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We study theoretically the interaction of phonons with surface vibrational modes in a finite-size superlattice
with a free surface. A phonon incident normally on the superlattice from a substrate is perfectly reflected, i.e.,
the reflection rate is unity irrespective of frequency. However, it comes back to the substrate with a large time
delay when the frequency coincides with an eigenfrequency of the surface mode. This result is attributable to
the resonant interaction of incident phonons with a vibrational mode localized near the surface.

Acoustic vibrations in superlattices~SL’s! with various
stacking order, such as periodic, quasiperiodic, and random
superlattices have been investigated extensively during the
last decade.1–11 The SL’s actually grown are not ideal and
they usually possess both natural and artificial defects. In
particular, an inhomogeneity embedded in a SL with perfect
periodicity ~e.g., a defect layer or a free surface! is shown to
cause localized vibrations within the frequency gaps induced
by the periodicity of a SL. The localized vibrational modes
due to defect layers have also been studied theoretically for
both infinite- and finite-size SL systems. For an infinite, pe-
riodic SL with a defect layer, it is possible to derive analyti-
cally the frequencies of these localized modes.6 For a finite-
size system, on the other hand, the transmission and
reflection rates have been calculated, and their local enhance-
ments are indicative of the presence of the localized vibra-
tional states.7 However, the study of the surface vibrations or
surface acoustic waves in SL’s was, hitherto, carried out only
for a semi-infinite system.8,9

In the present paper, we study the interaction of the sur-
face vibrational modes with acoustic phonons injected to a
finite-size superlattice grown on a substrate~see Fig. 1!. Spe-
cifically, we consider a possibility of observing surface vi-
brations by a phonon reflection experiment. The phonons
incident on a SL with a frequency inside a gap are Bragg
reflected, i.e., the associated lattice displacement decays ex-
ponentially in the SL with the distance from the substrate.
The phonons within a frequency band can propagate up to
the surface of the SL but they are also perfectly reflected
from the surface. In other words, the reflection rate in this
system is unity for the whole frequency range. Thus, one
may naively think that it is impossible to observe evidence of
surface vibrations by a phonon reflection experiment. How-
ever, this is not the case. Although the magnitude of the
reflection amplitude does not give us any information on the
surface mode, its phase contains important information on
the interaction with the surface vibrations, which is basically
accessible in a phonon reflection experiment. This is because
the time needed for a phonon to complete the reflection pro-
cess is given by the derivative of this phase with respect to
the frequency, or ‘‘phase time.’’12–14 In particular, we show
that for an incident phonon with a frequency near an eigen-
frequency of surface vibrations the phase time is enhanced
strongly due to the resonant interaction with the surface
mode.

We can formulate the reflection of phonons in the present
system as a stationary scattering problem in one
dimension.10,11 We adopt a continuum model and consider
the phonon propagation normal to the layer interfaces. Thus,
the displacement field of incident phonons is represented by
the plane waveeikx (k is a wave number andx is normal to
the layer interfaces!, and that of reflected phonons is ex-
pressed asr (k)e2 ikx in the substrate region, wherer (k) is
the reflection coefficient. For a finite-size SL grown on a
substrate and capped with a ‘‘detector layer,’’ the analytical
expression of the reflection coefficient is derived in a previ-
ous paper.10 Setting the acoustic impedance of the detector
layer to zero in Eq.~45! of Ref. 10, we can obtain the ana-
lytical form of r for a finite-size SL with a free surface. The
result is

r5eiQ, ~1!

where

Q52 tan21S ZXZA Fz D , ~2!

F5
m2l

2
1
C~N!

S~N!
, ~3!

and

FIG. 1. Schematic of the system consisting of a substrate (X)
and a finite-size, periodic superlattice with alternate stacking ofA
andB layers.N denotes the number of bilayers andn indicates the
boundaries of unit period. Phonons with a unit amplitude incident to
the superlattice are reflected back to the substrate with reflected
amplitude~reflection coefficient! r .
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z52sinkAdAcoskBdB2
ZB
ZA

coskAdAsinkBdB . ~4!

m5coskAdAcoskBdB2
ZB
ZA

sinkAdAsinkBdB , ~5!

l5coskAdAcoskBdB2
ZA
ZB

sinkAdAsinkBdB . ~6!

In these equations,N is the number of the periodicity of a
SL; dA anddB are the thicknesses ofA ~the layer adjacent to
the substrateX! and B layers, respectively;Zi5r iv i
( i5A,B, and X! is the acoustic impedance given by the
product of the mass densityr i and the sound velocityv i ;
ki5v/v i andv is the angular frequency. For phonons within
a frequency gap~the frequency gap is determined by the
conditionum1lu/2.1), S(N) andC(N) have the following
forms:

S~N!5S m1l

um1lu D
N11 sinhNu

sinhu
, ~7!

C~N!5S m1l

um1lu D
N

coshNu, ~8!

and u5cosh21(um1lu/2). For a phonon within a frequency
band (um1lu/2<1), Eqs.~7! and ~8! take different forms:
S(N)5sinNu/sinu, C(N)5cosNu, andu5cos21@(m1l)/2#.

In both cases, the reflection rateR defined byur u2 is unity.
Thus, the reflection rate gives us no information on the in-
teraction of phonons with the superlattice system. The rel-
evant information is included in the phaseQ of the reflection
coefficient. This phase is related to the dynamical properties
of phonons propagating through the system. Explicitly, the
phase timet defined bydQ/dv describes the temporal delay
of a reflected phonon packet. The phase time was originally
introduced12–14 for electrons tunneling through a potential
barrier and later applied to the photon15 and phonon
propagations16,17 in multilayered dielectric and elastic media.
For recent reviews, see Refs. 18–21.

As an example, we show in Fig. 2~a! the frequency de-
pendence of the phase timet calculated numerically for the
~AlAs! 15~GaAs! 15 superlattice withN58. The plotted phase
time oscillates aroundt052N(dA /vA1dB /vB)50.0264 ns
~the time needed for a round trip! and exhibits sharp peaks in
the lowest and third frequency gaps. These peaks, or large
time delays associated with reflected phonons, are due to the
resonant interaction with the localized surface vibrations
which exist in these frequency gaps.

To understand this striking feature of the phase time, we
derive an approximate expression oft. The functionz(v)
defined in Eq.~4! can be rewritten as

z52sin~pv/v1!2«cos~vdA /vA!sin~vdB /vB!, ~9!

wherev1 is the frequency at the center of the lowest fre-
quency gap satisfying cosu(v1)5(m1l)/2uv1

51, or

v15p(dA /vA1dB /vB)
21 and «5ZB /ZA21 measures the

acoustic mismatch between the constituent layers of the SL.
For most of the SL’s,ZA is close to ZB , i.e., u«u!1
(u«u50.188 for the longitudinal phonons in AlAs/GaAs

SL’s!. Thus, there is a possibility ofz vanishing at a fre-
quency in the vicinity of themth-order Bragg frequency
vm5mv1 . Putting z5zm1(v2vm)z18 for v aroundvm ,
the frequency ṽm satisfying z(ṽm)50 is evaluated as
ṽm5vm2zm /zm8 , where

zm[z~vm!5~21!m
«

2
sin~2vmdA /vA!, ~10!

zm8 [
dz

dv U
vm

5~21!m11F p

v1
1«H dAvA sin2~vmdA /vA!

1
dB
vB

cos2~vmdA /vA!%]. ~11!

Therefore, up to the order of«, we have

ṽm5vm1
«

2p
v1sin~2vmdA /vA!. ~12!

On the other hand, the functionF(v) defined by Eq.~3!
depends weakly onv inside the frequency gap. Thus, we put
F(v)>F(vm)[Fm in the mth frequency gap. Conse-
quently, in the vicinity ofṽm , Eq. ~2! is approximated as

FIG. 2. Frequency dependence of the phase time of the longitu-
dinal phonons reflected from a~100!GaAs/AlAs superlattice. The
solid line and dots are the phase times calculated from the exact
expression Eq.~2! and the approximate expression Eq.~15!, respec-
tively. Narrow frequency range labeled 1 to 3 indicates the lowest
three frequency gaps of phonons. The unit period assumed in these
calculations is~GaAs!15~AlAs!15: the surface layer is assumed to
be ~a! AlAs, i.e., A5GaAs andB5AlAs, and ~b! GaAs, i.e.,
A5AlAs and B5GaAs. The parameters used are as follows: the
number of periods is eight; the thickness of one monolayer is 2.83
Å in the ~100! direction for both GaAs and AlAs; the mass densities
and longitudinal sound velocities are 5.36 g/cm3 and 4.71 km/s for
GaAs, and 3.76 g/cm3 and 5.65 km/s for AlAs. In~a!, the phase
time within the lowest frequency gap is enlarged in the inset.
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Q>2tan21S Fm

~v2ṽm!zm8
D , ~13!

and the phase time is expressed as a form characteristic of
the resonance:

t5
dQ

dv
5

2Gm

~v2ṽm!21Gm
2 , ~14!

where the widthGm ([2Fm /zm8 ) of the resonance peak is
expressed as

Gm5
v1

p
« sin2~vmdA /vA!H 11

coth@N«sin~vmdA /vA!#

sin~vmdA /vA! J ,
~15!

and we have chosenZA5ZX for simplicity.
The frequency dependence of the phase timet calculated

from the resonance formula Eq.~14! is compared in the inset
of Fig. 2~a! with the numerical result. Here we note that
ṽ2 satisfyingz(ṽ2)50 is found inside the second, narrow
gap close to the lower edge. For the parameters we have
chosen (dA5dB and vA>vB), sin(vdA /vA)>0 for a fre-
quencyv within this gap. This leads to the fact that the
width of the frequency gapuDmu5(v1 /p)usin(vmdA /vA)u be-
comes small for m52. At the same time
coth@N«sin(v2dA /vA)# becomes very large thoughN is large
(N58), leading to the width of the resonance much larger
than the gap width, i.e.,

uGm /Dmu5usin~vmdA /vA!1coth@N«sin~vmdA /vA!#u@1,
~16!

for m52. Thus, the enhancement oft is not found in the
second frequency gap. It is readily seen that«,0 ~i.e.,
ZA.ZB) is necessary for uGm /Dmu&1. In addition,
ucoth@N«sin(vmdA /vA)#u&2, or uN«sin(vmdA /vA)u*1/2 should
be satisfied. This explains the fact that no peak of the phase
time is seen inside the gaps when the stacking order of the
bilayer is interchanged, i.e., the surface layerB is replaced
with theA layer @see Fig. 2~b!#.

Now we show that the displacement field of the phonons
with the resonance frequencyṽm is localized near the sur-
face. In the continuum model, the lattice displacement and
stress should be continuous at each interface of the adjacent
layers. This boundary condition can be expressed as

SUn11

Sn11
D 5S m 2s/~vZA!

2vZAz l
D SUn

Sn
D , ~17!

where,Un andSn are the displacement and stress at thenth
interface, respectively. The elementsz,m, and l of the
‘‘transfer matrix’’ are given by Eqs.~4! to ~6!, and s is
defined by

s5sinkAdAcoskBdB1
ZA
ZB

coskAdAsinkBdB . ~18!

For a SL with a free surface, an additional boundary condi-
tion is imposed, i.e., the stress at the surface should vanish,
or S050 (n50 denotes the surface!, see Fig. 1. With the use
of this condition together with the equationz50 satisfied by
the phonons of frequencyṽm , Eq. ~17! leads to

Un5@m~ṽm!#nU0 , Sn50, ~n50,1,2, . . . !, ~19!

where

m~ṽm!5
cos~ṽmdB /vB!

cos~ṽmdA /vA!
. ~20!

Thus, if umu,1, the frequencyṽm corresponds to a vibration
localized near the surface, whose displacement decays expo-
nentially with the distance away from the surface. Since the
function m depends only weakly onv inside a frequency
gap, we can approximate

m~ṽm!>m~vm!5~21!m@11«sin2~vmdA /vA!#. ~21!

This equation implies that the surface mode exists if«,0,
i.e.,ZA.ZB but not forZA,ZB . Hence, the existence of the
surface vibrations is a necessary condition for the resonance
enhancement of time delay of reflected phonons. We also
note that in the second gapum(vm)u is substantially equal to
unity because of sin2(vmdA /vA)>0, whereas um(vm)u
>11« in the first and third gaps. Accordingly, atv5ṽ2 the
amplitude decays very slowly and the corresponding local-
ized vibration behaves rather like a bulk mode in a frequency
band. This also explains why the enhancement oft cannot be
seen in the second frequency gap.

For a semi-infinite SL system, Camleyet al.8 derived the
equationz(v)50 giving the frequencies of surface modes
and the expression of the decay parameterm. Their result is
essentially the same as our results. Equations~19! and ~20!
are valid for both the finite and semi-infinite SL systems.

In order to see explicitly the time delay of the reflected
phonons, we examine the time development of a phonon
wave packet whose average wave number in the initial state
is km5ṽm /v, wherev[vX . As an initial packet, we assume
a Gaussian of the form of

c i~x,0!5expF2
~x2x0!

2

4~Dx!2
1 ikmxG , ~22!

wherex0 is the coordinate at the center of the packet. The
Fourier componentf(k) of this packet is given by

f~k!5
2Ap

Dk
expF2

~k2km!2

~Dk!2
1 i ~km2k!xG , ~23!

where the magnitude ofDk[1/(Dx) is chosen so that
f(k) is finite only inside the frequency window correspond-
ing to themth frequency gap. If the reflected phonon packet
is well separated from the superlattice, it can be written as

c r~x,t !>E dk

2p
f~k!r ~k!e2 i ~kx1vt !

5E dk

2p
f~k!e2 i ~kx1vt1Q!. ~24!

The intensityI r5uc r u2 calculated numerically from Eq.~24!
supplemented by Eqs.~2! to ~8! is plotted in Fig. 3 together
with the initial wave packet. In this calculation, we choose
x050, m51 ~the lowest gap!, andDv5vDk 5 10 GHz.
The reflected packets are illustrated as functions ofx1vt.
From Fig. 3, we see the spatial delay of the packet which is

53 4551RESONANT INTERACTION OF PHONONS WITH SURFACE . . .



equivalent to the corresponding time delay. An interesting
feature is that the reflected packet has double peaks but the
former peak is much smaller than the latter one. The similar
double-peak structure of the reflected packet has also been
obtained for the transmission of phonons through a double
barrier structure. However, in this case the former peak is
much larger than the latter peak. Now, the distance between
the peaks of the initial packet and the latter large peak of the
reflected packet gives the time delay.

For the approximated formula ofQ given by Eq.~10!, the
integral in Eq.~24! can be analytically performed, leading to

c r~x,t !5e2 ikmxrFexpS ~xrDv!2

v2 D 2
2ApGm

Dv

3expS Gm
2

~Dv!2
2

Gmxr
v D erfcS Gm

Dv
2
xrDv

2v D G , ~25!

where xr5x1vt. The intensityI r5uc r u2 calculated from
Eq. ~25! is also plotted in Fig. 3 by dots. The small deviation
from the numerical result~solid line! is due to the fact that
we consider only the effect of the resonance and it comes
from the difference between the phase times calculated from
the exact and approximate expressions illustrated in Fig.
2~a!.

In the present work, we have shown that the phase
associated with the reflected amplitude describes the tem-
poral delay for the phonon packet scattered off a finite-size
SL system. This delay is caused as a result of the inter-
action of incident phonons with a surface vibrational
mode. In the numerical example shown in Figs. 2~a! and
3, the time delay at a resonant frequency becomes as large
as 0.1 ns for the system of about 70 nm thickness. This
means that the magnitude of the time delay of reflected
phonons associated with the resonant interaction with a
surface vibrational mode is in the range detectable by a pho-
non experiment using picosecond laser technique.22 The con-
cept of the phase time is an old one but it proves to be also
useful for studying the existence of surface vibrational
modes. We have shown that this phase time has large reso-
nant peaks at eigenfrequencies of the surface modes in SL’s,
though the reflection rate is exactly unity for the whole range
of frequency. Our results suggest the observability of the
surface vibrational modes by a time-resolved phonon reflec-
tion experiment.

S.M. was partly supported by a Special Grant-in-Aid
for Promotion of Education and Science in Hokkaido Uni-
versity provided by the Ministry of Education, Science, and
Culture. S.T. was supported by the Murata Science Founda-
tion and by a Grant-in-Aid for Scientific Research from the
Ministry of Education, Science, and Culture~Grant No.
05650002!.

1V. Narayanamurti, H. L. Stormer, M. A. Chin, A. C. Gossard, and
W. Wiegmann, Phys. Rev. Lett.43, 2012~1979!.

2O. Koblinger, J. Mebert, E. Dittrich, S. Dottinger, W. Eisen-
menger, P. V. Santos, and L. Ley, Phys. Rev. B35, 9372~1987!.

3D. C. Hurley, S. Tamura, J. P. Wolfe, and H. Morkoc, Phys. Rev.
Lett. 58, 2446~1987!.

4D. C. Hurley, S. Tamura, J. P. Wolfe, K. Ploog, and J. Nagle,
Phys. Rev. B37, 8829~1988!.

5S. Tamura, inProceedings of the 3rd International Conference on
Phonon Physics and the 6th International Conference on Pho-
non Scattering in Condensed Matter, Heidelberg, 1989, edited
by S. Hunklinger, W. Ludwig, and G. Weiss~World Scientific,
Singapore, 1990!, p. 703.

6S. Tamura, Phys. Rev. B38, 1427~1988!.
7S. Tamura, Phys. Rev. B39, 1261~1989!.
8R. E. Camley, B. Djafari-Rouhani, L. Dobrzynski, and A. A. Ma-
radudin, Phys. Rev. B27, 1427~1983!.

9B. Djafari-Rouhani, L. Dobrzynski, O. Hardouin Duparc, R. E.
Camley, and A. A. Maradudin, Phys. Rev. B28, 1711~1983!.

10S. Mizuno and S. Tamura, Phys. Rev. B45, 734 ~1992!.

11S. Mizuno and S. Tamura, Phys. Rev. B45, 13 423~1992!.
12E. P. Wigner, Phys. Rev.98, 145 ~1955!.
13E. H. Hauge, J. P. Falck, and T. A. Fjeldly, Phys. Rev. B36, 4203

~1987!.
14E. H. Hauge and J. A. Sto”vneng, Rev. Mod. Phys.61, 917~1989!.
15 A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett.

71, 708 ~1993!.
16S. Mizuno, M. Ito, and S. Tamura, Jpn. J. Appl. Phys.33, 2880

~1994!.
17S. Mizuno and S. Tamura, Phys. Rev. B50, 7708~1994!.
18R. Landauer, Nature365, 692 ~1993!.
19R. Landauer, Nature341, 567 ~1989!.
20R. Landauer and Th. Martin, Rev. Mod. Phys.66, 217 ~1994!.
21M. Buttiker, in Electronic Properties of Multilayers and Low-

Dimensional Semiconductors Structures, edited by J. M. Cham-
berlain, L. Eaves, and J. C. Portal~Plenum, New York, 1990!, p.
297.

22See, for example, H. J. Maris, C. Thomsen, and J. Tauc, inPho-
non Scattering in Condensed Matter, edited by A. C. Anderson
and J. P. Wolfe~Springer, Berlin, 1986!, p. 374.

FIG. 3. Asymptotic forms of the reflected intensities of the pho-
non wave packet calculated from the exact expression Eq.~24!
~solid line! and approximate expression Eq.~25! ~dots! which are
compared to the intensity of the initial Gaussian packet~dashed
line!. The reflected packets are illustrated as functions ofx1vt.
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