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We present a unified theoretical approach to electromagnetic plane waves reflected or transmitted at arbi-
trarily anisotropic and homogeneous layered systems. Analytic expressions for the eigenvalues for the four-
wave components inside a randomly oriented anisotropic medium are reported explicitly. As well, the partial
transfer matrix for a slab of a continuously twisted biaxial material at normal incidence is described. Transition
matrices for the incident and exit media are presented. Hence, a complete analytical 434 matrix algorithm is
obtained using Berreman’s 434 differential matrices@D. W. Berreman, J. Opt. Soc. Am.62, 502~1972!#. The
algorithm has a general approach for materials with linear optical response behavior and can be used imme-
diately, for example, to analyze ellipsometric investigations.

I. INTRODUCTION

During the last decade polarization-dependent optical in-
vestigations have become standard methods to explore the
properties of solids and liquids.1 In particular, because of the
rapid development of computational capabilities as well as
the requirement for nondestructive methods to examine epi-
taxial layer systems, spectroscopic ellipsometry has become
an important technique. The optical constants of various
semiconductor materials have been extracted over a wide
spectral range using standard models for light propagation in
isotropic media.1–3 On the other hand, investigations on ar-
bitrarily anisotropic layered systems have been restricted
mainly to data collection and qualitative analysis. This is
because of the complex formulas associated with anisotropic
systems, and the large number of unknown parameters such
as the orientation of the crystal axes and the three direction-
dependent complex refractive indices for each material. For
isotropic layered media matrix methods are well known that
involve 232 matrices.2,3 The p ~electric-field vectorE par-
allel to the plane of incidence! and s ~electric-field vector
E perpendicular to the plane of incidence! modes of plane
parallel electromagnetic waves are independent of each other
~uncoupled modes!. Thus for each mode the wave propaga-
tion can be described separately. For each component for the
layered media such as ambient, slab, . . . , slab, substrate,
there exists a matrix that contains the ratio of the incident
and emerging parts of each mode with respect to an appro-
priate coordinate system. All multiple reflections between the
slab interfaces that may occur in the case of transparent lay-
ers are retained in a self-consistent way. From the product of
all matrices one can easily compute the reflection and trans-
mission coefficients for thep ands modes, respectively.

In the case of birefringent epitaxial systems, the four mag-
netic and electric parts of the plane wave are no longer spa-
tially independent of each other, and a so-called mode cou-

pling appears. This will happen inside the anisotropic
material during the propagation of light. Consequently
434 matrices are needed in order to establish a similar ma-
trix method. Dealing with first-order Maxwell equations,
Berreman showed a general way to calculate the reflection
and transmission coefficients of an anisotropic slab from a
wave transfer matrix of rank 4. In a similar manner to the
isotropic case these matrices connect the in-plane compo-
nents of all modes of the plane waves at opposite interfaces.
They also include the effects of all multiple reflections if a
part of the wave is traveling along a direction with no or
weak absorption. In principle, the media considered are al-
lowed to be gyrotropic as well as magnetic.4 Unfortunately,
in order to obtain this matrix, a power series has to be ex-
panded as a function of (v/c)d ~wherev stands for fre-
quency of the plane wave,c for the vacuum velocity of light,
and d for the thickness of the slab!, that depends on the
spectral wavelength. Also explicit matrix expressions involv-
ing isotropic or anisotropic incident and exit media are not
given. Wöhler et al. applied the Caley-Hamilton theorem to
avoid especially the row summation in the Berreman
algorithm.5 But this faster algorithm becomes singular if the
dielectric tensor reduces to a scalar. Moreover, the eigenval-
ues of the wave transfer matrix are needed but not presented
for a general case. In general, anisotropic or isotropic slabs
will be embedded between isotropic or anisotropic ambient
and substrate media. Therefore, to obtain a complete matrix
method, incident and exit transition matrices for the ambient
~incident medium! and the substrate~exit medium! have to
be introduced. Then a general wave transfer matrix can be
found that contains all polarization-dependent optical param-
eters. Yeh reported a 434 matrix algebra including those
transition matrices solving Maxwell’s equations ink space.6

Unfortunately, already for the case of an isotropic ambient,
his method is not generally useful since all treated materials
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have to be anisotropic. Otherwise the algorithm becomes
singular.7

The aim of the present paper is to report a completed
algebra to calculate all the measurable polarization-
dependent parameters for arbitrarily anisotropic and homo-
geneous layered systems including twisted media. We
present explicit expressions for the four eigenvalues inside a
randomly oriented biaxial material. Using these expressions
we derive also a particular solution for a continuously
twisted biaxial material at normal incidence. As well, we
give a rigorous derivation of the incident and exit matrices.
Not done so far in such a closed and complete analytical
form, the algebra is already seen as a suitable method for
computational data analysis of experimental results obtained
from polarization-dependent measurement techniques such
as generalized ellipsometry. This modern approach of ellip-
sometry involves the determination of three predefined and
normalized optical system Jones matrix elements and has
been improved very recently.8 The Jones matrices connect
the field amplitudes of plane waves before and after an op-
tical system, and contain information about the optical-
transfer function. In three follow-up publications we report
on how to measure and analyze these matrices from layered
anisotropic samples combining generalized ellipsometry with
our matrix algebra.~i! We obtain the dielectric function ten-
sor of uniaxial TiO2 . ~ii ! Through a small optical anisotropy
we show evidence of the relation between the band-gap re-
duction and valence-band splitting in ordered Ga12xIn xP.
~iii ! We obtain directly the temperature dependence of the
dielectric function tensor of nematic liquids.8–10

A short review of the propagation of plane waves in ho-
mogeneous layered media, and the definition of the general
transfer matrix is given in Sec. II. Following Yeh’s notation
the derivation of the polarization-dependent parameters from
the general transfer matrix is briefly reviewed in Sec. III.
Here we also give a definition of the parameters to determine
by generalized ellipsometry. The complete analytical algo-
rithm for the calculation of the partial transfer matrices for
anisotropic slabs is shown in Sec. IV A. The treatment of
isotropic layers is explained in Appendix A. If the dielectric
function tensor varies sinusoidally along the sample normal,
a particular solution for the partial transfer matrix at normal
incidence is reported in Sec. IV B. The incident and exit
matrices are then introduced in Sec. IV C. In Appendixes B
and C we demonstrate the validity of the algebra through
known analytic expressions for a biaxial film-substrate sys-
tem with its main axes aligned parallel to the laboratory sys-
tem.

II. GENERAL TRANSFER MATRIX

Consider a layered system with plane parallel interfaces.
Assume an incident light wave with wave vectorka coming
from the incident medium~ambient, indexa, 2`,z,0,
complex index of refractionna) at an angle of incidence
Fa ~Fig. 1!.11 Thenka and the wave vector of the reflected
waveka8 from the plane of incidence. LetAp , As , andBp ,
Bs , denote the complex amplitudes of thep ands modes of
the incident and reflected waves, respectively. The exit me-
dium ~substrate, indexf , zN,z,`) does not include a
back side. Hence there exist only two amplitudes for the

transmittedp ands modes,Cp andCs , respectively~back-
traveling waves are not permitted,Dp50 andDs50).12 The
Cartesian laboratory coordinate system is then defined when
the plane of incidence coincides with thex-z plane, where
the origin is set at the interface of the ambient and the strati-
fied media.13 Without loss of generality the wave vectorka
does not have a component parallel to they direction.14 In
order to connect the four wave amplitudes inside the incident
medium ~left side of the structure in Fig. 1! with the two
transmitted amplitudes inside the exit medium~right side of
Fig. 1! a general transfer matrix can be defined for any given
layered structure:

S As

Bs

Ap

Bp

D 5TS Cs

Ds

Cp

Dp

D 5S T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

D S Cs

0

Cp

0

D . ~1!

Note thatT is just the matrixM used by Yeh@Eq. ~22! in
Ref. 6#. The tangential components of the electric- and
magnetic-field vectors are continuous across the interface be-
tween two media.~If the surface current densityK and the
surface charge densitys vanish.! Thus a 434 matrix alge-
bra that describes the propagation of monochromatic plane
waves through the entire layered system can be introduced. If
di is the thickness of thei th layer, a partial transfer matrix
T ip that connects the in-plane wave components at the inter-
face atz5zi with those at the next interface atz5zi1di can
be defined for both isotropic and anisotropic layers. Hence
the ordered product of all partial matrices from allN layers
transfers the in-plane components at the first interface at
z50 to the last interface atz5zN . Likewise, the incident
matrix La projects the in-plane wave components of the in-
cident and reflected waves through to the first interface. The
exit matrix L f projects the transmitted amplitudes from the
last interface through to the exit medium that may be isotro-
pic or anisotropic. The general transfer matrixT as defined
in Eq. ~1! is then most easily obtained from the product of all
inverted matricesT ip for each layer, as well as the incident
and exit matrices in the order of their appearance:

T5La
21)

i51

N

T ip~di !]
21L f5La

21)
i51

N

T ip~2di !L f . ~2!

FIG. 1. Incident, reflected, and transmittedp ands modes of a
plane wave with their wave vectorska , ka8, k f , and k f8, respec-
tively. Ds andDp indicate the modes of the back-traveling waves
inside the substrate. If the exit medium is anisotropic there may
exist four different wave vectorsk f .
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Note that due to the symmetry of the coordinate system the
inversion ofTp that is indicated in Eq.~2! does not require a
matrix inversion calculation.

III. POLARIZATION-DEPENDENT
OPTICAL PARAMETERS

In the following subsection we show how the measurable
polarization-dependent optical parameters can be obtained
immediately from the general transfer matrix and therefore
through the algebra discussed here. Note that the expressions
mentioned or derived here constitute the connection to the
respective experiment.

A. Transmission and reflection coefficients

The transmission and reflection coefficients of layered
systems are traditionally defined as the ratios of the ampli-
tudes of the incident and reflected or transmitted waves, re-
spectively. They can be expressed in terms of the elements of
the general transfer matrixT. Consider Eq.~1! as a system of
four linear relations between thep ands components on the
left and right sides of Fig. 1. As an example, one might
choose the Jones reflection and transmission coefficientsr ss
and tsp , respectively.

15 Inside the substrate only transmitted
waves are allowed. Therefore the ratios can be found as fol-
lows:

r ss[SBs

As
D
Ap50

5
T21T332T23T31
T11T332T13T31

,

tsp[SCp

As
D
Ap50

5
2T31

T11T332T13T31
. ~3!

Note that all eight conceivable quotients of the incident and
emerging wave parts can be expressed in terms of the ele-
ments of the matrixT.6

B. Generalized ellipsometric parameters

The complex reflectance ratior has been traditionally de-
fined as

r5tanCeiD[SBp

Ap
D SBs

As
D 21

, ~4!

and can be expressed through the ratios of the amplitudes of
the incident and reflected waves. Letx be the ratio of the
incident modesAp and As , then the ellipsometric ratio is
obtained from Eq.~1! as follows:

r5
1

x

T41~T332xT13!1T43~xT112T31!

T21~T332xT13!1T23~xT112T31!
, x[

Ap

As
, ~5!

or, using the expression for the transmission and reflection
coefficients derived fromT,

r5@r pp1r sp~x!21#~r ss1r psx!21, ~6!

or, in a slightly different form,

r5S r ppr ss
1
r sp
r ss

~x!21D S 11
r pp
r ss

r ps
r pp

x D 21

. ~7!

As seen in the latter equation the complex reflectance ratio
r is then a combination of three ratios formed by the ele-
ments of the Jones reflection matrix, and depends on the ratio
of the incident wave amplitudesAp and As . The basis of
generalized ellipsometry is to define and determine three lin-
ear independent normalized reflection matrix elements. De-
fining a set of those normalized elements

r pp
r ss

[Rpp ,
r ps
r pp

[Rps ,
r sp
r ss

[Rsp ~8!

results in Eq.~7!:

r5@Rpp1Rsp~x!21#~11RppRpsx!21. ~9!

Equation~1! simplifies in cases where only isotropic materi-
als are included in the layered system or in some special
cases where, e.g., the Cartesian principal axes of the material
layers are all oriented parallel to the axes of the laboratory
coordinate system. The special behavior of the partial trans-
fer matrix when the principal axes of the crystal system co-
incide with the laboratory system is shown through Appen-
dixes B and C. In this case the ellipsometric ratio holds:

r is5
T43T11
T33T21

, Rs5
T21
T11

and Rp5
T43
T33

. ~10!

IV. CALCULATION OF THE GENERAL
TRANSFER MATRIX

The attention can generally be restricted to cases where
all material layers are homogeneous, so that the optical prop-
erties are independent ofz except at step-function changes
across interfaces. Inhomogeneous layered media can be
treated in the same way if they are approximated as a stack
of piecewise homogeneous layers. In Sec. IV A we report
analytic expressions for the eigenvalues inside a randomly
oriented anisotropic medium. Thus a fully analytic algorithm
for the calculation of the partial transfer matrix for those
media is available. In order to make the algorithm more
transparent we give a brief review of the derivation of the
initial differential equation originally reported in Ref. 4. In
Sec. IV B we derive a special solution for the case of a
sinusoidally varying dielectric function tensor at normal in-
cidence using the results from Sec. IV A. The incident and
exit matrices are then introduced and discussed in Sec. IV C.

A. Partial transfer matrix for anisotropic slabs

From first-order Maxwell equations Berreman derived the
following set of four differential equations for the in-plane
components of the electric and magnetic fields in Gaussian
units and Cartesian coordinates:

]zC~z!5 ik0D~z!C~z!,

C~z!5~Ex ,Ey ,Hx ,Hy!
T~z!, k0[

v

c
, ~11!

wherev is the angular frequency,c is the vacuum velocity
of light and ( )T denotes the transposed vector.4 The media
are assumed to be nonmagnetic (m5E, whereE is the unit
matrix! and nongyrotropic (r50).16 The dielectric tensor«
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contains the main values of the orientationally dependent
dielectric functions«0x , «0y , and«0z that belong to the in-
trinsic Cartesian principle axes of the anisotropic material.
They are in general different from the laboratory coordinate
axes. Thus a simple rotation about the three Euler angles
w, C, andu describes the orientation of the Cartesian crystal
coordinate system with respect to the laboratory coordinate
system:

«5AS «0x 0 0

0 «0y 0

0 0 «0z
D A21, ~12!

whereA is the orthogonal rotation matrix.17 It should be
pointed out that in general the Euler angles may vary with
the angular frequencyv.

The matrixD defined in Eq.~11! depends on the dielectric
tensor« and thex componentkx of the wave vectorka :

D5S 2kx
«31
«33

2kx
«32
«33

0 12
kx
2

«33

0 0 21 0

«23
«31
«33

2«21 kx
22«221«23

«32
«33

0 kx
«23
«33

«112«13
«31
«33

«122«13
«32
«33

0 2kx
«13
«33

D ,

kx[nasinFa . ~13!

As long as the medium is homogeneous the matrixD does
not depend onz, and the solution of Eq.~11! can be written
formally by defining the partial transfer matrixTp as fol-
lows:

C~z1d!5expH i v

c
DdJ C~z!5TpC~z!,

Tp[expH i v

c
DdJ . ~14!

This matrix connects the in-plane components of the electric
and magnetic fields at interfaces separated by a distanced.
Note thatTp includes the effects of all multiple reflections if
a part of the wave is traveling along a direction with no or
weak absorption. It may also be noted thatTp is unitary if
the medium is nonabsorptive in any direction of propagation.
This can be shown to be a direct consequence of the conser-
vation of energy.18 Otherwise the squares ofC(z1d) and
C(z) may not be equal. It should be pointed out that the
partial transfer matrixTp depends on the distance from the
layer interfaces. If the thicknessd of the layer can be deter-
mined independently then there are nine unknowns for each
wavelength, including six for the main dielectric functions
and three for the Euler angles.

There exist different methods to determine the partial
transfer matrixTp as a function of the wave transfer matrix
D. Requiring sufficiently small thicknessd, the exponential
function can be expanded in a common series in the spec-
trally varying factor (v/c)d. However, Wo¨hleret al.showed
a faster way to calculate the partial transfer matrix applying

the theorem of Cayley-Hamilton.5 The matrix function can
then be expressed by a finite series expansion up to the
power ofn21, wheren is the rank of the matrix:

Tp[expH i v

c
DdJ 5b0E1b1D1b2D

21b3D
3. ~15!

Note that for the latter equation small thicknesses are no
longer a requirement to obtainTp . The scalarsb i must obey
the following set of equations:

expH i v

c
qkdJ 5(

j50

3

b jqk
j , k51, . . . ,4. ~16!

~This can be read more explicitly in Ref. 5.! Hereqi are the
eigenvalues of the matrixD. Each solution is associated with
one of the four plane waves existing in a homogeneous me-
dium. Two solutions have a positive real part and constitute
the forward-traveling plane waves with respect to the chosen
laboratory coordinate system. The other solutions with nega-
tive real parts are due to the back-traveling wave compo-
nents.

Here we report complete analytic expressions for the ei-
genvalues for a randomly oriented biaxial material. For sim-
plicity we restrict ourselves to dielectric media that obey the
symmetry property« i j5« j i . We transform both sides of Eq.
~11! into a more appropriate form, applying a unitary matrix
G defined as follows:

C̃~z![GC~z!, G5S 1 i 0 0

1 2 i 0 0

0 0 1 i

0 0 1 2 i

D , ~17!

that results in

C̃~z!5~E1,E2,H1,H2!T~z!,

H65Hx6 iH y , E65Ex6 iEy . ~18!

The vectorC̃ now contains the in-plane field amplitudes of
two elliptically polarized modes. Although of the same form
as Eq.~11!, the coefficients of the differential equation result
in a changed wave transfer matrixD̃:

D̃[GDG21,

D̃5S y1 y2 2 i S 12
1

2«33
kx
2D 2

i

2«33
kx
2

y1 y2

i

2«33
kx
2 i S 12

1

2«33
kx
2D

f s1 y2 2y2

s2 2 f 2y1 y1

D ,

~19!

with their elements
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y65
1

2«33
~2«136 i«23!kx ,

f52
i

2«33
~«13

2 1«23
2 2«33@«111«222kx

2# !,

s65
1

2«33
~2@«13«232«12«33# !

6 i @«23
2 1«33~«112«221kx

2!2«13
2 #. ~20!

Though not affected through the latter unitary transformation, the eigenvalues can now be found more simple fromD̃ as
follows:

q1/2
1 5

1

2 H 2kx
«13
«33

2F2
2

3
t11S kx «13

«33
D 21S G1/26F2

4

3
t112S kx«13«33

D 22S2
s3

4F2
2

3
t11S kx «13

«33
D 21S G1/2G

1/2J ,

~21!

q1/2
2 5

1

2 H 2kx
«13
«33

1F2
2

3
t11S kx «13

«33
D 21S G1/26F2

4

3
t112S kx «13

«33
D 22S1

s3

4F2
2

3
t11S kx «13

«33
D 21S G1/2G

1/2J

where the following abbreviations are used:

S5 1
3 @s1~

1
2 $s21As2224s1

3%!21/3

1~ 1
2 $s21As2224s1

3%!1/3#,

s15t1
2112S kx «13

«33
t21t3D ,

s252t1
3136kx

«13
«33

t1t21108S t221Fkx «13
«33

G2t3D272t1t3 ,

s3528kx
«13
«33

S Fkx «13
«33

G22t1D116t2 ,

and

t15
1

«33
H «13

2 1«23
2 2«33F«111«222kx

2S 11
«11
«33

D G J ,
t25

kx
«33

~«13«222«12«232«13kx
2!, ~22!

t35 i H 4 f y1y212@s2y2y22s1y1y1#

2S 12
kx
2

«33
D @s1s21 f f #J .

Here q1/2
1 (q1/2

2 ) are the two eigenvalues that refer to the
forward- ~backward-! traveling waves, respectively. The lat-
ter formulas provide complete analytic solutions for the ma-
trix equation Eq.~14! together with the coefficientsb i which
can now be evaluated immediately following Eq.~16!. The
explicit expressions for eigenvalues inside an arbitrary ori-

ented biaxial medium can be used for further discussions, for
example, for cases of vanishing anisotropy, and to avoid the
use of numerical root-finding algorithms. Naturally, the ei-
genvalues reported so far for some special orientations of
uniaxial media are retained here as particular solutions.19

B. Partial transfer matrix for continuously twisted
biaxial materials

The future application of generalized ellipsometry con-
sists in the investigation of optical systems with increasing
complexity. As an example of a layered system we report a
special solution of the partial transfer matrix for a slab of a
continuously twisted biaxial material. Here the dielectric
function tensor depends on the spatial position with respect
to thez axis. Such a homogeneous twisted medium consists
of a helical structure with periodicity along thez direction.
Hence the matrixD depends onz at each spatial position
inside the slab. Letn be a unit vector that is oriented parallel
to thez axes of the crystal coordinate system in each virtual
plane formed by the twisted medium. ThenP is the distance
between one full turn of the vectorn around thez axis of the
laboratory coordinate system. We can express thez depen-
dence of the dielectric function tensor that then describes a
spiral per lengthP. For simplicity we suggest to use the
elements of the dielectric function tensor appearing in Eq.
~13! as those that describe the orientation and optical prop-
erties of the biaxial material at the lowest boundary of the
slab. The helicoidal rotation of the vectorn along thez axis
is then described by a rotation matrixB that depends only on
the turn per unit lengthP:

B5S cosz 2sinz 0

sinz cosz 0

0 0 1
D , z5

2p

P
z, ~23!

53 4269POLARIZATION-DEPENDENT OPTICAL PARAMETERS OF . . .



and the elements of the dielectric function tensor at eachz
position are given by

«~z![B~z!S «11 «12 «13

«12 «22 «23

«13 «23 «33
D B~z!21. ~24!

Very similarly to what was done in Sec. IV A, we transform
both sides of Eq.~11! into a more appropriate form applying
the unitary matrixG. Next we use a matrixF(z) to transfer
the helicoidal dependence of the vectorC̃:

F~z![diag~exp$ i z%,exp$2 i z%,exp$ i z%,exp$2 i z%!, ~25!

where diag~ ! indicates the diagonal 434 matrix, introducing
a vectorF̃:

C̃~z!5F~z!F̃~z!. ~26!

If we substitute the last equation into Eq.~11! and carry out
the derivative ofF(z) with respect to the variablez, we
obtain another differential equation system. Again, although
of the same form as Eq.~11!, the coefficients result in a
changed wave transfer matrixD̃:

]zF̃~z!5 ik0D̃~z!F̃~z!, D̃~z!5U1kxV~z!1
kx
2

2
W~z!.

~27!

As indicated in the latter equation the new wave transfer
matrix D̃ can be written as a sum of three matrices. The first
matrix U is now constant with respect to the variablez,
whereas the termsV andW do depend onz. Hence for
vanishing incidence angles~vanishingx component of the
incident wave vector! the wave transfer matrixD̃ becomes
independent ofz, and the solution of the differential equa-
tion can then be found in our standard way. The most explicit
form of the matrixD̃ (kx50) is given below

D̃~kx50![U5S 2n 0 2 i 0

0 n 0 i

f ~kx50! s1~kx50! 2n 0

s2~kx50! 2 f ~kx50! 0 n

D ,
~28!

with

n5
2p

k0P
. ~29!

The eigenvalues are found immediately using the expres-
sions from the last section as follows:

q6[An22 i f6x, x5As1s22 i4n2f ~kx[0!,
~30!

and refer to both elliptical eigenmodes traveling inside the
twisted medium. Now we can apply the theorem of Caley-
Hamilton in order to solve the matrix expression mentioned
in Eq. ~14!. A set of four complex coefficientsb i need to be
found so that:

exp$ ik0qkd%5b jqk
j , j ,k51, . . . ,4,

q1/256q1 , q3/456q1 . ~31!

Here againd indicates the distance between the lower and
the upper interface of the slab. The last equations lead to

b05
1

2x
$q1

2 cosk22q2
2 cosk1%,

b15 i
1

2x
$~q1

2 /q2!sink22~q2
2 /q1!sink1%,

b25
1

2x
$cosk12cosk2%,

b35 i
1

2x
$~1/q1!sink12~1/q2!sink2%, ~32!

and the definition of the phase thicknessk6 that are similar
to those from thep and s modes of plane waves inside a
homogeneous biaxial medium that is oriented parallel to the
laboratory coordinate axes~see Appendix C!:

k6[k0dq6 . ~33!

In order to obtain the transfer matrix that applies to the slab
given in coordinates of the laboratory coordinate system, we
finally perform the necessary back transformation that yields

Tp~d!5G21FS z5
2p

P
dD ~b0E1b1U1b2U

21b3U
3!G.

~34!

Note that we need the inverse ofTp as indicated in Eq.~2!.
Yet is does not require a matrix inversion algorithm because
of the property

Tp~2d!5G21~b0E1b1U1b2U
21b3U

3!

3FS z52
2p

P
dDG. ~35!

Note that all formulas are valid for complex director optical
constants. Note also that no approximations were included in
the derivation of the transfer matrix of the helicoidal me-
dium, and, hence, this approach is exact and general as long
as we treat the case of normal incidence.

C. Transition matrices

The general transfer matrixT defined in Eq.~1! connects
the four wave amplitudes inside the incident medium with
the two transmitted amplitudes inside the exit medium. The
incident wave may travel at an oblique angle of incidence.
Therefore thep ands modes of the incident, reflected, and
transmitted wavesAp , As , Bp , Bs, Cp , andCs are in gen-
eral not equal to the tangential field amplitudes at the surface
of the sample atz50, and at the last interface atz5zN ,
respectively. Thus thep ands modes inside the ambient and
the substrate must be connected with the in-plane wave com-
ponents of the electric- and magnetic-field vectors atz50
and z5zN , respectively. The transition matrixLa ~incident
matrix! projects the tangential parts of the waves existing in
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the incident medium through to the first interface where the
transition matrixL f ~exit matrix! projects the tangential elec-
tric and magnetic fields from the last interface into the exit
medium. Through the following sections we give a rigorous
and clear derivation of these matrices with respect to our
chosen laboratory coordinate system.

1. Incident matrix

Let Ca be the vector of thep and s modesAp , As ,
Bp , andBs , respectively. The vectorsC inc and C ref may
contain in-plane electric- and magnetic-field components at
z50 associated with the incident and reflected waves, re-
spectively. Then the incident matrixLa is defined by the
following equation:

LaCa5C inc~z50!1C ref~z50!, Ca[~As ,Bs ,Ap ,Bp!
T.

~36!

In homogeneous, nonmagnetic, and isotropic media, the
magnetic-field components are simply related to their con-
nected orthogonal electric-field amplitudes through the com-
plex index of refractionn. Hence~using simple geometry
and Fig. 1! the projection of the incident wave onto the sur-
face yields

HW s~EW p!•eW y5Hy5naAp , EW s•eW y5Ey5As ,

HW p~EW s!•eW x5Hx52naAscosFa , EW p•eW x5Ex5ApcosFa ,
~37!

whereeW x andeW y are the unit vectors of thex-y plane. There-
fore, forC inc one has

C inc5~ApcosFa ,As ,2naAscosFa ,naAp!
T, ~38!

where the elements ofC ref are obtained quite similarly,

C ref5~2BpcosFa ,Bs ,naBscosFa ,naBp!
T. ~39!

The inverse of the incident matrixLa is required to obtain
Ca–that is, the left side of Eq.~1!–and to calculate the gen-
eral transfer matrixT. Thus the explicit expression ofLa

21

can be found comparing both sides of Eq.~36! and solving
the associated algebraic equation system as follows:

La
215

1

2 S 0 1 21/nacosFa 0

0 1 1/nacosFa 0

1/cosFa 0 0 1/na

21/cosFa 0 0 1/na

D . ~40!

Note that the incident matrixLa depends only on the angle of
incidenceFa and the complex index of refractionna of the
ambient material.

2. Exit matrix

If the substrate material is isotropic, the exit matrix that
describes the projection from the in-plane components at the
last interface into the exit medium can be found in the same
manner as described in Sec. IV C 1. LetC f be the vector
associated with thep ands modes of the transmitted waves
inside the substrate,Cp andCs , respectively. Apply the ma-

trix L f to the vectorC f . Thus the vectorC transwhose com-
ponents contain the tangential field amplitudes atz5zN can
be described as

C trans~z5zN!5L fC f5L f~Cs,0,Cp ,0!T. ~41!

On the other hand, the projection of thep ands modes onto
the x-y plane yields, forC trans,

C trans5~CpcosF f ,Cs ,2nfCscosF f ,nfCp!
T, ~42!

where nf is the complex refractive index of the substrate
material. It follows that the 434 exit matrixL f in the case of
an isotropic exit medium is given by

L f2151, L f3152nfcosF f ,

L f135cosF f , L f435nf , else Lfi j50. ~43!

The angleF f is then obtained applying Snell’s3 law:

cosF f5A12@~na /nf !sinFa#
2. ~44!

In the case of an anisotropic exit medium both transmitted
plane waves are no longer necessarily decoupled. In order to
project the in-plane components atz5zN again through to
the substrate, it is sufficient to assume that the transmitted
field vectorC f consists only of a linear combination of the
eigenvectorsJ i of the wave transfer matrixD:

C f5(
i51

4

ciJ i~qi !. ~45!

There exist only transmitted components. Therefore, the
eigenvectors that belong to back-traveling waves are not per-
mitted. Hence the two eigenvectorsJ i(qi) with Re$qi%.0
must be separated, and may be labeled asJ1 andJ3 . If they
are unit vectors the coefficientsc1 and c3 are equal to the
amplitudes of thep and s modesCp andCs , respectively,
which must be determined experimentally. Therefore the exit
matrix for anisotropic substrate materialsL f can be written
as follows:

L f jk5J jk , L f j ~k11!50, j51•••4, k51,3. ~46!

Note that the incident and exit matrices for isotropic incident
and exit media as discussed above can also be derived di-
rectly from the wave transfer matrixD using their eigenvec-
tors and the assumption from Eq.~45! without geometrical
considerations.

V. CONCLUSIONS

A systematic procedure has been presented for obtaining
analytic expressions for the transmission and reflection coef-
ficients of monochromatic plane waves traveling at an ob-
lique angle of incidence to arbitrarily anisotropic layered ma-
terials systems. 434 matrices introduced by Berreman are
used to describe propagation through plane-parallel aniso-
tropic or isotropic slabs. Analytic expressions for the eigen-
values of plane waves in homogeneous biaxial media are
reported explicitly. In addition, a particular solution for the
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partial transfer matrix for homogeneous twisted biaxial ma-
terials at normal incidence is derived. Incident and exit ma-
trices for the ambient and substrate side are introduced.
Therefore, a complete matrix algebra to calculate the optical
parameters of layered systems is now available. Conse-
quently, all polarization-dependent parameters can be calcu-
lated directly from the product of all matrices. The param-
eters determined by generalized ellipsometry are of
particular interest.

The 434 matrix algebra presented here is a general ap-
proach applicable to all homogeneous media with a linear
dielectric response and for monochromatic plane waves. The
construction set to calculate the general transfer matrix per-
mits a systematic treatment of various special configurations
and a gradual derivation of the optical behavior of several
parts of a given sample. Hence the algebra is very useful for
computational applications. Furthermore, in principle the
magnetic and gyrotropic properties of all media can be
handled in the same way, including their gyrotropic and mag-
netic tensors.4 Finally, the algorithm is still valid for conceiv-
ably singular situations such as normal or glancing angles of
incidence, vanishing anisotropy, and transparent layers.
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APPENDIX A: PARTIAL TRANSFER MATRIX
FOR ISOTROPIC SLABS

The set of the eigenvalues of the wave transfer matrixD
for isotropic materials is given by

q15q252q352q4[q5A«2kx
25An22na

2sin2Fa.
~A1!

The solution of Eq.~16! fails. However, the expansion of the
exponential series in Eq.~14! and the separation of the asso-
ciated sums for the cos and sin functions result directly in

Tp5EH 11
~ ik0dq!2

2!
1

~ ik0dq!4

4!
1•••J 1 i

D

q H ~k0dq!

1!
2

~k0dq!3

3!
1•••J , ~A2!

Tp5E cos~k0dq!1 i
D

q
sin~k0dq!, ~A3!

Tp5S cosk0dq 0 0 i
q

«
sin k0dq

0 cosk0dq 2
i

q
sin k0dq 0

0 2 iq sin k0dq cosk0dq 0

i
«

q
sin k0dq 0 0 cosk0dq

D . ~A4!

The identities:D25q2E andD35q2D are used. If the dif-
ferences between the main values of the dielectric tensor are
small the solvability of Eq.~16! can be used to decide either
to calculate the matrix for an anisotropic or an isotropic ma-
terial.

APPENDIX B: L f „«i j50;iÞj, «11Þ«22Þ«33…

The aim here is to demonstrate how the matrix algebra
discussed above can be applied to a straightforward deriva-
tion of any analytic expression for a given sample. For sim-
plicity, consider a biaxial film-substrate system with film
thicknessd, and an isotropic ambient where both crystal
systems are aligned parallel to the Cartesian laboratory sys-
tem axes. All possible combinations of biaxial, uniaxial, or
isotropic film-substrate configurations as collected in Ref. 3

can be derived from this example by changing the meaning
of the refractive indices in the apparent formulas.

The exit matrixL f is found using Eq.~46!. The dielectric
function tensor« is diagonal and contains three different
optical constants for the respective direction of light propa-
gationnx

2 , ny
2 , andnz

2 , respectively. The nontrivial elements
of D are found as follows:

D145cos2Fz , D23521,

D3252ny
2cos2Fy , D415nx

2 . ~B1!

The eigenvalues follow from Eq.~21!:
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q1/256Nxz , q3/456Nyy ,

Ni j[nicosF j5niA12@~na /nj !sinFa#
2. ~B2!

The eigenvectors that refer only to transmitted waves
~Re$q1 ,q3%.0) are then determined up to a constant factor
as

J1~q1!5~0,1,2nycosFy ,0!T,

J3~q3!5~cosFz,0,0,nx!
T, ~B3!

and L f of the biaxial exit medium can be obtained most
easily by inserting the eigenvectors into Eq.~46! as the first
and third columns:

L f135cosFz , L f2151,

L f3152nycosFy , L f435nx . ~B4!

APPENDIX C: T p „«i j50;iÞj, «11Þ«22Þ«33…

With the solutions of the eigenequation@Eq. ~A6!# the
coefficientsb i are found explicitly to be

b0
bi5$Nxz

2 cos~k0dNyy!2Nyy
2 cos~k0dNxz!%/D,

b1
bi5 i $~Nxz

2 /Nyy!sin~k0dNyy!2~Nyy
2 /Nxz!sin~k0dNxz!%/D,

b2
bi5$cos~k0dNxz!2cos~k0dNyy!%/D, ~C1!

b3
bi5 i $sin~k0dNxz!/Nxz2sin~k0dNyy!/Nyy%/D,

D5Nxz
2 2Nyy

2 .

The nature of the partial transfer matrix is the same as for an
isotropic layer, as seen expanding the power series inD with
the coefficientsb i given above. Defining phase thicknesses
for the p ands polarizations askp andks , respectively,

kp
bi[k0dNxz , ks

bi[k0dNyy , ~C2!

Tp for the biaxial film is obtained as

Tp
bi5S coskp 0 0 i ~Nxz /nx

2!sinkp

0 cosks 2 i ~1/Nyy!sinks 0

0 2 iNyysinks cosks 0

i ~nx
2/Nxz!sinkp 0 0 coskp

D . ~C3!

Let nx̄ , nȳ , andnz̄ denote the complex refractive indices for
the substrate material, andnx , ny , and nz for the biaxial
slab, respectively. The ellipsometric ratior, for example, is
given by Eq.~10! using the elements of the general transfer
matrix. After multiplying Tp according to Eq.~2! from the
left side withLa

21 , and from the right side withL f from the
biaxial substrate@Eq. ~B4!#, T results in

T115~Tp22
bi 2Tp23

bi Nȳȳ!2~Tp32
bi 2Tp33

bi Nȳȳ!/Naa ,

T215~Tp22
bi 2Tp23

bi Nȳȳ!1~Tp32
bi 2Tp33

bi Nȳȳ!/Naa ,

T335~Tp41
bi cosF z̄1Tp44

bi nx̄! /na

2~Tp11
bi cosF z̄1Tp14

bi nx̄!/cosFa , ~C4!

T345~Tp41
bi cosF z̄1Tp44

bi nx̄!/na

1~Tp11
bi cosF z̄1Tp14

bi nx̄!/cosFa ,

Ti j50 else.

With the partial reflection coefficients for thep ands polar-
ization at the 0-1~ambient-film! and 1-2~film-substrate! in-
terfacesr 01pp , r 01ss, r 12pp , andr 12ss, respectively,

r 01pp
bi2bi5

Nxa2Naz

Nxa1Naz
, r 01ss

bi2bi5
Naa2Nyy

Naa1Nyy
,

r 12pp
bi2bi5

Nx̄z2Nxz̄

Nx̄z2Nxz̄

, r 12ss
bi2bi5

Nyy2Nȳȳ

Nyy2Nȳȳ

, ~C5!

the ellipsometric ratio can be written as follows:

r5S r 01pp1r 12ppe
1 i2kp

11r 01ppr 12ppe
1 i2kpD S 11r 01ssr 12sse

1 i2ks

r 01ss1r 12sse
1 i2ks D 21

.

~C6!

Because of the symmetry the off-diagonal reflection coeffi-
cients vanish, as seen again from the general transfer matrix
T. A detailed treatment ofD reveals that the associated ele-
ments ofT appear only if at least one of the crystal axes is
nonparallel to any of the laboratory coordinate axes or if the
optical axes of uniaxial media do not lie in they-z plane. As
long asD has the diagonal form of Eq.~B1!, all partial
transfer matrices have the same vanishing elements asTp
from an isotropic slab. The patterns of vanishing elements of
the partial transition matrices, incident and exit matrices re-
veal that after multiplicationT still has only four nonvanish-
ing elements.

Note that in spite of the notation recommended by the
1968 International Conference on Ellipsometry at the Uni-
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versity of Nebraska,20 the time dependence of the harmonic
fields used here is given by exp$2 ivt%. This results in posi-
tive imaginary parts of the dielectric functions of all treated

materials and changes the sign in the phase thicknesses, here
defined askp andks , in comparison with the formulas given
in Ref. 3.
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