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Resonant interaction of phonons with surface vibrational modes in a finite-size superlattice
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We study theoretically the interaction of phonons with surface vibrational modes in a finite-size superlattice
with a free surface. A phonon incident normally on the superlattice from a substrate is perfectly reflected, i.e.,
the reflection rate is unity irrespective of frequency. However, it comes back to the substrate with a large time
delay when the frequency coincides with an eigenfrequency of the surface mode. This result is attributable to
the resonant interaction of incident phonons with a vibrational mode localized near the surface.

Acoustic vibrations in superlattice&SL’s) with various We can formulate the reflection of phonons in the present
stacking order, such as periodic, quasiperiodic, and randorsystem as a stationary scattering problem in one
superlattices have been investigated extensively during théimension:®*! We adopt a continuum model and consider
last decadé=! The SLs actually grown are not ideal and the phonon propagation normal to the layer interfaces. Thus,
they usually possess both natural and artificial defects. Ithe displacement field of incident phonons is represented by
particular, an inhomogeneity embedded in a SL with perfecthe plane wave' (k is a wave number and is normal to
periodicity (e.g., a defect layer or a free surfaceshown to ~ the layer interfacgs and that of reflected phonons is ex-
cause localized vibrations within the frequency gaps induce@ressed as(k)e '* in the substrate region, whergk) is
by the periodicity of a SL. The localized vibrational modesthe reflection coefficient. For a finite-size SL grown on a
due to defect layers have also been studied theoretically faubstrate and capped with a “detector layer,” the analytical
both infinite- and finite-size SL systems. For an infinite, pe-€Xpression of the reflection coefficient is derived in a previ-
riodic SL with a defect layer, it is possible to derive analyti- 0us papet? Setting the acoustic impedance of the detector
cally the frequencies of these localized mofi&ar a finite-  layer to zero in Eq(45) of Ref. 10, we can obtain the ana-
size system, on the other hand, the transmission anNtiC&' form of r for a finite-size SL with a free surface. The
reflection rates have been calculated, and their local enhanceesult is
ments are indicative of the presence of the localized vibra-
tional states.However, the study of the surface vibrations or r=ev, 1)
surface acoustic waves in SL's was, hitherto, carried out only
for a semi-infinite systerft? where

In the present paper, we study the interaction of the sur-
face vibrational modes with acoustic phonons injected to a
finite-size superlattice grown on a substr@ee Fig. 1L Spe-
cifically, we consider a possibility of observing surface vi-
brations by a phonon reflection experiment. The phonons
incident on a SL with a frequency inside a gap are Bragg F —_—, ®)
reflected, i.e., the associated lattice displacement decays ex- 2 S(N)
ponentially in the SL with the distance from the substrate.
The phonons within a frequency band can propagate up tgnd
the surface of the SL but they are also perfectly reflected
from the surface. In other words, the reflection rate in this eikx
system is unity for the whole frequency range. Thus, one
may naively think that it is impossible to observe evidence of
surface vibrations by a phonon reflection experiment. How- -— —
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ever, this is not the case. Although the magnitude of the r(kye-ikx

reflection amplitude does not give us any information on the

surfgce que, its phase contains |rr.1portant.|nfc.)rmat|pn on bstratex A Al | A Al B | vacuum
the interaction with the surface vibrations, which is basically

accessible in a phonon reflection experiment. This is because el neN-1 el =0

the time needed for a phonon to complete the reflection pro-

cess is given by the derivative of this phase with respect to FiG. 1. Schematic of the system consisting of a substrée (
the frequency, or “phase timet***In particular, we show and a finite-size, periodic superlattice with alternate stacking of
that for an incident phonon with a frequency near an eigenandB layers.N denotes the number of bilayers andndicates the
frequency of surface vibrations the phase time is enhancesbundaries of unit period. Phonons with a unit amplitude incident to
strongly due to the resonant interaction with the surfacehe superlattice are reflected back to the substrate with reflected
mode. amplitude(reflection coefficientr.
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In these equationd\ is the number of the periodicity of a I J
SL; d, anddg are the thicknesses &f (the layer adjacent to o- S e il Sk A
the substrateX) and B layers, respectively;Z;=pjv; 2 3
(i=A,B, and X) is the acoustic impedance given by the 0 500 1000
product of the mass densify; and the sound velocity; ; Frequency (GHz)
k;=w/v; andw is the angular frequency. For phonons within >
a frequency gagthe frequency gap is determined by the £0.05
condition|u+\|/2>1), S(N) andC(N) have the following g
forms: ‘q‘,
@ ]
\ w+ N \N*lsiniNg . T o0 F 500 aHa 1000
= requenc z
S(N) [+ sinhg @ aeney
N FIG. 2. Frequency dependence of the phase time of the longitu-
C(N)= Kt cosiNg (8) dinal phonons reflected from @00GaAs/AlAs superlattice. The
|+ X\ ' solid line and dots are the phase times calculated from the exact

_ o expression Eq2) and the approximate expression ), respec-

and 6=cosh 1(|'“+)‘|/2)' For a phonon W'th'n a frequency tiVSIy. Narrowq(frequency ret)npge labeled 1pto 3 indifgfes thtg lowest
band (u+\|/2<1), Egs.(7) and (8) take different forms: pree frequency gaps of phonons. The unit period assumed in these
S(N) =sinN@/sing, C(N)=cosN6, and 6=cos ‘[(4+\)/2].  calculations isS(GaAS 15(AlAS),5: the surface layer is assumed to

In both cases, the reflection reRedefined byir|? is unity.  pe () AlAs, ie., A=GaAs andB=AlAs, and (b) GaAs, i.e.,
Thus, the reflection rate gives us no information on the in-A=AlAs and B=GaAs. The parameters used are as follows: the
teraction of phonons with the superlattice system. The relnumber of periods is eight; the thickness of one monolayer is 2.83
evant information is included in the pha®eof the reflection A in the (100 direction for both GaAs and AlAs; the mass densities
coefficient. This phase is related to the dynamical propertiesnd longitudinal sound velocities are 5.36 gfcand 4.71 km/s for
of phonons propagating through the system. Explicitly, theGaAs, and 3.76 g/cthand 5.65 km/s for AlAs. Ina), the phase
phase timer defined byd®/dw describes the temporal delay time within the lowest frequency gap is enlarged in the inset.
of a reflected phonon packet. The phase time was originally
introduced®** for electrons tunneling through a potential SL's). Thus, there is a possibility of vanishing at a fre-
barrier and later applied to the photdnand phonon quency in the vicinity of themth-order Bragg frequency
propagation®!’in multilayered dielectric and elastic media. w,=mMmw;. Putting {={n+ (00— 0y) ;) for @ aroundw,,
For recent reviews, see Refs. 18—-21. the frequencyw,, satisfying {(o,)=0 is evaluated as

As an example, we show in Fig(& the frequency de- @,=wn—m/{}, , Where
pendence of the phase timecalculated numerically for the
(AlAs) 15(GaAs 15 superlattice witiN= 8. The plotted phase e
time oscillates aroundo=2N(da/va+dg/vg)=0.0264 ns {m={(om)=(=1)"5 sin2orpdalv ), (10)
(the time needed for a round tjipnd exhibits sharp peaks in
the lowest and third frequency gaps. These peaks, or large d¢
time delays associated with reflected phonons, are due to the ;7 = —>
resonant interaction with the localized surface vibrations do
which exist in these frequency gaps. d

To understand.thls striking fgature of the phgse time, we + B coZ(wmdalva)}l. (11)
derive an approximate expression af The function{(w) UB
defined in Eq(4) can be rewritten as

:(_1)m+1

Om

w dA )
w—1+8 a Slnz(wmdA/UA)

Therefore, up to the order @f, we have
{=—sin(mwl/wi)—ecof wdp/v,)sin(wdg/vg), (9)

&
where w, is the frequency at the center of the lowest fre- Om=ont 5 01SiN2wydalva). (12
guency gap satisfying Ce&ul):(/.L+)\)/2|wl:1, or
wi=m(dp/vpa+tdglvg) "t ande=Zg/Z,—1 measures the On the other hand, the functioR(w) defined by Eq.(3)
acoustic mismatch between the constituent layers of the Sldepends weakly ow inside the frequency gap. Thus, we put
For most of the SL's,Z, is close toZg, ie., |e|<1 F(w)=F(wyn)=F,, in the mth frequency gap. Conse-
(le]=0.188 for the longitudinal phonons in AlAs/GaAs quently, in the vicinity of®,,, Eq.(2) is approximated as
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Up=[m(®m)]"Ug, $,=0, (n=0,12...), (19
where

Fm

O=2tan ! —
(w_wm)gm

, (13

and the phase time is expressed as a form characteristic of

: cog @ dg /v
the resonance: w(@oy) = %. (20
w v
de or,, mhn
~ o (0=t T2 (14 Thus, if|u|<1, the frequencyb,, corresponds to a vibration

localized near the surface, whose displacement decays expo-
where the widthl',, (=—F,,/¢},) of the resonance peak is nentially with the distance away from the surface. Since the
expressed as function . depends only weakly o inside a frequency
gap, we can approximate
coti Nesin(wpndalva)]

Sin(a)mdA/UA)

w
Fm=?ls Sif(wpdalva)| 1+

' w(om)=p(0mn)=(—1)"1+esiF(wxdalva)]. (21

19  This equation implies that the surface mode exists<fO,
and we have chosen, = Zy for simplicity. i.e.,Zy>Zg but not forZ,<Zg. Hence, the existence of the

The frequency dependence of the phase tingalculated ~ Surface vibrations is a necessary condition for the resonance
from the resonance formula E(L4) is compared in the inset €nhancement of time delay of reflected phonons. We also
of Fig. 2(a) with the numerical result. Here we note that Note that in the second gap(wy,)| is substantially equal to
&, satisfying{(&,)=0 is found inside the second, narrow unity because of sffwyda/va)=0, whereas | (wm)
gap close to the lower edge. For the parameters we hav&1+ ¢ in the first and third gaps. Accordingly, at=, the
chosen @x=dg and va=vg), Sin(wdalv)=0 for a fre- amplitude decays very slowly and the corresponding local-
quency » within this gap. This leads to the fact that the ized vibration behaves rather like a bulk mode in a frequency
width of the frequency gap | = (w; /)|sin(wydalva)| be-  band. This also explains why the enhancement cénnot be
comes small for m=2. At the same time Seen inthe second frequency gap.

cotNesin(w,da/v,)] becomes very large though is large For a semi-infinite SL system, Camley al® derived the
(N=8), leading to the width of the resonance much largerfauationf(w)=0 giving the frequencies of surface modes
than the gap width, i.e., and the expression of the decay paramgteil heir result is
essentially the same as our results. Equatid@® and (20)
[T /Al =|sin(wmdalva)+cot Nesin(wpndalva)]|>1, are valid for both the finite and semi-infinite SL systems.
(16 In order to see explicitly the time delay of the reflected

phonons, we examine the time development of a phonon
wave packet whose average wave number in the initial state
is k= omn/v, Wwherev=vy. As an initial packet, we assume

a Gaussian of the form of

for m=2. Thus, the enhancement efis not found in the
second frequency gap. It is readily seen thatO (i.e.,
Zy>Zg) is necessary for|I',/A,|=1. In addition,
|cot Nesin(w,da/va)]|=2, or [Nesin(wyda/va)|=1/2 should

be satisfied. This explains the fact that no peak of the phase (X—Xg)?

time is seen inside the gaps when the stacking order of the wi(x,O)zexp{ — Wﬂkmx , (22

bilayer is interchanged, i.e., the surface lafeis replaced

with the A layer [see Fig. 20)]. wherex, is the coordinate at the center of the packet. The
Now we show that the displacement field of the phononsFourier componeni(k) of this packet is given by

with the resonance frequendy,, is localized near the sur-

face. In the continuum model, the lattice displacement and 2\Jm (k—km)?

stress should be continuous at each interface of the adjacent $(K)= 3¢ eXF{ (AK)2 +i(km—k)x|, (23

layers. This boundary condition can be expressed as

where the magnitude oAk=1/(Ax) is chosen so that
Uni1 M —al(wZp)\ [ U, ¢(K) is finite only inside the frequency window correspond-
Sii1 = —wZpl \ S,/ 17 ing to themth frequency gap. If the reflected phonon packet

is well separated from the superlattice, it can be written as
where,U, andS, are the displacement and stress atritte

interface, respectively. The elemen{su, and A of the _(dk ikt ot)
“transfer matrix” are given by Eqgs(4) to (6), and o is Hx = | 5—¢(kr(ke ot
defined by
dk .
7 — f 2_¢(k)efl(kx+wt+®). (24)
o= Sinkod,coKgdp+ Z—A cokadasikgds . (18) m
B

The intensityl, =|¢,|? calculated numerically from Eq24)

For a SL with a free surface, an additional boundary condisupplemented by Eq$2) to (8) is plotted in Fig. 3 together
tion is imposed, i.e., the stress at the surface should vaniskith the initial wave packet. In this calculation, we choose
or Sy=0 (n=0 denotes the surfagesee Fig. 1. With the use Xxy=0, m=1 (the lowest gap and Aw=vAk = 10 GHz.

of this condition together with the equatidr 0 satisfied by The reflected packets are illustrated as functionx-6bt.

the phonons of frequency,,, Eq.(17) leads to From Fig. 3, we see the spatial delay of the packet which is
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' T ' ] where x,=x+uvt. The intensityl,=|,|? calculated from

] Eq. (25) is also plotted in Fig. 3 by dots. The small deviation
Reflected 1 from the numerical resulgsolid line) is due to the fact that
packet | we consider only the effect of the resonance and it comes
from the difference between the phase times calculated from
the exact and approximate expressions illustrated in Fig.

-
—
1

Incident
packet

Intensity (arb. units)
(=]
[$)]

2(a).
y . In the present work, we have shown that the phase
g1 . —— B e : associated with the reflected amplitude describes the tem-
Distance (/£ m) poral delay for the phonon packet scattered off a finite-size

SL system. This delay is caused as a result of the inter-
FIG. 3. Asymptotic forms of the reflected intensities of the pho-action of incident phonons with a surface vibrational

non wave packet calculated from the exact expression (E4). mode. In the numerical example shown in Fig$a)2and
(solid line) and approximate expression E@5) (dotg which are 3, the time delay at a resonant frequency becomes as large
compared to the intensity of the initial Gaussian padkktshed g5 0.1 ns for the system of about 70 nm thickness. This
line). The reflected packets are illustrated as functions-oft. means that the magnitude of the time delay of reflected

phonons associated with the resonant interaction with a
equivalent to the corresponding time delay. An interestingsurface vibrational mode is in the range detectable by a pho-
feature is that the reflected packet has double peaks but theon experiment using picosecond laser technfdide con-
former peak is much smaller than the latter one. The similatept of the phase time is an old one but it proves to be also
double-peak structure of the reflected packet has also beeeful for studying the existence of surface vibrational
obtained for the transmission of phonons through a doublenodes. We have shown that this phase time has large reso-
barrier structure. However, in this case the former peak i%ant peaks at eigenfrequencies of the surface modes in SLs,
much larger than the latter peak. Now, the distance betweehough the reflection rate is exactly unity for the whole range
the peaks of the initial packet and the latter large peak of theg frequency. Our results suggest the observability of the

reflected packet gives the time delay. surface vibrational modes by a time-resolved phonon reflec-
For the approximated formula é¥ given by Eq.(10), the 4, experiment.

integral in Eqg.(24) can be analytically performed, leading to
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