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Equation of state of metallic fluids near the critical point of phase transition
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An equation of state of expanded fluid metals near the critical point of the liquid-gas phase transition has
been obtained taking into account their plasmalike nature. Both liquid and gas phases are considered to be
metallic, but in contrast with normal metals they have a virtual atomic structure. A percolation model of
overlapping classically accessible spheres of valence electrons has been developed. The mixed electron density
of neighboring atoms on the periphery of ellipsoidal atomic cells is found sufficiently uniform providing a
simple model of interaction between atoms. The first terms in asymptotical expansion of the interatomic
interaction energy at large coordination numbers have been found. When the interatomic interaction has a
single characteristic length, the critical parameters of metals obey scaling laws that depend on the microscopic
atomic characteristics, the valence, and the ionization potential.

[. INTRODUCTION observed experimentallyHowever, concerning the liquid-
vapor phase transition in the critical region of fluid metals,
Metals heated and expanded up to liquid-gas criticathere exist only a few theoretical works. For the estimation
points qualititavely change their electronic properties. Thesef critical points, attempts have been made to use the model
excited states of metals occur, for instance, in explodingf a partially ionized gas agaftt. This model is quite good
wires and foils, in cathode spots of electrical discharges, antbr the low-density plasma, but is not yet clear in the vicinity
in laser-irradiated targets. However, basic data concerningf the metal-nonmetal transition point where atomic valence
properties of expanded metals, in particular the electricathells overlap. Closer to condensed-matter physics is a
conductivity and the equation of state, are only available formodel of metallic lattice gas, which was used for the estima-
low-boiling metals, i.e., mercury, cesium, and rubidium, tion of the coexistence curve of some alkali met8lfho-
which allow stationary heating up to critical temperatures.mogeneities due to clustering were introduced through the
Actual experimental data exist on critical parameters of povariable electron density dependent on the number of occu-
tassium and sodium, but not yet for other mefals. pied neighboring sites. However, similar to Refs. 8 and 9,
By their nature, expanded metals near their critical pointghis model yields critical parameters which are still far from
are plasmalike matter with free valence electrons stronglghe experiment. In our present work, taking into account the
coupled to ions. It is characteristic of expanded metals thatirtual atomic structure of metallic fluids, we obtain an equa-
the electrical conductivity decreases below its minimal metion of state with reliable critical parameters for different
tallic value, and at some threshold density the activation enmetals. In order to describe the interaction energy of over-
ergy appears. All these peculiarities are connected with &apping atoms in percolation clusters, we consider Wigner-
gradual metal-nonmetal transitiéi.he background is a vir- Seitz cells with nearly uniform mixed electron density.
tual atomic structure in a strongly coupled metallic plasma. A Though the equation of state itself does not allow us to
basic model concerning the metal-nonmetal transition is theletermine the role played by the Coulomb interaction, the
percolation of overlapping classically accessible spheres ahetallic character of conductivity in the critical points of
valence electron®.® Mutual screening of overlapping va- cesium and rubidium correlates with a rather small critical
lence shells leads to a mixing of bound- and free-electrortompressibility factor as compared with dielectric fluids. It
states characteristic of the metal-nonmetal transition. Theroves to be closely connected with some difference between
percolation threshold is identified with the transition pointthe exponents in van der Waals’ attractive energy of atomic
defined by the appearance of the activation energy. gases, and Madelung’s energy of ions and uniformly distrib-
Metallic fluids consist of atoms which virtually all belong uted electrons. Nevertheless, the van der Waals equation of
to percolation clusters where electrons of overlapping vastate modified by the substitution for the Madelung energy
lence shells spread out in a larger volume. The attraction ofannot entirely explain the small magnitude of the compress-
overlapping atoms, determined by the Coulomb interactionbility factor. It will be shown that additional terms with
between ions and uniformly distributed electrons, causes amaller exponents must be taken into account.
phase transition identical to the condensation. It is typical of The outline of this paper is as follows: In Sec. Il a phe-
a whole number of metals near their liquid-gas criticalnomenological description of the attractive interaction be-
points. Therefore, any reliable theoretical description of criti-tween overlapping metal atoms is given. A microscopic
cal points must treat metal fluids like a strongly coupledatomic cell model is analyzed in Sec. Ill. In Sec. IV an
plasma® equation of state is given which depends on three parameters
Much effort in the theory of strongly coupled plasma wasfound from the available experimental critical data for ce-
connected with an early prediction of the plasma phase trarsium. Approximate similarity laws for critical parameters of
sition in thermally ionized fluids, which has not yet beenfluid metals are presented in Sec. V.
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IIl. ENERGY OF OVERLAPPING ATOMS

4qr
. Lo 2(r)=z— — (r*=R)ng(r). (6)
In the vicinity of the metal-nonmetal transition point, gas- 3

eous metals have an atomic structure with overlapping clas-
sically accessible spheres of valence electrons forming per-
colation clusters of different scales. The classically
accessible radius is

he coefficient} in Eq. (5) corresponds to the fraction of
valence electrons of neighboring atoms in the total electron
density, and so precludes the internal energy of atoms, which
is taken into account by Ed2), from being counted twice.

R,=e?/l, (1) Simple calculation yields
wheree is the electron charge, ards the ionization poten- 722
tial of atoms. Nearest neighbors of one atom form a coordi- u=-—vy(a) R (7
nation sphere of the radius equal to the double accessible s
radius R, . where the Madelung coefficient is
Percolatlon gualitatively changes the energy spectrum of
atomic gas. Because of virtual screening, a continuous spec- y(a)=1[0.9-1.5%%1-0.42)](1—a) 2. (8)

trum of excitations arises, which corresponds to an asymp-
totically free motion of valence electronsJnder any pertur- This coefficient is reasonably well defined because of a
bations the ground level is the low limit of internal energy, rather weak dependence upon the core volume. Indeed, for
hence an internal energy spectrum of atom counting from thé# a range from zero to 0.2, the magnitudejofaries from
ionic core energy 0.45 to 0.34 (the coefficient o, in the equation
u=—ayz?e’n{’® varies from 0.725 to 0.55, respectively
) Obwously, the model of interatomic interactions is con-
E(P1,---P2) = 2 lktepk), . pk=Pil2m,  (2) siderably simplified since neither the interelectron correla-
tion nor the nonuniform distribution of the valence electron
wherez is the valence], are the sequential ionization po- density are taken into account. However, this is more than
tentials of atomg, are the electron excitation energigg,  compensated for by the advantage of excluding a more com-
are the momenta of electrons far from a screened ionic corgplex problem of the atomic internal energy.
andm is the electron mass. As noted above, a necessary condition in the cell model is
In general, the interaction energy of overlapping atoms irthat the coordination number is large, i.e.,
percolation clusters is not pair additive, since the dependence
of energy per atom upon the coordination number obviously N~ (2R, /Rg)3>1.
saturates with an increase in this numktee effect of criti-
cal fluctuations is then diminishgdn this limit the distribu- ~ As a matter of fact, the coordination number is limited, and
tion of mixed density of valence electrons near the boundaryherefore corrections for the finité, can be important. Con-
between one central atom and its neighbors is nearly uniforrfidering formula(7) as the first term of an expansion on a

(see Sec. Il beloy Then the problem of interatomic inter- Small parameteN ; 1*~RJ/2R, , we write
actions reduces to the calculation of the atomic cell energy. - ,
The simplest atomic cell is a Wigner-Seitz sphere of the ___re 1+ Rs Rs 9
radius “ YR, B or. To\2R,) | 9
Re=(4mn;/3)~ 13, () Requiring the interaction energy at fixé} to be maximal

by modulus if the Wigner-Seitz radius is equal to the classi-

wheren; is the ion(aton) density. The central part of the cell ﬁally accessible sphere radius, we obtain

represents an ionic core occupying up to 10—20 % of the ce

11 H i
volume* which is B>0 and 6=-8. (10)

- 3

a=(Re/Ry)%, Note that the density-dependent facRyin the second term

whereR, is the core radius. The density of valence electronspn the right-hand side of Eq9) is reduced, and therefore
uniformly distributed outside the ionic core, is this term does not contribute to the equation of siaiee

Sec. IV below.
Ng(r)=0,...r<Rg,...

or (4 [ll. ELLIPSOIDAL ATOMIC CELLS

A main assumption in calculating the interaction energy is
=Ne/(1-a),... Re<r<R, that the electron density is nearly uniform outside the ionic
wheren,=zn; is the averaged electron density. core of atoms. To elucidate whether it is reliable or not, we
The interaction energy per atom is given by an integral consider a microscopic model of atomic cells for the perco-
lation structure of the classically accessible spheres. The
fRS e%z(r) simplest form of such a cell, nearest to the sphere, is an
R

u=—3 ne(r)4ar? dr, (5  oblate ellipsoidFig. 1), the polar half-axis of which is equal
to the classically accessible radius, and the volume is some

with the charge number depending on the radius fraction f of the Wigner-Seitz cell volume, i.e.,

C
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The electron wave function is determined by the Sehro
dinger equation

2m
Ay+ 27 [E-V(p,)]y=0, (15

wheref: is the Planck constant, with a boundary condition on
the cell surface corresponding to symmetrical states of quasi-
molecules,

Al ar=0.

Near the surface of a classically accessible sphere, the wave
equation for the energy, equal to the height of the potential
saddles at the ellipsoidal cell poles, reduces to

- . 4ml 1-¢/f
FIG. 1. The ellipsoidal atomic cells. | 42—

sirtd | =0, (16)

Ra wherep’'=p/R, . For s-wave-like states in polar and equato-
R(9)= J1—(1- /T )sirPo’ (11 rial regions of the ellipsoidal cell, the angle dependence can
be neglected. Then, ne&@=0 or 7, we have

whereR(9) is the radius;9 the polar angle, and the frac- oR
tion of the classically accessible volume, Y 4 (17)

Plp")*l=—==p'"
— 3
{=(Ra/Ry)% 12 where Ry=me*/2%:2. Therefore, the electron-density distribu-
We consider a rangé<f, wheref~2 is the random close- tion, determined by the squared wave-function modulus, is
packing fraction of spheres. Assuming that 4f<1, we

4R
have ne(p/)ml_3_|yp14. (18)
R(9)~R,| 1+ 1_25” Sirt 9 | (13) This distribution has a plateau of a width
p'~(31/4Ry) V4. (19

By definition, the surface of a Wigner-Seitz atomic cell con-

sists of symmetry planes which are orthogonal to the axes ghnalogously, neat=/2,

guasimolecules formed by a central atom and its neighbors. IR

Analogously, a surface of the ellipsoidal cell can be consid- Ne(p')ocl+ _y(l_ (It )p'?, (20)
ered a geometrical place of centers of symmetry in many |

such two-atomic quasimolecules.

At low densities, the applicability of the local-density ap-
proxima.tion, the maip compqtational method for nonuniform p' ~[114Ry(1— ¢/ )]¥2 (21
electronic systems, is questionable due to the small overlap
of atomic wave functions. Therefore, we use a more primi-Estimates(19) and(21) show that the plateau can occupy a
tive representation of the effective potential for electronsconsiderable part of the cell outside the ionic core. Thus, if a
that iS, the one-electron potentia| in the middle of a quasiM0|Ume fraction of the CIaSSICaIIy accessible Spheres IS Iarge
molecule axis(for simplicity, for monovalent metalcan be ~ enough, an approximation of the uniform electron density

where the width of a plateau is

written in a form appears to be reliable.
Note that this fraction increases, allowing for an occupa-
g2 e? tion of excited quasiatomic levels determined by E?). If
V(p,¥)=— RO Tp RO —p +1, (14)  the mean excitation energy is of the order of the quasiatomic

Fermi energy, the volume fraction of the classically acces-
wherep=r —R(9) is the radial coordinate counted from the Sible spheres beconies
ellipsoid surface, and is the radius. The first two terms in 3
Eq. (14) represent the Coulomb potentials of ionic cores, and {~Lo(1—eell)
the last term the potential of a quasimolecule electron clougih
within a correlation hole. This potential is normalized in such
a way that in the ground-state level a valence electron can £F (gwgo)% |

transfer just over a potential bridge between two touching 717 RV’
. . h . . 604 y
classically accessible spheres. In the limit of high coordina-

tion numbers one can treat E¢l4) as a total potential where(, is the accessible volume fraction without excita-
smoothed out over the polar angles for all quasimoleculesions, ¢ the Fermi energy, and, the statistical weight of
with a common central atom. the atomic ground-state level connected with the valence
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electrons. Thus quasiatomic excitations lead to a more uni- B=1yBcZl/12(z+1). (31)

form electron-density distribution. , , i
In fact, this equation of state contains three parametefz

andc, which are not exactly known. However, these param-

eters can be determined through the critical density, tempera-
The attractive-interaction energy of overlapping atomsture, and pressure found experimentally at least for one of

can be used to derive an equation of state describing th&e metals having metallic gas phases near the critical point

plasma phase transition. The total pressure consists of twdn particular, for cesium
different parts The critical point is determined by the following condi-
tions:

IV. THREE-PARAMETER EQUATION OF STATES

P= P+ Pe (22

wherep, andp, are the thermal and elastic pressures, respec-
tively. Contributions of valence electrons and ions to theand
thermal pressure both depend on the finite volume of atoms 2 2 n_Ap —203, 2p . —43_
responsible for the limited compressibility. The model of (0"plond)rT(nF)"=sAn "+ 5By ""=0, (33
hard spheres is appropriate for such an atomic system, aghere primes denote derivatives with respectyto
suming that their radius is proportional to the classically ac-

(pIom) 1 T(nF) — 4A78- 3By =0 (32

cessible radius of valence electrons. Using the model of hard (9F)'=(1+4n+an*—4n+phHI(1-n)*
spheres, we have and
pe=(z+1)MTF(7) (23) (pF)"=(8+20n—472)/(1-7)°.
with F() the Carnaghan-Starling functidf, Solving Eqs.(32) and(33) with respect to fractional powers
, s . An'®andB7 Y3 we obtain
F(n)=1+n+5"=—7°)/(1-7)°, (24) "
_ 3 ’ ”
» the packing fraction, Ane =5T(7F)e+3n(7F)¢] (34
3 and
7= (Rps/Rs)”, (25) s
— _ 3 r_ n
and R, the radius of hard spheres, By T=aT(nF)c—3nc(nF)c], (35
where the subscript corresponds to the critical point. Sub-
Rps=CR,. (26) stituting (34) and(35) into equation of stat€29), we express

The coefficientc is smaller than unity, so thak, <R, and the critical compressibility factor by the functidghand their
classically accessible spheres of valence electrons can ovéferivatives,
lap. Note that the hard-sphere model does not introduce any D
additional characteristic length to the problem, if the coeffi- Ke=—————=Fo— 2(gF) .+ 29 nF)". (36)
cient ¢ is fixed. The hard-sphere model, applied to quasi- ¢ (z+Dnic T °° o BT

atoms, obviously excludes the necessity to take into acCOURt,s the compressibility factor is connected with the pack-
the degeneracy of electrons, which leads to the same effemg fraction of hard spheres.

of limited compressibility. _ o Let us determine the critical packing fraction through the
_ The elastic pressure is determined by the derivative of theyperimental value of the compressibility factor found in the
interaction energy with respect to the volume plasma critical point of cesiut¥

Pe=—Ni(du/dV)y,, 27 Ko=0.1.

whereN;=n;V is the number of ions, and is the volume of  Substituting this value on the left-hand side of E86), we
the system. Substitutin@®) into Eq.(27) and differentiating, have

we obtain
- , 97°—1255*+ 1407°+ 8607%+ 2057— 9=0.
Dom— 1y zeen; ( B R_Sz) (28) For small », this equation reduces to a quadratic one with a
Rs 4R3 solution:
where Eq.(l_O) is also used._ 7.=0.037 85. (37)
Substituting(23) and (28) into Eq. (22), we represent the
equation of state of metallic fluids in a form Thus at the critical point the hard spheres system is rather
rarefied. For this case the Carnaghan-Starling fund&on
p=(z+1)n[TF(7n)—Anp*~Byp 9, (290  reduces to(1—47) %, which corresponds to the van der
ith ficient Waals model of the excluded fourfold volume of hard
with coefficients spheres.
A= 221 /3c(z+1) (30) The volume fraction of classically accessible spheres

found on the experimental density in the critical point of
and cesiunt® is
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£.=0.365.
Hence the ratio of sphere radii, defined by E2f), is

c=(n.1¢)Y%~0.47, (39

i.e., the radius of hard spheres, responsible for the limited
compressibility, is approximately half the classically acces-
sible radius of valence electrons.

After substituting thes, value from(37) into Egs.(34)
and(35), the coefficient®A andB are expressed by the criti-
cal temperatures

Density

A=2.854T, (39)

and

B=0.036 47 . (40 bs 09 i
Temperature

The ratio of the critical temperature to the ionization po-
tential found for monovalent cesium from the experimental FIG. 2. Phase diagram in the vicinity of the critical point of
datd3is metallic fluids. The theoretical curve is obtained using conditions of
equal pressures and chemical potentials for liquid and gaseous
T./1=0.0425. phases. Experimental points for cesium and rubidium are from Ref.

13.
From definitions ofA andB, Egs.(30) and (31), after sub-
stitution of this valueT /1, andc from Eg. (38), we obtain

with exponents8~0.35 anda~0.87, which are close to the
the other two parameters

theoretical value$>'*Apparently, a regular behavior for me-

y=0.34 (41) tallic fluids can be to some extent similar to the scaling.

Surprisingly, scaling laws fit better far from the critical point
and than the regular equation does. But as a matter of fact, out-
side of the flat part of the coexistence curve, densities of both
p=0.23. (42)  phases go out of the range where this equation of state is

expected to be applicable. Contrary to the classical van der

Obviously, the given value of the Madelung coefficient Waals equation, it nevertheless shows a large asymmetry of
agrees reasonably with theoretical estimates based on the q ' 9 y y

atomic cell mode[cf. a range ofy (a) given after Eq(8)]. boiling and condensation curves, in qualitative agreement

In addition, a rather smaJB value makes the expansion of with t_he experiment. In add_ition, _the_ main fe_a_ture of th_e
the interaction energy in the derivation of the three_eqqatlon of state under consideration is the ability to predict
parameter equation of state sensible, if the expansion parar(ri\[Itlcal parameters of metals.

eterRy/2R, is not very small. Since the universal parameters

¥, B, andc are known, the equation of state can predict the V. CRITICAL PARAMETERS OF METALLIC FLUIDS

critical parameters of other metalsee Sec. V below

Dividing equation(29) by the identity Critical densities, temperatures, and pressures of metals

with the plasmalike critical state can be expressed by the
De=ro(z+ )N T ionization potential and the valence of atoms. First, by the
¢ e ere definition of the packing fraction, we have

we obtain a dimensionless equation of state

1/3 -1 37¢ S BT o
7=10v[ 7F (%) —2.854p"°—0.036 4% 3] Nic= ypm c T :E T
with the relative pressure=p/p., densityv=n;/n;., tem- ~2.92¢10%(1/eV)?, cmi 3 (43)

peraturer=T/T., and the packing fractiom= 7.v. A phase

diagram, constructed for this equation of state using thyhere in the last equality we substitute the numerical values
Maxwell rule, is shown in Fig. 2 in comparison with experi- of parameters. Thus the critical density is proportional to the
mental data for cesium and rubidium. Only a flat part of thejgpization potential cubed. This conclusion results directly
coeX|stence_ curve with the critical pomt is reproduced. HQW-from the simplest assumption, made from the beginning, that
ever, even in a larger range experimental data are well fitteghe radius of hard spheres is proportional to the classically
by.the scaling laws of the fluctuation theory of the critical 5ccessiple radius, and does not depend on the valence. It is
point an interesting fact that matter with the ionization potential
I=1 eV would have a critical density as high as the normal
gas density. Actually the plasma critical point can only exist
and if the critical density, determined from Ed43), is from
5-10 times smaller than the normal density of this metallic
(n+v,)2—1=|1— 717, liquid, i.e.,

y—v,x|1—7]#
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TABLE |. Critical temperatured, pressure®., and ion densities;. of metals estimated by scaling on
the ionization potentialk and valenceg through the experimental critical data of cesium. In the last but one
column, the critical expansiom,/n;., with n;, the ion density at normal conditions, is given. Experimental
data are given in additional lines with the references in the last column.

Metal z I (eV) T. (K) p. (ban Nic Ni/Nic Reference
(10% cm™3)
Li 1 5.392 2660 342 4.6 10
Be 2 9.322 9195 12 250 24 5.2
B 3 8.298 12 300 17 300 17 7.8
Na 1 5.139 2535 282 3.95 6.4
2485 248 7.8 3.2 15
Al 3 5.986 8860 4680 6.3 9.6
K 1 4.341 2140 144 2.4 55
2178 150 2.6 51 1
Rb 1 4.177 2060 123 2.1 5.1
2017 124.5 2.05 5.3 13
Cs 1 3.894 1924 92.5 1.7 5 13
Cu 2 7.726 7620 5770 13 6.3
Nic<Nin, characteristic length, the classically accessible radiys
The description of deviations from these similarity laws re-
wheren;, is the normal liquid density. quires a detailed analysis which is out of scope of this paper.

Reading Eq.(39) from right to left, and substituting the  Let us consider several examplege Table |, where the
coefficientA, Eq. (30), for the critical temperature we have estimates are given in comparison with still-limited data for
measurements in critical pointsThe plasmalike critical
T.=0.35yz°1/3c(z+1)~0.08%°/(z+1), (44  point is the most characteristic of the light metals, monova-
where in the last equality andc are substituted from Egs. lent I!thium and three—valent anminur_’n having.r_sl critical ex-
(41) and (39). pansion of about 10. While critical ion densities of these

With the definite value of the compressibility factor, the _metals are comparab_le,_the critical temperature o_f aluminum
’ three times that of lithium, and the pressure is higher by an

critical pressure is directly expressed by the density and th& . oY
tempergture' y exp y y order of magnitude because of the threefold ionization.

For heavy alkali metals the critical expansion varies from
=0. T .~0. 2 4 five to six. On the whole, parameters of the plasma critical
Pe=0.dz+1)micTe=0.40%(I/eV)", bar, (49 points of alkalis agree with the experimental dhat&!®An
where in the last equality Eq$43) and (44) are used. Thus exception is the critical density of sodium, the experimental
the critical pressure is proportional to the valence squaredsalue of which® appears to be too high, though predicted
and the ionization potential to the fourth power. critical temperature and pressure are close to the experimen-
The dependencieg3)—(45) uponz and! are all simple  tal values(if this density were used to find parameters of the
powers except44), where the quadratie dependence for equation of state, they would fe=0.35, y=0.23, and3=1;
z<1 crosses over into the linear law fae>1. Moreover, this is not consistent with our atomic cell model, since the
within the range of uncertainty this function can be also re-smaller the ionic core, the largermust be.

duced to the linear law continued froA®>1 down toz=1. All examples in the table, except copper, apply to simple
With the correct description of monovalent metals, we obtaimontransition metals with well-defined valence; that is, the
reduced formula with the renormalized coefficient number of electrons out of the filled inert-gas shell. Con-
versely, at the critical points of transition and noble metals

T.~0.042%1I. (46)

the valence can be higher than in their atomic ground states,

Then the critical temperature is proportional to the valencd€cause of the transfer of electrons from the irthahell to

and the ionization potential. the outer shell induced by interatomic interactions. In par-
If the valence is not well defined, excluding it from Egs. ficular, while a free copper atom has the electron configura-

(45) and(46), we will obtain a relationship between the criti- 0N 3d™4s with a single valence electron, at the critical

D DETWE ; S, : 2 i 6
cal pressure, the temperature, and the ionization potential: POINt it changes into ad4s” with a valence 2° N
In conclusion, note that parameters of plasmalike critical

p.=2251/eV)%(T./eV)?, bar. (47 points of metals often agree quite well with some semiempir-
ical estimates which do not yet concern the physical nature
Note that the power dependencies for plasma criticabf matter. For beryllium, aluminum, and copper, the devia-
points follow from a consideration of the similarity and di- tions of critical temperatures from these estimated by Fortov,
mensions. These simple similarity laws are connected wittDremin, and Leontie¥/ are only about 10%but for boron
the assumption that interaction can be described by a singkhe deviation exceeds 30%
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VI. CONCLUSION the atomic characteristics, the valence, and the ionization po-
tential. A lack of experimental data does not yet allow us to

aﬁglizigalgﬁétatrz SO ; nntwse :ﬁ:: 'TC}QIZ r\gc(;?gr?;ézeslgtli'gﬁ'i?;a(rj]etermine possible deviations from this atomic scaling.
g P P P In our analysis, most characteristic among other metals

interesting way. Atomic gases condense into liquids becaus\ﬁith the plasmalike critical points are lithium and aluminum,

of the van der Waals atiractive forces between atoms. Ir\1/vhich remain in the metallic state after expansion by more

contrast to that, condensation of gaseous metals results froman ten times. Obviously, lithiungwith predicted critical

Fh? exchange interaction in some atomic §t_ructure, Chara.(:te[r)hrameters not much higher than those of sodlimmst be
istic of a gradual metal-nonmetal transition. Overlapping

classically accessible spheres of valence electrons in the rthe most interesting subject of subsequent investigations in
. y acc P ; . the field of metallic fluids. A special problem of interest is a
gion of transition form percolation clusters which are, from

another point of view. a structure of stronaly counled IasmaWide circle of transition metals in which, by virtue of inter-
P ' X gly pled plasma,;, nic interactions, low-lying excited atomic energy levels
When the volume fraction of classically accessible

spheres is high, the mixed electron density is nearly uniformf;an be preferably occupied.

and atomic cells are an appropriate model. Some terms in the
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