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Localized low-energy excitations in strongly correlated metals
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We calculate the energy needed to create a localized hole in a strongly correlated metal. Due to the creation
of an attractive potential linked to the localized hole, there is a strong relaxation of the itinerant states. Taking
into account the finite extension of the potential, we show that the energy of such an excitation is much lower
than the Hartree-Fock estimate. In some cases it can be one-hundredth of the Fermi energy. The existence of
these excitations can lead to many physical effects particularly in the optical conductivity.

[. INTRODUCTION it would not be a high-energy excitation would give many
physical effects which we will discuss at the end.

The properties of a strongly correlated metal are mainly The excitation of localized electrons in metals was first
due to the low-energy excitations. These low-energy excitastudied extensively by Friedel and then, in connection with
tions are in principle Fermi liquid excitations. However, ex- X-ray-absorption and -emission spectra, by Mahbiuzieres
perimenta' results seem to prove that non_Fermi_"quid be.and de D0m|n|C|§,0 a.nd Other authorS. A newer review about
havior can exist in metals close to the metal-nonmetafhis subject has been given by Othaka and Tartaié-
transition (Mott transition.® Some theoretical results show though the main interest there was the shape of the excitation
that non-Fermi-liquid excitations can exist in models of cor-Spectrum, especially the singular behavior at the threshold,
re|ated System%But there iS Nno consensus about the descriplhe excitation energ|es have been calculated in some cases
tion of the excitations in these materials. Some theoreticaloo™ " The main differences between the problem that
approaches start from theJ model which neglects excita- they studied and the problem analyzed here are the follow-
tions of orderU, the intra-atomic Coulomb repulsion, &,  INg: In the x-ray-excitation problem the bound state is
the bandwidthU is of order ofW close to the Mott transi- formed by the potential of an atom and is filled by two elec-
tion. We want to show that some excitations, which in atrons; no local magnetic moment is assurfidd.our prob-
simple approach are of order or W, can in fact be of much lem onlyone!ocalized electron exists in the ground state; no
lower energy due to a relaxation processl A|th0ugh the excibound state Is eXtI’aCted from the bOttom Of the band fOI’ the
tations out of states close to the Fermi level are Fermi liquid?PPosite-spin electrons. Furthermore in the x-ray excitation
excitations, non-Fermi-liquid behavior can be obtained.  the bound-state energy large (several Ry compared to the

To show this we start from the Wolff mod&Contrary to ~ Fermi energyO(0.5 Ry)] contrary to our problem where we
Hubbard's, this model introduces the Coulomb repulsion orfonsider the case of a bound state close to the bottom of the
a single site. IfU is large, this model leads to a magnetic band. Therefore, in the x-ray-excitation experiment, relax-
impurity on this particular site. We will consider the case, notation effects give only a minor contribution to the excitation
considered by Wolff, where the Hartree-Fock moment ex-energy, which is dominated by the large bound-state energy,
tracts a bound state from the band, i.e., the potential for #hereas in our case the relaxation energy plays the dominant
spin direction is large enough to extract a bound state and thi@le. As a consequence of these differences our method for
potential for the other spin direction becomes repulsive. Thé&alculating the potentials in the ground and in the excited
excited state obtained in destroying the magnetic moment b§tate is totally different from that needed in the x-ray-
exciting the electron out of the bound state to the continuun@xcitation problem.
is from a Hartree-Fock point of view of order bf. We show
that this is not exact and that this excitation is in fact of much Il. MODEL
lower energy due to the relaxation of all states in the pres-

ence of the attractive potential created on that site by the hole We consider the two-dimensional case, i.e., our analysis
left after the excitation. can be relevant for exactly or nearly two-dimensional sys-

This calculation can be considered as a first approximal€ms. €.9., layered systems with a weak coupling between the
tion to that of a localized hole in the metallic state of thelayers. The Hamiltonian for the Wolff model, which we con-
Hubbard model close to the metal-nonmetal transition. InSider on a two-dimensional square lattice with lattice sites
deed, one of us has shown that the excitation which we havand lattice constard, is given by
considered in the Wolff model would be localized in the
Hubbard model due to many-body effects, i.e., the hole _ 1 L L
would remain on this sité> This is a consequence of Ander- H=Ho+ 2; Ua(n,(i=0))n,(i=0). @
son’s orthogonality theorefiThe possibility of having exci-
tations of this type, i.e., a localized hole on a site in aThe first termH, is a single band Hamiltonian which de-
strongly correlated system, would be important. The fact thascribes the electrons in the periodic potential built by the ion
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potentials and the Hartree-Fock potential of the other elecproblem exist only for some special potential shapes. Koster
trons. We choose foH, the tight-binding Hamiltonian on a and Slatel’~'" have solved this problem for the case of a

simple square lattice, i.e., point potentialacting onone site only. We generalize their
method in order to treat alsextended potentialsaving finite
lues orseveral lattice sitesvhich turns out to be necessary
Ho= K)ch(k)c,(k), 2 V@ .
(k,(;e Fs go(K)Co(K)Co(K) @ in our case(Koster and Slater have considered the case of an

extended potential only with respect to the bound states, not
with respect to the scattering stajes.
In the following the formalism of Koster and Slater will
£o(K) = (W/2)+ (WI4)[ cod ak,) + cog ak,)] (3)  be generalized to extended potentials. For this section it is
appropriate to use the notatid® instead ofi for a lattice
is the dispersion of the band with the bandwitith The sum  sijte. Let the unperturbed system of electrons in the crystal be
runs over all statesk(o) out of the Fermi se&FS). described by a one-electron Hamiltonidty, like in our
In the second termm,(i) is the density of electrons with  model (1) and the local potential act on some lattice sites
spino at the sitei, (n,(i)) is its expectation value, and  with valuesV(R; ,R;). For our problem it suffices to assume
. ] . . only a single electron band. The perturbed wave function for
ANy (i=0)):=(ny(i=0))=(n,(i=0))ne @ an electron with energy is then described in terms of the
its deviation from the Hartree-Fock value at the site0.  complete set of Wannier functiorss,(r —R;),
The Hartree-Fock value of the density is given by

where cf,(k) is the creation operator for an electron with
momentumk and spinc and

_ _ Yeo()=2 U, o(RN2,(T—R). ®)
(No(1)e= (172 2 (ny(0))- (5) R

_ The coefficientd), ,(R;) are determined by the Scluioger
Thus the second term iil) adds to the Hartree-Fock- equation ’

HamiltonianH, at one sita =0 the deviation of the expec-

tation value of the full Coulomb interaction from its Hartree-

Fock value, which isU(n,(i=0))ye. At the sitei=0 we ; [Eo(Ri,R) +V(R; R U, o(R))=eU, +(R) (9)
thus take into account the expectation value offtiieCou- i

lomb interaction. We can rewrite the second term(inby  with

defining the potential

Us(n,(i=0)) for i=0 Eo(Ri,Rj):= | d’r al(r—R)Hea,(r—R; 10
5\/7”(”:: 0 <?Or(||¢0)’> or | (6) 0( J) f ( ) 0 ( ]) ( )

which acts on the electrons with spino on the sitei=0
and is zero at all other sites. The Hamiltonian then reads

and

V(R ,R)):= J d’ral(r—-R)Va,(R-R)), (11

H=Ho+32 U8V, (i)n,(i=0). (7) _ _
o where we assume that the potential does not change the spin

of the electrons. The dispersion of the electron band is given

As is well known, in two dimensions an attractifrepulsive by the Fourier transform of the components

potential extracts always a bound state from the boftom)

of the band no matter how weak it is. Therefore, if, e.g.,
6V,(i=0)<0, a bound state for spih-€lectrons is extracted
from the bottom of the band. We want to study in the fol-

lowing the excitation of an electron out of this bound state. !N order to get a simpler form of the equations we denote
in the following a vector with coefficients(R;) by x and a

matrix with componentsX(R; ,R;) by X. Equation(9) can
then be replaced by

We calculate the excitation energy in three steps. First we
determine the local potentials in the ground state and in the [Eo+V]u, ,=eu, ,. (12
excited state. From these potentials we calculate in the sec- . . o )
ond step the energies of the system in the ground state and fifom this equation we get the coefficients for the scattering
the excited state. The difference between both energies is tifat€sUi o(Ri) with energye>0 as well as the coefficients

relaxation energy and gives us in the third step the excitatiof?” the bound state®, ,(R;) with energye,<0. These co-
energy. efficients are calculated as follows.

(i) Scattering statesThe wave function is assumed to be a
sum of the incident wave with energy and momenturrk

and outgoing waves, i.e.,
In order to calculate the local potentials we first determine

the relation between an arbitrary local potential and the elec- Uk o(R)) =exp(ikR)) +Zg c(R))
tron density at each lattice site caused by this potential. This
has to be done numerically since analytical solutions for this xexplik'(Rj—R))/[e—&(k')].

EO(Ri ,Rj), ie., SO(k):ERiEO(Ri ,RJ)eXF(—I(R,—R]))

Ill. CALCULATION OF THE EXCITATION ENERGY

First step
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The unknown coefficients(R;) have to be determined in For special values of) andeg, Eq.(17) has magnetic so-
such a way that they satisfy the difference equatid). lutions, e.g.,6V,(i=0)<0 andéV (i=0)>0, and a bound

This leads to the equation state for spint electrons is extracted from the bottom of the
band. This is the case we are interested in.
[1-VK ]c=Vuy, (13 (b) Excited stateln the following the suffixg (ex) of a

N . guantity denotes its value in the groutekcited state. The
whereUo(R;) =exp(kR;) and Friedel sum rule yields for the excited state

ik (Ri—=Rj) 14 ngex)(sF):ﬂ_, (21)
which is a consequence of the creation of a hole in the bound
is the unperturbed electron Green’s function witheing the ~ state. This will be derived in Appendix A.
number of lattice sites. For the derivation(@B) it has been If the phase shift at the Fermi level #s this means that
made use of the fact that for the infinite system the incidenthe potential must beextended over several lattice sites
wave satisfies the Schdimger equatior(12) with the poten- ~ Since a point potential leads always to phase shifts smaller
tial set equal to zero, i.eEuy=eUy. Furthermore, the prop- than 7r. For simplicity we assume that the excited state is
erty (- 1— E)K,=1 of the unperturbed Green’s function has honmagnetic, in contrary to the ground state. This is reason-

1 e
Ks(Ri,Ri)ZN%: T—ak)

been applied. able because the main contribution to the magnetic moment

(ii) Bound state The difference equatiofl2) leads to the in the ground state stems from the bound electron at the site
condition i =0 which repels the electrons with the opposite spin direc-
tion. If the bound electron is removed a magnetic moment

Up »— K VU, ,=0. (15  can only be formed by the itinerant electrons. Therefore the

o ] local magnetic moment in the excited state is smaller than in
From the coefficientd)y ,(R;) for the scattering states and he ground state. The bound electron with spiis removed
Up,+(R;) for the bound states we get the expectation value ofrom the sitei =0 and is put into a scattering state. Therefore
the density of electrons with spim at the siteR; according \ye nave

to
(NG (1)) =(ny(i)) e (22)
(n,(R))=|Up o(R))[*+ kEFS U o(R)I? The electron density at the site: 0 is reduced by the weight
of t(h)e bour21d electron at this sitgn;(i=0))%
@ . : .
=, (R pounat (N (R scas (16) |Up(i=0)|°. Since we assume a nonmagnetic excited

state the potential and density values are the samé¢ &d
where (n,(R;)) pouna @Nd (N,(R;))scarr are the densities of | electrons at each lattice site and we obtain for the electron
bound and scattering electrons with spirat siteR; . density at the sité=0,

Now we are in the position to calculate the potentials in . (@91 . © ) @
the ground and in the excited state. For the rest of this paper  (Ne(1=0))'*'=3[(n;(i=0))'9+(n (i=0))'
we use again the shorthand notatiofor R; .

(@) Ground state We have to determine the spin- —(n(i=0))p2nd- (23
dependent potentials according (&: The weight(n,(i=0))@,.q4is shifted onto the neighboring

SV_,(i=0)=Ud&n,(i=0)). 17y  sites,ie,

The density deviation from the Hartree-Fock value depends, S\ (eX) S\ (0) ()
corresponding to the formalism of Koster and Slater, on the i;% {no(i) _i;oﬂ (N ())"+(n(1=0))bounc:
potential 8V (i =0), i.e., (24)

(N (i=0))=f[sV, (i=0)], (18 The potentialV(®, which has finite values not only at the
. _ _ central site V(0)(® but also at the neighboring sites
Whe(e the functiorf has to be determined numerlcglly ac- \/(1)(®, has to be chosen in that way that the Koster-Slater
cording to(8)—(16). We thus have a system of equations for formalism yields the density distribution for the excited state
oV,(i=0) and &n,(i=0)) which can be solved self- given by(22)—(24).
consistently.
The density deviations from the Hartree-Fock value at the
neighbor sites #0 are not considered in the determination
of the ground-state potential because they are very small for Alocal potentialV:=(V,,V,), which may have different
a point potential as we show in the results. This has th&aluesV,, for the two spin directions, leads to an energy shift
consequence that in the ground state the total number dSE(V) with respect to the valug, of the unperturbed sys-
electrons at the site=0 is the same as at all other sites, i.e.,tem. It can be calculated, according to Refs. 7 and 18 as
follows: If one includes the system in a large sphere of radius
8(n,(i=0))=—8n_,(i=0)) (19 R the spectrum is quasicontinuous with level spacing
de=mv/R, where v is the velocity corresponding to the
=6V (i=0)=—6V__(i=0). (20 energye of the level. Due to the local potential all single

Second step
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electron energies are shifted by a small amoudie. The  one calculates the Hartree-Fock energy of the total system. In
level shift Ae(V,) due to the potentiaV/,, is related to the our case the change of this energy is approximately given by
phase shiftsp,(g) produced by, . In the degenerate case, (cf. Appendix Q

i.e., if several levels\ with phasesyp, ,(¢) have the same

energy, one find¢cf. Refs. 7 and 18 OBy = —UE (n,(i=0))8(n_,(i=0)). 27

1 1
E;f Ae(Vy)= - ;; Mole)de=:— ;”U(g)de' The phase shifts are determined corresponding to Ref. 8 by
2
@9 7.(e):=—ImIn defl-K_/V,]. (29
Summing up all energy shifts given Hg5) one obtains in
the limit R—o the total energy shift The bound-state energies-¢, , are the solutions of

AE(V)=- E if Fd8 ns(€)+ E €p,oT SEcor, detl KSVU] o @9

o TJo 7 which follows from (15).
(26) Equations(26)—(29) together with Eqs(8)—(24) for the
whereey, , are the energies of the bound electrons extractegiotentials and the electron densities yield all information in
out of the band. The last terdE.,, is the change of the order to calculate the energy of our system in the ground and
electron-electron-interaction energy due to the change of thi# the excited state.
electronic wave functions caused by the local potential. As is (&) Energy in the ground staté\Ve are interested in the
well known the electron-electron-interaction energy has to bease WhereSV(Tg)(i =0) extracts only one bound state out of
subtracted from the sum over all single-particle energies ithe band, i.e.,

1(er : :
EO=Ep— 2 ;fo de 7 (e) +et) U (n,(i=0)@n_,(i=0)). (30)
(b) Energy in the excited stat&he bound state is empty, i.e.,
1 (e
EV=Eo-2 — f "de ()~ U (0, (i=0))5(n_ (i =0)). (3D)
o 0 a
|
Third step of a local attractive potential. We use the following notations
The relaxation energy is given by for the lattice sit_es in the region of _thg potentiat: 0 stands
for the central sit€0,0) of the potentialj=1 for (+1,0) and
Eelax= E©®¥—E@ (320  (0,+1), respectively,i=1" for (x1,+1) andi=2 for

(£2,0) and (0 2), respectively. We restrict the potential to
the sites =0 andi=1 with valuesV(0) andV(1), respec-
Wex=€r— &p+ Eelax- (33 tively. The valuev(0) determines the depths of the potential,
the ratioV(1)/V(0) its extension.

A point potential, acting only at=0, can extract onlpne
bound state out of the band, and the scattering phase

All energies are written in units of the bandwidth. Our  7(¢), determined in this case by tafe)
calculations are done farr=0.5. This value has been cho- =—7V(0)p(e)/[1-V(0)F(&)] [with the density of states
sen because the Fermi energy of the Hubbard model close t®OS) for the square lattice(e) and its Hilbert transform
the metal-nonmetal transition, for which the present calculaF(¢)], cannot exceed the value. However, anextended
tion is believed to be a first approximation, lies very close topotential with valued/(i) #0 for severalsitesi can extract
0.5. Note that it would not seriously change our result for theseveralbound states out of the band, as has been pointed out,
excitation energy if we would take fat- a value close to 0.5 e.g., by Koster and Slatét-*°This is shown by our numeri-
instead of our value=0.5, since the excitation energy is cal calculation in Fig. 1 where the bound-state energies are
determined by quantities summed up to the Fermi level. Notglotted as a function of the potential strength for a potential
also that our system is metallic for both values, contrary tovith V(i)# 0 fori € {0,1} andV(i)=0 otherwise. For com-
the Hubbard model which is metallic only away from half- parison we have also plotted the bound-state energy for a
filling. Thus our model can give only a description of the point potentialldashed ling For weak potentials the bound-
metallic phase but not for the insulating phase. state energy deviates at first hardly from zero with increasing

Let us first consider the energies and the densities of thpotential strength, which is a consequence of the sharp edge
electrons on a simple two-dimensional square lattice withat the bottom of the band of the two-dimensional DOS for a
dispersion(3) as a function of the strength and the extensionsimple square lattice.

and the excitation energy by

IV. RESULTS AND DISCUSSION
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-0.8 -
N R N N N N V()
-0.8 0.6 0.4 0.2 0
V(0) FIG. 3. Density of electrons at the sites 0, i =1, andi =2 (cf.

small box abovgfor a point potential, acting at the site=0 only,
FIG. 1. Bound-state energy for extended and p@dashed ling  as a function of the potential dept{(0).
potential as a function o¥/(0). The second bound state for the

extended potential appears\&0)= — 0.65. value, which is 0.5 for the square lattice at half-filling. At the

central site the density varies strongly with the potential,

The potential value, where the second bound state drodghereas at the neighboring sites the deviations from the un-

out of the bottom of the band, decreases for increasing e)perturbed value, which are the well-known Friedel oscilla-

tension of the potential. Fo¥(1)/V(0)=0.5 the second gons, are very fsnr:all. The(rjefore our apprloximr?tion in thE
bound state appears t0)=—0.65 (cf. Fig. 1). etermination of the ground-state potentials, where we take

The phase shifts)(s) become larger with increasing ex- into account only density and potential deviations at the site

tension of the potential as is shown in Fig. 2. They can exi=0, is self-consistent. If the potential is strong attractive,
ceed the valuer also in the case where only a single boun nearly one electron is located at the Site0, present mainly

state is presen{Note that the phase shifts for an extended'" the_z boun_d state. Eor very strong repulsive potentials the
potential can also exceed because a second bound state isdenS|ty vanishes, which means that the electrons are repelled

. from the potential site.
Xtr . At th m of th nd the ph hifts hav . . .
extracted, At the bottom of the band the phase shifts have Figure 4c) shows the corresponding electron densities for

the value n(e=0)= 7 indicating that one bound state has : o -
been extrgéted o)ut of the bang. From Fig. 2 we expect th n extended potential with finite values at the $ite0 and
e four nearest-neighbor sites 1. The values for the po-

the relaxation energy determined essentially by integral i i
; ; a ential depth have been restricted to that range, where only
over all phase shifts up to the Fermi levef. (30)~(32)] nebound state is extracted out of the band. In Figa) and

increases rapidly, if the potential becomes more and mor " X
extended. We estimate, e.g., an increase of the relaxatic b) the densities of bound and scattering electrons are plot-

; ted separately. The sum of both gives the total density in Fig.
energy by about a factor 3, if the value\¥f1) changes from ) .
0 to 0.5/(0), where we have sef(0)= —0.5. 4(c) according to(16). Now the dependence on the potential

The electron densities for a point potential at di1‘ferentStrength Is not only strong at the ske-0 but also at the

sites as a function of the potential strength are shown in Figr)elghborlng sites=1. They are, however, negligible at the

3. For a vanishing potential the density has the unperturbeﬁ'te'zz’ where the densities have apprpxmately t.he unper-
turbed value. Only for strong attractive potentials with

V(0)<—0.4 does the density of the scattering electrons
| | . (n,(i =2))scarand the total densityn(i =2)) deviate a bit

21 - =021 from the unperturbed value indicating that itinerant electrons
------ V(1)=-0.14 are located in the region of the potential. The reason for this

ne, -/ 1 | V(1)=-0.07 localization of itinerant electrons is that ®{0)=—0.65 a
S W B V(= 00 second bound state is extracted from the bottom of the band.

If the potential is repulsive, no bound electron is present,
V(0)=-045 7 since no bound state below the band exists, and the density
of scattering electrons at the central site falls off with in-
creasing potential strength, because a very repulsive poten-
tial repels the electrons from the site 0. On the other hand,
if the potential is very attractive it binds one electron at site
0 0.2 0.4 0.6 0.8 1.0 i =0 with the consequence that no itinerant electron can be
€ present anymore at this site. Note that the electron density at
one site cannot exceed the value 1 for a given spin direction
FIG. 2. Phase shifts for various potential extensions, determine@lué to the Pauli principle. For small attractive potentials the
by V(1)/V(0), as afunction of energy(The sharp bends at the density of scattering electrons at the site0 at first in-
band edges and at=0.5 are due to the shape of the DOS for the creases before it falls off with increasing potential depth. The
tight-binding Hamiltonian on a simple square lattice at thesereason for this behavior is that for very weak potentials the
points) bound state is distributed over several sites and its weight at
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<N D3ea FIG. 5. Excitation(upper curvg and relaxation(lower curve
energies as a function of the intra-atomic Coulomb repulkldior

SF:0.5.

it

ground state. FolJ>0.9 the potential in the excited state
extracts a second bound state from the bottom of the band.
We do not consider this case here.

For the self-consistent determination of the electron den-
sities and the potentials we had to do the numerical calcula-
tion (8)—(24) on a (V(0),V(1)) grid with finite meshes,
which we have chosen as squares with length 0.02Be
curves, shown in Figs. 1, 3, and 4 are fits through the calcu-
- . . lated values where th¥(0) axis is discretized in steps of

06 -04 02 00 02 04 06 (025] The uncertainty of the energy values in Fig. 5 by
V(0) virtue of these finite meshes we estimate to#b@.05.
The values of the potentials, we have found, are the fol-
_ ] lowing. The potential in the ground state varies between
FIG. 4. Density obound(a), scattering(b), andall (c) electrons 5V579)(i =0)=+0.23 andéVng)(i =0)=+0.43 for the range

at the sites =0, =1, andi=2 (cf. small box abovefor anex- oy a1 ec shown in Fig. 5. This corresponds to bound-state
tendedpotential withV(1)=0.5V(0) as a function of the potential . e .
depthV(0). energies petweeabz —0.01 ande,= —0.12. The potential
in the excited state has depths betw®é#)(0)= —0.64 and
V(®)(0)=-0.37 and values at the sitd=1 near

the sitei=0 is therefore very small. The electrons attractedv(ex)(l): —0.1. In the excited state there are fewer elec-
by the pOtential are therefore mainly itinerant electrons Withtrons at the central Site' Compared to the value in the unper-
energies at the bottom of the band. turbed case, and more electrons at the neighboring sites. The

In Fig. 5 we present our results fdcax and wex @S @ total number of electrons fulfills charge conservation, ac-
function of the Coulomb repulsiold. The potential in the cording to(22)—(24). We also checked the Friedel sum rule,
excited state, which we found to be necessarily extendeql,hich is equiva|er‘|t to our requirement of Charge
over several lattice sites, we restrict on the centralisit@ conservatiord’® We have not used here this alternative to
and its four nearest neighbarrs 1. Then we can restrict the determine the potential in the excited state, because the
set{i} of sites, where we take into account the density dephase shifts, whose values at the Fermi level enter in the
viations &(n,(i)), onto the site§=0,i=1, andi=1". Den-  Friedel sum rule, vary very rapidly at the Fermi enefgf
sity deviations at the sites=2 are already negligiblgcf.  Fig. 2). If we assume a numerical uncertainty = +0.02
Fig. 4b)]. (which does not change our final result fog, seriously, the

In the range 0.5:U<0.65 the excitation energfupper  Friedel sum rule is fulfilled within the corresponding error
curve is very small, i.e., of the order of one-hundredth of thepars of the phase shifts.
Fermi energywee=0(10 ?c¢). If one assumew/ (which is In conclusion, we have studied the excitation of a bound
the energy unit in our calculatipno be of the order of 1 eV, electron in the Wolff model, which takes into account the
this excitation energy is of the order of 10 meV or 100 K, intra-atomic Coulomb repulsiot) on the site of the local
respectively, i.e., it is in the range of normal metallic excita-excitation and describes the electron dynamics at the other
tion energies or phonon frequencies at room temperature reites within the Hartree-Fock approximation. We found that
spectively. For largel values the excitation energy in- the creation of a hole in the bound state leads for a certain
creases but nevertheless it remains significantly smaller thamnge ofU values via a strong relaxation of all electrons to
the Fermi energy. This behavior ef, corresponds to a large very small excitation energies of the order of one-hundredth
relaxation energy o (lower curve in Fig. $ of the order  of the Fermi energy. The large relaxation energy which we
of —0.5. ForU<0.5 we find6V{9=0, i.e., a nonmagnetic obtained stems from the fact that the electron is excited from

<n.()>
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a singly occupied state created by the magnetic moment. Our

result is important for studying local excitations in strongly > 79(ep)=0. (A4)
correlated metals. One of us has shown that, if all sites are 7

similar, the hole created in such an excitation, which in prin-

ciple can move, would be self-trappgdhe reason stems 2. Excited state

from the fact that the problem becomes similar to that of & The total charge within the region of the potential has not

particle c_reating a potential a_nd movi_n_g in a Fermi quuid-changed with respect to the ground-state configuration.
This particle can, under special conditions, be self-trappedry o rafore Q®=0. The bound state in the nonmagnetic

These _conditions are fulfilk_ad in the present P“’b'e.m as 1xcited-state configuration is empty for both spin directions,
shown in Ref. 5. Thus, besides the Fermi liquid excitations; . >0 _ 5 \we thus obtain fronfA1) and (A3)

localized excitations could exist in strongly correlated mate-’ empty
rials. Our calculation shows that these excitations would not
be of high energy of orddd or W. Thus it would be impor-
tant to consider them.
In that case, many effects similar to those studied by Ma-

han, Nozieres, and de Dominicis in the x-ray problem could ApPPENDIX B: UNPERTURBED GREEN'S FUNCTION

occur. We mention anomalies in photoemission of electrons AND BOUND-STATE COEFFICIENTS AND ENERGIES
excited out of the lower Hubbard subband. We refer also to

anomalies in the optical conductivity, which appear as an The unperturbed Green's functiofi4) for the tight-
important infrared absorption and a decrease of the intensit)inding Hamiltonian on a simple square latti¢ef. Refs.
of the Drude peak. It would also mean that the magneticl5—17 reads for energies within the baed-0,

properties of the Hubbard model in that range of doping 1 w o

would be neither itinerant nor localized. All these conse- KE(Rp'q)=ﬁf dt e™'® ti“’*q)‘]p(t)\]q(t) (B1)
guences are under study. e(1)Jo

7 (eg)= . (A5)

and below the band <0,
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APPENDIX A: PHASE SHIFTS IN THE GROUND

— - —ipa+i(sina)t
AND IN THE EXCITED STATE ‘]p(t) f,wda €

The Friedel sum rule relates the numb2rof states _ _
which arecreated below the Fermi levely a potentiaV, to (ordinary Bessel function of ordep), (B3)
the phase shifts at the Fermi level:

1 (=
1 Ip(t)= —f da cog pa)e'®s, (B4)
Z=—2 n,(ep). (A1) mJo
Note thatZ takes into account the numb&g,of scattering , _€—¢(0) B5)
states as well as the numbgy, .4 of localizedboundstates &= 2e(1)

(cf., e.g., Refs. 7 and)8i.e.,
The bound-state coefficients for a potential, extended over

Z=2Zscaiit Zbound- (A2) the sitesie{0,1}, are related by
i C.(0,0
The numberZ of states has to be distinguished from the Ub,g(l)z—mubﬁ(O) (B6)

screening charge @f V which is the number of theccu-
pied states multiplied by the electron chargeIf Z¢ypy is

. and the bound-state energy is the solution of
the number of emptpoundstates it follows that 9y

Q=(Z~Zempy®- (A3) e4(:8(0,0) Cs(O,l)‘ o ®7)

C.(1,0 C, (1,1

1. Ground state with

The total number of electrons per site at every site, par- o )
ticularly at the sitei=0, is the same as in the case of no C8(0,0)=1—V’(0)J dt e lgo(1)?,
perturbation  because &(n,(i=0))+&(n_,(i=0))=0. 0
Therefore the total screening charge@$¥=0. Since no
bound state is empty, i.eZQ?r)]pth, we obtain from(Al) C.(0,1)= —4V’(1)fxdt e—s'tlo(t)|1(t) (BY)
and (A3) e 0 ’



C.(1,0=-V'(0) f:dt e o(t)4(1),
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APPENDIX C: ENERGY CORRECTION DUE TO DOUBLE

COUNTING

The total energy of our system without the local potential

08(1,1):1—V’(1)th e 1o(t)2+214(1)2
0

Tlo(Dl2()],

and
V'(i)'=ﬂ (B9)
" 2e(0)°
1
Ecor:_i 2 2

(1,0)€FS (3,0")eFS

[< l//(/,l,,(f) (v[/(v,(r’)| Ve|-6|¢/(/,l,,(7') w(v,lr')>< l/l(/L,(T) (v[/(v,(r’)| Vel -el| lﬁ(v,(r’)'ﬁ(,u,(r))]

is, in the Hartree-Fock approximation, the sum of two terms:

EHF: 8#

(m,0)eFS

+Ecor- (C1

The first term is the sum of all one-electron energigsout
of the Fermi sea. The second term

(C2

subtracts the electron-electron interaction energy which has been doubly counted in the firsigisthe electron-electron

interaction.

If the local potential is switched on, all electron wave functions change at the potential site accordiBgatod (15). This
leads to a changéE,, of the termE.,,. It can be calculated approximately if we take into account the change of the electron
wave function(8) only at the site =0, which gives the main contribution:

1

SEco=— 8 5
cor Z(M,U)EFS(VY

6

>

o’)eFS

—(8,(i=0)a,(i=0)|vel el (i=0)a,(i=0))]

—Ug (n,(i=0))8(n_, (i=0)).

Here the definition of the Coulomb repulsion parameter

U:=(a,(i=0)a_,(i=0)|vel ela,(i=0)a-,(i=0))—(a,(i=0)a_,(i=0)|ve.ela_,(i=0)a_,(i=0))

|U(,u,(r)(i :0)|2|U(V,(r')(i :0)

|2[<a(r(i :O)ao”(i :O)|Vel -e||aa'(i :O)a(r’(i :0)>

(C3

(C4

has been used. Note that the change of the one-electron enejgie® to the local potential is described by the phase shifts

(28).
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