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Instability of a tilted vortex line in magnetically coupled layered superconductors

M. Benkraouda and John R. Clem
Ames Laboratory and Department of Physics and Astronomy, lowa State University, Ames, lowa 50011
(Received 25 July 1995

We calculate the line tension of a tilted stack of magnetically coupled two-dimensional pancake vortices held
at the ends and show that the line tension becomes negative at an angle of 52°. We further calculate the tilt
modulus at arbitrary angl@ and show that it becomes negative starting at the same angle 52° for long
wavelengths. A structure for the vortex line is given, which is shown to have a lower energy.

I. INTRODUCTION This paper is organized as follows. In Sec. Il we briefly

review the model of magnetically coupled 2D pancake vor-

One of the important characteristics of the high-ycqq i layered superconductdrsin Sec. Il we calculate
temperature oxide superconductdfSTS) is their layered o jine tension of a vortex line tilted from the axis and

structure. As a result, a number of their properties, such agyo\y that the line tension becomes negative at an angle of
the electrical resistivity, magnetic penetration depth, andspe ingicating that the tilted vortex line becomes unstable.
critical current density, .E'Xhl.blt strong anlsotropy asisfunctlon|n Sec. IV we calculate the tilt modulug (k) for small

of the angle of the applied field relative to thexis.~"“For  gjstortions and show that an instability of the vortex line
not too large anisotropje.g., YBaCu;O,, where the anisot-  gccurs at the same angle of 52°. In Sec. V we propose an-
ropy factor y=5-7 (Refs. 14-19], the anisotropic other kinked structure for a vortex line that has a lower en-
Ginzburg-Landau or London theories are applic&Bié®on ergy, and in Sec. VI we present a brief summary of our
the other hand, for high anisotrode.g., Bi-2212, where results.

y=50-200(Refs. 9,27—-31 the discreteness of the struc-

ture becomes relevant. Such systems become quas-Wo- o \eTicALLY COUPLED 2D PANCAKE VORTICES
dimensional, as the layers are weakly coupled by a Joseph-

son term that expresses the tunneling current of Cooper For a stack of superconducting layéseparated by a dis-
pairs. tances; see Fig. 1, with one 2D pancake vortex in the cen-

As a consequence of the layered structure of the HTS, theral layer and no pancake vortices in the other layers, the
magnetic vortex line is no longer a usual Abrikosov vortéx. vector potentiab= ¢a,(p,z) is given by®
It consists of disklike or pancake-shaped current patterns
with superconducting corés®® of radius &,;, in the CuO w
planes, wheré,,, is the coherence length of the order param- au(p,2)= f dg A(9)J1(dp)Z(q,2), (1)
eter in theab plane. The two-dimension&2D) pancake vor- 0
tices in different conducting planes are connected to each .
other by Josephson stringsThis structure is best described Where 2(d,z,) =exp(-Qlz), n=0,+ 12:2'2' -+ J1(qp) is
by the Lawrence-Doniach mod®;**where a series of su- @ Bessel function of order 1, apd= yx“+y*. The boundary
perconducting layers, governed by two-dimensionalcondition at each plane is given by the 2sheet current,
Ginsburg-Landau equations, interact with each other via & = —(¢/2mA)[a+ (¢o/2m)Vy], where A=2\3 /s, ¢y is
Josephson coupling term. The strength of the Josephson tedfe flux quantum,;, is the penetration depth, andis the
depends on the anisotropy factor of the material. The highephase of the order parameter. For snta(g<s™1),
the anisotropy, the weaker the Josephson interaction is.

When the applied magnetic field is tilted away from the
direction of the crystat axis, unusual features develop in the
structure of the vortex lattice. It has been argued in Ref. 40 L6
that for high anisotropy a combined vortex lattice, one lattice
parallel to thec axis and the other parallel to tlab planes,
is more favorable than a tilted vortex lattice. Some recent
works have shown such a possibilisee, e.g., Refs. 44-18
Such behavior becomes even more likely when the Joseph-
son coupling between the layers vanishes.

Given the apparent relevance of the pancake-vortex
modef® for highly anisotropic materials, such as Bi and Tl
compounds, where the Josephson coupling is very weak, we
here explore, within the framework of this model, the struc-
ture of the vortex line as a function of the tilting angle at low  FIG. 1. A vortex line tilted by an anglé represented as a tilted
fields. stack of 2D pancake vortices.
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A@) = (pol2mA) (9P +N5,) 12 ) P ' ‘ '

which gives, for the current in the same plane as the pancake
vortex,

K (p,0)=(Co/Am?Ap)[1—(Nap/A)(1—e P ran)], .
©) i

while the current generated by this vortex in the other layers
is =

Kg(p,2n) == (Cpohap/4m?AZp) (™ 170l Nab— g n/Aan) “
4

wherez,=ns andr ,=(p?+z2) Y2 The force acting between
different vortices is given by ,=K ¢, /c. It can be readily
seen that two vortices in the same plane repel each other,
whereas they attract each other if they are in different planes.

Knowing the force acting between the vortices, we can -1
calculate the energy of arbitrarily positioned vortices in the
layers. For instance, as shown in Ref. 35 the line energy of a
tilted vortex line, i.e., a straight stack of pancake vortices
tilted at an angled from thec axis, is

P(0)/(¢o/47 Nab)

€(0)=(polAm\ )% IN[ (N ap/ Eap) (1+ COSH)/2 cOP]COSA. 200 150 300 45.0 50.0 75.0 90.0
(5) 0 (deg)
IIl. LINE TENSION FIG. 2. The line tensioP(#), calculated from Eq(7).
The line tension of a vorte¥(0) is related to its line  \yherem andn denote the planeg labels the pancake vor-

energye(6) (Refs. 49,50 via the relation tex in the planem or n, andi,j=x,y. The potentialV is

) obtained from Eq(4).

P(6)=e(0)+ ‘9;; 0) ’ ) Using the expressions far,, andV(p,z,)

- - ; dk ik SR+ )

where the second term on the right-hand side arises from the Upn= (277)36 " e lu(k), (9)

anisotropy of the system. In the case of magnetically coupled
vortices, the line tension calculated from Ef) is d2q
V(p,z =f el n—1)V(q,z,), (10
B(6) = (dofdmhp)? cosf—sirt6 @ (P20) W( (@.20)
= T o -
0 ab COY(1+ cosp) where Q2: q2+ )\;bZ, Z,=ns, |r”’n| =p=2z, tand,

The line tension thus becomes negative at the angll™ (Kx:Ky), Tn=2n/cO%, and

6o=cos (—1+/5)/2], which is 6,=51.8° (see Fig. 2 82
Notice that this angle does not depend on the characteristics \N/(qyzn): - _02
of the material § ;5 or s). Similarly, we expect an instability 2mA
of the vortex line to occur at the same angle for a long
wavelength tilting wave. This is investigated in the next sec
tion.

1
9°Q
which is obtained from Eq(4), we can write the elastic
‘energy in Fourier space as

e Qlzl (11)

By dk d%q 9 o,
IV. INSTABILITY OF THE VORTEX LINE UNDER A Eel:47TA25iZj f (277)3[;0 (2m)? q'zQJe Qlznlla-1).n

TILTING WAVE
— @l Rz T KT D10 (K Ui (—

We calculate the elastic energy of the vortex lattice tilted X[L=em i u(kyu; (= k), (12
at an angleg under small fluctuations occurring along the wheren, =B cosf/¢,. We may write the elastic enerdg
vortex line in the low field regime in the harmonic in the form
approximatiorr®>!

Eam 53 f—dk U)K T(—k), (13
1 1 =5 0, (k) T;(—k),
B33 2 S 5 (Ut T2t ] m TN
m#n g i,j .
where®'! (k) is the elastic matrix, whose diagonal elements

X (U= L) ViViV(p,2) | eqiib: (8  are given by
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Boy cOW—siPl

8
0-50° D**(ky ,k,) = . 1
\ ............ 0-60° @ (ky ko) 1672\2, co(1+cos) 2 (16
~ | N |e==--- 0=80°
< In the long wavelength limit, the tilt moduluG,4(k) is given
g by
<
g XX, 2
; DX(k)/KZ, (17
g and the line tensiorP(#) is related to the tilt modulus
- through the relatiot?
®o
P(6)= 5 Cad(k), (18)
201 0.05 0 0.05 0.1 which gives back the expression given in Eg).
ks Since the vortex line becomes unstable beyond the tilting
os angle 52°, this suggests that a vortex line held at its ends
PO ) takes another structure, which we will investigate in the next
............ 0=60: section.
------ 0=80
04 |
o V. AN ALTERNATIVE STRUCTURE FOR THE TILTED
p VORTEX LINE
’E 0.3 \
§ Since the line tension and the tilt modulus become nega-
Qa tive at the angle of 52°, the vortex line becomes unstable.
B 02 / The 2D pancake vortices making up the vortex line therefore
X /// have to arrange themselves in another form. We suggest be-
= N / low another structurésee Fig. 4 that we show to have a
o1 F \ / lower free energy.
\, / . Using Eqs.(10) and(11) we can express the pair interac-
_______________________ N\ | f ] tion
0~0.l 0.05 0 B 0.05 0.1
ks

FIG. 3. (@) ®(k,) as a function ok,s for §=50°, 60°, and
80°. (b) ®¥¥(k,) as a function ok,s for §=50°, 60°, and 80°.

(I)XX(k): B¢0 (;239 S Coseefns/cosﬁ)\ab
1677 n>0 n)\ab
1 —ns/\ —ns/\4p COSH ik-r
Tnrtagl® T llmen
(14
and
B¢ cod 1
Yy = —Nns/\gp_ a— NS \yp COSH
®7k) 1677252)\§b,1§>:o 7 tarfe © ]
x[l—eik'fn]}. (15)

2(=d
V<pn,zn>=(2ﬁ°A) foq—;[l—mp)]e*@‘zﬂ‘. (19

This is the building block needed to calculate either the en-
ergy of a kinked structure or the energy of a tilted stack of
2D pancakes tilted by an angk starting from a straight
stack of 2D pancake aligned along thexis.

L/2

The off-diagonal terms are zero. These are the two transverse
eingenmodes of the vortex lin€@YY(k) is always positive
[see Fig. &)]. On the other handb**(k) becomes negative

at angles greater than 52° for small wave vectofsee Fig.
3(a)], as expected. To show this, we note that for small wave
vectorsk (i.e., ks<1), the sum oven can be done analyti-

cally, andp=L, tand.

FIG. 4. The "kinked structure,” withL 4 the height of the stack
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Although we consider a stack of 2D pancakes of finite
heightL, for the kinked structure we take advantage of the
exponentially decaying force between the pancakes to sum
over an infinite number of pancakes. E

The energy required to deform a straight stack of pan-

30.0

L/ ha=2000
L/Aa=3000
_____ L/%a=5000

TAab)
o3
=3
2

cakes into the kinked structure shown in Fig. 4 is given by E
bo S =dq _ %
Ekink=(— 2 2 | —5ll-doap)le @, £ o
27A) m=1n=m Jo qQ L"J -
(20 LE: //' /

wherep=L, tang. e

This equation can be rewritten as N

b0 |’ (*dg
o= — RN - 7an | .
Eiink 27A nZl 0 QQ[l Jo(ap)Ine - @D 100 5.0 0 (deg) 10.0 15.0
eg

For smalls, the sum oven can be converted to an integral,
and E, takes the form

¢0 )\gb N
Evink= Zmhar ST[(e PPhab—1)+In(p/ N ap)

FIG. 5. Energy comparison of a kinked and a tilted stack of 2D
pancakes fok /A ,,=2000, 3000, and 5000.

VI. CONCLUSION

Ei(=p/hap) +CJ, 22 We have shown that a tilted vortex line, i.e., a tilted stack
whereE; is the exponential-integral functidhandC is Eu-  of 2D pancake vortices, with the tilt maintained by holding
ler's constantC=0.577 . .. . the pancake vortices at the ends of the stack, becomes un-

On the other hand, the energy required to tilt a stack of &table at a universal angle (52°). This instability, which is
straight stack of 2D pancakes of heidhj by an angled is  due to the absence of the Josephson coupling, is seen from

given by both the expressions of the tilt modulus and the line tension.
22 For moderately large angles a kinked structure, such as that
_[_%0 |"Mab 1+cos 23 shownin Fig. 4, has a lower energy than that of a uniformly
tilt 2 Lo N . (23 : .
4mhgp) S 2 coy tilted stack of pancake vortices.

It can be seen from the two expressions of energies,
En and Ey,, that for large Loy, E~In(Lg) while
E.i~Lg. Therefore, for moderately large angles and a large
number of pancakes the kinked struture requires less energy ) N
to be formed than the tilted structure. As shown in Fig. 5, e would like to thank L. N. Bulaevskii, V. G. Kogan,
when we start tilting the straight stack of 2D pancakes away"‘”d M. Ledvij for stimulating discussions. Ames Laboratory
from a vertical configuration, the tilted structure is first en-1S operated for the U.S. Department of Energy by lowa State
ergetically more favorable, but the kinked structure then beUniversity under Contract No. W-7405-Eng-82.
comes energetically more stable at small angles ).
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