0.65 0.70 0.75 0.80 . .
n which can be obtained from, andT,,
[S*(@)]ap=—€°liM 3,35To(r,a), (29
—0
FIG. 2. Detail of Fig. 1, showing the transition&) |— 11— Il '
and(b) Hl =1V —V. Alse shewn are the lattice geometries in which [Sap(®)]ap=— ezr?ar?,ng(O.q). (30)
full dots and crosses identify the two sublattices. Empty dots and
diamonds which indicate the sublattices of phasés and Il1 (b) Then the matrix elements of the dynamical matrix can be

are also reported for reference. The insets show @whe aspect written
ratioa, /a, and(b) the sine of the anglé betweerp, anda, evolve

during the transition.

DM(@)= —[s"0)+$*¥(0)-s*@)], (3D

1
Me
DAA DAB 1
D:(DBA DBB)' (21) DAB(Q):H[—SAB(Q)]- (32
e
whereD*A, DB, DBA, andDBB are 2x 2 matrices. Applying  Using the rapidly convergent form fdf, andT,, as given in

(18 to the BLWC and using translational invariance, we (12) and(13), allows one to write down the matrix elements
obtain the matrix elements @"* and D8, of S* and S"B explicitly,

+G|? — . 4
[S"(@)]ap= Jn_[ -2 <q+G>a(q+G>ﬁcI>( 'Lnsl + 2 Vap(mnRHeT! Ry mg(wns)}, (33
la+G|?

[S*B(O) )= Jni[—% <q+G>a<q+G>B\If( ,mz)eie'%; \LB(wnis—ch)eiQ'(R@], (34)

4ang
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where we have defined

3k
Vap(X2) = 9,050 (X?) L
=2mN{ 5,5P" (X?) +2mNX X 50" (X?)}. 2t
(35 s

In generalD is a complex Hermitian matrix. However, S gy
since in the BLWC the two sites of each cell are occupied by

identical particles, it is possible to apply a unitary transfor- ok

mation which results in a real symmetric mattixIf we 1_'“’

denote withl, the 2x 2 identity matrix, the transformation

11, il
U:E(ilz |2) (39
results in
5=UDU‘1=(DAA+ IMD g ReDjg ) -
ReD g Daa— IMDpg
where R®,g and InD,g are the real and imaginary parts

of Dag. Note that InD,g=0 for a lattice with inversion
symmetry. This applies to all phases, except for phase V.
Finally, we solved the set of four linear equations

(D(q)— w2,l4)e(q,j)=0, (39)

wherel, is the 4x 4 identity matrix,wq j is the frequency of
the jth phonon modej=1,...,4) with wave vectoq, and
&(d,j) its eigenvector. Equatio(88) is equivalent to the di-
agonalization of the 44 matrix D, which provides the four
eigenvaluesfoaj at each poing in reciprocal space. For a

lattice to be stable, it is necessary tlafg{j>0. T J X T
Figure 3 shows the frequencies,; (or, when wS’j is
negative, its imaginary parfor phasega) I, (b) lll, and (c) FIG. 3. Phonon dispersion curves for phageop panel, phase

V, and their evolution withy. Frequencies are given in terms [l (middle panel, and phase Mbottom panel and for several

of the characteristic frequency;=e?n*%m,, which de- values of7, as indicated in the legends. Phonon frequencies are

pends on the density and not on the lattice geometry. Phongiown along high symmetry directions in the Brillouin zones of the

dispersions are shown along the high symmetry directions iffree phases. In each panel, high symmetry points along the ab-

reciprocal space. The high symmetry points are labeled a&cissa are labeled acc_or_dlng to the |nse£s.3llzrequenmes are given in

cording to the insets. We recall that in a SLWC the transversims of the characteristic frequenayf = en¥%/m.

acoustical(TA) and the longitudinal acousticélLA) modes

vanish at thd” point asq andq'?, respectively® Thus the the fact that in this limit the BLWC tends to the SLWC; at

sound velocity of the LA mode is infinite. The latter behavior the opposite limit of largey, the TA branch softens along the

is a general property of a 2D Coulomb plastend does not I'X direction and eventually phase Ill becomes unstable, as

depend on the lattice geometry, nor dnas is clear from a the BLWC tends to two separated SLWC'’s.

comparison of the three panels in Fig. 3. The remaining two Phase V is stable for large [Fig. 3(c)]. In the limit

(optical) modes ensuing fror(B8) are peculiar to the BLWC 7—> we have the phonon dispersion curves of two un-

and correspond to out-of-phase vibrations of electrons in opeoupled SLWC's; therefore, in Fig. 3, each curve in the

posite layers. n=o case is doubly degenerate and all modes approach zero
Starting from the top panel, it is shown in Fig. 3 that, asfor g—0. For smallers, optical modes with a finite fre-

7 is increased, the TA mode of phase | softens until, above guency at thd™ point appear; at the same time, the TA mode

critical value of 5, the frequency becomes imaginary, indi- becomes softer and, eventually, becomes imaginary at

cating a lattice instability. For; between 0.262 and 0.622 7~0.6.

phase lll(square latticeis energetically favored, according The  sound velocity of the TA  mode,

to Fig. 2. We recall that in a SLWC the square lattice cannovTAzdwTA/dq|q:0, along the in-plane directions (1,0) and

exist, since it has an imaginary TA branthFigure 3b)  (1,1), and for the five phases, is shown in detail in Fig. 4.

shows, on the other hand, that in the BLWC the square lattic&he labels on top of the figure indicate the energetically fa-

is stable for a certain range oj. For  below a critical vored phase in each range gf according to Figs. 1 and 2;

value, however, the TA branch softens along kh&/ direc- phase | is favored only in a very small range aroupd 0

tion and eventually becomes imaginary, as is expected frorand, therefore, is not indicated. The vanishing of the low-
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FIG. 6. Optical frequencies at thHé point for the five phases.
For each phasey,, are reported in the whole range in which the
phase is stable. Vertical dotted lines indicate the phase boundaries;

the labels on top of the figure indicate which phase is energetically
FIG. 4. Sound velocity of the TA modeof=e’n¥¥m,) along  favored in each region.

the (1,0) (solid lineg and(1,1) (dashed linesdirections for the five

phases. The sound velocity of phase V is isotropic and the tW(PyticaI expressions in the lowy (below ~0.2) and in the

curves coincide. Vertical dotted lines indicate the phase boundarieﬁargeq] (above~0.7) ranges. The sound velocity,, (see
according to Figs. 1 and 2; the labels on top of the figure indicatq:ig 4) has been fitted to A

which phase is energetically favored in each region.

viaVn/ @1=Po+ Po 77+ par (39

frequency modes in certain directions, shown in Fig. 4, sets a
limit to the range of stability of each phase. Note that phase#r small », and to
Il and Il have a soft mode at a value gf which coincides
with the value where the transition between the two phases viaVN/ 1= Po+ Py 2+pan (40

k I he vertical line Th me h ns for .
;;:eg ?I(I:q;ng I\E/E. t‘lf:r?erg?(gtr? the):e raneg:?/vh?areagﬁzsz I(I)I ifor largen. The coefﬁment_:pi for phases I, [(small 77),_ and
energetically favored coincides with the range of stability of (Iarge 7) are reporte_d in Table Il. The frequencieg,
this phase. This has profound implications in determining thdS€€ Fig- & have been fitted to
BLWC phase diagram a#0, as we will show in the next [ 0n = Gt Qo2+ 01y 1 (41)
section. Note also that in the range pfwhere phase Il is @opt/ @1~ o U277" T a7
energetically favored, both phases | and Il are stable, i.efor small 5, and to
they do not have imaginary phonon frequencies. Analo-
gously, in the range where phase 1V is energetically favored, wopt! @1=018 927 (42)
both phases IV and V are stable. The-0 phase diagram,
deduced from Figs. 1 and 2, and the range of stability, defor large ». For »~0.262, close to the boundary between
duced from the softening of phonon modes, are summarizephases Il and Ill, the optical modes of phase Il have a sin-

in Fig. 5. gular behavior. In this range we have fitted,, to
Figure 6 shows the evolution of the optical frequencies at
the T point, wey, With 7. For phases Il and V the two Wopt! @1=0o+q1(d2— 7)%. (43

optical frequencies are degenerate. It has been noted that;lﬁe coefficientay, are reported in Table Ill. The agreement

detection of the exponential decay of the optical modes ith the full calculations did not improve by adding odd

large n could serve as a fingerprint of the solid phase in apowers ofy in Egs.(39), (40), and(41). All the above fitting

g'l":‘iﬁ(; r?wtélézt:rt?e'tvl;l:éi alrf;s(tege| gfgﬁ?n;n%egzwéeﬁflyimf nctions give the correct values with an accuracy better than
P P ' .6% in the relevant ranges af

V, which may be used experimentally to distinguish between
the different possible phases. - Lo

. . TABLE II. Fitti ters for th d velocig Egs.

The dependence of the sound velocity and of the opncaﬂsg) and (40). NG parameters for the sound veIochifa th =as

modes at thd” point upon» has been fitted to simple ana-

Small » Large n
— phaset —7 N T phasey — [Eq. (39)] [Eq. (40)]
t XX XK
Phase F—, Phase IV n Phase | Phase I Phase V
B Phasell —e—— Phaselll —e——e- PhaseV & (1.0 w) @O @D
v 0.0106 016; 0'.291 0.622l (').635 0‘.732 po 0495 04 0495 04 0416 28

P2 -3.6871 0.748 1.6608  -3.5072 0.018 32
FIG. 5. T=0 phase boundarigsolid dot$ and range of stabil- p, -6.1097  -1.0444 15212  -21.192 -0.059 25
ity (crossepof the five phases along the axis.
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TABLE |II. Fitting parameters for the optical frequenciegy, in Egs.(41), (42), and(43).

Small » Phase boundary Large
[Eq. (41)] [Eq. (43)] [Eq. (42)]
Phase | Phase Il Phase Il Phase V
Low branch High branch Low branch High branch Low branch High branch
do 1.0706 3.0379 1.0706 3.0379 qo 1.9549
ds -3.5818 -7.6876 5.8313 -8.2276 q, -2.0696 2.6527 5.7169
U4 6.6545 12.742 38.141 -44.859 q, 0.26252 0.26252 3.2168
gz  0.45103 0.48989

In Fig. 7 we report the evolution withy of the phonon
density of statgDOS). At each value ofp, we show the

DOS of the phase which is energetically favored at thatt

value. At =0 and = the energetically favored lattice
are, respectively, the SLWC lattice with densityphase ),
and two uncoupled SLWC's with density/2 (phase YV
therefore, the corresponding DOS curves are equal up to

factor 2% in the frequency scale. Note in Fig. 7 the peak of

optical frequencies which narrows at-0.5, corresponding
to the range ofy where the in-plane component of the aver-

age interaction of one particle with its NN’s in the same layer
and in the opposite layer are similar. Also note the low-

frequency peak which moves to very low frequencies aroun
7n~0.3 andn~0.7. This behavior is reminiscent of the soft-
ening of the TA mode of the square lattigghase 1) dis-

cussed above. The resulting high density of low-frequenc

modes suggests that very large fluctuations of particle

around their equilibrium lattice sites are possible; corre
spondingly, a low melting temperature is expected in prox
imity of these points, as will be discussed in Sec. Ill.

/o

FIG. 7. Phonon DOS as a function of frequency for different

values of 5. For each value ofy, the DOS corresponding to the

Ill. PHASE DIAGRAM AND MELTING

In this section we will be concerned with the nonzero
emperature properties of the BLWC. First, we will use the
calculated phonon excitation frequencies to estimate the
melting temperatur@&,, via the Lindemann criterion. In prin-
ciple, only order of magnitude estimatesTj, are expected
ffom a harmonic theory, since anharmonic terms of the po-
tential become important when crystal vibrations are so large
that the lattice is near to dissolve. In the case of the SLWC,
apart from simulations, analytical methods have been suc-
cessfully used to calculatd,, by including anharmonic

ffects?®?® These methods assume that melting proceeds
hrough the dislocation-mediated mechanism proposed by
Kosterlitz and Thoules$Halperin and Nelsoh,and Youn§
KTHNY theory). The ingredient of these calculations is the
ound velocity of the TA mode of the lattice, which is as-

3umed isotropic in the KTHNY theory and which is indeed

the case in the simple hexagonal lattice of the SLWC, but not

in the BLWC, where the TA mode, in general, is anisotropic,
as is clear from Fig. 4. Therefore, in this work we will rely
on the simple Lindemann criterion. We shall see that, taking
the Lindemann parameté); defined in Eq(44) below, from
existing simulations, effectively includes anharmonic effects
into the theory to some extent.

The Lindemann criterion states that, in a lattice of density
n, melting occurs when
8, (44)

o
i.e., when the mean square displacement of a lattice site
around its equilibrium positiodu?) exceeds a certain frac-
tion of the mean interparticle distanag=1/\/wn. The
brackets(---) represent the thermodynamic average; in our
case the latter will be calculated within the harmonic theory.
The paramete# is an input to the criterion, to be obtained
from simulations or from some analytic theory. Equation
(44) has been verified in simulations of several 3D systé‘}‘ns.
It is known, however, thatu?) is logarithmically divergent
in 2D. On the other hand, thelative mean square displace-
ment(|u(R) — u(R+a)|?), whereu(R) andu(R+a) are the
displacement vectors at lattice siR and at the NN site
R+a, wherea is the vector joining two NN'’s, is finite. Cor-
respondingly, anodifiedLindemann criterion can be defined,

energetically favored lattice is reported. Dashed lines indicate that a u(R) = u(R+a)|?

“soft” phase (either Il or IV) is stable at that value ofy. <| (R) ( )| >:52_ (45)
2 m

w?=e?n¥m,. o
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The value oféﬁ1 at melting has been calculated in simula- from the lattice geometry. Small variations &f, would not
tions of melting in a SLWC and turned out to be0.1.28 In ~ change our results qualitatively.

principle, 5., may depend on the lattice geometry and the The correlation function(|u(R)—u(R+a)|?) is calcu-
nature of the interaction; however, the Lindemann parametdft€d Within the harmonic theofy. Each lattice site in the

has been found to be quite independent from the form of th LWC has two types of NNs, in general at a different dis-

: . . . . Tance, and the number and distance of the NN'’s changes in a
interaction both in ZE[REf- 18 and. in 3D(Ref. 29 systems; continuous way withy. Accordingly, we calculate separately
therefore, we takes;,=0.1, and independent frony and 1y (in general differentcorrelation functions,

1 A Ao AKeT o [8aD)1+[e)(a.))]? ,9-Rp
L=y, 2, (WO -um?= G 7 MR e (L
1
Lo=i 2, i, (Va0 —uz(ml?)
a=x,y m=1,... 2
KeT 1 Al iVaBrp i Al \aBlo
TR ey MRt CACHICAC RS ACH I CRD S R (47

wherekg is the Boltzmann constanu'i(B) is the ath com-  Fig. 8 for the five phases. For the “soft” phases Il and IV,
ponent of the displacement vector in laygiB) calculated at Ty was calculated taking thé=0 value of the aspect ratio
the origin(0) or at the position of thenth NN, e*®)(q,j) is  and 6, respectively. This will be justified later.
the ath component of the eigenvector of thth mode, at In the studies of melting of the SLWC, the melting tem-
point g, relative to the sublattice in layek(B), R,, is the  Perature is usually given in terms of the dimensionless pa-
relative lattice vector connecting one site to ith NN in  rameterl"y, =e?\/zn/KTy, (the inverse of the vertical units
the same I(;) or in the opposite I(,) layer, and the sums in Fig. 8), the ratio between the average Coulombic potential
over m are extended to thé; (M,) NN’s in the same energy and the average kinetic energy. Experinfegise
(opposite sublattice. I'v=131 and simulatiors give I'y=128. Using the har-
Now we consider two limiting cases. Fom=0, monic value of the sound velocity at=0, the KTHNY
(lu(R)—u(R+a)|?)=L,+L,, since all NN’s are equiva- theory givesI'y=79. Our calculation, which is performed
lent. At the opposite limit, 7—«, {|u(R) within the harmonic approximation, but uség taken from
—u(R+a)|2>=|_l, since the dynamics in one layer is not simulations which, of course, include anharmonic effects,
influenced by the sublattice on the opposite layers. Theregives kgTy, /€?\7n=0.009 25 at»=0, corresponding to
fore, we write in general I'y=108. Therefore, our calculation, although overestimates
Ty, partially includes anharmonic effects. In a full anhar-

(luR)—u(R+a)*)=Ly+f(7)Ly, (48)
where the functiorf(#) satisfies
! 0.007 L - !
f(0)=1, f(»)=0. (49 0.012} -
0.006
As f(#) represents the influence of the oscillation in one
layer on the oscillations in the opposite layer, we tdke) IE 0.009
proportional to the in-plane component of the Coulombic
force between two NN sites sitting in opposite layers. This is \E 0.006
2 = ‘
_ ec g
Fi(d)=— (EF D (50 0.003
wherec=/|c|. Taking f(7) proportional toF(d), and im-
i iti 0.000 : .
posing the condition$49), we have 0.0 02 0.4 0.6 08 1.0
1 n
f(n)= , 51
(m) A+ ay PP (51)

FIG. 8. Melting temperaturd,, for the five phases. For the
where a,=(nc is a dimensionless geometric factor “soft” phases Il and IV (dashed lineswe used the value of the
which can be calculated from Table I. continuously changing parameter, either the aspect egti@, or

Inserting Eq.(48) in (45) and usingr§= 1l/mng, we have the angle between; anda,, respectively, for which the energy is
calculated the melting temperatufg, , which is reported in  at its minimum afT =0.

2)—1
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is stable with respect to lattice vibratiofsee Figs. 4 and)5

0.005 ' " ' in the range 0.006 7<0.262 phase Il is energetically fa-
vored, but also phase | is stable throughout this range. There-
0.004 - 1 fore, in this range, we minimizeF with respect to
L& §=_az/a1. In the range 0.622 77<0_.732 phase IV is ener-
~g, 0.003} ] getically favored, but also phase V is stable; therefore, in this
= range we tak&= 6. Integration over reciprocal space(BR)
= 0.002 ] was performed numerically. We found that in both ranges the
E-m value of ¢ which minimizesF is practically independent of
o the temperature and, therefore, coincides with W0
0.001 F 1 value. In other words, the phase boundaries between the dif-
| 1] v V ferent geometries in Fig. 8 are represented by vertical lines.
0.00000 (;2 (;4 : (;6 : (;8 E— Moreover, this justifies the fact that, in order to calculate
: ’ : n ) ’ ’ Ty for the “soft” phases Il and IV, we have used tie=0

value for the aspect ratio an] respectively.

FIG. 9. Same as Fig. 8, but witf,, plotted in units of
(de/ezﬁ)’l. CONCLUSIONS
The phase diagram of a classical BLWC, bothTat 0,
and atT#0, was investigated, within a harmonic approach,

monic theoryL; andL,, which in the harmonic approxima- by use of the Lindemann criterion and minimization of the
tion scale linearly withT, would increase more rapidly, harmonic free energy. Five different crystalline geometries
especially close to the melting transition. are stable in different ranges of interlayer distance/charge

Figure 8 shows that the melting temperature has an oscidensities. Moreover, at=0 the five phases evolve one into
lating behavior as a function of. This is a consequence of the other through both continuous and discontinuous transi-
the vanishing of the TA phonon modes at the phase boundions. At T#0, alternating solid and liquid phases are pos-
aries I/l and 11I/1V, as discussed in Sec. Il. Therefore, for sible, as one sweeps the interlayer distance or the charge
fixed T#0 and as function ofy we observe that alternating density. In particular, regions of liquid phase separate phase
solid and liquid phases are possible, and the reentrant solid from phase lil, and phase Il from phase IV. This has been
phase has a different lattice geometry each time. Furtheshown to be a consequence of lattice instabilities induced by
more, note from the inset of Fig. 8 that, for large values ofthe vanishing of phonon modes at the phase boundaries. On
7, Ty approaches the melting temperature of a SLWC ofthe other hand, a first-order transition line separates IV from
densityn/2 from below. In certain experimental realizations Phase V.
of the BLWC it could be easier to change through a An additional intricacy of the phase diagram in the small-
change in the charge density, keepihgonstant. Therefore, 7 range has been pointed out by Virk and Monarkflan:
in Fig. 9 we show the calculated melting temperature in unitghis limit the Hamiltonian(3) was mapped into the Hamil-
of ke Tyd/e%\7r. Note that in the classical regime the phasetonian of a binary mixture of particles sitting on a triangular
diagram is determined by and a dimensionless tempera- lattice and interacting through a dipole potential. Therefore
ture, eitherkg Ty, /€2\/7n of kgTyd/e? J. In the quantum there is a possibility that a disordered phase appears, as the

regime, instead, the kinetic energy term depends on the de&fpmperature is increased. They find two phase transitions.

sity alone and, therefore, the phase diagram must be draw e low temperaturg{prdered phase is equivglent to our
explicitly in the three-parameter space, (. T). phase |. Above a critical temperatulg the lattice can be

The presence of different lattice geometries which are€en as composed of three interpenetrating triangular lattices,

stable within the same range of suggests the possibility two of wh!gh are ordered and one 'S disordered. Above a
that, increasingr at fixed », the BLWC undergoes a struc- second (;r|t|cal temperaturé, the lattice pecomes com-

tural phase transition, and, eventually, melts at a temperatur@et_elﬁ dlsordered.hOf cc;)]urse theb:)rd_er-dlzorder transition
appropriate to the high temperature phase. For example, Y2nishes as;—0, where the two sublattices become equiva-

seems possible that faj<0.262 the BLWC evolves from ent. . . . .
phase Il(with some value of the aspect ratio which mini- A bilayer electron gas can easily be realized in semicon-
mizes the static energy di=0) to phase I(aspect ratio 9UCtor heterostructuré§:?® Although our results have been

\/5) asT exceeds some critical value. and eventually melt obtained for a classical system, they can give some indica-
! ' y Yions on the phase diagram in quantum bilayer structures,

at aT,, appropriate for phase I. To investigate such a possi- -~ °. . )
bility v“\"le r?gvepminimizeg the free energy v?/ith respect t?) theprowded that temperature fluctuations are interpreted as

lattice geometry at fixedy andT. The harmonic approxima- quantum fluctuations. Very recently, in Ref._ 12 a reentrant
tion of the free energy in the high temperature limit is phase around;=2.6, analogous to ours in Fig. 8, was pre-

dicted in the ¢;,r5) phase diagram, wheng, is the dimen-
hiwq;(€) sionless inverse electron density. Furthermore, our analysis
F(=E(&)+kgT>, In T (52 of the phonon excitations and the analytical fitting that we
o B have developed retain their validity in the quantum regime.
where ¢ is a parameter which defines a distortion of the In principle, the harmonic approximation used throughout
lattice. There are two ranges gfwhere more than one phase this work is expected to fail when the temperature ap-
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proaches the melting temperature. However, we have shown _ gld (r=R)

that, in thex=0 case, we obtaifl, in reasonable agreement To= ef'q'r; TR erf(e[r—R|)

with numerical simulations and experiments on the SLWC;

therefore, we believe that inclusion of the anharmonic effects e iR erfoler) 1
would not change our results qualitatively, as far as the melt- + > ——rerfde|r—R)+ ———— =

. : X k70 [T—R| r r

ing temperature is concerned. We believe also that the ap-

proximation of a structure-independent paramdigrin the (A3)

Lindemann criterion should not change the nature of oufg convert the first sum on the rhs 6A3) into a rapidly

findings. The harmonic approach could be a more severgynyergent form, we substitute=t/ in the definition of the
approximation in the calculation of the free energy and ourgrror function, which results in

investigation, therefore, does not rule out completely the

possibility of temperature-induced structural phase transi- erfleN) 2 (e 2.
tions =—=| e M¥dg, (A4)
. N \/; 0
ACKNOWLEDGMENTS with A = | r— R| . We plUg(A4) into the first sum OfA3) and

we bring the sum under the integral. Next, we apply the 2D
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search Grant, and the Belgian National Science Foundation. 2 ef\rfR\gzefiq-R:nSﬂ-E e~ |a+ G214 g -i(q+G) 1
Discussions with V. A. Schweigert, K. Michel, J. Naudts, I. R e '
Kono, M. Saitoh, and Yu. P. Monarkha are gratefully ac- (A5)
knowledged. and the substitutiob=|q+ G|/2¢, which transforms the first

term on the rhs ofA3) into
APPENDIX: A RAPIDLY CONVERGENT FORM

OF To AND T, 20N 2 e i(a+G)r
S
G

The slowly convergent sums over lattice sites appearing
in the definition of T, and T, [Egs. (8) and (9)] cannot be  The final step is to choose a reasonable value fauch that
used in a numerical calculation. Therefore, they will be conthe lattice sums have a sufficient rapid numerical conver-
verted into a rapidly convergent form using a generalizatiorgency. A convenient choice is=r, = Jmns. Defining the
of the Ewald method® Formally, we proceed as follows. function
First, each term in the sum is decomposed in two terms,

erfa(|g+ G|/2¢)

G+ G| (A6)

using the identity B(x)= \/gerfc( ) (A7)
1 1
= F{ erf(er) + erfc(er)}, (A1) to simplify the final expression, we finally obtain E4.2).
For T, we proceed in a similar way. Let
where A2=|r—R+c|?+d?; using (A1), and the definition ofT,
[Eq. (9)], we have
2 (x .
erf(x =—f e Vdt A2 . gld(r=R+c)
(x) Jmlo (A2) T,=e a4y T[erf(s)\)Jr erf(eN)].  (A8)
R

is the error function, erfo()=1— erf(x) is the complemen-
tary error functlo_n, and is an arbltrgry constant. Th_e reason (A5), and the substitution=|q+G|/2¢, the first term in
why we do so is that erfa) vanishes exponentially for A8

. ) becomes
large values of the argument and, consequently, the Iatucge
sum with this function as argument is sufficiently rapidly 4 @ iGCe=i(atG) 1 ro
convergent. Then, the other lattice sum with argument— mng>, TI
erf(x) is mapped onto a sum over the reciprocal lattice, \/; G q ‘
using the 2D#-function transformatioR’ (A9)

Using (A1) and the definition offy [Eq. (8)], we obtain  The integral can be performed analytically; using

Using the identity(A4), the 2D #-function transformation

e d%la+GlHa g~y
q+G|/2e

f e~ (Pra®i)gi— ﬁ g2 erfc<x+ ) ye2e erfc{ X— f) } (A10)
X X X
insertinge = \wng, and defining the function
1 Av v Iy vl
V(xy)=3 \/g[e\“xy erfo(\x-+ \y) +e™ Y erfo( Vx—y)], (A11)

we finally obtain Eq(13).
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APPENDIX B: EXPLICIT EXPRESSIONS neglected. In fact the divergency is exactly balanced by the

FOR E, AND E, interaction energy of the electrons with a positive back-

The energyE,, calculated from Eq(10), contains the ground located in the same layer,

divergent term dr 20
E=—e’ng| —=—e?n— (B3)
G2 2mng  2n G ° r a lg-0
e?\ns® 7 =e? GS— Gserf )
s G=0 2\mng G=0 Equation(B2) can also be used to evaluate the contribu-
tion to E, of the last two terms in Eq.12),
2
=e2n56 —2e?\ng, (B1) 1
G=0 lim Jn‘@(msr?)—r}:—zﬁ.. (B4)
r—0

where we have made use of the limit
o Using (B4) and the identityG=2mny(zXR), wherez is a
limx~* erf(x) = 2/\/r. (B2)  ynit vector normal to the layerE, reduces finally to Eq.
=0 (14), which is equal to Eq(2.15 of Ref. 19.E/2 gives the

in the second line ofB1). The divergent term in the last line static energy per electron of a SLWC of density.

of (B1) is independent of the lattice geometry and can be The divergent term irk, is

G2 e’mn
2 2 — S Gnl\ng -Gyl Jng
e \/n_S\I’<47TnS,7T17 ) G {[e st+e Viis]
G=0
—| eG7/\ns erf( © +\my | +e C7\Ns erf © —\/;7;) . (B5)
2\mng 2\mng G-0
|
The second term on the rhs takes the limit, which balances the divergency. Therefore, we obtain
_ 2
2 e "’ 7
—2e?mnd ——+ —erf(\J77)|, (B6)
W\/n—s \/n—s 2\/_@( G2 2) ) 2\/_ . \/_
for G—0. The first term on the rhs ¢B5) can be rewritten, € \hs 477ns’7777 G:o_ e“Vng{m erfo(ym7)
) Ze—Gn/ Jns eG 7l ng_ e—Gn/\/n_S e ’7772}, (B9)
e“mng G + G
G=0
, 2T oo ) and, finally, Eq.(15).
=ens e 7 Vs +2e?m\ngy. (B7) The background charge does not need to sit in the same
G=0 layer of the mobile electrons. This would be, in fact, the

Again, the divergent term on the rhs is independent of thesituation in the 2D electron gas realized in semiconductor
lattice geometry and can be neglected. In fact, this term ifieterostructures, where the positive ions sit far from the in-
exactly balanced by the interaction energy of an electroversion layer. In this case the electrostatic energy has an
with a positive background charge located at the oppositgdditional contribution 2Ze’ny(d’ +d"), whered’, d” are
layer, the distances between the compensating layers and the elec-

tron layers. Since this additional contribution does not de-

pend on the interlayer distandeor on the lattice structure, it
(B8) can be neglected.

dr 2
b_ _ = _@2n. — a—knl\ng
E eznsfﬁz_kdz)lz €°ng K € o
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