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The present investigation was motivated by the apparent success of a statistical model to describe the effects
of external pressure on spectral holes in dye-doped amorphous polymers. With its help, the polymer compress-
ibility could be determined in a purely optical experiment. This success was surprising since polymers usually
meet the basic assumptions of this model quite poorly. Furthermore, two conflicting approximations with
respect to the number density of matrix units were employed. To investigate the model and its assumptions in
a systematic way, we performed pressure-tuning experiments on spectral holes burnt in dye-doped rare-gas
matrices, since these serve as simple model systems, satisfying the assumptions of the model to a large extent.
A modification of the statistical theory to avoid the above-mentioned conflicting approximations by taking into
account correlations between matrix units due to their mutual steric exclusion was extended further to also
describe the pressure effects. The depth of the dye-matrix interaction potential and the number density of
matrix units were calculated with and without correlations between matrix units. Our results provide experi-
mental evidence that the inclusion of matrix correlations is essential to obtain reasonable potential parameters
and number densities of the matrix atoms. The optically determined compressibilities, however, do not change
upon introduction of matrix correlations. This result justifies earlier compressibility determinations using the
original model.

I. INTRODUCTION

Polyatomic organic dye molecules can be investigated
rather easily when they are doped into suitable solid host
matrices in low concentrations. Due to the weak guest-host
interaction, the electronic states of the guest molecule under
study are largely decoupled from the host material, leaving
the guest excitation energies localized. Therefore, the guest
molecule will exhibit its characteristic electronic and vi-
bronic splittings, except for a possible shift of the zero-
phonon origin. The hosts are chosen such that their absorp-
tion does not overlap with the guest states under
investigation. This holds true for a variety of polymers as
well asn-alkanes and certainly for rare-gas matrices. In these
cases, the low-energy optical absorption spectra of the guest-
host systems are dominated by the respective guest mol-
ecules.

In disordered host materials the optical absorption spectra
of these guest-host systems are often characterized by broad
featureless bands. The reason for the featureless bands is the
well-known inhomogeneous broadening. When a dye mol-
ecule is incorporated into a host matrix its transition energy
will experience a shift due to the dye-matrix interaction. In a
~hypothetic! perfect crystal, all guest molecules would expe-
rience exactly the same shift, whereas in disordered hosts, a
distribution of local environments and therefore a distribu-
tion of transition energies is encountered. Hence, the inho-
mogeneous broadening, which can be as large as several 100
cm21, can serve as a measure of local disorder. On the other
hand, the inhomogeneous broadening prevents access to the
homogeneous absorption line shapes. The homogeneous
linewidth is related to energy and phase relaxation processes
in the system. Of particular interest are the linewidths in
amorphous hosts, since in these materials additional low-
energy excitations are present~TLS—two-level tunneling

systems, local modes!, which do not exist in crystals. The
dye molecule therefore serves as a local probe of dynamical
processes in disordered media via its homogeneous absorp-
tion line shape and linewidth.

With the introduction of hole-burning spectroscopy,1,2 a
method to extract homogeneous line shapes from inhomoge-
neously broadended absorption bands became available~for
a review see, e.g., Ref. 3!. A subensemble of molecules at a
given frequency within the inhomogeneous band is selec-
tively excited and subsequently phototransformed. If the
product of the photoreaction absorbs at a different region in
the spectrum, a dip in the original band—a spectral hole—
will be left behind. Depending on the nature of the pho-
totransformation, hole lifetimes can be as long as years. The
hole width can then be linked to the homogeneous or quasi-
homogeneous width of the transition.~Both widths differ by
a factor of two in the case of shallow holes and in the ab-
sence of spectral diffusion.4!

The enormous gain in resolution of the hole-burning tech-
nique also manifests itself in optical pressure-tuning experi-
ments. Whereas pressure changes as high as several GPa are
necessary to affect the whole inhomogeneous band shape,
only a very small fraction~1024–1025! of the above-
mentioned values are needed to give rise to measurable
changes in the hole spectrum. This allows the investigation
of pressure effects near equilibrium conditions. A pressure
changeDp will cause a spectral hole to shift~linear inDp!
and to broaden~proportional to uDpu!. The hole shift is a
consequence of the pressure-induced displacements of the
matrix units, which correspond to a change in the dye-matrix
interaction. The pressure shift allows the determination of
the ~local! matrix compressibility in an all-optical experi-
ment. The pressure broadening results from the removal of
an accidental degeneracy: Different local dye environments,
which result in the same shift of the dye transition energy,
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respond differently to external pressure.
Since the inhomogeneous broadening of optical lines is a

consequence of randomly distributed lattice irregularities in
an amorphous solid, it can be described by a statistical
theory. The respective model descriptions date back to
Markoff5 and Stoneham6 and have recently been refined by
Laird and Skinner7 to also include pressure effects on hole
spectra. The generality of these theories is restricted by a set
of basic assumptions.

Usually it is assumed that one type of interaction~e.g.,
dispersive forces! between dye and matrix molecules pre-
dominates. Also, the matrix units are considered to be spheri-
cal and independent of each other, yielding additive contri-
butions to the solvent shift of the embedded dye molecules,
which are also assumed to be spherical. Additionally, the
matrix units are assumed to be able to arrange themselves
independently of each other around a dye molecule.

Laird and Skinner’s extension of the statistical approach
to describe pressure effects was first applied to dye mol-
ecules in various polymer hosts like polyethylene, polysty-
rene, and polymethylmethacrylate~PMMA!. Their prediction
of a frequency-dependent pressure shift was duely verified,
its predicted magnitude agreeing with the experimental re-
sults to within 20%.

The success of this simple approach was surprising, since
polymers often meet the above conditions rather poorly. In
the case of polymer hosts, the monomer units are taken as
the matrix units in the model description. The monomer units
clearly are unable to arrange themselves independently, since
they are connected by strong directional bonds. Moreover,
the monomer units often are slightly polar~as in the case of
PMMA!.

Furthermore, the range of validity of the results of the
statistical model remained unclear, since in the course of the
calculation two conflicting limits with regard to the number
densityr of the matrix units within the interaction range of
the dye molecule were employed: the high-density limit
~r→`, the so-called Gaussian approximation! and the low-
density limit ~r→0!. A consequence of the latter was that
correlations between matrix units, arising from their mutual
steric exclusion, were neglected.

It was therefore our goal to investigate the statistical de-
scription systematically, using model systems that come clos-
est to satisfying the above-mentioned assumptions. For that
reason we chose the solid rare gases argon, krypton, and
xenon as host matrices. Due to their model character, solid
rare gases have been of great interest in the past three de-
cades. Therefore, a large number of data on their properties
are readily available~for a review see, e.g., Ref. 8!.

In order to avoid the conflicting assumptions with regard
to the number densityr, Sevian and Skinner9 extended the
statistical description by including correlations between the
matrix units, arising from their mutual steric exclusion. Re-
taining the limit of sufficiently large values forr, an expres-
sion for the inhomogeneous line shape was derived. Further-
more, using Monte Carlo simulations, the authors of Ref. 9
demonstrated that matrix correlations are in fact quantita-
tively important. A similar statistical model by Messing, Raz,
and Jortner10 also showed better agreement with their spec-
troscopic data on xenon solvated in liquid argon when the
solvent-solvent correlation was taken into account.

The expression for the inhomogeneous line shape derived
by Sevian and Skinner9 allows us to calculater and the depth
of the dye-matrix interaction potential from the measured
solvent shift and inhomogeneous widths. In order to study
the consequences of the conflicting approximations in the
original theory~Ref. 7!, we evaluate the results at first for the
additional limit r→0.

In order to analyze the effects of external pressure on
spectral holes in an analogous way, we extended the statisti-
cal description employing Sevian and Skinner’s method of
including matrix correlations. Furthermore, in our experi-
ments a pressure change is always accompanied by a tem-
perature change, which is due to our sample preparation pro-
cedure. Therefore we incorporated the thermal expansion of
the matrix, which also contributes to the shift of the transi-
tion energies, into the framework of the statistical model.
Since the thermal expansion coefficient is known from the
literature, the pure pressure effect can be extracted from the
measured combined pressure and temperature effects. The
local compressibilities in the environment of the dye mol-
ecules are calculated with and without the use of the low-
density approximation, using different dye-matrix interaction
potentials.

II. EXPERIMENT

In order to incorporate free-base phthalocyanine~H2Pc!
into solid rare gases, a cold substrate under vacuum condi-
tions and a suitable furnace are required.11 The construction
of the Knudsen effusion furnace is similar to the one used by
Bajema, Gouterman, and Meyer.12 It consists of a sublima-
tion chamber~T'600 K! containing the dye and a superheat-
ing chamber~T'700 K!. Between the chambers, the desired
rare gas is added to the vaporized dye. The mixture then
enters the superheating chamber and expands through a
nozzle into the vacuum surrounding the substrate.

During the sample preparation, the substrate is cooled
down to T'4 K by a continuous-flow cryostat. After the
sample has been deposited, the substrate is immersed into
liquid helium. Subsequently, the temperature is lowered to
1.8 K, and a spectral hole is burnt. The helium bath is then
sealed off, causing the pressure~and the temperature! to rise.
The spectral hole is recorded repeatedly during the pressure
increase~for the optical setup see, e.g., Ref. 13!. The maxi-
mum pressure difference that can be achieved in this way is
0.2 MPa. At the same time the temperature rises to 5 K.

Within our experimental error, the pressure-temperature
shift was fully reversible. This is at first surprising, since
temperature-cycling experiments on several polymers
showed irreversible line shifts.14 The absence of this effect is
probably due to the nanocrystalline nature of thin rare-gas
films: Whereas in polymers the TLS allow for structural re-
laxations of the matrix over a wide time range due to tunnel-
ing, in rare-gas films they relax predominatly via thermal
activation already at temperatures slightly above 1 K.15 This
gives rise to fast TLS flips well below our experimental time
scale.

III. STATISTICAL MODEL

The above-mentioned statistical model description con-
siders an amorphous system ofN matrix units, containing a
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small concentration of dye molecules. The probability of
finding N matrix units at the positionsRW 1 ,...,RW N ~the dye
molecule is assumed to be located at the coordinate origin! is
given by a normalized~N11)-particle distribution function
P(RW 1 ,...,RW N!. Each matrix unit will shift the electronic ab-
sorption line of the dye molecule by some amountñ(RW n!,
whereRW n is the position of thenth matrix unit. If the contri-
butions of all matrix units to the total solvent shift are as-
sumed to be additive, the total inhomogeneous distribution of
absorption lines can then be written as5–7

I ~n!5
1

VN E dRW 1 •••dRW NP~RW 1 ,...,RW N!

3dS n2 (
n51

N

ñ~RW n!D . ~1!

Replacing thed function with its Fourier representation and
introducing the characteristic functionF~x! ~Refs. 9, 10, and
16! yields

I ~n!5
1

2p E
2`

1`

dx einx K expH 2 i (
n51

N

ñ~RW n!xJ L
5:

1

2p E
2`

1`

dx einxF~x!. ~2!

The average is defined by

^exp$ f ~RW 1 ,...,RW N!%&

5
1

VN E dRW 1 •••dRW NP~RW 1 ,...,RW N!

3exp$ f ~RW 1 ,...,RW N!%. ~3!

In order to avoid the approximation of sufficiently low num-
ber densitiesr, which had been applied in an earlier
treatment,7 and to evaluate Eq.~2! in a more general way,
Sevian and Skinner performed a cumulant expansion of the
characteristic functionF~x! up to second-order terms. Since
the restriction to these terms will lead to a Gaussian inhomo-
geneous distribution, as has been shown in Ref. 7, it is re-
ferred to as the Gaussian approximation. It is valid in the
case of sufficiently large number densities of matrix units
within the interaction range of the dye molecule. This ap-
proximation is appropriate, since the experimentally mea-
sured band shapes are indeed Gaussian.

The next step is the determination of the cumulants~for
details see Ref. 9!. The first-order cumulantA ~the average
value! is given by

A5K (
n51

N

ñ~RW n!L , ~4!

and the second-order cumulantB ~the variance! by

B5K S (
n51

N

ñ~RW n!D 2L 2K (
n51

N

ñ~RW n!L 2

. ~5!

Inserting this result into Eq.~2!, we obtain—after carrying
out the integration—the following Gaussian inhomogeneous
distribution:

I ~n!5
1

@2pss
2#1/2

expF2
~n2ns!

2

2ss
2 G , ~6!

where the solvent shiftns of the maximum of the distribution
and the full width at half maximum~FWHM! Gs are given
by

ns5A, ~7!

Gs52A2 ln 2ss52A2 ln 23AB.

It is interesting to note that in the limit of large number
densitiesr5N/V of matrix units the result is always a
Gaussian distribution, independent of the specific form of the
microscopic solvent-shift functionñ(RW ). This is a manifes-
tation of the central limit theorem.7

The average values determining the cumulantsA andB
can now be calculated according to Eq.~3!. Using the defi-
nition of the two-particle distribution~dye11 matrix unit!
g(RW 1)

g~RW 1!5
1

VN21 E dRW 2 •••dRW NP~RW 1 ,...,RW N! ~8!

the result for the cumulantA is

A5r E dRW ñ~RW !g~RW !. ~9!

An analogous evaluation of the cumulantB using the defini-
tion of the three-particle distributiong3(RW 1 ,RW 2) as

g3~RW 1 ,RW 2!5
1

VN22 E dRW 3 •••dRW NP~RW 1 ,...,RW N! ~10!

yields

B5r E dRW g~RW !ñ~RW !2

1r2 E E dRW dRW 8V~RW ,RW 8!ñ~RW !ñ~RW 8!. ~11!

The abbreviationV(RW ,RW 8) is defined by

V~RW ,RW 8!5g3~RW ,RW 8!2g~RW !g~RW 8!. ~12!

At this point, it is interesting to have a closer look at the
cumulantsA andB. Within the Gaussian approximation, the
cumulantB consists of two terms that are proportional tor
andr2, respectively. In Laird and Skinner’s original publica-
tion, it was assumed that the number density of matrix units
is small enough to allow for the factorization of the~N11!-
particle distribution function into a product of two-particle
distribution functions

P~RW 1 ,...,RW N!5 )
n51

N

g~RW n!. ~13!

Inserting the factorization into Eq.~10!, we obtain
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g3~RW ,RW 8!5g~RW !g~RW 8! ~14!

and therefore

V~RW ,RW 8![0. ~15!

In this approximation, the terms proportional tor2, which
account for the mutual steric exclusion of the matrix units,
vanish.

In order to further evaluate the expression for the inho-
mogeneous distribution@Eq. ~6!#, the functionñ(RW ) describ-
ing the perturbations of the transition frequency~the micro-
scopic solvent-shift function! has to be specified.
Considering only a nonpolar solute and solvent,ñ(RW ) is of
the familiar Lennard-Jones type

ñ~RW !5H 4eF S s

R2R0
D 122S s

R2R0
D 6G if R>R0

` if R,R0 ,

~16!

with the origin shifted byR0 to account for the large dispar-
ity in size between solute and solvent~for details see Ref. 7!.
In this representationR01s/2 is the solute radius, whereas
A6 2s can be taken as the solvent diameter. This means that a
matrix unit located at the position of the potential minimum
R01A6 2s will shift the electronic absorption line of the dye
by an amount of the potential depthe as given in Eq.~16!.

Furthermore, the dye-matrix distribution functiong(RW )

and the dye-matrix-matrix distribution functiong3(RW ,RW 8)
have to be specified. Forg(RW ) a simple step function

g~RW !5 H1 if R>R01Rc

0 if R,R01Rc
~17!

is chosen, meaning that a matrix unit can be found anywhere
with equal probability except within a cavity with radius
R01Rc containing the dye molecule. The parameterRc de-
termines how close a matrix unit can approach the dye mol-
ecule. With the above conventions about solvent and solute
dimensions, we haveRc5s(11A6 2)/2'1.061s.

Applying the Kirkwood superposition approxima-
tion,9,10,16g3(RW ,RW 8) is factorized as

g3~RW ,RW 8!'g~RW !g~RW 8!gs~ uRW 2RW 8u!, ~18!

introducing a matrix-matrix distributiongs(uRW 2RW 8u). In
analogy to the dye-matrix distribution, we insert a simple
step function forgs(uRW 2RW 8u)

gs~ uRW 2RW 8u!5H 1 if uRW 2RW 8u>Rs

0 if uRW 2RW 8u,Rs ,
~19!

excluding the volume of a matrix unit~diameterA6 2s) as a
possible location for other matrix units. A numerical evalua-

tion of the cumulantsA and B ~with and without matrix
correlations! yields the number densityr and the depth of the
dye-matrix interaction potentiale from the measured solvent
shift and inhomogeneous widths~see Sec. IV!.

The simple step functions as given in Eqs.~17! and ~19!
are a very crude approximation for the radial distribution
functions in condensed matter. In a van der Waals fluid con-
sisting of identical spherical particles, for instance, the dis-
tribution function starts out with a value distinctly larger than
1 and exhibits an oscillatory behavior corresponding to the
solvent shell structure. Only at distances of several solvent
shells, it approaches the limiting value of 1.17 We do not use
such more realistic distributions in our calculations since we
have no information on their detailed forms for the rare-gas
systems. According to the discussion in Sec. IV, there are
indications that the dopant molecules are located between the
crystalline grains of the rare-gas films in regions of rather
low local density. Details of the form of the radial distribu-
tions would be quite speculative in these regions. We wish to
mention, however, that in the case of polymeric samples
more complicated distribution functions were used in the in-
terpretation of inhomogeneous line parameters and of pres-
sure effects on hole spectra and better agreement between
theory and experiment was obtained as compared to the
simple step functions.18 For polymeric dye-matrix systems,
additional experimental data are available, namely, the pres-
sure broadening of the hole spectra~because the experiments
can be performed in a closed pressure cell at constant tem-
perature! and the variation of the pressure shift parameter
with the optical frequency~due to the broader inhomoge-
neous bands!.

Let us now turn to the question of pressure effects on
spectral holes. As mentioned above, in our experiments the
pressure change is accompanied by a simultaneous change in
temperature. Therefore, the observed hole shifts and broad-
enings will not only be due to pressure changes, but also to
the thermal expansion of the matrix. In addition, there may
also be dynamical effects such as phonon scattering and
~fast! TLS relaxations, which we will not treat in this contri-
bution.

Pure pressure effects have been accounted for by the
Laird and Skinner theory7 ~in the low-density limit!. This
theory can be conveniently expanded to also include the ther-
mal expansion of the matrix and its influence on the dye
molecule. Furthermore, we will also take into account, as in
the case of the inhomogeneous distribution, the mutual steric
exclusion of matrix units, which is not treated in Ref. 7.

In analogy to the inhomogeneous distribution@Eq. ~1!#,
the pressure-temperature kernelf (n8un,Dp,DT), i.e., the
probability that a guest molecule with the original solvent
shift n will have a new transition frequencyn8 after a pres-
sure changeDp and a temperature changeDT, can be written
as

f ~n8un,Dp,DT!5
1

I ~n!VN E dRW 1 •••dRW NP~RW 1 ,...,RW N! dS n2 (
n51

N

ñ~RW n!D dS n82 (
n51

N

ñ8~RW n ;Dp;DT!D . ~20!
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Starting out with a distribution of absorbersi (n), e.g., a
spectral hole, the new distribution ofi (n8) after the tempera-
ture and pressure change will then be given by

i ~n8;Dp;DT!5E
2`

1`

dn f ~n8un,Dp,DT!i ~n!. ~21!

The experimentally observed pressure-temperature shift was
always found to be linear~see Fig. 3, squares!, while the
concomitant hole broadening can be described by a power
law. The latter is clearly dominated by dynamical processes
that are affected by the temperature change. For polymeric
samples, the pure pressure shift was also shown to be linear,
and the pure pressure broadening was proportional to the
absolute magnitude of the pressure change.13 The same be-
havior is now assumed to be valid for the effects of the pure
thermal volume expansion. The functionñ8(RW n ;Dp;DT) in
Eq. ~20! can then be linearized to

ñ8~RW n ;Dp;DT!5 ñ~RW n!1ã~RW n!Dp1b̃~RW n!DT, ~22!

with

ã~RW !:52
]ñ~RW !

]R
k
R

3
; b̃~RW !:5

]ñ~RW !

]R
g
R

3
. ~23!

k is the compressibility andg the volume thermal expansion
coefficient of the matrix. It is important to note that the tem-
perature and pressure effects have opposite signs@see Eq.
~23! and Refs. 13, 19#.

Using again the Fourier representations for thed functions
in Eq. ~20!, we obtain for the characteristic function

C~x,y!5K expH 2 i (
n51

N

@ ñ~RW n!x1ã~RW n!Dpy

1b̃~RW n!DTy#J L . ~24!

Performing a cumulant expansion of Eq.~24! and applying
the Gaussian approximation, we arrive after a subsequent
Taylor expansion at

ln C~x,y!'2 iAx2 iA8Dpy2 iA9DTy2 1
2 Bx

2

2 1
2 B8Dp2y22 1

2 B9DT2y22CDpyx

2DDTyx2EDpDTy2. ~25!

The cumulantsA8, A9, B8, B9, C, D, andE, are evalu-
ated according to the procedure described by Sevian and
Skinner9 for the case of the inhomogeneous distribution. The
results are given in the Appendix.

Substituting this result into Eq.~20!, one obtains a Gauss-
ian conditional probability

f ~n8un,Dp,DT!5
1

A2p@Ds~Dp,DT!#2

3expF2
@n82n2Dn~n,Dp,DT!#2

2@Ds~Dp,DT!#2 G .
~26!

The pressure-temperature shift is given by

Dn~n,Dp,DT!5FA81
C~n2A!

B G Dp

1FA91
D~n2A!

B GDT. ~27!

Pressure and temperature contributions to the total line shift
are additive and linear inDp andDT, respectively. The mag-
nitude of the pressure-temperature shift depends on the opti-
cal frequencyn, which is not the case for the pressure-
temperature broadening

Ds~Dp,DT!5F SB82
C2

B D ~Dp!21SB92
D2

B D ~DT!2

12SE2
CD

B D ~DpDT!G1/2. ~28!

It can be shown that

Ds~Dp,DT!}ugDT2kDpu. ~29!

This equation predicts that for certain pressure and tempera-
ture changes, the pressure and temperature contributions
should compensate each other. This effect, however, cannot
be observed experimentally for the rare-gas systems, since
the hole broadening is dominated by dynamical scattering
processes. The dependence of the pure pressure broadening
~i.e., for DT50! on the absolute magnitude of the pressure
change has been verified for polymeric systems.13

The next step is the evaluation of the cumulants using the
step functions~17! and ~19!. In order to simplify the calcu-
lations, we consider at first a purely attractive van der Waals
potential ñ(RW )}21/R6. This approximation seems reason-
able, since only matrix units located in the attractive part of
the intermolecular potential can cause the observed redshift
in pure pressure-tuning experiments.13We obtain the follow-
ing simple relations for the cumulants

A852kA; A9522gA; C52kB; D522gB;

B854k2B; B954g2B; E524kgB. ~30!

Inserting these results into Eq.~28! yields for the pressure-
temperature broadening

Ds~Dp,DT!50. ~31!

For the pressure-temperature shift@Eq. ~27!#, we obtain

Dn~n,Dp,DT!52@kDp2gDT#n. ~32!

It is interesting to note that expression~32! holds true also in
the absence of matrix correlations, since all cumulants con-
taining higher-order terms cancel out when inserted into Eq.
~27!. n is the burning frequency of the spectral hole in the
inhomogeneous band with respect to the gas-phase position
of dye transition frequency. For evaluating Eq.~32!, we have
to take into account that the volume thermal expansion co-
efficient g depends, in contrast to the compressibility,
strongly on the temperature, even in the small temperature
interval between 1.8 and 5 K. Fortunately, experimental data
for g~T! are available for crystalline solid rare-gas samples.20
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Therefore we can substitutegDT→*T0
T01DT g(T)dT in Eq.

~32!, whereT0 is the burning temperature of the hole.
With the modified Eq.~32!, we have an analytical expres-

sion for extracting the pure pressure shift from our pressure-
temperature data. In order to test the reliability of this pro-
cedure, we reevaluated data measured in the same fashion in
a H2Pc-doped partially crystalline polyethylene sample.14

With the known pure pressure shift13 and thermal expansion
coefficient,21 we obtained agreement with the experimental
data within 20%. We can take this figure as an upper bound
for the error of our calculations.

Equation ~32! also predicts that the static pressure and
temperature shifts should compensate each other for a certain
choice of Dpcomp and DTcomp values. Setting
Dn~n,Dp,DT)50 one obtains the relation

Dpcomp5
1

k E
T0

T01DTcomp
g~T!dT. ~33!

Inserting for a typical experimental situationT051.8 K and
DTcomp53.1 K as well as using the crystal literature data at
T54 K for the compressibilityklit50.375 GPa21 ~for argon!
~Ref. 22! and the temperature-dependent data for the volume
thermal expansion coefficientg~T!,20 yieldsDpcomp50.0461
MPa.Dp andDT, however, are not independent in our case,
but are connected by the vapor pressure diagram. According
to the latter, the temperature increase ofDT53.1 K corre-
sponds to a pressure increase ofDp50.2 MPa. The fact that
the actual pressure increase is larger than the valueDpcomp,
for which temperature and pressure shifts should compensate
each other, means that in general the line-shift behavior is
dominated by pressure effects. This result, which also holds
for krypton and xenon, is confirmed by the observed redshift
as was found in pure pressure-tuning experiments on
polymers.13

Equation~32! has been used numerous times to determine
the compressibility in pure pressure experiments~i.e., in the
case ofDT50!. Contrary to Eq.~31!, however, a nonzero
pressure broadening was observed. In order to obtain a non-
vanishing pressure broadening, the Lennard-Jones potential
@Eq. ~16!#, which contains a repulsive term, has to be used
instead of the simple van der Waals potential. In this case the
cumulants in Eq.~27! have to be evaluated numerically. In
order to account for the temperature dependence of the ther-
mal expansion, the volume thermal expansion coefficientg
in the cumulantsA9, B9, D, andE must be replaced by its
average

g→ḡ5
1

DT E
T0

T01DT

g~T!dT, ~34!

which leads to a temperature dependence of these particular
cumulants.

In the following, we will restrict our considerations to the
evaluation of the line shift.

IV. RESULTS AND DISCUSSION

Figure 1 shows a broadband absorption spectrum of H2Pc
in argon recorded at a temperature of 4 K. The spectrum is
dominated by two absorption bands. Following Bajema,

Gouterman, and Meyer,12 the lower-energy component is la-
beled theQx band, the higher-energy one theQy band. Both
of these bands correspond to the electronicS0→S1 transi-
tion, which is degenerate in metal phthalocyanines. When the
central metal atom is replaced by two hydrogen atoms, the
D4h symmetry is reduced toD2h. This lifts the degeneracy of
theQ band, leading to the observedQx andQy peaks.

23 A
number of vibronic 0-1 transitions are also visible, whose
transition energies agree with the strongest lines of the H2Pc
excitation spectrum measured by Bondybey and English.24

The spectral positions and inhomogeneous widths of theQx
bands in argon, krypton, and xenon are listed in Table I. An
increasing redshift of the inhomogeneous bands with respect
to the H2Pc gas-phase absorption frequency of 15 128 cm21

~Ref. 23! from argon to xenon is observed, which is a con-
sequence of the increasing matrix polarizability. At the same
time the inhomogeneous widths also increase, which can be
explained by purely statistical considerations~see, e.g., Ref.
11!. Table I also lists the Lennard-Jones parameters for the
rare gases investigated~see, e.g., Ref. 25 and references
therein! as well as the potential shiftR0 , which was calcu-
lated using the known H2Pc radius of 6.5 Å.26 R0 decreases
from argon to xenon, since the correction was chosen such
that the limitR0→0 describes dye and matrix molecules of
equal size.

In order to investigate the influence of matrix correlations,
which were neglected in Laird and Skinner’s original
model,7 we now determine the potential parametere and the

FIG. 1. Broadband absorption spectrum of H2Pc in argon at
T54 K. The optical density is plotted vs the frequency in units of
wave numbers.

TABLE I. Measured solvent shiftns and inhomogeneous width
Gs ~FWHM! of the Qx band of H2Pc. Also listed are the radial
potential shiftR0 and the Lennard-Jones parameters of the matrix
~Ref. 25!.

ns ~cm21! Gs ~cm21! R0 ~Å! s ~Å!

Argon 2364 44 4.798 3.405
Krypton 2464 58 4.68 3.65
Xenon 2593 89 4.51 3.98
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number densityr of matrix units within the interaction range
of the dye molecule from the measured solvent-shift values
and inhomogeneous widths using the relations~7!. As men-
tioned above, the cumulantsA andB are evaluated numeri-
cally for both cases. For the case of vanishing correlations
@V(RW ,RW 8)[0], an analytical evaluation of the cumulants is
possible,27 yielding identical results.

The results are summarized in Table II. Let us look first at
the case of vanishing matrix correlations. The first column
shows the potential parametere. As expected, the model
yields an increasing depth of the interaction potential from
argon to xenon reflecting the increasing matrix polarizability.
Also, the number densityr ~third column! shows the ex-
pected behavior, namely, a decrease from argon to xenon due
to the increase in size of the matrix units. Both parameters
therefore exhibit a qualitatively correct behavior. A closer
inspection of the magnitude of these values, however, is nec-
essary.

The last column of Table II lists the number densitiesrcryst
~Refs. 22, 28, 29! in bulk rare-gas crystals atT54 K. Since
the considered rare gases form face-centered cubic~fcc!
structures~which have the highest possible packing fraction!,
these values define an upper bound of possible number den-
sities. In all three cases, our calculation yields unrealistic
results, where the values forr exceedrcryst by far, which
means that the model calculation is based on too many ma-
trix units.

In this light, the results fore also require closer scrutiny.
Since all the parameters determining the perturbation of the
transition frequency@Eq. ~16!# are now known, we can test
thee values by modeling a solvent-shell structure around the
cavity containing the dye molecule and then calculating the
resulting solvent-shift using Eq.~16!. We now choose spheri-
cal equidistant~DR5A6 2s) solvent shells with the first shell
at the equilibrium distanceR01A6 2s ~for details see Ref.
30!. No interstitial positions between the individual shells are
allowed. One obtains for the total solvent shift ofM solvent
shells

ns~M !5 (
n51

M

ñ~R01nA6 2s!
4p~R01nA6 2s!2

~A6 2s!2
, ~35!

where ñ(R01nA6 2s) is the value of the perturbation func-
tion of the transition frequency~16! for thenth solvent shell.
This particular arrangement of matrix units corresponds to a
packing fraction of roughly 52%. This fairly small packing
fraction was chosen to account for the nanocrystalline struc-
ture of the rare-gas films.15 Evaluating Eq.~35! for M→`,
one obtains only 29% of the observed solvent shift in the

case of argon, 33% for krypton, and 43% for xenon. Obvi-
ously each matrix unit would have to contribute much more
strongly to the solvent shift in order to reproduce the experi-
mental findings. This result highlights the problems of the
factorization ofP(RW 1 ,...,RW N) @Eq. ~13!#: By neglecting cor-
relations between the matrix units, more than one molecule
can occupy the same position. This reinforces the notion that
the theoretical treatment is therefore based on too many ma-
trix units, giving insufficient weight to the individual solvent
molecule. This interpretation is in agreement with the fact
that the calculated number densitiesr ~see above! are far too
large. Even if the crystalline packing fraction~that is, crys-
talline number densitiesrcryst! were chosen, it would still be
impossible to reproduce the measured solvent shift.

Therefore the necessity to abandon the factorization~13!,
which is reasonable only in the low-density limit, and to
include the mutual steric exclusion of the matrix units be-
comes clear. We now recalculate the potential parameter and
the number density. The resultsecorr and rcorr with matrix
correlations taken into account are also given in Table II.

For all matrices, the potential parameterecorr is now sig-
nificantly larger, whereas the number densityrcorr is reduced
approximately by the same factor. The problem of unrealis-
tically large number densities is eliminated. In fact, in the
case of argon,rcorr corresponds to a packing fraction of only
28%, which compares to a value of 74% for the crystalline
fcc structure. When condensed at low temperatures, rare-gas
films exhibit a nanocrystalline structure with grain sizes as
small as 10 nm.31 A simple estimate provides an idea of the
density in the regions between the crystallites. It is known
from the literature that the total density of an argon film
condensed atT54 K is smaller than that of the bulk material
by about 35%.31 Assuming that half of the atoms are con-
tained in the crystallites,32 we estimate the density in the
interstitial regions asrint'0.012 Å23. Considering the crude-
ness of this procedure, this value is surprisingly close to our
value forrcorr. This lends weight to the expectation that the
large dye molecules are located between the grains of the
rare-gas matrices.

In spite of the low number density, the observed solvent
shift can now be accounted for due to the significantly larger
potential parameterecorr for a large variety of matrix unit
arrangements that are consistent with the low number den-
sity. Hence, it turns out that the introduction of matrix cor-
relations is crucial for obtaining realistic values for the po-
tential parameter and the number density and is able to
resolve the problems encountered with the simpler model.

The fact that only few matrix atoms are needed to produce
the observed bulk solvent shift has been demonstrated in
jet-expanded molecular beams of dye-~RG!n heteroclusters,
where RG stands for the rare gases argon, krypton, and xe-
non. For a variety of dye molecules, the groups of Jortner
and Even,33-36 as well as Leutwyler and Bo¨siger37 measured
the solvent shift as a function of the numbern of matrix
atoms contained in the clusters. In the dichloroanthracene-
argon heterocluster,36 for example, it was found that the first
34 argon atoms generate already 81% of the total bulk sol-
vent shift.

Furthermore, since the potential depthe in our model de-
scribes the shift of the electronic absorption line of the dye
molecule due to a matrix unit located at the position of the

TABLE II. Comparison of calculated potential depths and num-
ber densities of matrix units with~ecorr , rcorr! and without ~e,r!
matrix correlations.rcryst are the crystalline number densities~Refs.
22, 28, 29!.

e
~cm21!

ecorr
~cm21!

r
~Å23!

rcorr
~Å23!

rcryst
~Å23!

Argon 1.57 23.1 0.145 0.00975 0.0267
Krypton 2.45 33.4 0.104 0.00787 0.0222
Xenon 4.58 47.5 0.062 0.00594 0.0173
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potential minimumR01A6 2s @see Eq.~16!#, its value should
be comparable to the solvent shift in a dye-Ar1 heterocluster.
Unfortunately, no experiments have been performed using
H2Pc. Still, for the dye molecules investigated in Refs. 33–
37, the solvent shift caused by the first argon atom in a
heterocluster amounted to between 6% and 8% of the bulk
solvent shift. In our case, the ratioecorr/ns also falls within
this range. This provides a rough confirmation of the magni-
tude of our calculated potential depthsecorr.

Let us now turn to the pressure-tuning experiments. Fig-
ure 2 shows the pressure shift and broadening of a spectral
hole ~H2Pc in argon!. Trace ~1! shows the spectral hole,
while trace~2! displays the hole profile after a pressure in-
crease of 88 kPa. Even this small pressure change produces
detectable changes in the hole profile.

In Fig. 3 the shift of the hole centerDn is plotted versus
the pressure changeDp. As mentioned above, the pressure
change is accompanied by a simultaneous change in tem-

perature. The squares denote the raw data including the tem-
perature effects. In order to investigate the effects of the
different potentials and of neglected matrix correlations, we
evaluate these data in several ways to determine the matrix
compressibility.

~i! For the case of the purely attractive van der Waals
potential the matrix compressibilitykvdW is calculated using
the modified Eq.~32!, inserting literature data forg~T!.20 As
pointed out above, Eq.~32! is valid with and without matrix
correlations taken into account. The results are given in
Table III.

~ii ! For the Lennard-Jones potential@Eq. ~16!# the cumu-
lants in Eq.~27! have to be evaluated numerically. To sim-
plify the calculation, we evaluate the pressure and tempera-
ture contributions in Eq.~27! separately. In a first step the
contribution to the measured total shift~see Fig. 3, squares!
of the spectral hole caused by the thermal expansion is cal-
culated numerically for each data point according to

Dn~n,Dp50,DT!5FA9~T0 ,DT!1
D~T0 ,DT!

B
~n2A!GDT

~36!

and subtracted from the measured total shift to yield the pure
pressure shift. The cumulants in Eq.~36! are calculated for
both cases, with and without matrix correlations. The result-
ing pure pressure shift for the former case is shown in Fig. 3
~circles!. Due to the opposite sign of pressure and tempera-
ture shifts@Eqs.~23!#, the pure pressure shifts is larger than
the measured total shift. In the second step, the pure pressure
shift is analyzed numerically@using Eq.~27! with DT50# to
determine the compressibilitieskLJ without matrix correla-
tions andkLJ, corr including matrix correlations~see Table
III !.

It can be seen that within the error limits mentioned
above, the value for the compressibility does not change
when matrix correlations are taken into account. Even the
restriction to the simple van der Waals potential does not
change the calculated compressibilities to a large extent.
These results point to a loose packing of the matrix units
around the dye molecules, since they seem to be located in
that part of the potential that can be approximated by anR26

power law. From these results we conclude that for the opti-
cal determination of the matrix compressibility the simple
approach using the van der Waals potential and neglecting
matrix correlations is sufficient, justifying previous com-
pressibility determinations in a variety of samples according
to Eq. ~32!.

FIG. 2. Pressure shift and broadening of a spectral hole~H2Pc in
argon!. Trace~1!: Original hole profile; trace~2!: spectral hole after
a pressure increase of 88 kPa.

FIG. 3. Shift of hole center vs pressure change~H2Pc in argon!:
Raw data without correction~squares! and data after temperature
correction~circles!. For details see text.

TABLE III. Numerically determined matrix compressibilities
kLJ,corr ~with correlations! andkLJ ~without correlations! using the
Lennard-Jones potential as well as analytically calculated com-
pressibilitieskvdW for the van der Waals potential.kLit are literature
data for bulk crystals~Ref. 39!.

kvdW
~GPa21!

kLJ
~GPa21!

kLJ, corr
~GPa21!

kLit
~GPa21!

Argon 0.276 0.260 0.265 0.350
Krypton 0.290 0.276 0.280 0.299
Xenon 0.419 0.399 0.389 0.274
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The same behavior was also observed in the polymeric
hosts polyethylene and polymethylmethacrylate, doped with
H2Pc.

38 Whereas the compressibility remained unchanged,r
ande also had to be adjusted significantly when matrix cor-
relations were introduced. In these polymers the optically
determined compressibilities agree quite well with the me-
chanically measured values. This does not seem to be the
case for rare-gas matrices~except for krypton!, as can be
seen from a comparison with the literature valueskLit~T54
K! ~Ref. 39! ~see Table III!. The compressibilitieskLit , how-
ever, were measured in bulk rare-gas crystals. For the nano-
crystalline rare-gas films used in our experiments, no com-
pressibility measurements have been reported so far. One
would expect, however, that the compressibility of these
films is larger than in crystalline samples due to a more open
structure with many voids. This is indeed the case for xenon.
In this light the rather low compressibility value that we
obtained for argon films is puzzling. One has to keep in
mind, however, that the compressibilities accessible through
hole-burning experiments reflect the properties of the local
environment of the dye molecule. The large number of ran-
domly oriented, interlocking grains could produce a shield-
ing effect, which means that the effective pressure at the site
of the guest molecule is smaller than the value applied~and
measured! externally. This would reduce the calculated com-
pressibility and would project the picture of a seemingly
‘‘harder’’ environment. Depending on the actual structure of
the films, these two effects will combine to various degrees.
At the present stage, however, no definite interpretation is
possible.

It was shown in Ref. 40 that the sizes of the crystallites
depend strongly on the condensation temperature of the
samples. For a fixed condensation temperature, as was the
case in our experiments, different rare gases will exhibit a
different density deficit with respect to the density in the
crystal. Since the difference between condensation tempera-
ture and sublimation temperature was largest in xenon, its
film density deviated most from the crystalline density.
Therefore it is difficult to compare the different rare-gas ma-
trices, since they are in different structural states. This also
makes the comparison with crystalline data problematic.

To clarify these points, further experiments are needed. It
has already been shown that annealing changes the structure
of the films significantly as grain sizes tend to increase.41 The
effects of these changes on the compressibility and on the
number density should provide valuable information about
the local environment of the dye molecule.

In principle, Eq.~28! can be used to investigate the role of
matrix correlations for the pressure-broadening effects. How-
ever, as mentioned above, the hole width after a temperature
change is not only influenced by the thermal expansion,
which is accounted for in Eq.~28!, but also by temperature-
dependent dynamical processes such as scattering of local
modes and TLS. The latter contribution cannot be measured
separately for the rare-gas systems. One can, however, evalu-
ate Eq.~28! numerically for the Lennard-Jones potential to
predict the contribution of pressure and thermal expansion to
the total broadening, since all required parameters have been
determined from the available experimental data. It turns out
that this contribution is negligible.42 Hence, the observed

hole broadening after a pressure-temperature change is domi-
nated by the dynamical processes.

V. SUMMARY

In this paper we presented an extension of a widely ap-
plied statistical theory to describe the inhomogeneous broad-
ening of spectral lines as well as pressure effects on hole-
burning spectra. In its original form this model was
remarkably successful in determining the compressibility of
polymer matrices from the measured spectral shift of persis-
tent hole spectra. The basic assumptions of the model, how-
ever, are satisfied only to a limited extent in polymeric hosts.
In addition, two conflicting approximations with respect to
the number density of the matrix units were made. We there-
fore decided to investigate the statistical description system-
atically and to test the consequences of the approximations
made in the original model by applying it to systems that
come closest to satisfying the basic assumptions. This is the
case for dye-doped solid rare-gas matrices. In order to make
pressure-tuning experiments possible, we built a novel cry-
ostat that allowed us to immerse the sample into liquid he-
lium after its condensation onto a cold substrate.

Measured quantities were the solvent shift and the width
of the inhomogeneously broadenedQx absorption band as
well as the pressure shift of the spectral holes. From these
data, the depth of the dye-matrix interaction potential, the
number density of matrix units within the interaction range
of the dye molecule, and the matrix compressibility were
calculated. Analyzing the data using the original model leads
to unrealistic values for potential parameters and number
densities. For this reason an existing modification of the sta-
tistical theory, which takes into account correlations between
matrix units due to their mutual steric exclusion, was further
extended to also describe pressure effects on spectral holes.
Furthermore, the hole shifts due to the thermal expansion of
the matrix were incorporated into the statistical description,
since in our experiments a pressure change was inevitably
accompanied by a change of the temperature. A new analysis
of our experimental data with the expanded model now
yields physically reasonable potential parameters and num-
ber densities. A further interesting result is the fact that the
optically determined compressibilities do not change upon
inclusion of the matrix correlations. Moreover, the compress-
ibilities remain unchanged when a purely attractive van der
Waals dye-matrix interaction potential is used instead of the
more complicated Lennard-Jones-type potential. This means
that for an optical determination of the matrix compressibili-
ties the simple analytical equation based on a purely attrac-
tive van der Waals potential is a rather good approximation.
This result justifies earlier compressibility determinations us-
ing the simple model.
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APPENDIX

A85r E dRW g~RW !ã~RW !, ~A1!

A95r E dRW g~RW !b̃~RW !, ~A2!

B85r E dRW g~RW !ã~RW !21r2 E E dRW dRW 8V~RW ,RW 8!ã~RW !ã~RW 8!, ~A3!

B95r E dRW g~RW !b̃~RW !21r2 E E dRW dRW 8V~RW ,RW 8!b̃~RW !b̃~RW 8!, ~A4!

C5r E dRW g~RW !ñ~RW !ã~RW !1r2 E E dRW dRW 8V~RW ,RW 8!ñ~RW !ã~RW 8!, ~A5!

D5r E dRW g~RW !ñ~RW !b̃~RW !1r2 E E dRW dRW 8V~RW ,RW 8!ñ~RW !b̃~RW 8!, ~A6!

E5r E dRW g~RW !ã~RW !b̃~RW !1r2 E E dRW dRW 8V~RW ,RW 8!ã~RW !b̃~RW 8!, ~A7!

The functionV(RW ,RW 8) is defined as

V~RW ,RW 8!5g3~RW ,RW 8!2g~RW !g~RW 8!. ~A8!
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15L. Hornig, B. Döttling, G. Weiss, S. Hunklinger, and F. Baumann,

Z. Phys. B86, 217 ~1992!.

16S. H. Simon, V. Dobrosavljevic´, and R. M. Stratt, J. Chem. Phys.
93, 2640~1990!.

17Y. Tang and B.C.-Y. Lu, J. Chem. Phys.100, 3079~1994!.
18L. Kador, P. Geissinger, and D. Haarer, J. Lumin.64, 101~1995!.
19M. N. Sapozhnikov, J. Chem. Phys.68, 2352~1978!.
20C. R. Tilford and C. A. Swenson, Phys. Rev. B5, 719 ~1972!.
21G. K. White and C. L. Choy, J. Polym. Sci. Polym. Phys. Ed.22,

835 ~1984!.
22O. G. Peterson, D. N. Batchfelder, and R. O. Simmons, Phys.

Rev.150, 703 ~1966!.
23P. S. H. Fitch, L. Wharton, and D. H. Levy, J. Chem. Phys.73,

1064 ~1980!.
24V. E. Bondybey and J. H. English, J. Am. Chem. Soc.101, 3446

~1979!.
25Rare Gas Solids, edited by M. L. Klein and J. A. Venables~Aca-

demic, London, 1977!.
26I. Chen, J. Mol. Spectrosc.23, 131 ~1967!.
27L. Kador, J. Chem. Phys.95, 5574~1991!.
28D. R. Sears and H. P. Klug, J. Chem. Phys.37, 3002~1962!.
29D. L. Losee and R. O. Simmons, Phys. Rev.172, 944 ~1968!.
30P. Geissinger, W. Richter, and D. Haarer, J. Lumin.56, 109

~1993!.
31L. Hornig, N. Schnur, G. Weiss, and S. Hunklinger, Phys. Lett. A

132, 55 ~1988!.
32H. Gleiter, Adv. Mater.4, 474 ~1992!.

53 4365IMPORTANCE OF MATRIX CORRELATIONS IN DYE-DOPED ...



33A. Amirav, U. Even, and J. Jortner, J. Chem. Phys.75, 2489
~1981!.

34S. Leutwyler, U. Even, and J. Jortner, J. Chem. Phys.79, 5769
~1983!.

35N. Ben-Horin, U. Even, and J. Jortner, J. Chem. Phys.97, 5296
~1992!.

36N. Ben-Horin, D. Bahatt, U. Even, and J. Jortner, J. Chem. Phys.
97, 6011~1992!.

37S. Leutwyler and J. Bo¨siger, Faraday Discuss. Chem. Soc.86,
6011 ~1988!.

38L. Kador and P. Geissinger, Mol. Cryst. Liq. Cryst.252, 213
~1994!.

39M. S. Anderson and C. S. Swenson, J. Phys. Chem. Solids36,
145 ~1975!.

40W. Schulze and D. M. Kolb, J. Chem. Soc. Faraday Trans.70,
1093 ~1973!.

41N. Steinmetz, H. Menges, J. Dutzi, and H. v. Lo¨hneysen, Phys.
Rev. B39, 2838~1989!.

42P. Geissinger, Ph.D. thesis, University of Bayreuth, 1994.

4366 53P. GEISSINGER, L. KADOR, AND D. HAARER


