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We present a unified theoretical approach to electromagnetic plane waves reflected or transmitted at arbi-
trarily anisotropic and homogeneous layered systems. Analytic expressions for the eigenvalues for the four-
wave components inside a randomly oriented anisotropic medium are reported explicitly. As well, the partial
transfer matrix for a slab of a continuously twisted biaxial material at normal incidence is described. Transition
matrices for the incident and exit media are presented. Hence, a complete anabyticahdtrix algorithm is
obtained using Berreman’sxd4 differential matrice$D. W. Berreman, J. Opt. Soc. Ar62, 502(1972]. The
algorithm has a general approach for materials with linear optical response behavior and can be used imme-
diately, for example, to analyze ellipsometric investigations.

[. INTRODUCTION pling appears. This will happen inside the anisotropic

material during the propagation of light. Consequently
During the last decade polarization-dependent optical in4 X4 matrices are needed in order to establish a similar ma-

vestigations have become standard methods to explore thex method. Dealing with first-order Maxwell equations,
properties of solids and liquidsin particular, because of the Berreman showed a general way to calculate the reflection
rapid development of computational capabilities as well asand transmission coefficients of an anisotropic slab from a

the requirement for nondestructive methods to examine epiwave transfer matrix of rank 4. In a similar manner to the
taxial layer systems, spectroscopic ellipsometry has becomigotropic case these matrices connect the in-plane compo-
an important technique. The optical constants of variousents of all modes of the plane waves at opposite interfaces.

semiconductor materials have been extracted over a widghey also include the effects of all multiple reflections if a

spectral range using standard models for light propagation igart of the wave is traveling along a direction with no or
isotropic medig~* On the other hand, investigations on ar- weak absorption. In principle, the media considered are al-

bitrarily anisotropic layered systems have been restricteghyed to be gyrotropic as well as magnetitinfortunately,

mainly to data collection and qualitative analysis. This is;, order to obtain this matrix, a power series has to be ex-

bectause of tgethco:nplex forrrgulasfassiuated with ant|sotrop| anded as a function ofef/c)d (where w stands for fre-
2% the orientation of the crystal axes and the three directior2"eY ©f the plane wave,for the vacuum velocity of light,
y and d for the thickness of the slabthat depends on the

dependent complex refractive indices for each material. For - . : .
1spectral wavelength. Also explicit matrix expressions involv-

isotropic layered media matrix methods are well known tha ) . . L . :
Ing isotropic or anisotropic incident and exit media are not

involve 2x 2 matrices*® The p (electric-field vectoiE par- ) Wi | lied th | ton th
allel to the plane of incidengeand's (electric-field vector 9iven. Wdiler et al. applied the Caley-Hamilton theorem to
avoid especially the row summation in the Berreman

E perpendicular to the plane of incidenamodes of plane L E . : . )
parallel electromagnetic waves are independent of each oth@{gorithm? But this faster algorithm becomes singular if the

(uncoupled modés Thus for each mode the wave propaga_dielectric tensor reduces to a scalar. Moreover, the eigenval-
tion can be described separately. For each component for thé€s of the wave transfer matrix are needed but not presented
layered media such as ambient, slab., slab, substrate, for a general case. In general, anisotropic or isotropic slabs
there exists a matrix that contains the ratio of the incidenwill be embedded between isotropic or anisotropic ambient
and emerging parts of each mode with respect to an apprénd substrate media. Therefore, to obtain a complete matrix
priate coordinate system. All multiple reflections between themethod, incident and exit transition matrices for the ambient
slab interfaces that may occur in the case of transparent layincident medium and the substratéexit medium have to
ers are retained in a self-consistent way. From the product dfe introduced. Then a general wave transfer matrix can be
all matrices one can easily compute the reflection and trangeund that contains all polarization-dependent optical param-
mission coefficients for the ands modes, respectively. eters. Yeh reported a>44 matrix algebra including those

In the case of birefringent epitaxial systems, the four magtransition matrices solving Maxwell’s equationskrspace®
netic and electric parts of the plane wave are no longer spdJdnfortunately, already for the case of an isotropic ambient,
tially independent of each other, and a so-called mode cothis method is not generally useful since all treated materials
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have to be anisotropic. Otherwise the algorithm becomes
singular’

The aim of the present paper is to report a completed
algebra to calculate all the measurable polarization-
dependent parameters for arbitrarily anisotropic and homo-
geneous layered systems including twisted media. We
present explicit expressions for the four eigenvalues inside a
randomly oriented biaxial material. Using these expressions
we derive also a particular solution for a continuously
twisted biaxial material at normal incidence. As well, we
give a rigorous derivation of the incident and exit matrices. FIG. 1. Incident, reflected, and transmittpcands modes of a
Not done so far in such a closed and complete analyticgblane wave with their wave vectois,, k, k;, andk{, respec-
form, the algebra is already seen as a suitable method fdively. Dg andD,, indicate the modes of the back-traveling waves
computational data analysis of experimental results obtaineitiside the substrate. If the exit medium is anisotropic there may
from polarization-dependent measurement techniques sudcxist four different wave vectors; .
as generalized ellipsometry. This modern approach of ellip-
sometry involves the determination of three predefined anttansmittedp ands modes,C, and C, respectively(back-
normalized optical system Jones matrix elements and hasaveling waves are not permitted, =0 andD=0)*The
been improved very recenffyThe Jones matrices connect Cartesian laboratory coordinate system is then defined when
the field amplitudes of plane waves before and after an opthe plane of incidence coincides with tlez plane, where
tical system, and contain information about the optical-the origin is set at the interface of the ambient and the strati-
transfer function. In three follow-up publications we report fied mediat® Without loss of generality the wave vectky
on how to measure and analyze these matrices from layeretbes not have a component parallel to theirection* In
anisotropic samples combining generalized ellipsometry wittorder to connect the four wave amplitudes inside the incident
our matrix algebra(i) We obtain the dielectric function ten- medium (left side of the structure in Fig.)lwith the two
sor of uniaxial TiG,. (ii) Through a small optical anisotropy transmitted amplitudes inside the exit medigright side of
we show evidence of the relation between the band-gap rd=ig. 1) a general transfer matrix can be defined for any given
duction and valence-band splitting in ordered ;,Ggdn,P.  layered structure:

(iii) We obtain directly the temperature dependence of the
dielectric function tensor of nematic liquids:®

z
y
X

=0

A C Ty T Tia T C
A short review of the propagation of plane waves in ho- ° ° oo s °
mogeneous layered media, and the definition of the general Bs T Ds _ Tar Tap Tz Ta 0 1)
transfer matrix is given in Sec. Il. Following Yeh'’s notation A, Cp Tay Tz Tas Taa|| Cpl|
the derivation of the polarization-dependent parameters from
p p P B D, Tar Tap Tz Taa/ \ O

the general transfer matrix is briefly reviewed in Sec. Ill. P

Here we also give a definition of the parameters to determinf\lote thatT is just the matrixM used by YehEq. (22) in
by generalized ellipsometry. The complete analytical aIgo—Ref_ 6. The tangential components of the electric- and

rithm for the calculation of the partial transfer matrices forfmagnetic-field vectors are continuous across the interface be-
anisotropic slabs is shown in Sec. IV A. The treatment o

isotropic layers is explained in Appendix A. If the dielectric tween two media(lf the surface current densit and the
pic 1ay >Xpla N APp ' surface charge density vanish) Thus a 4x4 matrix alge-
function tensor varies sinusoidally along the sample normal

X . . : ra th ri he pr ion of monochromatic plan
a particular solution for the partial transfer matrix at normalb a that describes the propagation of monochromatic plane

N . . L .. waves through the entire layered system can be introduced. If
incidence is reported in Sec. IV B. The incident and ex'tdi is the thickness of théth layer, a partial transfer matrix

matrices are then introduced in .S_ec. IV C. In Appendixes BTi that connects the in-plane wave components at the inter-
and C we demonstrate the validity of the algebra througf}afc’:e atz— 7. with those at the next interface a7 + d- can
known analytic expressions for a biaxial film-substrate SYShe definedlfor both isotropic and anisotropic Irlslyerls Hence
tem with its main axes aligned paralel to the laboratory *Y3the ordered product of all partial matrices from Nlllay}ers
tem. transfers the in-plane components at the first interface at
z=0 to the last interface at=2zy. Likewise, the incident
Il. GENERAL TRANSFER MATRIX matrix L, projects the in-plane wave components of the in-

) ) ) cident and reflected waves through to the first interface. The
Consider a layered system with plane parallel interfacesayit matrix L; projects the transmitted amplitudes from the
Assume an incident light wave with wave vectoy coming a5t interface through to the exit medium that may be isotro-
from the incident mediun{ambient, indexa, —<<z<0, i or anisotropic. The general transfer maffixas defined
complex '”%ex of refractiom,) at an angle of incidence i gq. (1) is then most easily obtained from the product of all
@, (Fig. 1)~ Thenk, and the wave vector of the reflected jyyerted matriced, for each layer, as well as the incident

wavek; from the plane of incidence. L&k, As, andBp,  and exit matrices in the order of their appearance:

B, denote the complex amplitudes of theands modes of

the incident and reflected waves, respectively. The exit me- N N

dium (substrate, indexf, zy<z<«) does not include a T=LTT 7od) L= 2T To(=dL.. (2
back side. Hence there exist only two amplitudes for the a 1:[1 pld)] Li=La .1:[1 pl L. (2
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Note that due to the symmetry of the coordinate system thés seen in the latter equation the complex reflectance ratio
inversion ofT, that is indicated in Eq(2) does not require a p is then a combination of three ratios formed by the ele-

matrix inversion calculation. ments of the Jones reflection matrix, and depends on the ratio
of the incident wave amplitude&, and A;. The basis of

IIl. POLARIZATION-DEPENDENT generalized ellipsometry is to define and determine three lin-

OPTICAL PARAMETERS ear independent normalized reflection matrix elements. De-

) ] fining a set of those normalized elements
In the following subsection we show how the measurable

polarization-dependent optical parameters can be obtained r

r r
immediately from the general transfer matrix and therefore PP=R,, r—pSERps' r—SpERsp (8
through the algebra discussed here. Note that the expressions ss PP ss
mentioned or derived here constitute the connection to théesults in Eq(7):
respective experiment. B B
PZ[Rpp+ Rsp(X) 1](1+RppRst) L 9
A. Transmission and reflection coefficients Equation(1) simplifies in cases where only isotropic materi-

The transmission and reflection coefficients of layered®!S @re included in the layered system or in some special
systems are traditionally defined as the ratios of the ampli€@ses where, e.g., the Cartesian principal axes of the material
tudes of the incident and reflected or transmitted waves, rd@yers are all oriented parallel to the axes of the laboratory
spectively. They can be expressed in terms of the elements gPordinate system. The special behavior of the partial trans-
the general transfer matri. Consider Eq(1) as a system of e matrix when the principal axes of the crystal system co-
four linear relations between theands components on the Incide with the laboratory system is shown through Appen-
left and right sides of Fig. 1. As an example, one mightd'xes B and C. In this case the ellipsometric ratio holds:
choose the Jones reflection and transmission coefficignts

. . > o Tgaal T T
andtg,, respectively® Inside the substrate only transmitted is__43 11 =2 JndRr.=-2 10
< i Talar  ° T PTT (10
waves are allowed. Therefore the ratios can be found as fol- 33l21 11 33
lows:

IV. CALCULATION OF THE GENERAL
_[Bs ~ TorTag—Tosly TRANSFER MATRIX
"o A o TuTar TusTar . .

Ap=0 The attention can generally be restricted to cases where

all material layers are homogeneous, so that the optical prop-

_ Cp _ —Ta erties are independent afexcept at step-function changes
tsp_ ~ = 5 T _ T T - (3) . .

As)p _o T1Taz—TisTa across interfaces. Inhomogeneous layered media can be
P treated in the same way if they are approximated as a stack

Note that all eight conceivable quotients of the incident anhf piecewise homogeneous layers. In Sec. IV A we report
emerging wave parts can be expressed in terms of the elenalytic expressions for the eigenvalues inside a randomly

ments of the matrixT.° oriented anisotropic medium. Thus a fully analytic algorithm
for the calculation of the partial transfer matrix for those
B. Generalized ellipsometric parameters media is available. In order to make the algorithm more

transparent we give a brief review of the derivation of the

initial differential equation originally reported in Ref. 4. In

Sec. IVB we derive a special solution for the case of a
A B -1 sinusoidally varying dielectric function tensor at normal in-

p=tan\Pe'AE(A—p) , (4) cidence using the results from Sec. IV A. The incident and

P exit matrices are then introduced and discussed in Sec. IV C.

and can be expressed through the ratios of the amplitudes of

the incident and reflected waves. Letbe the ratio of the A. Partial transfer matrix for anisotropic slabs

incident modesA, and A, then the ellipsometric ratio is

obtained from Eq(1) as follows:

The complex reflectance ratphas been traditionally de-
fined as

Bs
As

From first-order Maxwell equations Berreman derived the
following set of four differential equations for the in-plane

1 Tyx(Ta3— XT13) + Taz(xT11— T30 A, components of the electric and magnetic fields in Gaussian
p== , x=-—, (50 units and Cartesian coordinates:

X Tou(Taz=xT13) + Tos(xT11— Tay) As
or, using the expression for the transmission and reflection 3,¥(2)=ikoA(2)¥(2),
coefficients derived fronT,

w
= T =_
p:[rpp+rSp(X)_l](r55+rpSX)_1, (6) \I,(Z) (Ex!EyyHX:Hy) (Z), kO Cv (11)
or, in a slightly different form, wherew is the angular frequency, is the vacuum velocity
-1 of light and ( ) denotes the transposed vectdrhe media
p= ﬂ+ rﬂ)(x)l) ( 1+ Top EX) _ (7) ~ are assumed to be nonmagneticXE, whereE is the unit
lss TIss l'ss Fpp matrix) and nongyrotropic g=0).1° The dielectric tensoe
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contains the main values of the orientationally dependenthe theorem of Cayley-HamiltohThe matrix function can
dielectric functionseo,, &gy, ande,, that belong to the in- then be expressed by a finite series expansion up to the
trinsic Cartesian principle axes of the anisotropic materialpower ofn—1, wheren is the rank of the matrix:

They are in general different from the laboratory coordinate

axes. Thus a simple rotation about the three Euler angles )

o, ¥, andé describes the orientation of the Cartesian crystal TpEeXP[ [ EAd] =BoE+ B1A+ BA%+ BaA3. (15)
coordinate system with respect to the laboratory coordinate

system: Note that for the latter equation small thicknesses are no
longer a requirement to obtaily, . The scalarg; must obey

gox 0 0 the following set of equations:
8:A 0 Soy 0 A_l, (12)
0 O €0z

p[' @ d] }3‘, Bk, k=1 4 (16)
expi—qd;= aqk, k=1,...,4.
where A is the orthogonal rotation matriX. It should be c =™ “

pointed out that in general the Euler angles may vary with

the angular frequencip. (This can be read more explicitly in Ref))3Hereq; are the
The matrixA defined in Eq(11) depends on the dielectric €igenvalues of the matrix. Each solution is associated with
tensore and thex componenk, of the wave vectok, : one of the four plane waves existing in a homogeneous me-
dium. Two solutions have a positive real part and constitute
€31 €32 k? the forward-traveling plane waves with respect to the chosen
— Ky 8_33 —ky 8_33 0 1- 8—33 laboratory coordinate system. The other solutions with nega-
tive real parts are due to the back-traveling wave compo-
0 0 -1 0 nents.
A= £31 5 €30 g3 |, Here we report complete analytic expressions for the ei-
8238—33—821 Ky —&20t 8238—33 0 kx8_33 genvalues for a randomly oriented biaxial material. For sim-
plicity we restrict ourselves to dielectric media that obey the
! R 0 —k €13 symmetry property;; = ¢;; . We transform both sides of Eq.
fnmfuag . SR X ea3 (11) into a more appropriate form, applying a unitary matrix
. I' defined as follows:
ky=n,sin®,. (13
As long as the medium is homogeneous the makridoes 1 i 0 O
not depend orz, and the solution of Eq.11) can be written ~ 1 —-i 0 O
formally by defining the partial transfer matrik, as fol- V()=TV¥(), TI'= N
lows: 0 0 1 i
0 0 1 —i
w
\If(z+d)—exp[| c Ad]‘l’(z)—Tp‘P(z), that results in
N7 —(E*E-H+* 1T
szexp[i%Ad]. (14) V(@O=(E"EHLHDD),
This matrix connects the in-plane components of the electric H*=H,* Hy, E*=E* IEy. (18)

and magnetic fields at interfaces separated by a distdnce

Note thatT , includes the effects of all multiple reflections if The vector¥ now contains the in-plane field amplitudes of
a part of the wave is traveling along a direction with no ortwo elliptically polarized modes. Although of the same form
Weak absorp“on It may a|so be noted tﬁ'%t is unltary |f as Eq (11) the CoeffICIentS Of the d|fferent|a| equat|0n result
the medium is nonabsorptive in any direction of propagationin a changed wave transfer matix

This can be shown to be a direct consequence of the conser-

vation of energy® Otherwise the squares df (z+d) and A=TAT 1
V¥ (z) may not be equal. It should be pointed out that the
partial transfer matrixT , depends on the distance from the 1 i
layer interfaces. If the thickneskof the layer can be deter- v. v —il1—-—K? — K2
pr | N I
mined independently then there are nine unknowns for each 33 33
wavelength, including six for the main dielectric functions i, . 1,
and three for the Euler angles. A=| v+ V- %e ks '(1— 2¢ kx) ,
There exist different methods to determine the partial 3 3
transfer matrixT, as a function of the wave transfer matrix f s v —U-
A. Requiring sufficiently small thicknes$ the exponential s —f —v, v,
function can be expanded in a common series in the spec- (19

trally varying factor @w/c)d. However, Waler et al. showed
a faster way to calculate the partial transfer matrix applyingwith their elements
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ve=—(—e13Fiexn)k
+ 2833( 13 23Ky,

i
_ 2 2 2
f=— e (e1ste—esd et en—Kk]),
€33

1
Si:@(2[813823_812833])

+i[e2st eaxle11— €00+ KD — 824 (20)

Though not affected through the latter unitary transformation, the eigenvalues can now be found more simpﬁeaﬁom
follows:

1 €13 2 13 1/2 4 13 2 S3 1/2
QI/ZZE _kx__[_gtl"‘ ke—| +%| = —gtt2{ ke~ —3- > 2 iR :
€33 33 €33 €13
4 — =ty + | ky—] +3
3 €33
(21
_ 1 €13 2 £13|° v 4 13)° S3 vz
Que=5) ~ke_T| ~glit|k | +3| *| —ght2(ko | ~2+ 7T
€33 €33 €33 €13
4 __tl+ kX_ +2
3 €33
|
where the following abbreviations are used: ented biaxial medium can be used for further discussions, for
example, for cases of vanishing anisotropy, and to avoid the
S =4[5, (3{s,+ Vs5—4s3}) 1R use of numerical root-finding algorithms. Naturally, the ei-
genvalues reported so far for some special orientations of
+(Ysy+ 52— 4s3H) ), uniaxial media are retained here as particular soluttdns.
sl=t§+12 kxs—lst2+t3 , B. Partial transfer.me.ttrix for c.ontinuously twisted
€33 biaxial materials

JURE: The future application of generalized ellipsometry con-
kx—l?’} ta) —T2t,ts, sists in the investigation of optical systems with increasing
€33 complexity. As an example of a layered system we report a

special solution of the partial transfer matrix for a slab of a
continuously twisted biaxial material. Here the dielectric
function tensor depends on the spatial position with respect
to thez axis. Such a homogeneous twisted medium consists
of a helical structure with periodicity along tredirection.

] Hence the matrixA depends orz at each spatial position

&
s, =23+ 36kxs—l3t1t2+ 108( t3+
33

€13
Kv—

&
s3= —8k —13( —t, |+ 16L,,
€33

X
€33

and

1

€33

€11
1+ —
€33

inside the slab. Leh be a unit vector that is oriented parallel
to thez axes of the crystal coordinate system in each virtual
plane formed by the twisted medium. ThEris the distance
22) between one full turn of the vectoraround thez axis of the
laboratory coordinate system. We can expressztliepen-
dence of the dielectric function tensor that then describes a
spiral per lengthP. For simplicity we suggest to use the
t3:i[4fv+v—+2[5—v—v——3+v+v+] elements of the dielectric function tensor appearing in Eq.
(13) as those that describe the orientation and optical prop-
erties of the biaxial material at the lowest boundary of the
[sys-+ ff]]- slab. The helicoidal rotation of the vectoralong thez axis
is then described by a rotation mat&xthat depends only on
Here q;(q;,) are the two eigenvalues that refer to thethe turn per unit lengttP:
forward- (backward} traveling waves, respectively. The lat-
ter formulas provide complete analytic solutions for the ma- cog —sing 0
trix equation Eq(14) together with the coefficientg; which .
can now be evaluated immediately following E46). The B=| sinf cog 0
explicit expressions for eigenvalues inside an arbitrary ori- 0 0 1

t1:

2, 2 2
g13t 53— 833[ e11T 80— K

_ ke 2
ty=——(e13820— €128 23— 813Ky),
€33

2

X
1__
€33

2
v {=—52 (23
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and the elements of the dielectric function tensor at each eXp{iko(IKd}ZBJQL, jk=1,...,4,
position are given by
Q2= *0+, Qau==*04. (32)
€11 €12 €13 o .
_ . Here againd indicates the distance between the lower and
e()=B({)| e12 €22 23| B(L) 249 the upper interface of the slab. The last equations lead to

€13 €23 €33

Very similarly to what was done in Sec. IV A, we transform Bo=§{qicos<,—qgcos<+},

both sides of Eq(11) into a more appropriate form applying
the unitary matrix”. Next we use a matri¥(¢) to transfer 1
the helicoidal dependence of the vectbr B1=1i a{(qi/q_)sinx_—(qz_/q+)sin;<+},

F({)=diagexpi},exg —id} exdi},exq{—id}), (29

where diag) indicates the diagonal>44 matrix, introducing
a vector®:

1
po=7{cosc, —cosc_,

1
\’I}(g)zlz(g)&)(g) (26) ﬁ3:|a{(l/q+)5|nK+_(l/q,)S”']K,}, (32)

If we substitute the last equation into Ed1) and carry out and the definition of the phase thickness that are similar
the derivative ofF({) with respect to the variablé, we to those from thep ands modes of plane waves inside a
obtain another differential equation system. Again, althougthomogeneous biaxial medium that is oriented parallel to the
of the same form as Eq1l), the coefficients result in a laboratory coordinate axdsee Appendix €

changed wave transfer matrix
k==Kodd- . (33
2

~ - - ~ k . . .
9 D) =ikoA(D)D(L),  A(Q)=U+KN({)+ 5 W(Q). In order to obtain the transfer matrix that applies to the slab
2 given in coordinates of the laboratory coordinate system, we
(27)  finally perform the necessary back transformation that yields

As indicated in the latter equation the new wave transfer o

matrix A can be written as a sum of three matrices. The first T (d) =F1F( (= Fd) (BoE+ B1U+ B,U%+ B3UST.
matrix U is now constant with respect to the varialle (34)
whereas the term¥ and W do depend ory. Hence for
vanishing incidence angleanishingx component of the Note that we need the inverse ©f as indicated in Eq(2).
incident wave vectorthe wave transfer matrid becomes Yet is does not require a matrix inversion algorithm because
independent of,, and the solution of the differential equa- of the property

tion can then be found in our standard way. The most explicit L ) 3
form of the matrixA (k,=0) is given below To(=d)=T""(BoE+ B1U+ BU+ B5U°)

-n 0 —-i 0 XF| {=— 2?7rd
0 n 0 i . _ _
f(ke=0) s,(k=0) -n 0] Note that all formulas are valid for complex director optical
x HATX constants. Note also that no approximations were included in
s_(ky=0) —f(ky=0) 0 n the derivation of the transfer matrix of the helicoidal me-
(28)  dium, and, hence, this approach is exact and general as long
as we treat the case of normal incidence.

. (35

A(k,=0)=U=

with
C. Transition matrices
= 2_7T The general transfer matrik defined in Eq(1) connects
. (29
koP the four wave amplitudes inside the incident medium with
The eigenvalues are found immediately using the expres;[-r:] gic?gr?t t\:\?;\femrl:wt;c/j tarl ;T/Fgllt:?eals;\lgsbll?;u;hes;neg)(lg gfeic:] I::Jirge.r-lz:hee
sions from the last section as follows: Therefore thep ands modes of the incident, reflected, and
: : transmitted waves,,, Aq, B,, Bs, C,, andCg are in gen-
=Jn?—if=+ = — = p' Asy Ppy Bsr ps s
A==\n"=if=y,  x=ysys —iantt (k=0), (30) eral not equal to the tangential field amplitudes at the surface
of the sample az=0, and at the last interface at=z,,
and refer to both elliptical eigenmodes traveling inside therespectively. Thus thp ands modes inside the ambient and
twisted medium. Now we can apply the theorem of Caley-the substrate must be connected with the in-plane wave com-
Hamilton in order to solve the matrix expression mentionedponents of the electric- and magnetic-field vectorz=a0
in Eq. (14). A set of four complex coefficient8; need to be andz=zy, respectively. The transition matrix, (incident
found so that: matrix) projects the tangential parts of the waves existing in

n
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the incident medium through to the first interface where therix L to the vector¥;. Thus the vecto®,,,s whose com-

transition matrixL ¢ (exit matrix projects the tangential elec- ponents contain the tangential field amplitudeg-at, can

tric and magnetic fields from the last interface into the exithe described as
medium. Through the following sections we give a rigorous
and clear derivation of these matrices with respect to our L _ T
chosen laboratory coordinate system. Wirand2=2n) =L1¥1=L4(C50.C,,0) (4D

On the other hand, the projection of theands modes onto

1. Incident matrix the x-y plane yields, for¥ s,
Let ¥, be the vector of thep and s modesA,, A,
B,, and B, respectively. The vectord;,. and ¥ s may W yans= (Cpc08P¢, Cg, — Ny CoCcOSD; ,npr)T, (42)

contain in-plane electric- and magnetic-field components at ) o
z=0 associated with the incident and reflected waves, rewheren; is the complex refractive index of the substrate

spectively. Then the incident matrix, is defined by the material. It follows that the X 4 exit matrixL; in the case of
following equation: an isotropic exit medium is given by

LaVa=Vin(z=0)+V (z=0), W,=(A,BsA,,Bp)". L21=1, Ly31=—nscosby,
(36)
In homogeneous, nonmagnetic, and isotropic media, the

magnetic-field components are simply related to their conThe angled; is then obtained applying Snef'taw:
nected orthogonal electric-field amplitudes through the com-

Lf13: COSI)f , Lf43: Ng, else Lﬁj =0. (43)

plex index of refractionn. Hence(using simple geometry cosb;=+1—[(n,/n¢)sind,]°. (49
and Fig. ) the projection of the incident wave onto the sur- _ ) _ _ )
face yields In the case of an anisotropic exit medium both transmitted

plane waves are no longer necessarily decoupled. In order to
ﬁs(ﬁ )-6,=H =n,A Es.é —E,=A, project the in-plane components &t zy again through to
prY Y P o the substrate, it is sufficient to assume that the transmitted
3R 2 = = field vector¥; consists only of a linear combination of the
H,(Es)-e,=H,=—n,A,cosb,, E, e,=E,=A cosb,, . f .
p(Es)-&=Hx as a P e T (§7) eigenvectorsE; of the wave transfer matria:

wheree, ande, are the unit vectors of the-y plane. There- L
fore, for ¥, one has ‘1'f=i§1 CiZi(q). (45)

Wine= (A,co8D, A, — naAsCOSDa,naAp)T, (39) T.here exist only transmitted compor)ents. Therefore, the
eigenvectors that belong to back-traveling waves are not per-
where the elements oF  are obtained quite similarly, mitted. Hence the two eigenvectogs(q;) with Re{qg;}>0
must be separated, and may be labelef aand= 5. If they
Vo= (—Bpcosb,,Bg,nBscosb, ,n.B,)T. (39 &€ unit vectors the coefficients andc; are equal to the
_ o o _ ~ amplitudes of thep ands modesC, and Cg, respectively,
The inverse of the incident matrix, is required to obtain which must be determined experimentally. Therefore the exit
WV ,—that is, the left side of Eq1)—and to calculate the gen- matrix for anisotropic substrate materidls can be written
eral transfer matrixr. Thus the explicit expression &f, ! as follows:
can be found comparing both sides of E§6) and solving

the associated algebraic equation system as follows: - .
° | g Lik=Ejk> Lfjk+=0, j=1---4, k=13, (46)

0 1 —1l/ngcosb, 0 Note that the incident and exit matrices for isotropic incident
1 0 1 1h,cosb, 0 and exit media as discussed above can also be derived di-
L;1:§ 1/cosb 0 0 THE (40 rectly from the wave transfer matriX using their eigenvec-
a a tors and the assumption from E@L5) without geometrical
—1/cosb, O 0 1h, considerations.
Note that the incident matrik, depends only on the angle of
incidenced, and the complex index of refractiam, of the V. CONCLUSIONS
ambient material. A systematic procedure has been presented for obtaining

analytic expressions for the transmission and reflection coef-
ficients of monochromatic plane waves traveling at an ob-
If the substrate material is isotropic, the exit matrix thatligue angle of incidence to arbitrarily anisotropic layered ma-
describes the projection from the in-plane components at theerials systems. ¥4 matrices introduced by Berreman are
last interface into the exit medium can be found in the sameised to describe propagation through plane-parallel aniso-
manner as described in Sec. IV C 1. ¥t be the vector tropic or isotropic slabs. Analytic expressions for the eigen-
associated with the ands modes of the transmitted waves values of plane waves in homogeneous biaxial media are
inside the substrateG, andCs, respectively. Apply the ma- reported explicitly. In addition, a particular solution for the

2. Exit matrix
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particular interest.
The 4X4 matrix algebra presented here is a general ap-

proach applicable to all homogeneous media with a linear APPENDIX A: PARTIAL TRANSFER MATRIX

dielectric response and for monochromatic plane waves. The FOR ISOTROPIC SLABS

construction set to calculate the general transfer matrix per- The set of the eigenvalues of the wave transfer matrix

mits a systematic treatment of various special configurationg,, isotropic materials is given by

and a gradual derivation of the optical behavior of several

parts of a given sample. Hence the algebra is very useful for
. L. . LT N N v [ 2 2 2o

computational applications. Furthermore, in principle the Qi1=02=—0Q3=—(4=Q= \/s k= \/n nasmzcba.

magnetic and gyrotropic properties of all media can be (A1)

handled in the same way, including their gyrotropic and mag-

netic tensoré.Finally, the algorithm is still valid for conceiv- The solution of Eq(16) fails. However, the expansion of the

ably singular situations such as normal or glancing angles ofxponential series in Eg14) and the separation of the asso-

incidence, vanishing anisotropy, and transparent layers. ciated sums for the cos and sin functions result directly in

The author wishes to thank Dr. B. Rheintker, University

(ikodq)? (ikoda)* A (kodg)  (kod)®
[ R T T e O - TR (A2)
A
T,=E cogkodq) +i a sin(kodq), (A3)
.aq
cokydq 0 0 i~ sin kodq
[
0 cok,d — —sinkyd 0
T,- T gt . (A%)
0 —iqg sinkydq coskydq 0
i % sin kydq 0 0 coskodq

The identities:A2=qg°E and A3=q?A are used. If the dif- can be derived from this example by changing the meaning
ferences between the main values of the dielectric tensor a@f the refractive indices in the apparent formulas.
small the solvability of Eq(16) can be used to decide either  The exit matrixL ; is found using Eq(46). The dielectric
to calculate the matrix for an anisotropic or an isotropic ma-function tensore is diagonal and contains three different
terial. optical constants for the respective direction of light propa-
gationnZ, n7, andnZ, respectively. The nontrivial elements
APPENDIX B: L ¢ (g =0Vi#|, &11#£5,# €39 of A are found as follows:

The aim here is to demonstrate how the matrix algebra
discussed above can be applied to a straightforward deriva- A= COSZCDZ. Ayg=—1,
tion of any analytic expression for a given sample. For sim-
plicity, consider a biaxial film-substrate system with film
thicknessd, and an isotropic ambient where both crystal Asz:_nicos"-(py’ Ay=n2. (B1)
systems are aligned parallel to the Cartesian laboratory sys-
tem axes. All possible combinations of biaxial, uniaxial, or
isotropic film-substrate configurations as collected in Ref. 3The eigenvalues follow from Eq21):
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O12= ENyz, Oau==* Nyy! 3i ={N)2<200$ Kod Nyy) - NinOS KodN,,)}/D,

NijEniCOSbj:ni\/1_[(na/nj)5ir@a]2' (BZ)

The eigenvectors that refer only to transmitted waves
(R€{g;,03}>0) are then determined up to a constant factor
as

2'=i{(NZ/Nyy)sin(KodNyy) — (NZ/N,,)sin(kodNy,) }/D,

b1={cogkodN,,) — cogkodNy,)}/D, (C1
El(ql):(o,l,_ nycospy 10)T| X
81=i{sin(kodNy,)/Ny;— Sin(kodNyy) /Ny, }/D,
53(q3)=(COSI)Z,O,O,nX)T, (83)

and L; of the biaxial exit medium can be obtained most
easily by inserting the eigenvectors into E46) as the first
and third columns:

D=NZ,—N7,.

The nature of the partial transfer matrix is the same as for an

Liiz=cosb,, Lixn=1, isotropic layer, as seen expanding the power seriés\ith
the coefficientss; given above. Defining phase thicknesses
Ltz1= —nycosb,, Lisz=ny. (B4) for the p ands polarizations asc, and «s, respectively,
APPENDIX C: Tp (8|J=0V|7&j, 8117& 8227& 833) KgiEkod Nxzy KEiEkod Nyy, (Cz)
With the solutions of the eigenequatidkq. (A6)] the
coefficientsg; are found explicitly to be T, for the biaxial film is obtained as
cosc,, 0 0 i(Ny,/n%)sink,
) 0 COx —i(1/N,,)sink 0
o= o Y (C3
p 0 —iNyysinkg COSKg 0
i(N3/Ny)sink,, 0 0 cosc,,
|
Let ng, ny, andn; denote the complex refractive indices for vibi Nxa— Na; bicbi Naa—Nyy
the substrate material, ang,, n,, andn, for the biaxial Tolp =N._ N’ 0SS N TN
slab, respectively. The ellipsometric ragg for example, is xas ez aa sy
given by Eq.(10) using the elements of the general transfer No— N.- N — Neo
matrix. After multiplying T, according to Eq(2) from the rliizggi:xz—xz, ggsbizul (C5)
left side withL ; *, and from the right side with ; from the Niz— Nyz Nyy—Nyy
biaxial substrat¢Eq. (B4)], T results in the ellipsometric ratio can be written as follows:
T11=(T3i22— Tgi23NW)—(T3i32_ TzissNW)/Naaa _ Fotppt T 1zpp€ 2P | [ LT ossd 1™ '25) 71
L T L+ ogppl120p€ " 2%2) | Topsst Ty 125
To1= (Tpho— TpoaNyy) + (T~ To5aNy)/Naa, (C6)

Taa= (TpusCOSP 5+ Thyung) /N,

—(Tp1.c08P5+ T )/ cosb,, (C4)

Tau= (Tpc08b5+ Tun0/n,
+ (Tgillcosﬂ);%— T3i14n;)/cosﬂ>a ,
Tij=0 else.
With the patrtial reflection coefficients for theands polar-

ization at the 0-1(ambient-film and 1-2(film-substrate in-
terfacesr gipp, ro1ss M12pps @NAT 155, respectively,

Because of the symmetry the off-diagonal reflection coeffi-
cients vanish, as seen again from the general transfer matrix
T. A detailed treatment oA reveals that the associated ele-
ments of T appear only if at least one of the crystal axes is
nonparallel to any of the laboratory coordinate axes or if the
optical axes of uniaxial media do not lie in tgez plane. As
long asA has the diagonal form of EqB1), all partial
transfer matrices have the same vanishing element,as
from an isotropic slab. The patterns of vanishing elements of
the partial transition matrices, incident and exit matrices re-
veal that after multiplicatiorT still has only four nonvanish-
ing elements.

Note that in spite of the notation recommended by the
1968 International Conference on Ellipsometry at the Uni-
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versity of Nebrask&’ the time dependence of the harmonic materials and changes the sign in the phase thicknesses, here
fields used here is given by e)piwt}. This results in posi- defined asc, andks, in comparison with the formulas given
tive imaginary parts of the dielectric functions of all treatedin Ref. 3.
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