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We calculate the line tension of a tilted stack of magnetically coupled two-dimensional pancake vortices held
at the ends and show that the line tension becomes negative at an angle of 52°. We further calculate the tilt
modulus at arbitrary angleu and show that it becomes negative starting at the same angle 52° for long
wavelengths. A structure for the vortex line is given, which is shown to have a lower energy.

I. INTRODUCTION

One of the important characteristics of the high-
temperature oxide superconductors~HTS! is their layered
structure. As a result, a number of their properties, such as
the electrical resistivity, magnetic penetration depth, and
critical current density, exhibit strong anisotropy as function
of the angle of the applied field relative to thec axis.1–13For
not too large anisotropy@e.g., YBa2Cu3O7, where the anisot-
ropy factor g55–7 ~Refs. 14–19!#, the anisotropic
Ginzburg-Landau or London theories are applicable.20–26On
the other hand, for high anisotropy@e.g., Bi-2212, where
g550–200 ~Refs. 9,27–33!# the discreteness of the struc-
ture becomes relevant. Such systems become quasi-two-
dimensional, as the layers are weakly coupled by a Joseph-
son term that expresses the tunneling current of Cooper
pairs.

As a consequence of the layered structure of the HTS, the
magnetic vortex line is no longer a usual Abrikosov vortex.34

It consists of disklike or pancake-shaped current patterns
with superconducting cores35,36 of radius jab in the CuO
planes, wherejab is the coherence length of the order param-
eter in theab plane. The two-dimensional~2D! pancake vor-
tices in different conducting planes are connected to each
other by Josephson strings.37 This structure is best described
by the Lawrence-Doniach model,38–43where a series of su-
perconducting layers, governed by two-dimensional
Ginsburg-Landau equations, interact with each other via a
Josephson coupling term. The strength of the Josephson term
depends on the anisotropy factor of the material. The higher
the anisotropy, the weaker the Josephson interaction is.

When the applied magnetic field is tilted away from the
direction of the crystalc axis, unusual features develop in the
structure of the vortex lattice. It has been argued in Ref. 40
that for high anisotropy a combined vortex lattice, one lattice
parallel to thec axis and the other parallel to theab planes,
is more favorable than a tilted vortex lattice. Some recent
works have shown such a possibility~see, e.g., Refs. 44–48!.
Such behavior becomes even more likely when the Joseph-
son coupling between the layers vanishes.

Given the apparent relevance of the pancake-vortex
model35 for highly anisotropic materials, such as Bi and Tl
compounds, where the Josephson coupling is very weak, we
here explore, within the framework of this model, the struc-
ture of the vortex line as a function of the tilting angle at low
fields.

This paper is organized as follows. In Sec. II we briefly
review the model of magnetically coupled 2D pancake vor-
tices in layered superconductors.35 In Sec. III we calculate
the line tension of a vortex line tilted from thec axis and
show that the line tension becomes negative at an angle of
52°, indicating that the tilted vortex line becomes unstable.
In Sec. IV we calculate the tilt modulusC44(k) for small
distortions and show that an instability of the vortex line
occurs at the same angle of 52°. In Sec. V we propose an-
other kinked structure for a vortex line that has a lower en-
ergy, and in Sec. VI we present a brief summary of our
results.

II. MAGNETICALLY COUPLED 2D PANCAKE VORTICES

For a stack of superconducting layers~separated by a dis-
tances; see Fig. 1!, with one 2D pancake vortex in the cen-
tral layer and no pancake vortices in the other layers, the
vector potentiala5faf(r,z) is given by35

af~r,z!5E
0

`

dq A~q!J1~qr!Z~q,z!, ~1!

whereZ(q,zn)5exp(2Quznu), n50,61,62, . . . , J1(qr) is
a Bessel function of order 1, andr5Ax21y2. The boundary
condition at each plane is given by the sheet current,
K52(c/2pL)@a1(f0/2p)¹g#, whereL52lab

2 /s, f0 is
the flux quantum,lab is the penetration depth, andg is the
phase of the order parameter. For smallq (q!s21),

FIG. 1. A vortex line tilted by an angleu represented as a tilted
stack of 2D pancake vortices.
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A~q!5~f0/2pL!~q21lab
2 !21/2, ~2!

which gives, for the current in the same plane as the pancake
vortex,

Kf~r,0!5~cf0/4p2Lr!@12~lab /L!~12e2r/lab!#,
~3!

while the current generated by this vortex in the other layers
is

Kf~r,zn!52~cf0lab/4p2L2r!~e2uznu/Lab2e2r n /Lab!,
~4!

wherezn5ns andr n5(r21zn
2)1/2. The force acting between

different vortices is given byFr5Kff0 /c. It can be readily
seen that two vortices in the same plane repel each other,
whereas they attract each other if they are in different planes.

Knowing the force acting between the vortices, we can
calculate the energy of arbitrarily positioned vortices in the
layers. For instance, as shown in Ref. 35 the line energy of a
tilted vortex line, i.e., a straight stack of pancake vortices
tilted at an angleu from thec axis, is

e~u!5~f0/4plab!
2 ln@~lab /jab!~11cosu!/2 cosu#cosu.

~5!

III. LINE TENSION

The line tension of a vortexP(u) is related to its line
energye(u) ~Refs. 49,50! via the relation

P~u!5e~u!1
]2e~u!

]u2
, ~6!

where the second term on the right-hand side arises from the
anisotropy of the system. In the case of magnetically coupled
vortices, the line tension calculated from Eq.~5! is

P~u!5~f0/4plab!
2
cosu2sin2u

cosu~11cosu!
. ~7!

The line tension thus becomes negative at the angle
u05cos21@(211A5)/2#, which is u0551.8° ~see Fig. 2!.
Notice that this angle does not depend on the characteristics
of the material (lab or s!. Similarly, we expect an instability
of the vortex line to occur at the same angle for a long
wavelength tilting wave. This is investigated in the next sec-
tion.

IV. INSTABILITY OF THE VORTEX LINE UNDER A
TILTING WAVE

We calculate the elastic energy of the vortex lattice tilted
at an angleu under small fluctuations occurring along the
vortex line in the low field regime in the harmonic
approximation.50,51

Eel5
1

2(
mÞn

(
m

(
i , j

1

2
~umn

i 2umm
i !

3~umn
j 2umm

j !¹ i¹ jV~r,z!uequilib, ~8!

wherem andn denote the planes,m labels the pancake vor-
tex in the planem or n, and i , j5x,y. The potentialV is
obtained from Eq.~4!.

Using the expressions forumn andV(r,zn)

umn5E dk

~2p!3
eiki•~Rm1r i ,n!ũ~k!, ~9!

V~r,zn!5E d2q

~2p!2
~eiq•r i ,n21!Ṽ~q,zn!, ~10!

where Q25q21lab
22 , zn5ns, ur i ,nu5r5zn tanu,

ki5(kx ,ky), r n5zn /cosu, and

Ṽ~q,zn!52
f0
2

2pL2

1

q2Q
e2Quznu, ~11!

which is obtained from Eq.~4!, we can write the elastic
energy in Fourier space as

Eel5
f0
2nf

4pL2s(i , j E dk

~2p!3(nÞ0
E d2q

~2p!2
qiqj
q2Q

e2Quznueiq•r i ,n

3@12ei ~kzzn1ki•r i ,n!#ũi~k!ũ j~2k!, ~12!

wherenf5B cosu/f0. We may write the elastic energyEel
in the form

Eel5
1

2(i , j E dk

~2p!3
F i j ~k!ũi~k!ũ j~2k!, ~13!

whereF i j (k) is the elastic matrix, whose diagonal elements
are given by

FIG. 2. The line tensionP(u), calculated from Eq.~7!.
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Fxx~k!5
Bf0 cosu

16p2 (
n.0

Fs cosunlab
e2ns/cosulab

2
1

n2 tan2u
@e2ns/lab2e2ns/lab cosu#@12eik•rn#G

~14!

and

Fyy~k!5
Bf0 cosu

16p2s2lab
2 (
n.0

F 1

n2 tan2u
@e2ns/lab2e2ns/lab cosu#

3@12e2 ik•rn#G . ~15!

The off-diagonal terms are zero. These are the two transverse
eingenmodes of the vortex line.Fyy(k) is always positive
@see Fig. 3~b!#. On the other hand,Fxx(k) becomes negative
at angles greater than 52° for small wave vectorsk @see Fig.
3~a!#, as expected. To show this, we note that for small wave
vectorsk ~i.e., ks!1), the sum overn can be done analyti-
cally,

Fxx~ki ,kz!5
Bf0

16p2lab
2

cosu2sin2u

cosu~11cosu!
kz
2 . ~16!

In the long wavelength limit, the tilt modulusC44(k) is given
by

Fxx~k!/kz
2 , ~17!

and the line tensionP(u) is related to the tilt modulus
through the relation50

P~u!5
f0

B
C44~k!, ~18!

which gives back the expression given in Eq.~7!.
Since the vortex line becomes unstable beyond the tilting

angle 52°, this suggests that a vortex line held at its ends
takes another structure, which we will investigate in the next
section.

V. AN ALTERNATIVE STRUCTURE FOR THE TILTED
VORTEX LINE

Since the line tension and the tilt modulus become nega-
tive at the angle of 52°, the vortex line becomes unstable.
The 2D pancake vortices making up the vortex line therefore
have to arrange themselves in another form. We suggest be-
low another structure~see Fig. 4! that we show to have a
lower free energy.

Using Eqs.~10! and~11! we can express the pair interac-
tion

V~rn ,zn!5S f0

2pL D 2E
0

` dq

qQ2 @12J0~qr!#e2Quznu. ~19!

This is the building block needed to calculate either the en-
ergy of a kinked structure or the energy of a tilted stack of
2D pancakes tilted by an angleu, starting from a straight
stack of 2D pancake aligned along thez axis.

FIG. 4. The ‘‘kinked structure,’’ withL0 the height of the stack
andr5L0 tanu.

FIG. 3. ~a! Fxx(kz) as a function ofkzs for u550°, 60°, and
80°. ~b! Fyy(kz) as a function ofkzs for u550°, 60°, and 80°.
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Although we consider a stack of 2D pancakes of finite
heightL0 , for the kinked structure we take advantage of the
exponentially decaying force between the pancakes to sum
over an infinite number of pancakes.

The energy required to deform a straight stack of pan-
cakes into the kinked structure shown in Fig. 4 is given by

Ekink5S f0

2pL D 2 (
m51

`

(
n5m

` E
0

` dq

qQ
@12J0~qr!#e2Qzn,

~20!

wherer5L0 tanu.
This equation can be rewritten as

Ekink5S f0

2pL D 2(
n51

` E
0

` dq

qQ
@12J0~qr!#ne2Qzn. ~21!

For smalls, the sum overn can be converted to an integral,
andEkink takes the form

Ekink5S f0

2plab
D 2lab

3

s2
@~e2r/lab21!1 ln~r/lab!

2Ei~2r/lab!1C#, ~22!

whereEi is the exponential-integral function52 andC is Eu-
ler’s constant,C50.577 . . . .

On the other hand, the energy required to tilt a stack of a
straight stack of 2D pancakes of heightL0 by an angleu is
given by35

Etilt5S f0

4plab
D 2lab

2

s2
L0 lnS 11cosu

2 cosu D . ~23!

It can be seen from the two expressions of energies,
E kink and Etilt , that for large L0 , Ekink; ln(L0) while
Etilt;L0 . Therefore, for moderately large angles and a large
number of pancakes the kinked struture requires less energy
to be formed than the tilted structure. As shown in Fig. 5,
when we start tilting the straight stack of 2D pancakes away
from a vertical configuration, the tilted structure is first en-
ergetically more favorable, but the kinked structure then be-
comes energetically more stable at small angles (;5°).

VI. CONCLUSION

We have shown that a tilted vortex line, i.e., a tilted stack
of 2D pancake vortices, with the tilt maintained by holding
the pancake vortices at the ends of the stack, becomes un-
stable at a universal angle (52°). This instability, which is
due to the absence of the Josephson coupling, is seen from
both the expressions of the tilt modulus and the line tension.
For moderately large angles a kinked structure, such as that
shown in Fig. 4, has a lower energy than that of a uniformly
tilted stack of pancake vortices.
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