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We calculate the energy needed to create a localized hole in a strongly correlated metal. Due to the creation
of an attractive potential linked to the localized hole, there is a strong relaxation of the itinerant states. Taking
into account the finite extension of the potential, we show that the energy of such an excitation is much lower
than the Hartree-Fock estimate. In some cases it can be one-hundredth of the Fermi energy. The existence of
these excitations can lead to many physical effects particularly in the optical conductivity.

I. INTRODUCTION

The properties of a strongly correlated metal are mainly
due to the low-energy excitations. These low-energy excita-
tions are in principle Fermi liquid excitations. However, ex-
perimental results seem to prove that non-Fermi-liquid be-
havior can exist in metals close to the metal-nonmetal
transition ~Mott transition!.1 Some theoretical results show
that non-Fermi-liquid excitations can exist in models of cor-
related systems.2 But there is no consensus about the descrip-
tion of the excitations in these materials. Some theoretical
approaches start from thet-J model which neglects excita-
tions of orderU, the intra-atomic Coulomb repulsion, orW,
the bandwidth.U is of order ofW close to the Mott transi-
tion. We want to show that some excitations, which in a
simple approach are of orderU orW, can in fact be of much
lower energy due to a relaxation process. Although the exci-
tations out of states close to the Fermi level are Fermi liquid
excitations, non-Fermi-liquid behavior can be obtained.

To show this we start from the Wolff model.3 Contrary to
Hubbard’s, this model introduces the Coulomb repulsion on
a single site. IfU is large, this model leads to a magnetic
impurity on this particular site. We will consider the case, not
considered by Wolff, where the Hartree-Fock moment ex-
tracts a bound state from the band, i.e., the potential for a
spin direction is large enough to extract a bound state and the
potential for the other spin direction becomes repulsive. The
excited state obtained in destroying the magnetic moment by
exciting the electron out of the bound state to the continuum
is from a Hartree-Fock point of view of order ofU. We show
that this is not exact and that this excitation is in fact of much
lower energy due to the relaxation of all states in the pres-
ence of the attractive potential created on that site by the hole
left after the excitation.

This calculation can be considered as a first approxima-
tion to that of a localized hole in the metallic state of the
Hubbard model close to the metal-nonmetal transition. In-
deed, one of us has shown that the excitation which we have
considered in the Wolff model would be localized in the
Hubbard model due to many-body effects, i.e., the hole
would remain on this site.4,5 This is a consequence of Ander-
son’s orthogonality theorem.6 The possibility of having exci-
tations of this type, i.e., a localized hole on a site in a
strongly correlated system, would be important. The fact that

it would not be a high-energy excitation would give many
physical effects which we will discuss at the end.

The excitation of localized electrons in metals was first
studied extensively by Friedel7,8 and then, in connection with
x-ray-absorption and -emission spectra, by Mahan,9 Nozieres
and de Dominicis,10 and other authors. A newer review about
this subject has been given by Othaka and Tanabe.11 Al-
though the main interest there was the shape of the excitation
spectrum, especially the singular behavior at the threshold,
the excitation energies have been calculated in some cases
too.8,12–14 The main differences between the problem that
they studied and the problem analyzed here are the follow-
ing: In the x-ray-excitation problem the bound state is
formed by the potential of an atom and is filled by two elec-
trons; no local magnetic moment is assumed.8 In our prob-
lem onlyonelocalized electron exists in the ground state; no
bound state is extracted from the bottom of the band for the
opposite-spin electrons. Furthermore in the x-ray excitation
the bound-state energy islarge ~several Ry! compared to the
Fermi energy@O~0.5 Ry!# contrary to our problem where we
consider the case of a bound state close to the bottom of the
band. Therefore, in the x-ray-excitation experiment, relax-
ation effects give only a minor contribution to the excitation
energy, which is dominated by the large bound-state energy,
whereas in our case the relaxation energy plays the dominant
role. As a consequence of these differences our method for
calculating the potentials in the ground and in the excited
state is totally different from that needed in the x-ray-
excitation problem.

II. MODEL

We consider the two-dimensional case, i.e., our analysis
can be relevant for exactly or nearly two-dimensional sys-
tems, e.g., layered systems with a weak coupling between the
layers. The Hamiltonian for the Wolff model, which we con-
sider on a two-dimensional square lattice with lattice sitesi
and lattice constanta, is given by

H5H01
1
2(

s
Ud^ns~ i50!&n2s~ i50!. ~1!

The first termH0 is a single band Hamiltonian which de-
scribes the electrons in the periodic potential built by the ion
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potentials and the Hartree-Fock potential of the other elec-
trons. We choose forH0 the tight-binding Hamiltonian on a
simple square lattice, i.e.,

H05 (
~k,s!PFS

«0~k!cs
†~k!cs~k!, ~2!

where cs
†(k) is the creation operator for an electron with

momentumk and spins and

«0~k!5~W/2!1~W/4!@cos~akx!1cos~aky!# ~3!

is the dispersion of the band with the bandwidthW. The sum
runs over all states (k,s) out of the Fermi sea~FS!.

In the second termns( i ) is the density of electrons with
spins at the sitei , ^ns( i )& is its expectation value, and

d^ns~ i50!&:5^ns~ i50!&2^ns~ i50!&HF ~4!

its deviation from the Hartree-Fock value at the sitei50.
The Hartree-Fock value of the density is given by

^ns~ i !&HF5~1/2!(
s

^ns~ i !&. ~5!

Thus the second term in~1! adds to the Hartree-Fock-
HamiltonianH0 at one sitei50 the deviation of the expec-
tation value of the full Coulomb interaction from its Hartree-
Fock value, which isU^ns( i50)&HF. At the site i50 we
thus take into account the expectation value of thefull Cou-
lomb interaction. We can rewrite the second term in~1! by
defining the potential

dV2s~ i !:5 HUd^ns~ i50!& for i50
0 for iÞ0, ~6!

which acts on the electrons with spin2s on the sitei50
and is zero at all other sites. The Hamiltonian then reads

H5H01
1
2(

s
UdVs~ i !ns~ i50!. ~7!

As is well known, in two dimensions an attractive~repulsive!
potential extracts always a bound state from the bottom~top!
of the band no matter how weak it is. Therefore, if, e.g.,
dV↑( i50),0, a bound state for spin-↑ electrons is extracted
from the bottom of the band. We want to study in the fol-
lowing the excitation of an electron out of this bound state.

III. CALCULATION OF THE EXCITATION ENERGY

We calculate the excitation energy in three steps. First we
determine the local potentials in the ground state and in the
excited state. From these potentials we calculate in the sec-
ond step the energies of the system in the ground state and in
the excited state. The difference between both energies is the
relaxation energy and gives us in the third step the excitation
energy.

First step

In order to calculate the local potentials we first determine
the relation between an arbitrary local potential and the elec-
tron density at each lattice site caused by this potential. This
has to be done numerically since analytical solutions for this

problem exist only for some special potential shapes. Koster
and Slater15–17 have solved this problem for the case of a
point potentialacting onone site only. We generalize their
method in order to treat alsoextended potentialshaving finite
values onseveral lattice siteswhich turns out to be necessary
in our case.~Koster and Slater have considered the case of an
extended potential only with respect to the bound states, not
with respect to the scattering states.!

In the following the formalism of Koster and Slater will
be generalized to extended potentials. For this section it is
appropriate to use the notationRi instead ofi for a lattice
site. Let the unperturbed system of electrons in the crystal be
described by a one-electron HamiltonianH0 like in our
model ~1! and the local potential act on some lattice sites
with valuesV(Ri ,Rj ). For our problem it suffices to assume
only a single electron band. The perturbed wave function for
an electron with energy« is then described in terms of the
complete set of Wannier functionsas(r2Ri),

c«,s~r !5(
Ri

U«,s~Ri !as~r2Ri !. ~8!

The coefficientsU«,s(Ri) are determined by the Schro¨dinger
equation

(
Ri

@E0~Ri ,Rj !1V~Ri ,Rj !#U«,s~Rj !5«U«,s~Ri ! ~9!

with

E0~Ri ,Rj !:5E d2r as
†~r2Ri !H0as~r2Rj ! ~10!

and

V~Ri ,Rj !:5E d2ras
†~r2Ri !Vas~R2Rj !, ~11!

where we assume that the potential does not change the spin
of the electrons. The dispersion of the electron band is given
by the Fourier transform of the components

E0~Ri ,Rj !, i.e., «0~k!5SRi
E0~Ri ,Rj !exp„2 i ~Ri2Rj !….

In order to get a simpler form of the equations we denote
in the following a vector with coefficientsx(Ri) by x and a
matrix with componentsX(Ri ,Rj ) by X. Equation~9! can
then be replaced by

@E01V#u«,s5«u«,s . ~12!

From this equation we get the coefficients for the scattering
statesUk,s(Ri) with energy«.0 as well as the coefficients
for the bound statesUb,s(Ri) with energy«b,0. These co-
efficients are calculated as follows.

(i) Scattering states. The wave function is assumed to be a
sum of the incident wave with energy« and momentumk
and outgoing waves, i.e.,

Uk,s~Rj !5exp~ ikR j !1SRl
c~Rl !Sk8

3exp„ik8~Rj2Rl !…/@«2«~k8!#.
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The unknown coefficientsc(Ri) have to be determined in
such a way that they satisfy the difference equation~12!.
This leads to the equation

@12VK «#c5Vu0 , ~13!

whereU0(Ri)5exp(ikR i) and

K«~Ri ,Ri !5
1

N(
k8

eik8~Ri2Rj !

«2«~k8!
~14!

is the unperturbed electron Green’s function withN being the
number of lattice sites. For the derivation of~13! it has been
made use of the fact that for the infinite system the incident
wave satisfies the Schro¨dinger equation~12! with the poten-
tial set equal to zero, i.e.,Eu05«u0 . Furthermore, the prop-
erty («•12E)K «51 of the unperturbed Green’s function has
been applied.

(ii) Bound state. The difference equation~12! leads to the
condition

ub,s2K «Vub,s50. ~15!

From the coefficientsUk,s(Ri) for the scattering states and
Ub,s(Ri) for the bound states we get the expectation value of
the density of electrons with spins at the siteRi according
to

^ns~Ri !&5uUb,s~Ri !u21 (
kPFS

uUk,s~Ri !u2

5:^ns~Ri !&bound1^ns~Ri !& scatt, ~16!

where ^ns(Ri)& bound and ^ns(Ri)&scatt are the densities of
bound and scattering electrons with spins at siteRi .

Now we are in the position to calculate the potentials in
the ground and in the excited state. For the rest of this paper
we use again the shorthand notationi for Ri .

(a) Ground state. We have to determine the spin-
dependent potentials according to~6!:

dV2s~ i50!5Ud^ns~ i50!&. ~17!

The density deviation from the Hartree-Fock value depends,
corresponding to the formalism of Koster and Slater, on the
potentialdVs( i50), i.e.,

d^ns~ i50!&5 f @dVs~ i50!#, ~18!

where the functionf has to be determined numerically ac-
cording to~8!–~16!. We thus have a system of equations for
dVs( i50) and d^ns( i50)& which can be solved self-
consistently.

The density deviations from the Hartree-Fock value at the
neighbor sitesiÞ0 are not considered in the determination
of the ground-state potential because they are very small for
a point potential as we show in the results. This has the
consequence that in the ground state the total number of
electrons at the sitei50 is the same as at all other sites, i.e.,

d^ns~ i50!&52d^n2s~ i50!& ~19!

⇒dVs~ i50!52dV2s~ i50!. ~20!

For special values ofU and«F , Eq. ~17! has magnetic so-
lutions, e.g.,dV↑( i50),0 anddV↓( i50).0, and a bound
state for spin-↑ electrons is extracted from the bottom of the
band. This is the case we are interested in.

(b) Excited state. In the following the suffixg ~ex! of a
quantity denotes its value in the ground~excited! state. The
Friedel sum rule yields for the excited state

hs
~ex!~«F!5p, ~21!

which is a consequence of the creation of a hole in the bound
state. This will be derived in Appendix A.

If the phase shift at the Fermi level isp this means that
the potential must beextended over several lattice sites,
since a point potential leads always to phase shifts smaller
thanp. For simplicity we assume that the excited state is
nonmagnetic, in contrary to the ground state. This is reason-
able because the main contribution to the magnetic moment
in the ground state stems from the bound electron at the site
i50 which repels the electrons with the opposite spin direc-
tion. If the bound electron is removed a magnetic moment
can only be formed by the itinerant electrons. Therefore the
local magnetic moment in the excited state is smaller than in
the ground state. The bound electron with spin↑ is removed
from the sitei50 and is put into a scattering state. Therefore
we have

^ns~ i !&~ex!5^ns~ i !&scatt
~ex! . ~22!

The electron density at the sitei50 is reduced by the weight
of the bound electron at this sitê n↑( i50)& bound

(g)

5uUb,↑
(g) ( i50)u2. Since we assume a nonmagnetic excited

state the potential and density values are the same for↑ and
↓ electrons at each lattice site and we obtain for the electron
density at the sitei50,

^ns~ i50!&~ex!5 1
2 @^n↑~ i50!&~g!1^n↓~ i50!&~g!

2^n↑~ i50!&bound
~g! ]. ~23!

The weight^n↑( i50)& bound
(g) is shifted onto the neighboring

sites, i.e.,

(
iÞ0,s

^ns~ i !&~ex!5 (
iÞ0,s

^ns~ i !&~g!1^n↑~ i50!&bound
~g! .

~24!

The potentialV(ex), which has finite values not only at the
central site V(0)(ex) but also at the neighboring sites
V(1)(ex), has to be chosen in that way that the Koster-Slater
formalism yields the density distribution for the excited state
given by ~22!–~24!.

Second step

A local potentialV:5(V↑ ,V↓), which may have different
valuesVs for the two spin directions, leads to an energy shift
DE(V) with respect to the valueE0 of the unperturbed sys-
tem. It can be calculated, according to Refs. 7 and 18 as
follows: If one includes the system in a large sphere of radius
R the spectrum is quasicontinuous with level spacing
d«5pn/R, where n is the velocity corresponding to the
energy« of the level. Due to the local potential all single
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electron energies« are shifted by a small amountD«. The
level shiftD«(Vs) due to the potentialVs is related to the
phase shiftshs(«) produced byVs . In the degenerate case,
i.e., if several levelsl with phaseshl,s(«) have the same
energy, one finds~cf. Refs. 7 and 18!

(
l

D«~Vs!52
1

p(
l

hl,s~«!d«5:2
1

p
hs~«!d«.

~25!

Summing up all energy shifts given by~25! one obtains in
the limit R→` the total energy shift

DE~V!52(
s

1

pE0
«F
d«hs~«!1(

s
«b,s1dEcor,

~26!

where«b,s are the energies of the bound electrons extracted
out of the band. The last termdEcor is the change of the
electron-electron-interaction energy due to the change of the
electronic wave functions caused by the local potential. As is
well known the electron-electron-interaction energy has to be
subtracted from the sum over all single-particle energies if

one calculates the Hartree-Fock energy of the total system. In
our case the change of this energy is approximately given by
~cf. Appendix C!

dEcor52U(
s

^ns~ i50!&d^n2s~ i50!&. ~27!

The phase shifts are determined corresponding to Ref. 8 by

hs~«!:52Im ln det@12K eVs#. ~28!

The bound-state energies«5«b,s are the solutions of

det@12K «Vs#50, ~29!

which follows from ~15!.
Equations~26!–~29! together with Eqs.~8!–~24! for the

potentials and the electron densities yield all information in
order to calculate the energy of our system in the ground and
in the excited state.

(a) Energy in the ground state. We are interested in the
case wheredV↑

(g)( i50) extracts only one bound state out of
the band, i.e.,

E~g!5E02(
s

1

pE0
«F
d«hs

~g!~«!1«b,↑
~g!2U(

s
^ns~ i50!&~g!d^n2s~ i50!&~g!. ~30!

~b! Energy in the excited state. The bound state is empty, i.e.,

E~ex!5E02(
s

1

pE0
«F
d«hs

~ex!~«!2U(
s

^ns~ i50!&~ex!d^n2s~ i50!&~ex!. ~31!

Third step

The relaxation energy is given by

Erelax5E~ex!2E~g! ~32!

and the excitation energy by

vex5«F2«b1Erelax. ~33!

IV. RESULTS AND DISCUSSION

All energies are written in units of the bandwidthW. Our
calculations are done for«F50.5. This value has been cho-
sen because the Fermi energy of the Hubbard model close to
the metal-nonmetal transition, for which the present calcula-
tion is believed to be a first approximation, lies very close to
0.5. Note that it would not seriously change our result for the
excitation energy if we would take for«F a value close to 0.5
instead of our value«F50.5, since the excitation energy is
determined by quantities summed up to the Fermi level. Note
also that our system is metallic for both values, contrary to
the Hubbard model which is metallic only away from half-
filling. Thus our model can give only a description of the
metallic phase but not for the insulating phase.

Let us first consider the energies and the densities of the
electrons on a simple two-dimensional square lattice with
dispersion~3! as a function of the strength and the extension

of a local attractive potential. We use the following notations
for the lattice sites in the region of the potential:i50 stands
for the central site~0,0! of the potential,i51 for (61,0) and
(0,61), respectively,i518 for (61,61) and i52 for
(62,0) and (0,62), respectively. We restrict the potential to
the sitesi50 andi51 with valuesV(0) andV(1), respec-
tively. The valueV(0) determines the depths of the potential,
the ratioV(1)/V(0) its extension.

A pointpotential, acting only ati50, can extract onlyone
bound state out of the band, and the scattering phase
h(«), determined in this case by tanh(«)
52pV(0)r(«)/@12V(0)F(«)# @with the density of states
~DOS! for the square latticer(«) and its Hilbert transform
F(«)], cannot exceed the valuep. However, anextended
potential with valuesV( i )Þ0 for severalsites i can extract
severalbound states out of the band, as has been pointed out,
e.g., by Koster and Slater.13–15This is shown by our numeri-
cal calculation in Fig. 1 where the bound-state energies are
plotted as a function of the potential strength for a potential
with V( i )Þ0 for iP$0,1% andV( i )50 otherwise. For com-
parison we have also plotted the bound-state energy for a
point potential~dashed line!. For weak potentials the bound-
state energy deviates at first hardly from zero with increasing
potential strength, which is a consequence of the sharp edge
at the bottom of the band of the two-dimensional DOS for a
simple square lattice.
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The potential value, where the second bound state drops
out of the bottom of the band, decreases for increasing ex-
tension of the potential. ForV(1)/V(0)50.5 the second
bound state appears atV(0)>20.65 ~cf. Fig. 1!.

The phase shiftsh(«) become larger with increasing ex-
tension of the potential as is shown in Fig. 2. They can ex-
ceed the valuep also in the case where only a single bound
state is present.~Note that the phase shifts for an extended
potential can also exceedp because a second bound state is
extracted.! At the bottom of the band the phase shifts have
the valueh(«50)5p indicating that one bound state has
been extracted out of the band. From Fig. 2 we expect that
the relaxation energy determined essentially by integrals
over all phase shifts up to the Fermi level@cf. ~30!–~32!#
increases rapidly, if the potential becomes more and more
extended. We estimate, e.g., an increase of the relaxation
energy by about a factor 3, if the value ofV(1) changes from
0 to 0.5V(0), where we have setV(0)520.5.

The electron densities for a point potential at different
sites as a function of the potential strength are shown in Fig.
3. For a vanishing potential the density has the unperturbed

value, which is 0.5 for the square lattice at half-filling. At the
central site the density varies strongly with the potential,
whereas at the neighboring sites the deviations from the un-
perturbed value, which are the well-known Friedel oscilla-
tions, are very small. Therefore our approximation in the
determination of the ground-state potentials, where we take
into account only density and potential deviations at the site
i50, is self-consistent. If the potential is strong attractive,
nearly one electron is located at the sitei50, present mainly
in the bound state. For very strong repulsive potentials the
density vanishes, which means that the electrons are repelled
from the potential site.

Figure 4~c! shows the corresponding electron densities for
an extended potential with finite values at the sitei50 and
the four nearest-neighbor sitesi51. The values for the po-
tential depth have been restricted to that range, where only
onebound state is extracted out of the band. In Figs. 4~a! and
4~b! the densities of bound and scattering electrons are plot-
ted separately. The sum of both gives the total density in Fig.
4~c! according to~16!. Now the dependence on the potential
strength is not only strong at the sitei50 but also at the
neighboring sitesi51. They are, however, negligible at the
site i52, where the densities have approximately the unper-
turbed value. Only for strong attractive potentials with
V(0),20.4 does the density of the scattering electrons
^ns( i52)&scattand the total densitŷns( i52)& deviate a bit
from the unperturbed value indicating that itinerant electrons
are located in the region of the potential. The reason for this
localization of itinerant electrons is that atV(0)>20.65 a
second bound state is extracted from the bottom of the band.

If the potential is repulsive, no bound electron is present,
since no bound state below the band exists, and the density
of scattering electrons at the central site falls off with in-
creasing potential strength, because a very repulsive poten-
tial repels the electrons from the sitei50. On the other hand,
if the potential is very attractive it binds one electron at site
i50 with the consequence that no itinerant electron can be
present anymore at this site. Note that the electron density at
one site cannot exceed the value 1 for a given spin direction
due to the Pauli principle. For small attractive potentials the
density of scattering electrons at the sitei50 at first in-
creases before it falls off with increasing potential depth. The
reason for this behavior is that for very weak potentials the
bound state is distributed over several sites and its weight at

FIG. 1. Bound-state energy for extended and point~dashed line!
potential as a function ofV(0). The second bound state for the
extended potential appears atV(0)520.65.

FIG. 2. Phase shifts for various potential extensions, determined
by V(1)/V(0), as afunction of energy.~The sharp bends at the
band edges and at«50.5 are due to the shape of the DOS for the
tight-binding Hamiltonian on a simple square lattice at these
points.!

FIG. 3. Density of electrons at the sitesi50, i51, andi52 ~cf.
small box above! for a point potential, acting at the sitei50 only,
as a function of the potential depthV(0).
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the sitei50 is therefore very small. The electrons attracted
by the potential are therefore mainly itinerant electrons with
energies at the bottom of the band.

In Fig. 5 we present our results forErelax and vex as a
function of the Coulomb repulsionU. The potential in the
excited state, which we found to be necessarily extended
over several lattice sites, we restrict on the central sitei50
and its four nearest neighborsi51. Then we can restrict the
set $ i % of sites, where we take into account the density de-
viationsd^ns( i )&, onto the sitesi50, i51, andi518. Den-
sity deviations at the sitesi52 are already negligible@cf.
Fig. 4~b!#.

In the range 0.5,U,0.65 the excitation energy~upper
curve! is very small, i.e., of the order of one-hundredth of the
Fermi energy:vex>O(1022«F). If one assumesW ~which is
the energy unit in our calculation! to be of the order of 1 eV,
this excitation energy is of the order of 10 meV or 100 K,
respectively, i.e., it is in the range of normal metallic excita-
tion energies or phonon frequencies at room temperature re-
spectively. For largerU values the excitation energy in-
creases but nevertheless it remains significantly smaller than
the Fermi energy. This behavior ofvex corresponds to a large
relaxation energyE relax ~lower curve in Fig. 5! of the order
of 20.5. ForU,0.5 we finddVs

(g)50, i.e., a nonmagnetic

ground state. ForU.0.9 the potential in the excited state
extracts a second bound state from the bottom of the band.
We do not consider this case here.

For the self-consistent determination of the electron den-
sities and the potentials we had to do the numerical calcula-
tion ~8!–~24! on a „V(0),V(1)… grid with finite meshes,
which we have chosen as squares with length 0.025.@The
curves, shown in Figs. 1, 3, and 4 are fits through the calcu-
lated values where theV(0) axis is discretized in steps of
0.025.# The uncertainty of the energy values in Fig. 5 by
virtue of these finite meshes we estimate to be60.05.

The values of the potentials, we have found, are the fol-
lowing. The potential in the ground state varies between
dVs

(g)( i50)560.23 anddVs
(g)( i50)560.43 for the range

of U values shown in Fig. 5. This corresponds to bound-state
energies between«b520.01 and«b520.12. The potential
in the excited state has depths betweenV(ex)(0)520.64 and
V(ex)(0)520.37 and values at the sitei51 near
V(ex)(1)520.1. In the excited state there are fewer elec-
trons at the central site, compared to the value in the unper-
turbed case, and more electrons at the neighboring sites. The
total number of electrons fulfills charge conservation, ac-
cording to~22!–~24!. We also checked the Friedel sum rule,
which is equivalent to our requirement of charge
conservation.7,8 We have not used here this alternative to
determine the potential in the excited state, because the
phase shifts, whose values at the Fermi level enter in the
Friedel sum rule, vary very rapidly at the Fermi energy~cf.
Fig. 2!. If we assume a numerical uncertaintyD«F560.02
~which does not change our final result forvex seriously!, the
Friedel sum rule is fulfilled within the corresponding error
bars of the phase shifts.

In conclusion, we have studied the excitation of a bound
electron in the Wolff model, which takes into account the
intra-atomic Coulomb repulsionU on the site of the local
excitation and describes the electron dynamics at the other
sites within the Hartree-Fock approximation. We found that
the creation of a hole in the bound state leads for a certain
range ofU values via a strong relaxation of all electrons to
very small excitation energies of the order of one-hundredth
of the Fermi energy. The large relaxation energy which we
obtained stems from the fact that the electron is excited from

FIG. 5. Excitation~upper curve! and relaxation~lower curve!
energies as a function of the intra-atomic Coulomb repulsionU for
«F50.5.

FIG. 4. Density ofbound~a!, scattering~b!, andall ~c! electrons
at the sitesi50, i51, and i52 ~cf. small box above! for an ex-
tendedpotential withV(1)50.5V(0) as a function of the potential
depthV(0).
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a singly occupied state created by the magnetic moment. Our
result is important for studying local excitations in strongly
correlated metals. One of us has shown that, if all sites are
similar, the hole created in such an excitation, which in prin-
ciple can move, would be self-trapped.5 The reason stems
from the fact that the problem becomes similar to that of a
particle creating a potential and moving in a Fermi liquid.
This particle can, under special conditions, be self-trapped.
These conditions are fulfilled in the present problem as is
shown in Ref. 5. Thus, besides the Fermi liquid excitations,
localized excitations could exist in strongly correlated mate-
rials. Our calculation shows that these excitations would not
be of high energy of orderU orW. Thus it would be impor-
tant to consider them.

In that case, many effects similar to those studied by Ma-
han, Nozieres, and de Dominicis in the x-ray problem could
occur. We mention anomalies in photoemission of electrons
excited out of the lower Hubbard subband. We refer also to
anomalies in the optical conductivity, which appear as an
important infrared absorption and a decrease of the intensity
of the Drude peak. It would also mean that the magnetic
properties of the Hubbard model in that range of doping
would be neither itinerant nor localized. All these conse-
quences are under study.
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APPENDIX A: PHASE SHIFTS IN THE GROUND
AND IN THE EXCITED STATE

The Friedel sum rule relates the numberZ of states,
which arecreated below the Fermi levelby a potentialV, to
the phase shifts at the Fermi level:

Z5
1

p(
s

hs~«F!. ~A1!

Note thatZ takes into account the numberZscattof scattering
states as well as the numberZboundof localizedboundstates
~cf., e.g., Refs. 7 and 8!, i.e.,

Z5Zscatt1Zbound. ~A2!

The numberZ of states has to be distinguished from the
screening charge Qof V which is the number of theoccu-
pied states multiplied by the electron chargee. If Zempty is
the number of emptyboundstates it follows that

Q5~Z2Zempty!e. ~A3!

1. Ground state

The total number of electrons per site at every site, par-
ticularly at the sitei50, is the same as in the case of no
perturbation because d^ns( i50)&1d^n2s( i50)&50.
Therefore the total screening charge isQ(g)50. Since no
bound state is empty, i.e.,Zempty

(g) 50, we obtain from~A1!
and ~A3!

(
s

hs
~g!~«F!50. ~A4!

2. Excited state

The total charge within the region of the potential has not
changed with respect to the ground-state configuration.
ThereforeQ(ex)50. The bound state in the nonmagnetic
excited-state configuration is empty for both spin directions,
i.e., Zempty

(ex) 52. We thus obtain from~A1! and ~A3!

hs
~ex!~«F!5p. ~A5!

APPENDIX B: UNPERTURBED GREEN’S FUNCTION
AND BOUND-STATE COEFFICIENTS AND ENERGIES

The unperturbed Green’s function~14! for the tight-
binding Hamiltonian on a simple square lattice~cf. Refs.
15–17! reads for energies within the band«.0,

K«~Rp,q!5
1

2«~1!
E
0

`

dt e2 i«8ti ~p1q!Jp~ t !Jq~ t ! ~B1!

and below the band«,0,

K«~Rp,q!5
1

2«~1!
E
0

`

dt e2 i«8tI p~ t !I q~ t !. ~B2!

HereRp,q is the lattice vector with coordinates (p,q) and

Jp~ t !5E
2p

6

da e2 ipa1 i ~sina!t

~ordinary Bessel function of orderp!, ~B3!

I p~ t !5
1

pE0
p

da cos~pa!etcosa, ~B4!

«85
«2«~0!

2«~1!
. ~B5!

The bound-state coefficients for a potential, extended over
the sitesiP$0,1%, are related by

Ub,s~1!52
C«~0,0!

C«~0,1!
Ub,s~0! ~B6!

and the bound-state energy is the solution of

detUC«~0,0! C«~0,1!

C«~1,0! C«~1,1!
U50 ~B7!

with

C«~0,0!512V8~0!E
0

`

dt e2«8tI 0~ t !
2,

C«~0,1!524V8~1!E
0

`

dt e2«8tI 0~ t !I 1~ t !, ~B8!
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C«~1,0!52V8~0!E
0

`

dt e2«8tI 0~ t !I 1~ t !,

C«~1,1!512V8~1!E
0

`

dt e2«8t@ I 0~ t !
212I 1~ t !

2

1I 0~ t !I 2~ t !#,

and

V8~ i !:5
V~ i !

2«~0!
. ~B9!

APPENDIX C: ENERGY CORRECTION DUE TO DOUBLE
COUNTING

The total energy of our system without the local potential
is, in the Hartree-Fock approximation, the sum of two terms:

EHF5 (
~m,s!PFS

«m1Ecor. ~C1!

The first term is the sum of all one-electron energies«m out
of the Fermi sea. The second term

Ecor52
1

2 (
~m,s!PFS

(
~n,s8!PFS

@^c~m,s!c~n,s8!unel-elc~m,s!c~n,s8!&^c~m,s!c~n,s8!unel -eluc~n,s8!c~m,s!&# ~C2!

subtracts the electron-electron interaction energy which has been doubly counted in the first term.nel-el is the electron-electron
interaction.

If the local potential is switched on, all electron wave functions change at the potential site according to~13! and~15!. This
leads to a changedEcor of the termEcor. It can be calculated approximately if we take into account the change of the electron
wave function~8! only at the sitei50, which gives the main contribution:

dEcor52dH 12 (
~m,s!PFS

(
~n,s8!PFS

uU ~m,s!~ i50!u2uU ~n,s8!~ i50!u2@^as~ i50!as8~ i50!unel -eluas~ i50!as8~ i50!&

2^as~ i50!as8~ i50!unel -eluas8~ i50!as~ i50!&#J
52U(

s
^ns~ i50!&d^n2s~ i50!&. ~C3!

Here the definition of the Coulomb repulsion parameter
U:5^as~i50!a2s~i50!unel -eluas~ i50!a2s~ i50!&2^as~ i50!a2s~ i50!unel -elua2s~ i50!a2s~ i50!& ~C4!

has been used. Note that the change of the one-electron energies«m due to the local potential is described by the phase shifts
~28!.
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