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By means of the renormalization approach, we have developed a map that allows us to investigate transport
and electronic properties in polyaniline chains in terms of an effective lattice. This lattice may contain impu-
rities of two kinds: the first has the form of a couple of sites~dimer! with the same or different site energies
according to the symmetry of the rings of the polymer it simulates; the other can occur without constraint in the
number of sites involved. In the case of more sophisticated descriptions of the polymer, the dimer model can
be inadequate and impurities of four sites have to be introduced in the map. We compare the results for the
scattering properties of a single impurity with those of a finite sample of the chain, and we show the depen-
dence of the results on the energies assigned to the carbon and nitrogen atoms of the polymer.

I. INTRODUCTION

The existence of some classes of polymers with surpris-
ingly good conductive properties is presently one of the most
interesting topics of condensed-matter physics.1 A key prob-
lem is the explanation of the microscopic mechanism which
allows the propagation of electronic waves despite the lack
of translational order of the chain.

One of the most significant examples of conducting poly-
mers is constituted by the family of polyanilines, as shown in
Fig. 1, whose structure is made by chains of rings of carbon
atoms connected by nitrogen atoms. The C atoms nearest to
the N atoms are in general indicated asa-C atoms, the other
as b-C atoms. The N atoms can exist in areducedform
~amine N atoms! or in anoxidizedform ~imine N atoms!; if
c is the percentage of the oxidized N atoms, the structure of
the polymer presents a percentage ofc/2 rings of quinoid
type, i.e., of rings with two CvC bonds. According to the
value ofc for the oxidation degree of N atoms, we can obtain
different parent forms of the polymers: ifc50 @leucoemer-
aldine form, fully reduced state; Fig. 1~a!# the chain is en-
tirely composed of benzoid rings. Ifc550% @emeraldine
form, Fig. 1~b!#, there is a fraction of 25% of quinoid rings;
if c5100% @ fully oxidized state;pernigradiline form, Fig.
1~c!# the quinoid rings are one-half of the total number.
Moreover, the amine N atoms can also exist in a protonated
form which can be realized, for instance, by means of acidic
treatment: the protonated state of the emeraldine is the most
conducting parent form.

One of the most significant attempts to understand the
conductive properties of polyanilines points attention to the
role of a regular sublattice of defects~polarons!;2,3 it is sup-
ported by sophisticated investigations of the geometric
structure,4,5 electronic,2,5,6 and vibrational properties7 of the
polymeric chains. A great impulse to the solution of the prob-
lem has been given by introducing the alternative idea to
consider as decisive the role of the disorder due to the ran-
dom distribution of quinoid and benzoid rings in the

chain.8–11 In this approach the system has been generally
studied in the frame of the Hu¨ckel theory, by assigning to the
atoms appropriate site energies and hopping interactions ac-
cording to the type of bonds. To expect electronic transport
in a system dominated by disorder may appear surprising;
however, this hypothesis is corroborated by the fact that in
certain systems with correlated disorder, or in the presence of
internal symmetries of the defects, a part of the eigenstates of
the spectrum tends to be delocalized, determining an increase
of the conductivity of the system; the simplest form of cor-
related disorder which is worth mentioning for its conse-
quences on the study of conducting polymers, is the random
dimer model;12–15 it has been deeply studied in the case of
binary lattice, but also in more general situations.16

The paper is organized as follows: In Sec. II we briefly
introduce the renormalization method, which allows us to
map the original polymeric chain into an effective one-
dimensional lattice. The structure of the map is explained in
Sec. III, first for the isolated carbon atom ring, then for the

FIG. 1. Scheme of the three principal parent forms of polya-
nilines: ~a! leucoemeraldine~fully reduced form!, ~b! emeraldine,
and ~c! pernigradiline~fully oxidized form!. Rings with circles in-
side represent benzoid groups, rings with bars represent quinoid
groups.
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single quinoid ring embedded in a host regular chain of ben-
zoid rings, and finally for a general distribution of rings. In
Secs. IV and V we present results for a single defect ring in
a periodic chain, and for a random distribution of rings, re-
spectively. Section VI contains the conclusions.

II. RENORMALIZATION METHOD

In the study of the electronic and transport properties of a
polymeric chain, it is convenient to map the complex struc-
ture of carbon and nitrogen atoms of the polymer exactly
into an equivalent simplified system with the same signifi-
cant physical properties. For this purpose, the renormaliza-
tion procedure is a natural choice, because in a simple and
natural way it allows us to decimate degrees of freedom of
the system and then to calculate the physical quantities of
interest ~as the Green function! of the remaining effective
system.17 The heart of the renormalization procedure, in the
case of a one-dimensional lattice wherean is the site ener-
gies andtn the hopping interactions, is constituted by the
following recursive relations:18
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The above relations provide the effective site energies and
hopping interaction of the renormalized system; from them,
at the fixed point of the transformations, much information
about the electronic structure of the polymer and its transport
properties can be obtained. In fact, for instance, the diagonal
elementG00(E) of the Green function can be obtained from
Eq. ~1a!:

G00~E!5
1

E2«0
~N!~E!

~for largeN!; the poles ofG00 provide the eigenvalues of the
original system, and the residues at the poles the amplitude
of the wave function on the site 0; moreover Eq.~1c!,
through the transfer-matrix formalism, allows us to calculate
the transmission~and then the conductivity, by means of the
Landauer formula! of a disordered chain embedded in a host
periodic lattice.

In this paper we exploit the renormalization procedure to
perform a suitable mapping which allows us in a simple way
to investigate the electronic and transport properties of the
polyaniline chains and their dependence from the parameters
of the Hückel theory~site energies and hopping integrals!. As
is often done in the literature, we also consider the whole
polymer completely lying on a plane (x,y); moreover, the
only interactions of interest are due topz orbitals.

Once these assumptions are made, the renormalization
method reduces the single ring exactly to a diatomic mol-
ecule; thus a single quinoid ring embedded in a regular chain
of benzoid rings is mapped into a dimer impurity embedded
in a regular lattice. In order to perform calculations not only
on a single impurity, but also to treat finite samples with an
arbitrary number of impurities, we have introduced a map
which transforms a general distribution of carbon atom rings
separated by nitrogen atoms, into a convenient renormalized
lattice. The main effect of the passage from a single impurity
to a generic distribution of impurity rings is that the effective
renormalized lattice contains random impurities~dimers!
with correlated energies, i.e., they occur in the lattice with a
probability equal to the concentration of the quinoid rings.
The remaining part of the lattice is constituted of sites result-
ing from the renormalization of at least two consecutive ben-
zoid rings of the chain; a single benzoid ring between two
quinoid rings does not appear in the effective renormalized
lattice: in fact, as we shall see, its contribution is considered
in the site energies of the two consecutive dimers and in the
interaction between them. Therefore, these effective sites can
have an arbitrary number of occurrences. In the effective
lattice there are just two kinds of interactions:~i! interactions
internal to the sites of the dimers; and~ii ! interactions be-
tween two consecutive dimers, between dimers and sites, and
between sites, which are all equal. It will be clear that this
kind of map automatically excludes forbidden configurations
of the chain, as occurrence of two consecutive quinoid
rings.1,2

III. DESCRIPTION OF THE MAP

Looking at the structure of the simplest form of the poly-
meric chain@Fig. 1~a!#, it can be argued that the renormal-
ization procedure of the single ring can be very conveniently
applied by eliminating the C atoms of the rings and preserv-
ing the N atoms. Thus we take into consideration the single
ring between two nitrogen atoms as the elementary unit to
renormalize. The main steps of the procedure for decimating
carbon atoms are shown in Fig. 2; after this operation, the
ring is reduced to a couple of effective nitrogen atom sites.
Here we provide general analytic expressions for the renor-
malized left and right nitrogen site energies and their inter-
actions which are obtained exploiting Eqs.~1! for an appro-
priate choice of the Hu¨ckel parameters, when the carbon
atoms of the ring are decimated:

«45a01
t01
2

E2a2
t2

E2b

, « r5a71
t47
2

E2b2
t2

E2a

,

~2a!

FIG. 2. Steps for the renormalization of a single ring which
preserves the nitrogen atoms at sites 0 and 7; carbon atoms from 1
to 6 are decimated. This scheme summarizes the results expressed
in Eqs.~2!.
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In these expressionsa05a75aN are the site energies of the
N atoms,a1 , . . . ,a6 are the site energies of the C atoms, and
t i j are the hopping interactions. Such quantities, like all the
energies in this paper, are expressed in units ofb52.5 eV,
which is the C-C interaction energy in the aromatic ring.19 It
is not difficult to understand that if the site energies of the
ring are assigned with a symmetry with respect to the axes of
the N atoms (a25a6 anda35a5 , or a25a5 anda35a6 in
Fig. 2! the equality«45« r holds, and the result of the pro-
cedure of renormalization of the ring is a couple of sites with
the same effective energy~symmetric dimer!; otherwise, if no
symmetry exists in the ring, the result will be a couple of
sites with different energies~asymmetric dimer!. This sym-
metry has also a decisive role in deciding the nature of the
dimer impurities present in the effective lattice in the case of
a general distribution of rings.

After the description of the renormalization procedure in
the case of the single ring, we examine the case of single
quinoid ring embedded in a host chain of benzoid rings. It is
clear that in this case the procedure of renormalization will
have to take into account separately the contributions of the
rings on the left and right of each N atom. For example, a
regular chain of benzoid rings with equal site energies of C
atoms will correspond to a regular lattice of N atoms with
renormalized site energies«b5« rb1«4b2aN and effective
interactions tb

(eff) ~the value of the N-atom site energy
aN5a05a7 has to be subtracted because it is contained both
in the expression for«4 and in the expression for« r ; here
and in the following the apicesb andq indicate the benzoid
and quinoid rings, respectively!. From the renormalized sys-
tem the density of states of the original ordered polymeric
chain, projected on the N atoms, is immediately available.

In Figs. 3~a!–3~c! the renormalization of the quinoid ring
in different situations is presented: in the first case@Fig. 3~a!#
the two energies of the dimer are equal because inversion
symmetry with respect to the center of the quinoid ring ex-
ists; in this case«4b5« rb5«b and«4q5« rq5«q ; the result
of the map is a couple of site energies«b1«q2aN interact-
ing with tq

(eff) , embedded in a host lattice with site energies
2«b2aN and interactiontb

(eff) , which is also the interaction
between the impurities and the atoms of the host lattice. In-
stead, as can be seen from Fig. 3~b! in the case of a single
asymmetric quinoid ring~represented with a ring with an
external unit linked!, the site energies of the dimer are
« rb1«4q2aN and«4b1« rq2aN , respectively, embedded in
a host lattice with site energies«4b1« rb2aN ; the interac-
tions are the same of the previous case. It has to be observed
that the mapping of a single quinoid ring into a dimer is
possible if its presence does not influence the two adjacent
benzoid rings. If this influence is supposed to be important
~for instance, by assigning different values to the site ener-
gies of thea-C atoms according to whether they are bound
to amine or imine N atoms!, those benzoid rings become
distinguishable from the other ones of the host lattice; to
properly consider this, the quinoid ring plus adjacent benzoid
rings are decimated to an effective unit of four sites@Fig.
3~c!#.

As a final step, we can now describe the map which trans-
forms a polymeric chain with a general distribution of

FIG. 3. ~a! Map for a chain with a single quinoid ring when the
site energies of C atoms are symmetrical with respect to the mid-
point between the nitrogen atoms; the impurity is represented by a
symmetrical dimer.~b! Map for a chain with a single quinoid ring
when the site energies of C atoms are assigned arbitrarily, and the
impurity is represented by an asymmetrical dimer.~c! Map for a
chain with a single quinoid ring when different site energies of
a-C atoms bound to nitrogen amine or imine atoms are assigned.
~d! Map for a generic distribution of quinoid and benzoid rings.
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quinoid and benzoid rings into an equivalent one-
dimensional effective lattice; it is based on the renormaliza-
tion procedure, and is a natural extension of the map for the
single ring which has been described above. From Fig. 3~d!,
it can be seen that each quinoid ring of a polyaniline is
mapped into a dimer~for simplicity, we consider the case of
symmetric dimers!, whose sites are systematically repre-
sented with quadrates having site energies«b1«q2aN and
internal interactiontq

(eff) . In this map, in general,N benzoid
rings are represented byN21 sites of the lattice~circles in
the figure! with site energy equal to 2«b2aN ; their interac-
tion between each other and with the quadrates resulting
from the quinoid rings istb

(eff) . It has to be noted that just one
benzoid ring between two quinoid rings produces no circle in
the effective lattice; its contribution is taken into account in
the site energies of the two consecutive quadrates in the lat-
tice, and in the interaction between them. In fact the interac-
tion between adjacent quadrates of two consecutive dimers is
tb
(eff) . The possibility of two consecutive quinoid rings is
automatically forbidden in this kind of map because we
avoid the site energy of value 2«q2aN .

The procedure of construction of the effective disordered
lattice is the following. A random number in the interval
@0,1# is generated; if it is less than the concentration of the
quinoid rings in the polymer, it is associated with a couple of
sites~dimer! with identical energies in the symmetrical case
or with different energies for an asymmetrical dimer, and
interacting with tq

(eff) . Otherwise, it is associated with a
single site originated by the renormalization of a benzoid
ring, with energy equal to 2«b2aN , and the interaction of
one site with the following~or between the adjacent sites of
two consecutive dimers! is equal totb

(eff) .
In the next two sections, we first analyze the transmission

properties of a single defect in an ordered lattice, comparing
the results in the cases of symmetrical and asymmetrical
dimers and in the case of impurities of four sites; then we
analyze the behavior of finite samples with a random distri-
bution of impurity rings.

IV. RESULTS FOR THE EMBEDDED SINGLE IMPURITY

A useful guide to understanding the transmission proper-
ties of a finite polymeric chain is the preliminary study of the
reflectivity of a single quinoid defect embedded in an or-
dered chain of benzoid rings; as we have seen before, the
related effective system is in general a single impurity with
the form of a dimer in an ordered lattice. The dimer is sym-
metric or asymmetric according to the energies assigned to
the C atoms of the ring and to the interactions.

We calculate the reflectivity of the impurity within the
energy regions allowed by the host regular polymeric chain.
For instance, in Fig. 4~a! we show the reflectivity of the
single quinoid ring as a function of the energy calculated in
the energy intervals which constitute the spectrum of the
periodic host chain of benzoid rings whose total density of
states is also represented~dashed lines!. As site energies and
hopping interactions we have chosen the standard values of
Ref. 19. These values are widely adopted in the literature; we
have not considered possible improvements of the param-
eters of Ref. 19, since this paper focuses on the physical
origin of the delocalization effects~and does not require to

be too specific about the underlying parametrization!. As a
reference for the energy, here we have considered the sim-
plest case of all carbon site energies of benzoid and quinoid
rings equal to zero.

To examine more realistic examples, corrections to the
a carbon atoms site energies may be necessary.19,20Now we
concentrate on a portion of the energy interval of Fig. 4~a!
(21&E&20.2), because it is the interesting region for
conductivity properties of the polymer.2,3,9 Thus in Fig. 4~b!
~dotted line! we report the reflectivity of the dimer as a func-
tion of the energy in the case of a general correction of
20.15 to the site energies of the C atoms of typea ~bound to
N atoms!. The site energies ofb-C atoms are fixed to zero,

FIG. 4. ~a! Reflectivity as a function of the energy of a single
quinoid ring with site energies ofb-C’s equal to zero. The impurity
is embedded in a perfect host chain whose density of states is also
represented~dashed lines!. ~b! Reflectivity as a function of the en-
ergy of a single quinoid ring when the site energies ofb-C’s in the
ring are equal to zero and the site energies ofa-C’s have a
a520.15 ~dotted line! or have a differentiated correction~full
line!, i.e.,a520.15 if they are bound to amine nitrogen atoms, and
a520.05 if they are bound to imine atoms~full line!. ~c! Reflec-
tivity as a function of the energy of a single quinoid ring for site
energies ofb-C’s in the ring equal to zero excepta35a6510.5.
The site energies ofa-C’s have a general correction~dotted line! or
a differentiated correction~full line!, as in part~a! of the figure.
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the N imine atoms haveaN522 ~we are choosing the case
of protonated N imine atoms! andaN521.5 for the other N
atoms. The hopping between theb-C atoms is21.1 in the
quinoid ring and21.0 for the benzoid ring; the hopping
betweena and b-C atoms is always20.9. It can be ob-
served that there are two minimum points in the reflectivity,
which in particular vanishes forE;20.35. This value tends
to shift, changing the values of the correction for thea-C
atoms, reaching the value ofE;20.28 when no correction
is performed. The situation changes if we differentiate the
corrections to the site energies of thea-C atoms connected
to amine or imine N atoms.20 In fact, let us consider a cor-
rection of20.15 for the energies of the C atoms connected
with amine N atoms, and20.05 for those connected with
imine N atoms; in this case the correct map of the quinoid
ring is a four sites impurity@Fig. 3~c!#. We can observe that,
even if the overall behavior of the reflectivity is quite differ-
ent, the reflectivity vanishes again forE;20.35 @Fig. 4~b!,
full line#, and the zone of low reflectivity is broader in cor-
respondence to the case of asymmetrical correction.

If we assign the value10.5 to two C atoms of each ring
as indicated in Ref. 19, then we havea35a6510.5 in Eqs.
~2!. With this assignment of the site energies the properties
of a polymer with alkyl groups connected with benzene rings
can be described20 @in this case the poly ~2.5-
dimethylaniline!#. Here we see that the zones of vanishing
reflectivity are two@Fig. 4~c!#: the first is forE;20.7, and
the second betweenE;20.25 andE;20.2, which is again
broader in the case of different correction of the site energies
of thea-C atoms.

V. CHAINS WITH CORRELATED DISORDER

We have seen in Sec. II that the effective lattice resulting
from the map of a polymeric chain of the kinds treated in this
paper contains two types of elements: the first is a dimer~or
a more complex defect! which can be symmetric, or asym-
metric, with internal interactiontq

~eff! . The second is a single
site which can have an even or odd number of occurrences;
the interaction of a single site with the other sites or with the
dimers istb

(eff) @random dimer model12 ~RDM!#.
This kind of model is different from the alloy dimer

model,12 where both the elements of the lattice can occur
only in the form of dimers. The main difference with respect
to the alloy dimer model is that, if the dimer is symmetric,
just one resonance is present, corresponding to the site en-
ergy of the dimer. In general, for an increasing concentration
of dimers the width of the interval of good transmittivity of
the RDM decreases, up to concentration;0.9; then the plot
of the transmittivity gradually reaches the plot typical of an
ordered lattice having the site energies of the dimer and al-
ternatingtq and tb interactions.

We now examine the transmission properties of some
polyaniline chains, from the transmittivity of the equivalent
renormalized effective lattice resulting when benzoid and
quinoid rings are distributed according to a random se-
quence. We can see that all the results can be put in corre-
spondence with the results found for the single quinoid ring
found in Sec. II; in all cases we have calculated average
quantities over 500 generated configurations of effective
chains of 1000 sites. All the calculations have been per-

formed following the transfer-matrix approach.21

The first example concerns the emeraldine parent form of
the polyaniline, in its protonated form, where the percentage
of quinoid rings is 25%, and a general correction of20.15
has been given to thea-C site energies. From Fig. 5~a!, we
see that the sample has an interval of good transmittivity for
E;20.35; the reflectivity of the single defect is shown for
comparison~dotted line!, indicating a clear relation between
the plots.

The second example of polymer we have examined can
be represented, in the Hu¨ckel theory, modifying the site en-
ergies of two C atoms in each ring according to the prescrip-

FIG. 5. Transmittivity as a function of energy for two examples
of polymeric chains.~a! Case of site energies ofb-C’s in the rings
equal to zero, and site energies ofa-C’s with a general correction of
a520.15. ~b! Case of site energies ofb-C’s in the rings equal to
zero, except a35a6510.5, corresponding to the polymer
poly~2.5-dimethylaniline!, and site energies ofa-C’s with general
correctiona520.15. ~c! Case of site energies ofb-C’s in the rings
equal to zero excepta3510.5, corresponding to the polymer
poly(o-methylanine!, when a general correction of 0,20.15, and
20.2 is given toa-C atoms. In all these cases the length of the
samples isN51000, the percentage of quinoid rings is 25%, and
the results are averaged over 500 configurations.
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tion a35a6510.5; we remark the fact that the impurity in
the form of dimer is again symmetric. The polymer described
in this way is the poly~2.5-dimethylaniline!, which has the
alkyl groups CH and CH3 linked to the C atoms labeled 3
and 6, respectively, in Fig. 2. We can see from Fig. 5~b! that
the two intervals of low reflectivity for the single impurity
correspond with two intervals of good transmittivity~aver-
aged over 500 configurations! of the sample. It can be also
observed that the transmission is generally higher where the
minima of reflectivity are broader.

We conclude our analysis by examining a polymer which
is mapped into an effective lattice containing asymmetrical
dimers. This is the case of poly(o-methylanine!, which can
be represented with a group CH3 linked to atom 3~see Fig.
2! of the carbon rings. The presence of this radical is taken
into account by assigning toa3 the value10.5,19 while all
the other site energies of C atoms remain fixed to zero. In
this case the symmetry described in Sec. II is obviously bro-
ken. In Fig. 5~c! are shown the results for this polymer, com-
paring the cases where thea-C atoms take the values 0,
20.15, and20.2. It is clear from the plots that in general
the asymmetry of the dimer contained in the lattice has the
consequence that the reflectivity of the single ring does not
reach values as low as in the previous examples, where sym-
metrical dimers were involved. This fact is reflected, of
course, in the transmission of the finite sample in a very
detailed way. In fact it can be observed that in general the

transmittivity does not reach values higher than 0.2~to be
compared to;0.6 of the previous cases!. Moreover, it re-
sults clear from the picture that a lower value of the mini-
mum of the reflectivity, and a broader interval around it,
causes a general increase of the transmittivity of the sample.

VI. CONCLUSIONS

By the renormalization approach, we have introduced a
general procedure to obtain the map of any given planar
polymer; it allows us to investigate in a simple way its trans-
port and electronic properties. Comparing the transmission
properties of a single impurity and of the model of the lattice
which results from the map of some examples of polymeric
polyaniline chains, we see that energy intervals of good
transmittivity also exist for rather long samples (N51000).
This characteristic becomes more important if symmetry in
the site energies of the rings is respected~case of symmetric
dimer!, but it is also verified for the asymmetric dimer case;
this fact can justify the good conductance properties exhib-
ited by this class of polymers. The approach described in this
paper can be easily extended to other families of polymeric
chains.
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11H. Dücker, M. Struck, Th. Koslowski, and W. von Niessen, Phys.
Rev. B46, 13 078~1992!.

12D. H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett.65,
88 ~1990!.

13P. W. Phillips and H.-L. Wu, Science252, 1805~1991!.
14H.-L. Wu and P. W. Phillips, Phys. Rev. Lett.66, 1366~1991!.
15H.-L. Wu, W. Goff, and P. W. Phillips, Phys. Rev. B45, 1623

~1992!.
16R. Farchioni, G. Grosso, and G. Pastori Parravicini, J. Phys. Con-

dens. Matter6, 9349~1994!.
17G. Grosso and G. Pastori Parravicini, Adv. Chem. Phys.62, 81

~1986!; 62, 131 ~1986!.
18See, for instance, P. Giannozzi, G. Grosso, S. Moroni, and G.

Pastori Parravicini, Appl. Num. Math.4, 273 ~1988!.
19A. Streitwieser,Molecular Orbital Theory~Wiley, New York,

1961!.
20F. C. Lavarda, M. C. dos Santos, D. S. Galvao, and B. Laks, Phys.

Rev. Lett.73, 1267~1994!.
21A. Douglas Stone, J. D. Joannopoulos, and D. J. Chadi, Phys.

Rev. B24, 5583~1981!.

53 4299RENORMALIZATION APPROACH FOR TRANSPORT AND . . .


