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An equation of state of expanded fluid metals near the critical point of the liquid-gas phase transition has
been obtained taking into account their plasmalike nature. Both liquid and gas phases are considered to be
metallic, but in contrast with normal metals they have a virtual atomic structure. A percolation model of
overlapping classically accessible spheres of valence electrons has been developed. The mixed electron density
of neighboring atoms on the periphery of ellipsoidal atomic cells is found sufficiently uniform providing a
simple model of interaction between atoms. The first terms in asymptotical expansion of the interatomic
interaction energy at large coordination numbers have been found. When the interatomic interaction has a
single characteristic length, the critical parameters of metals obey scaling laws that depend on the microscopic
atomic characteristics, the valence, and the ionization potential.

I. INTRODUCTION

Metals heated and expanded up to liquid-gas critical
points qualititavely change their electronic properties. These
excited states of metals occur, for instance, in exploding
wires and foils, in cathode spots of electrical discharges, and
in laser-irradiated targets. However, basic data concerning
properties of expanded metals, in particular the electrical
conductivity and the equation of state, are only available for
low-boiling metals, i.e., mercury, cesium, and rubidium,
which allow stationary heating up to critical temperatures.
Actual experimental data exist on critical parameters of po-
tassium and sodium, but not yet for other metals.1

By their nature, expanded metals near their critical points
are plasmalike matter with free valence electrons strongly
coupled to ions. It is characteristic of expanded metals that
the electrical conductivity decreases below its minimal me-
tallic value, and at some threshold density the activation en-
ergy appears. All these peculiarities are connected with a
gradual metal-nonmetal transition.2 The background is a vir-
tual atomic structure in a strongly coupled metallic plasma. A
basic model concerning the metal-nonmetal transition is the
percolation of overlapping classically accessible spheres of
valence electrons.3–5 Mutual screening of overlapping va-
lence shells leads to a mixing of bound- and free-electron
states characteristic of the metal-nonmetal transition. The
percolation threshold is identified with the transition point
defined by the appearance of the activation energy.

Metallic fluids consist of atoms which virtually all belong
to percolation clusters where electrons of overlapping va-
lence shells spread out in a larger volume. The attraction of
overlapping atoms, determined by the Coulomb interaction
between ions and uniformly distributed electrons, causes a
phase transition identical to the condensation. It is typical of
a whole number of metals near their liquid-gas critical
points. Therefore, any reliable theoretical description of criti-
cal points must treat metal fluids like a strongly coupled
plasma.6

Much effort in the theory of strongly coupled plasma was
connected with an early prediction of the plasma phase tran-
sition in thermally ionized fluids, which has not yet been

observed experimentally.7 However, concerning the liquid-
vapor phase transition in the critical region of fluid metals,
there exist only a few theoretical works. For the estimation
of critical points, attempts have been made to use the model
of a partially ionized gas again.8,9 This model is quite good
for the low-density plasma, but is not yet clear in the vicinity
of the metal-nonmetal transition point where atomic valence
shells overlap. Closer to condensed-matter physics is a
model of metallic lattice gas, which was used for the estima-
tion of the coexistence curve of some alkali metals.10 Inho-
mogeneities due to clustering were introduced through the
variable electron density dependent on the number of occu-
pied neighboring sites. However, similar to Refs. 8 and 9,
this model yields critical parameters which are still far from
the experiment. In our present work, taking into account the
virtual atomic structure of metallic fluids, we obtain an equa-
tion of state with reliable critical parameters for different
metals. In order to describe the interaction energy of over-
lapping atoms in percolation clusters, we consider Wigner-
Seitz cells with nearly uniform mixed electron density.

Though the equation of state itself does not allow us to
determine the role played by the Coulomb interaction, the
metallic character of conductivity in the critical points of
cesium and rubidium correlates with a rather small critical
compressibility factor as compared with dielectric fluids. It
proves to be closely connected with some difference between
the exponents in van der Waals’ attractive energy of atomic
gases, and Madelung’s energy of ions and uniformly distrib-
uted electrons. Nevertheless, the van der Waals equation of
state modified by the substitution for the Madelung energy
cannot entirely explain the small magnitude of the compress-
ibility factor. It will be shown that additional terms with
smaller exponents must be taken into account.

The outline of this paper is as follows: In Sec. II a phe-
nomenological description of the attractive interaction be-
tween overlapping metal atoms is given. A microscopic
atomic cell model is analyzed in Sec. III. In Sec. IV an
equation of state is given which depends on three parameters
found from the available experimental critical data for ce-
sium. Approximate similarity laws for critical parameters of
fluid metals are presented in Sec. V.

PHYSICAL REVIEW B 15 FEBRUARY 1996-IIVOLUME 53, NUMBER 8

530163-1829/96/53~8!/4386~7!/$06.00 4386 © 1996 The American Physical Society



II. ENERGY OF OVERLAPPING ATOMS

In the vicinity of the metal-nonmetal transition point, gas-
eous metals have an atomic structure with overlapping clas-
sically accessible spheres of valence electrons forming per-
colation clusters of different scales. The classically
accessible radius is

Ra5e2/I , ~1!

wheree is the electron charge, andI is the ionization poten-
tial of atoms. Nearest neighbors of one atom form a coordi-
nation sphere of the radius equal to the double accessible
radius 2Ra .

Percolation qualitatively changes the energy spectrum of
atomic gas. Because of virtual screening, a continuous spec-
trum of excitations arises, which corresponds to an asymp-
totically free motion of valence electrons.5 Under any pertur-
bations the ground level is the low limit of internal energy,
hence an internal energy spectrum of atom counting from the
ionic core energy

E~p1 ,...,pz!5(
1

z

~2I k1«pk!,...,«pk5pk
2/2m, ~2!

wherez is the valence,I k are the sequential ionization po-
tentials of atom,«pk are the electron excitation energies,pk
are the momenta of electrons far from a screened ionic core,
andm is the electron mass.

In general, the interaction energy of overlapping atoms in
percolation clusters is not pair additive, since the dependence
of energy per atom upon the coordination number obviously
saturates with an increase in this number~the effect of criti-
cal fluctuations is then diminished!. In this limit the distribu-
tion of mixed density of valence electrons near the boundary
between one central atom and its neighbors is nearly uniform
~see Sec. III below!. Then the problem of interatomic inter-
actions reduces to the calculation of the atomic cell energy.

The simplest atomic cell is a Wigner-Seitz sphere of the
radius

Rs5~4pni /3!21/3, ~3!

whereni is the ion~atom! density. The central part of the cell
represents an ionic core occupying up to 10–20 % of the cell
volume,11 which is

a5~Rc /Rs!
3,

whereRc is the core radius. The density of valence electrons,
uniformly distributed outside the ionic core, is

ne~r !50,...,r,Rc ,...

or ~4!

•••5ne /~12a!,...,Rc,r,Rs ,

wherene5zni is the averaged electron density.
The interaction energy per atom is given by an integral

u52 1
2 E

Rc

Rs e2z~r !

r
ne~r !4pr 2 dr, ~5!

with the charge number depending on the radius

z~r !5z2
4p

3
~r 32Rc

3!ne~r !. ~6!

The coefficient12 in Eq. ~5! corresponds to the fraction of
valence electrons of neighboring atoms in the total electron
density, and so precludes the internal energy of atoms, which
is taken into account by Eq.~2!, from being counted twice.
Simple calculation yields

u52g~a!
z2e2

Rs
, ~7!

where the Madelung coefficient is

g~a!5 1
2 @0.921.5a2/3~120.4a!#~12a!22. ~8!

This coefficient is reasonably well defined because of a
rather weak dependence upon the core volume. Indeed, fora
in a range from zero to 0.2, the magnitude ofg varies from
0.45 to 0.34 ~the coefficient aM in the equation
u52aMz

2e2n i
4/3 varies from 0.725 to 0.55, respectively!.

Obviously, the model of interatomic interactions is con-
siderably simplified since neither the interelectron correla-
tion nor the nonuniform distribution of the valence electron
density are taken into account. However, this is more than
compensated for by the advantage of excluding a more com-
plex problem of the atomic internal energy.

As noted above, a necessary condition in the cell model is
that the coordination number is large, i.e.,

Nc;~2Ra /Rs!
3@1.

As a matter of fact, the coordination number is limited, and
therefore corrections for the finiteNc can be important. Con-
sidering formula~7! as the first term of an expansion on a
small parameterNc

21/3;Rs/2Ra , we write

u52g
z2e2

Rs
F11b

Rs

2Ra
1dS Rs

2Ra
D 2G . ~9!

Requiring the interaction energy at fixedRs to be maximal
by modulus if the Wigner-Seitz radius is equal to the classi-
cally accessible sphere radius, we obtain

b.0 and d52b. ~10!

Note that the density-dependent factorRs in the second term
on the right-hand side of Eq.~9! is reduced, and therefore
this term does not contribute to the equation of state~see
Sec. IV below!.

III. ELLIPSOIDAL ATOMIC CELLS

Amain assumption in calculating the interaction energy is
that the electron density is nearly uniform outside the ionic
core of atoms. To elucidate whether it is reliable or not, we
consider a microscopic model of atomic cells for the perco-
lation structure of the classically accessible spheres. The
simplest form of such a cell, nearest to the sphere, is an
oblate ellipsoid~Fig. 1!, the polar half-axis of which is equal
to the classically accessible radius, and the volume is some
fraction f of the Wigner-Seitz cell volume, i.e.,
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R~q!5
Ra

A12~12z/ f !sin2q
, ~11!

whereR~q! is the radius,q the polar angle, andz the frac-
tion of the classically accessible volume,

z5~Ra /Rs!
3. ~12!

We consider a rangez<f , where f'2
3 is the random close-

packing fraction of spheres. Assuming that 12z/f!1, we
have

R~q!'RaS 11
12z/ f

2
sin2q D . ~13!

By definition, the surface of a Wigner-Seitz atomic cell con-
sists of symmetry planes which are orthogonal to the axes of
quasimolecules formed by a central atom and its neighbors.
Analogously, a surface of the ellipsoidal cell can be consid-
ered a geometrical place of centers of symmetry in many
such two-atomic quasimolecules.

At low densities, the applicability of the local-density ap-
proximation, the main computational method for nonuniform
electronic systems, is questionable due to the small overlap
of atomic wave functions. Therefore, we use a more primi-
tive representation of the effective potential for electrons,
that is, the one-electron potential in the middle of a quasi-
molecule axis~for simplicity, for monovalent metal! can be
written in a form

V~r,q!52
e2

R~q!1r
2

e2

R~q!2r
1I , ~14!

wherer5r2R(q) is the radial coordinate counted from the
ellipsoid surface, andr is the radius. The first two terms in
Eq. ~14! represent the Coulomb potentials of ionic cores, and
the last term the potential of a quasimolecule electron cloud
within a correlation hole. This potential is normalized in such
a way that in the ground-state level a valence electron can
transfer just over a potential bridge between two touching
classically accessible spheres. In the limit of high coordina-
tion numbers one can treat Eq.~14! as a total potential
smoothed out over the polar angles for all quasimolecules
with a common central atom.

The electron wave function is determined by the Schro¨-
dinger equation

Dc1
2m

\2 @E2V~r,q!#c50, ~15!

where\ is the Planck constant, with a boundary condition on
the cell surface corresponding to symmetrical states of quasi-
molecules,

]c/]r50.

Near the surface of a classically accessible sphere, the wave
equation for the energy, equal to the height of the potential
saddles at the ellipsoidal cell poles, reduces to

Dc1
4mI

\2 S r822
12z/ f

2
sin2q Dc50, ~16!

wherer85r/Ra . For s-wave-like states in polar and equato-
rial regions of the ellipsoidal cell, the angle dependence can
be neglected. Then, nearq50 or p, we have

c~r8!}12
2Ry

3I
r84, ~17!

where Ry5me4/2\2. Therefore, the electron-density distribu-
tion, determined by the squared wave-function modulus, is

ne~r8!}12
4Ry

3I
r84. ~18!

This distribution has a plateau of a width

r8;~3I /4Ry!1/4. ~19!

Analogously, nearq5p/2,

ne~r8!}11
4Ry

I
~12z/ f !r82, ~20!

where the width of a plateau is

r8;@ I /4Ry~12z/ f !#1/2. ~21!

Estimates~19! and ~21! show that the plateau can occupy a
considerable part of the cell outside the ionic core. Thus, if a
volume fraction of the classically accessible spheres is large
enough, an approximation of the uniform electron density
appears to be reliable.

Note that this fraction increases, allowing for an occupa-
tion of excited quasiatomic levels determined by Eq.~2!. If
the mean excitation energy is of the order of the quasiatomic
Fermi energy, the volume fraction of the classically acces-
sible spheres becomes5

z'z0~12«F /I !
23,

with

«F
I

5S 9pz0
16ga

D 2/3 I

Ry
,

where z0 is the accessible volume fraction without excita-
tions, «F the Fermi energy, andga the statistical weight of
the atomic ground-state level connected with the valence

FIG. 1. The ellipsoidal atomic cells.
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electrons. Thus quasiatomic excitations lead to a more uni-
form electron-density distribution.

IV. THREE-PARAMETER EQUATION OF STATES

The attractive-interaction energy of overlapping atoms
can be used to derive an equation of state describing the
plasma phase transition. The total pressure consists of two
different parts

p5pt1pe ~22!

wherept andpe are the thermal and elastic pressures, respec-
tively. Contributions of valence electrons and ions to the
thermal pressure both depend on the finite volume of atoms
responsible for the limited compressibility. The model of
hard spheres is appropriate for such an atomic system, as-
suming that their radius is proportional to the classically ac-
cessible radius of valence electrons. Using the model of hard
spheres, we have

pt5~z11!niTF~h! ~23!

with F~h! the Carnaghan-Starling function,12

F~h!5~11h1h22h3!/~12h!3, ~24!

h the packing fraction,

h5~Rhs/Rs!
3, ~25!

andRhs the radius of hard spheres,

Rhs5cRa . ~26!

The coefficientc is smaller than unity, so thatRhs,Ra and
classically accessible spheres of valence electrons can over-
lap. Note that the hard-sphere model does not introduce any
additional characteristic length to the problem, if the coeffi-
cient c is fixed. The hard-sphere model, applied to quasi-
atoms, obviously excludes the necessity to take into account
the degeneracy of electrons, which leads to the same effect
of limited compressibility.

The elastic pressure is determined by the derivative of the
interaction energy with respect to the volume

pe52Ni~]u/]V!Ni, ~27!

whereNi5niV is the number of ions, andV is the volume of
the system. Substituting~9! into Eq.~27! and differentiating,
we obtain

pe52 1
3g

z2e2ni
Rs

S 11b
Rs
2

4Ra
2D , ~28!

where Eq.~10! is also used.
Substituting~23! and~28! into Eq. ~22!, we represent the

equation of state of metallic fluids in a form

p5~z11!ni@TF~h!2Ah1/32Bh21/3#, ~29!

with coefficients

A5gz2I /3c~z11! ~30!

and

B5gbcz2I /12~z11!. ~31!

In fact, this equation of state contains three parametersg, b,
andc, which are not exactly known. However, these param-
eters can be determined through the critical density, tempera-
ture, and pressure found experimentally at least for one of
the metals having metallic gas phases near the critical point
~in particular, for cesium!.

The critical point is determined by the following condi-
tions:

~]p/]ni !T}T~hF !82 4
3Ah1/32 2

3Bh21/350 ~32!

and

~]2p/]ni
2!T}T~hF !92 4

9Ah22/31 2
9Bh24/350, ~33!

where primes denote derivatives with respect toh :

~hF !85~114h14h224h31h4!/~12h!4

and

~hF !95~8120h24h2!/~12h!5.

Solving Eqs.~32! and~33! with respect to fractional powers
Ah1/3 andBh21/3, we obtain

Ahc
1/35 3

8Tc@~hF !c813hc~hF !c9# ~34!

and

Bhc
21/35 3

4Tc@~hF !c823hc~hF !c9#, ~35!

where the subscriptc corresponds to the critical point. Sub-
stituting ~34! and~35! into equation of state~29!, we express
the critical compressibility factor by the functionF and their
derivatives,

kc5
pc

~z11!nicTc
5Fc2

9
8 ~hF !c81 9

8hc~hF !c9 . ~36!

Thus the compressibility factor is connected with the pack-
ing fraction of hard spheres.

Let us determine the critical packing fraction through the
experimental value of the compressibility factor found in the
plasma critical point of cesium,13

kc50.1.

Substituting this value on the left-hand side of Eq.~36!, we
have

9h52125h41140h31860h21205h2950.

For smallh, this equation reduces to a quadratic one with a
solution:

hc50.037 85. ~37!

Thus at the critical point the hard spheres system is rather
rarefied. For this case the Carnaghan-Starling functionF~h!
reduces to~124h!21, which corresponds to the van der
Waals model of the excluded fourfold volume of hard
spheres.

The volume fraction of classically accessible spheres
found on the experimental density in the critical point of
cesium13 is
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zc50.365.

Hence the ratio of sphere radii, defined by Eq.~26!, is

c5~hc /zc!
1/3'0.47, ~38!

i.e., the radius of hard spheres, responsible for the limited
compressibility, is approximately half the classically acces-
sible radius of valence electrons.

After substituting thehc value from ~37! into Eqs. ~34!
and~35!, the coefficientsA andB are expressed by the criti-
cal temperatures

A52.854Tc ~39!

and

B50.036 43Tc . ~40!

The ratio of the critical temperature to the ionization po-
tential found for monovalent cesium from the experimental
data13 is

Tc /I50.0425.

From definitions ofA andB, Eqs.~30! and ~31!, after sub-
stitution of this valueTc/I , andc from Eq. ~38!, we obtain
the other two parameters

g50.34 ~41!

and

b50.23. ~42!

Obviously, the given value of the Madelung coefficientg
agrees reasonably with theoretical estimates based on the
atomic cell model@cf. a range ofg (a) given after Eq.~8!#.
In addition, a rather smallb value makes the expansion of
the interaction energy in the derivation of the three-
parameter equation of state sensible, if the expansion param-
eterRs/2Ra is not very small. Since the universal parameters
g, b, andc are known, the equation of state can predict the
critical parameters of other metals~see Sec. V below!.

Dividing equation~29! by the identity

pc5kc~z11!nicTc ,

we obtain a dimensionless equation of state

p510n@tF~h!22.854h1/320.036 43h21/3#

with the relative pressurep5p/pc , densityn5ni /nic , tem-
peraturet5T/Tc , and the packing fractionh5hcn. A phase
diagram, constructed for this equation of state using the
Maxwell rule, is shown in Fig. 2 in comparison with experi-
mental data for cesium and rubidium. Only a flat part of the
coexistence curve with the critical point is reproduced. How-
ever, even in a larger range experimental data are well fitted
by the scaling laws of the fluctuation theory of the critical
point

n l2nn}u12tub

and

~n l1nn!/221}u12tu12a,

with exponentsb'0.35 anda'0.87, which are close to the
theoretical values.13,14Apparently, a regular behavior for me-
tallic fluids can be to some extent similar to the scaling.
Surprisingly, scaling laws fit better far from the critical point
than the regular equation does. But as a matter of fact, out-
side of the flat part of the coexistence curve, densities of both
phases go out of the range where this equation of state is
expected to be applicable. Contrary to the classical van der
Waals equation, it nevertheless shows a large asymmetry of
boiling and condensation curves, in qualitative agreement
with the experiment. In addition, the main feature of the
equation of state under consideration is the ability to predict
critical parameters of metals.

V. CRITICAL PARAMETERS OF METALLIC FLUIDS

Critical densities, temperatures, and pressures of metals
with the plasmalike critical state can be expressed by the
ionization potential and the valence of atoms. First, by the
definition of the packing fraction, we have

nic5
3hc

4p S c e2I D 23

5
3zc
4p S e2I D 23

'2.9231019~ I /eV!3, cm23, ~43!

where in the last equality we substitute the numerical values
of parameters. Thus the critical density is proportional to the
ionization potential cubed. This conclusion results directly
from the simplest assumption, made from the beginning, that
the radius of hard spheres is proportional to the classically
accessible radius, and does not depend on the valence. It is
an interesting fact that matter with the ionization potential
I51 eV would have a critical density as high as the normal
gas density. Actually the plasma critical point can only exist
if the critical density, determined from Eq.~43!, is from
5–10 times smaller than the normal density of this metallic
liquid, i.e.,

FIG. 2. Phase diagram in the vicinity of the critical point of
metallic fluids. The theoretical curve is obtained using conditions of
equal pressures and chemical potentials for liquid and gaseous
phases. Experimental points for cesium and rubidium are from Ref.
13.
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nic!nin ,

wherenin is the normal liquid density.
Reading Eq.~39! from right to left, and substituting the

coefficientA, Eq. ~30!, for the critical temperature we have

Tc50.35gz2I /3c~z11!'0.085z2I /~z11!, ~44!

where in the last equalityg andc are substituted from Eqs.
~41! and ~38!.

With the definite value of the compressibility factor, the
critical pressure is directly expressed by the density and the
temperature:

pc50.1~z11!nicTc'0.405z2~ I /eV!4, bar, ~45!

where in the last equality Eqs.~43! and ~44! are used. Thus
the critical pressure is proportional to the valence squared,
and the ionization potential to the fourth power.

The dependencies~43!–~45! uponz and I are all simple
powers except~44!, where the quadraticz dependence for
z!1 crosses over into the linear law forz@1. Moreover,
within the range of uncertainty this function can be also re-
duced to the linear law continued fromZ@1 down toz51.
With the correct description of monovalent metals, we obtain
reduced formula with the renormalized coefficient

Tc'0.0425zI. ~46!

Then the critical temperature is proportional to the valence
and the ionization potential.

If the valence is not well defined, excluding it from Eqs.
~45! and~46!, we will obtain a relationship between the criti-
cal pressure, the temperature, and the ionization potential:

pc5225~ I /eV!2~Tc /eV!2, bar. ~47!

Note that the power dependencies for plasma critical
points follow from a consideration of the similarity and di-
mensions. These simple similarity laws are connected with
the assumption that interaction can be described by a single

characteristic length, the classically accessible radiusRa .
The description of deviations from these similarity laws re-
quires a detailed analysis which is out of scope of this paper.

Let us consider several examples~see Table I, where the
estimates are given in comparison with still-limited data for
measurements in critical points!. The plasmalike critical
point is the most characteristic of the light metals, monova-
lent lithium and three-valent aluminum having a critical ex-
pansion of about 10. While critical ion densities of these
metals are comparable, the critical temperature of aluminum
is three times that of lithium, and the pressure is higher by an
order of magnitude because of the threefold ionization.

For heavy alkali metals the critical expansion varies from
five to six. On the whole, parameters of the plasma critical
points of alkalis agree with the experimental data.1,13,15An
exception is the critical density of sodium, the experimental
value of which15 appears to be too high, though predicted
critical temperature and pressure are close to the experimen-
tal values~if this density were used to find parameters of the
equation of state, they would bec50.35,g50.23, andb51;
this is not consistent with our atomic cell model, since the
smaller the ionic core, the largerg must be!.

All examples in the table, except copper, apply to simple
nontransition metals with well-defined valence; that is, the
number of electrons out of the filled inert-gas shell. Con-
versely, at the critical points of transition and noble metals
the valence can be higher than in their atomic ground states,
because of the transfer of electrons from the innerd-shell to
the outer shell induced by interatomic interactions. In par-
ticular, while a free copper atom has the electron configura-
tion 3d104s with a single valences electron, at the critical
point it changes into a 3d94s2 with a valence 2.16

In conclusion, note that parameters of plasmalike critical
points of metals often agree quite well with some semiempir-
ical estimates which do not yet concern the physical nature
of matter. For beryllium, aluminum, and copper, the devia-
tions of critical temperatures from these estimated by Fortov,
Dremin, and Leontiev17 are only about 10%~but for boron
the deviation exceeds 30%!.

TABLE I. Critical temperaturesTc, pressurespc, and ion densitiesnic of metals estimated by scaling on
the ionization potentialsI and valencesz through the experimental critical data of cesium. In the last but one
column, the critical expansionnin/nic, with nin the ion density at normal conditions, is given. Experimental
data are given in additional lines with the references in the last column.

Metal z I ~eV! Tc ~K! pc ~bar! nic
~1021 cm23!

nin/nic Reference

Li 1 5.392 2660 342 4.6 10
Be 2 9.322 9195 12 250 24 5.2
B 3 8.298 12 300 17 300 17 7.8
Na 1 5.139 2535 282 3.95 6.4

2485 248 7.8 3.2 15
Al 3 5.986 8860 4680 6.3 9.6
K 1 4.341 2140 144 2.4 5.5

2178 150 2.6 5.1 1
Rb 1 4.177 2060 123 2.1 5.1

2017 124.5 2.05 5.3 13
Cs 1 3.894 1924 92.5 1.7 5 13
Cu 2 7.726 7620 5770 13 6.3
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VI. CONCLUSION

A plasmalike state of metals in the vicinity of their liquid-
gas critical points presents the problem of condensation in an
interesting way. Atomic gases condense into liquids because
of the van der Waals attractive forces between atoms. In
contrast to that, condensation of gaseous metals results from
the exchange interaction in some atomic structure, character-
istic of a gradual metal-nonmetal transition. Overlapping
classically accessible spheres of valence electrons in the re-
gion of transition form percolation clusters which are, from
another point of view, a structure of strongly coupled plasma.

When the volume fraction of classically accessible
spheres is high, the mixed electron density is nearly uniform,
and atomic cells are an appropriate model. Some terms in the
asymptotic expansion of attractive interatomic interaction at
large coordination numbers, together with the model of hard
spheres for repulsion, yield an equation of state of metallic
fluids, which is applicable in the vicinity of the critical point.
Three parameters of this equation are determined through the
critical parameters of cesium. Estimated critical parameters
of other alkalis agree with the experimental data and, hence,
reliable predictions of critical data of other metals. In most
cases such data are hardly available by any direct experi-
ment. In contrast with some semiempirical estimations which
use the characteristics of condensed matter, like normal den-
sity and evaporation heat, critical parameters of metallic flu-
ids are expressed by approximate scaling dependencies upon

the atomic characteristics, the valence, and the ionization po-
tential. A lack of experimental data does not yet allow us to
determine possible deviations from this atomic scaling.

In our analysis, most characteristic among other metals
with the plasmalike critical points are lithium and aluminum,
which remain in the metallic state after expansion by more
than ten times. Obviously, lithium~with predicted critical
parameters not much higher than those of sodium! must be
the most interesting subject of subsequent investigations in
the field of metallic fluids. A special problem of interest is a
wide circle of transition metals in which, by virtue of inter-
atomic interactions, low-lying excited atomic energy levels
can be preferably occupied.
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