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Surface Brillouin-scattering spectroscopy of media with nonuniform acousto-optic properties
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We present a theoretical tool to compute the Brillouin-scattering cross section for shear horiSthtal
surface phonons in an inhomogeneous medium with any type of depth profiles of elastic, dielectric, and
elasto-optic properties. The acoustic eigenmodes are found by means of numerical solution of a self-adjoint
Liouville equation with the boundary conditions of a finite slab. Both discrete and continuous phonon spectra
are studied. The layer projected phonon density of states for the SH polarization is used to analyze the surface
character of the modes. Also, the transmitteeroth-order electromagnetic field and the reflection coefficient
are obtained numerically solving Maxwell's equations. The scattered field is comjiuiedvay similar to that
of the zeroth-order fieldby first-order perturbation theory as a result of the smallness of the phonon excita-
tions. The backscattering-s Brillouin spectrum is obtained by summing the scattering intensity from indi-
vidual acoustic modes over the density of phonon states at a generic incidence angle. As an example, we
present the case of a Si/Sj®@ilayer on a S001) substrate with sharp or smooth interfaces between silicon and
silica. We think the method is promising in view of the application of surface Brillouin-scattering spectroscopy
to real imperfect materials.

I. INTRODUCTION interfaces; see Fig. 1. Aside from this particular case we have
in mind a much more general situation of variable composi-
The spectrum of |ong-Wave|ength surface acoustidion materials where, at least at the mesoscopic level, the
phonons in opaque or semiopague materials, mainly in thithomogeneity of all relevant physical properties is one
form of homogeneous media or of supported films, has beefimensionaf.

; ; : . ; The problem of computing the-s Brillouin cross section
extensively investigated by means of Brillouin scattering of : X
laser light. For a review see, e.g., Ref. 1. for such media has been recently solved by Bottani and Ca-

) : . porali and presented in Ref. 7. Hereafter we give a more
Most of the studies have dealt with surface acousmgetailed account of our method with explicit expressions for

phonons polarized in the sagittal plane, defined by the SUthe acoustic and electromagnetic fields and further examples

face phonon propagation wave vectqy,, and the surface of application.

normal. For this type of excitation, light scattering.occurs The existing algorithms for computing Brillouin cross
through _the surface ripple and the volum_e elasto-optic effectgactions 0-p, p-s) in layered media assume tha all the

So far, instead, the case of shear horizor&iH) surface physical properties are space independent in each léyer:
phonons, polarized parallel to the surface, has not receiveghe displacement vector field and the normal component
great attention. The main reason is the experimental diffistress of the tensor are continuous across the ideally sharp
culty of detecting this type of phonon peak in Brillouin spec-interfaces connecting all neighboring layers. Both Green
tra. Yet a great deal of acoustic and geophysical literaturéunction and mode-matching methods have been used to
exists about shear horizontal surface elastic wi\ars] the treat these problems always using the concept of partial
corresponding mathematical treatment is easier than thaane-wave analysis for the acoustic and the electromagnetic
needed to treat saggital waves. Only recently two pdfers fields in each layer. Here, we adopt a completely different
have appeared treating the case of shear horizontal phonohst equivalent approach. We consider the whole medium as a
in silicon on insulator structure&SOI) obtained by ion im-  thick slab with two free surfaces and depth-dependent physi-
plantation of oxygen in silicoiSIMOX technology. These cal properties in a limited subsurface region at one side. The
works showed and explained theoretically the existence anthhomogeneous portion of the system is described giving the
the dispersion properties of a surface mode localized in the profiles of all the physical coefficients. Photon absorption
buried silica layer characteristic of the SIMOX structures ands normally assumed to make the transmitted field to vanish
of a pseudosurface mode nearly localized in the top siliconwvithin a depth much smaller than the slab thickness, allow-
layer. At the present state of the art good SIMOX structuresng one to consider semi-infinite the medium as far as the
have rather sharp interfaces between silicon and silica, thelectromagnetic computation is concerned even though this
transition region being of the order of a few nanometersis not a must to apply our method. The paper is organized as
Sometimes, however, these structures present silicon incldellows. We describe the theoretical tools needed to compute
sions in the silica layer and silica inclusions both in the topthe following.

and substrate silicon, as can be seen by SIMS and TEM (i) The spectrum of surface SH phonons in the structure
measurementsProvided a local effective medium approxi- by means of a numerical solution of the self-adjoint Liouville
mation is applicabl& depending on the acoustic and electro-equation governing the propagation of this kind of surface
magnetic wavelengths and inclusion sizes and concentratioacoustic waves.

the real structure can be seen as one with diffisseooth (i) The fluctuating polarization vector fiel, produced
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FIG. 1. Typical depth profile of the densip(z) of two model SOI structures with different widii §=1 nm (solid line), §=40 nm
(dashed ling

by thermal agitation through the elasto-optic coupling. The[100] direction, can be obtained from E¢l) and general-
knolewdge ofP, required a numerical computation of the ized Hooke’s law for cubic media &s
transmitted zeroth-order field in the medium.

(iii ) the p-s Brillouin cross section. This implies solving 32Uy _ (92Uy
the wave equation for the scattered electromagnetic field in p(Z)W_C44(Z)W+ iz
the medium with a numerical method. . , .

(iv) At last, the theoretical results are applied to the parWhereCaq(2) is the depth profile of one of the three inde-

ticular case of a model imperfect silicon on insulator struc-Pendent elastic moduli of the system. Instead of considering
ture with diffuse effective interfaces. The intensity, nature,2" :zjealll §em.|—r|]nf|n|te fmedlum fwe treat here tne case of a
and position of found peaks can be explained in terms of théhic _sla wit . tW,O ree surfaces and dep.t -depen_dent
layer projected phonon spectrum, the corresponding polalphysmal properties in a limited region at one side. The inho-

ization vector fields, and the transmission properties of thd"©geneous portion of the system is described givingzthe
medium. profiles of the elastic coefficients, mass density, dielectric

function, and elasto-optic coefficiert®ractically, anyz de-
pendence of the above properties is allowed. All the func-
Il. LAYER-PROJECTED SHEAR HORIZONTAL tions of z are required to become smoothly constant in the
ACOUSTIC PHONON SPECTRUM “pbulk” portion of the system, i.e., the substrate.
The mechanical displacement vector fielé-[u;] pro- At\s a_c?r:]seguerlpe of thﬁ :rtantshlatlon?l mvana(;]cfg ofﬂ;[he
duced by a thermal acoustic wave crossing the medium safyS em In the direction paratiel to In€ surtace, we define the
e iéh ,d)) Fourier component of tha, SH displacement field,
isfies the equati ; y 3
being the parallel wave vectafj=q &, as

@

o Uy
44(2) a7 |’

2 .
divgzp%' 1) uy(w,qH;x,z,t)=§(w,qu)¢y(w,q\|,z)exm(qu—wt)]&s)
where {(w,q))) is the normal coordinate of the SH phonon
(w,qy). If we introduce(3) in the wave equation2) it re-
sults the self-adjoint Liouville equatidh

whereX=[oj;] is the stress tensor field apdz) the mass
density depth profile.

We consider only shear horizontédH) surface acoustic
waves(SAW'’s) propagating in a layered medium along any d do(,q)(,2)
direction parallel to thg =0 plane(which is both the sagittal —| C44(2) Al
and the scattering plane in our schena@d, therefore, we dz dz
deal only with the displacement field component. Be- 2_ 2 _
sides, we assume that the SH SAW’s propagatg};longthe *lp2)o"=Cal2)a] by w.q).2) =0, @
direction. We take into account onyt00] and[110] propa- ~ where the mode profiles ¢,(w,q,2) are the real eigen-
gation directions and001) surfaces because, in these casesfunctions of Eq. 4 corresponding to the real eigenvalues
sagittal motion is decoupled from the SH one. In particular,w2=w2(q”), that is, the SH phonon eigenfrequencies. We
the wave equation fan, , when thex axis corresponds to the can think that thes,(w,q,2)’s correspond, in our con-
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tinuum model, to the polarization unit vectors in lattice The LPPDS can be written as
dynamics’ An analogous Liouville equation is obtained for

the (110 case substituting[ C,1(z) —C1(2)] to Cus(2) as Oyy(@,q[2.2)
the multiplying coefficient ot]ﬁ in Eq. (4).
The normalization conditions df®e => Vp(2)p(Z") py(wo (), ) ,2)
jhp(z)qbf,(w,qﬂ,z)dz:l, (5) X y(wo(q)),q),2)olo—w(q)]  (7)
0

. . and, when computed fa=z2',
h being the overall slab thickness.

We assume stress-free boundary conditions at beth 5
andz=h. This implies the vanishing of the derivative of gyy(w,q|‘|z,z)=§ p(2)y(wa(q)),q),2) 0= wa(q))]-
the mode profiles at these surfaces: (8)

déy(w,q),2)|  [déy(w,q),2) o For Brillouin light scattering,,(w,q;|z,z") is not simply
dz N dz =0. (® related to the cross sectibhy a double space integration as
#0 =h it is instead in the case for, e.g., low energy electron surface
Equations (4), (5) and (6) form a well-posed Sturm- scattering? the LPPDS is, however, useful to understand
Liouville eigenvalue problen® Furthermore, we note that, Poth thez (surfacg localization and the frequency localiza-
as the interfaces between layers are smooth, this Sturnion of the phonon modes. If we consider the spectral expan-
Liouville problem is not singular as it would be in the hy- sion of the retarded and advanced Green functions of Eq. 4
pothesis of perfectly sharp interfaces. In this last case th&yy(@+i€,q);2,2") as the solutions of the nonhomoge-
popular method using the partial plane waves of each layef€ous equation
together with continuity conditions at each interface would

: d dG
be more appropriate. e ) 2N +To(D(wFie)2—Ci(2)a21C
It is well known that the spectrum of SH long-wavelength dz “?) dz Le(z){w1e) 421Gy
acoustic phonons in a semi-infiniteh our case, when the = 5(z—2') 9)

slab thicknessh goes to infinity layered medium is the
union of a discrete and a continuous pafhe latter starts at with the same boundary conditions holding for ipg's, we
the transverse threshold of the substrate-c.q, where obtain a smooth versio@yy(w,q|||z,z) of the LPPDS for SH
c; is the shear horizontal sound velocity of the substrate irphonons as
the corresponding propagation direction. In the continuous
part of the spectrumd= w;), the partial waves of the semi-
infinite substrate must be nondecayizng b2qu/ waves with real
H — 2 1/2
perpe_ndlcular_wave vectorp, = (w/c{—qf))~~ Thus only _Gy(w+ieq 2.2, (10
the discrete eigenvalues®K w;) correspond to true surface vy 1
modes or Love waveshounded statgswith purely imagi-  wheree is an infinitesimal real quantity that can be adjusted
narqu=i(w2/ct2—qﬁ)1’2, and so exponentially decaying in to simulate a finite experimental spectral resolution.
the substrate. Yet also in the continuous spectrum important Once the eigenfrequencies and the corresponding eigen-
structures of surface charactg@rseudo-Love waves or qua- functions have been computed, the Green functions can be
siresonancéscan be found:* With the slab approximation calculated by means of the spectral expansion
all the phonon spectrum is discrete but shows up as quasi- 5
continuous beyond the transverse threshold of the substrate G (o] 22)=3 dy(0,(q)).9),2)
provided the slab is thick enough. It is then possible to com- ylo+ieq):zz)= (w:ie)Z—wi(qH) )

pute the density of phonon states numerically and to simulate ) , ,
the true continuous spectrum of a semi-infinite medium. In the special case of SIMOX structures with sharp interfaces

We find the whole spectrum of eigenvalues and the cor{See below the analysis of contour plots of the LPPDS put
responding eigenfunctions using the NARef. 13 routine into _ewdence the surface character of a I_3r|IIoum_ peak, in the
DO2KEF based on a Prufer transformation and a shootin§ontinuous part of the saectrum, associated with scattering
method of integration. In the following, as the most impor- IfoM pseudo-Love waves!
tant spectral features are in the low energy part of the spec-
trum, we use the first 200 eigenvalues with a slab thickness ll. TRANSMITTED AND SCATTERED
such that the corresponding spectral resolution is better than ELECTROMAGNETIC FIELDS
200 MHz, in agreement with typical Brillouin
measurement$? In the case of backscattering spectra taken Basically two inelastic light scattering mechanisms are
at an incidence angle of 60° the maximum eigenvalue wective near the surface of a material: the corrugatigple)
computed corresponds to approximately 20.5 Gste Fig. and the elasto-optic effett. Yet, if we consider only SH
3(b)]. waves in[100] and[110] propagation directions of a cubic

The layer-projected phonon density of states LPPDS forrystal, the saggital motion is found to be decoupled from the
the SH polarizatiohis the tool we used to carefully investi- SH one and if, furthermore, we study-s scattering, the
gate the surface character of the found phonon modes.  ripple contribution is absent for the Sij, motion and does

_ (2) :
gyy(w,Q|||Z,Z)= pZ?[ny(w_ l€,q) 12,2)

11)
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not contribute to the vertical displacement of the surface.ratio of the two complex quantities),(z)+iq;(z) and

Thus we consider only the elasto-optic effect. Should not, (z) +i€;(z) with real and imaginary part:

thermal fluctuations be considered, cubic meélia silicon)

would have isotropic dielectric properties. Long-wavelength €(2)q,(2)+ €(2)qi(2)

acoustic phonons do cause a variation of the dielectric prop- Qi(2)= (2) + €(2) ' (15

erties of the medium that can be accounted for by means of ' '

an instantaneous anisotropic susceptibility, a second-order _

random tensor field the components of which are linear func- Qi(2)= er(z)qzi(z) eiz(z)qr(z)

tions of the fluctuating elastic strains. Because of dispersion, €(2)+€(2)

a simple relation between the polarization vedtoand the : . '

electrie: field can be written onlffor monochromatic compo-rp IS a functlongl of the whole f|elc$(z) and must be com-

nents. We assume that the electric field incident from thePUtEd se_lf-con3|stently together W'th it

vacuum onto the superior surface of the structure is that of a Equation(12) can now be rewritten as

monochromatic plang wave (E,,0,E,) with circular fre- 428

guencywg and consider at first the presence of only one SH —— +€(2)

phonon modew(q)),d))- dz*
The scattered electric field can be computed by first-order

perturbation theory because of the smallness of the thermal We used a numerical method to solve the above equation

elastic strains produced in the medium by the phonorfind obtain bottB(z) andr,. The method was based on the
excitationst® NAG (Ref. 13 FORTRAN routine DO2HBF. Because one

Neglecting fluctuations at zeroth order, it is convenient toneeds an initial value far, to start DO2HBF, we obtain such
compute first they component of the magnetic induction @ trial value sp!ving_ first thg problem in the case of a homo-
field B;’O(x,z)zei(kl\X)B(z) of the incidentp wave transmit-  9eneous semi-infinite mediufsee Eqs(14), (15 and(16)].
ted in the medium at depth and with parallel wave vector ~ OnceB(2) has been computed°(x,z) and E;°(x,2)
k= (2m/\)sing=(wo/c)sing . In fact Maxwell's equations can be easily obtained s
for p waves reduce to a single ordinary differential equation

(16)

d

dB L oo
iz E+Q2(Z)B— : (17)

1
el

for B(z):12 c?2 dB)° c® dB
E®0=_j y _ —ij el(k”x) (18)
X dZ 1
d/ 1 dB wg kﬁ wo€e(z) 0z wo€(2)
d_z<e(z) dz) (?_ e(z))B:O' (12 o
wo_: c? 9B, CzkH i (Ki[%)
€(z) is thez profile of the complex dielectric function of the E,°=i woe(D) X woe(2) B(z)e"™I®. (19

structure at frequencyy, .
In the vacuum %£<0), above the surfaceB(z) In these last equations the time dependence of all zeroth-
= (Eo/c)(e'™1A—r e7'ki2) whereE, is the electric field  order fields has been omitted andeis'“o',
amplitude of the incidenp wave,k, = (wq/c)coss the com- The next step is to compute the fluctuating part of the
ponent perpendicular to the surface of the wave vector of theolarization vector in the medium. The first-order result in
incident wave in the vacuum, ang, the reflection coeffi- perturbation theory is
cient. Assuming that the substrate is absorbing, we also im-
pose thaB(z) vanish az— . o= o[ €(2) — 11E;"*+ €0 dxij (wo, = wa(qH))Ef”D ,
Following Lekner? we defineq,(z) as the component ' (20)
perpendicular to the surface of the wave vector of the trans-
mitted field in the medium and, writinge(z)=¢,(z) Wheree(z)—1=x(z) is the unperturbed isotropic suscepti-
+i€(z), the real and imaginary parts of,(z) are found bility in the absence of the phononic fielfbecause
from 0,(q))<wo, we can write €(z,0o* w,(0)))~ €(Z, )
=€(2z)]and x;j(wo, * w,(q)))) is the anisotropic fluctuating
part of the susceptibility due to the excitation of a single SH
(0,(q)),9;) phonon mode. The second term on the right
(13 hand side of Eq(20) is responsible for the radiation of the
Brillouin light, that is, for the scattered fiel“s at frequen-
EieSws=woi o,(q))-
For p-s scattering it turns out that the fluctuating polar-

2 2
632 = e(2) 2 ~Ki =2l () +iei(2) —si(6)].

In the case of a homogeneous medium the dielectric functio
has just one step a&=0, passing from its vacuum value

e=1 to a constant value>1. In this case i_ntegra_\tion of Eq. ization vector radiating the scattered field has a single com-
(12) gives us a simple plane wave and, imposing tBét)

and e~ 1(2)(dB/d2) are continuous at=0, we find the re- ponent P;”S)R whi_ch is vyritten as a function of the fluctuat-
flection coefficient as ing thermal elastic straingy,=(1/2)[ duy(w,,q))/dx] and
uy,= (1/2) duy(w,,q)/dz] as
_, _Q17Q5(0) _ Q- Q(0)~iQi(0) (14 . . .
PTQ;+Q,0) Q;+Q,(0)+iQi(0)’ (Py*)r=€okaa(Z)[ Uyx( w0y E, O+ uyz(wa,qH)EZO](ZD

whereQ;=k, andQ,(2)=0q,(z)/e(z) are the reduced per-
pendicular components of the wave vectors. The latter is théor [100] and as
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FIG. 2. Zeroth-order transmitted field intensitiesaat #,= 30°: §=1 nm(solid ling), §=40 nm(dashed ling (a) Mean square magnetic
field By ; (b) mean square electric fiel, ; (c) mean square electric field, .

the medium. Around thermal equilibrium, the thermal aver-

P$)r=€ol 3[K11(2) —kix(2)Ju LqE°
( y Jr=éolalku() kil 2 Juydwa, o, age ofé(w,,q)) is zero and, therefore, the same is of the
+Kal(2)Uyf @40 EL) (22)  average of the scattered field amplitude. Thus, the statistical
ye e z properties of the Brillouin light depend on the mean square

for [110]; the k;;j(z) are thez profiles of the elasto-optic value of¢(w,,q) and on its time autocorrelation function.

coefficients. We notice that Brillouin scattering of an incidentlf there is no free charge difs=— egldivP‘”s. The inho-

p electromagnetic wave off a pure SH phonon produces anogeneous wave equation for the radiation of the scattered

scattered_s el_ectromagnetic wave, that is, scattering rotatesg|q componentEf,”‘(x,z,t)=E;’(z)e‘("ﬁ"*‘”s‘) in the me-

the polarization of 90°. dium (z>0) is then obtained from Maxwell’s equations as
(P;"S)R can then be written in the compact fofito save

space we write only the anti-Stokes term, radiating at the dZE)‘f w§ 2| —a
circular frequencyws=wo+ w,(q)), corresponding to the dz + E(Z)?_k\l Ey
annihilation of pre-existing phonons of the modg 5
C()S .
(PY%)r= £(w, a1y (2] g k1w, ,qp)eKITax, =~ o2 f@a apily(Zwo ks wa.a),
@3 (25

wherekﬁzkHJrqH is the rule expressing the conservation of

Hy(z|w0!kll;wavqll)
parallel wave vector for an anti-Stokes event. The electric

2
_¢ €okaa(2) TN CRCTRT ,Z)d_B field componen&y(z) of the scattereds wave is the solu-
2woe(2) dz tion, in the vacuum, above the surface<(0), of the homo-

dé(,(q).q1,2) geneous wave equation obtained equating to zero the rhs of
k= adzH i B(Z)} (24) Eq. (25 with e(z)=1. It takes the plane-wave form
Eg(z):E;‘(O*)e*‘kiZ, where k$*= w3/c?—kf?. To com-
are spectral weights depending on both the phonon modeute, in the far field approximation, the total scattered field in
profiles and the zeroth-order incident electromagnetic field ithe vacuum at the observation poinivithin an infinitesimal
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solid angledQ around the direction okS= ki“‘ﬁ we are average of the power spectrum of the total scattered field

led to calculateE®(0™) =E%(0*)=E%(0) component, i.e., to the time Fourier transform of its time
- y Y ched by . autocorrelation function
This task can be accomplished by means of numericaf . .
integration of Eq(25), again using the NAGFORTRAN rou- For the total scattered field we are finally led to the ex-

tine DO2HBF(Ref. 13 with infinitesimal values of the scat- pression
tered field and of itz derivative at a depth below the surface
much bigger than the skin depth of the substrate. 02 '

To obtain the total fluctuating scattered field component — Ej(r,t)=— > el A E(w,,q)e'leot ealaplt,
(w,k®), we have to sum up the scattered amplitude at the €oC “«
observation point over alt’s, that is, to consider the contri- (26)
bution of all phonon modes having the same parallel wave
vector. As a consequence, the differential scattering crosshereA, is proportional toE,(0).
section is proportional, through the factBcosds (S is the Making use now of the fact that th v, ,q|)’s are inde-
illuminated area of the sample surface ahdthe angle be- pendent random variables with mean square values fixed by
tweenk® and the outgoing surface normato the thermal the thermal equilibrium conditioné&2) thIKBT/Swi(q”),
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FIG. 5. Theoretical cross section f6y=30°:
5=1 nm (solid ling); §=40 nm(dashed ling
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we find that the differential scattering cross section for anti-perfect structures too. An experimental activity on real im-
Stokes Brillouin scattering from SH phonons is proportionalperfect structures is in progress and will be reported

to
d’o a|2
q0da~C ; o2 e lootedapl. @7
The Stokes cross section is obtained in a similar way.
IV. A CASE STUDY: IMPERFECT SOI SIMOX
STRUCTURES

Recent experimental results orperfect SIMOX

elsewhere. For instance, here we treat the case of the pres-
ence of silica inclusions in silicon above and below the bur-
ied oxyde layer. Figure 1 shows the density profiles of two
model SOI SIMOX structures, one with sharp and one with
smooth interfaces.

Assuming that the mean inclusion size is much smaller
than the typical wavelength of the phonons and photons in-
volved in Brillouin scattering, we are in the Rayleigh scat-
tering regime. Within this approximation the medium can be
described by effective constaritsience our smoothly vary-

structure®* motivated us to compute the Brillouin cross sec-ing elastic, dielectric, and elasto-optic coefficients can be
tions for scattering from SH acoustic phonons in model im-considered afcal effective constants

lrp|

FIG. 6. Modulus of the reflection coefficient
rp, vs incidence angle.+) line, semi-infinite sili-
con; solid line, SOI structure witld = 5 nm;
dashed line, SOI structure with = 1 nm.

0 L 1 I 1 1 H
0 10 20 30 40 50 60

0; [degrees]
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The vacuum-3D01) interface coincides with thg=0 locity is higher (see also Fig. Bbecause the mode tails
plane and the axis points downwards in the medium. The propagate in silicon, which has a higher transverse sound
first Si/SIO, interface is atz=d and the second SigSi  speed. It could equally be seen, by a thorough inspection of
interface is az=d+L. In this application, we assumed that the LPPDYEg. (10)], that the differences in the continuous
all the functions which describe physical properties of thepart of the spectrum are negligible.
medium have a local hyperbolic tangent profile. For ex- In spite of these small differences in the phonon spectrum
ample, we take @(z) of the form the cross sections for the two cases look substantially diverse

(Fig. 5. Apart from the spectral shift of the first pegkig.
1 q 4), the main effect is the decrease in the intensity of the peak
Z—0;
P(Z)z(Pl_Pz)[l— > tan)‘( 5,
1 ) z—d, i1
an 5

1 in the continuum, immediately beyond the transverse thresh-
+(P1_P2)§

+p2

old. The explanation for the above decrease is to be found in
the competition between two antagonist mechanisms. While
smooth interfaces tend to allow for a stronger fluctuating
polarization in the top silicon they depre& least with this
geometry the overall back transmission in the vacuum of the

where(a) p; andp, are, respectively, the mass density of Si scattered light with respect to sharp interfaces. In the chosen
and Si0,; (b) d;=d , d,=d+L are, respectively, the first €xample the second phenomenon dominates.
and the second interface depths; #0ds, and 8, character- To illustrate the intrinsically self-consistent nature of our
ize the more or less sharpness of the profiles where the prof?ethod, we also show the computed reflection coefficients.
erties of the medium change. & =8, we will write 5 for ~ In Fig. 6 the case of semi-infinite silicon |s.cornpared_ with
both 8; and 5,. those of_ two different SIMOX structures Wlth. mcreasmg_ly
The wavelength of the light incident on the medium is smooth interfaces. The principal visible effect is the Was_hlng
taken as\o,=514.5 nm. In our computation we used the out of the pseudo-Brewster anglg pheno_menon due to inter-
dielectric (€), elastic Cj;), and elasto-optic constants of ference. eﬁeqts. This last type of information could be corre-
bulk Si and SiG. The Si constants are=18.5+0.53, lated with ellipsometry measurements.
C,,=166 GPa,C,,=63.9 GPa,C,,=79.6 GPaK,;=53.2,
K1,=25.0, K44=23.4, p=2330kgm 3. The SiO, con-
stants are €=2.16, C,;=78.5GPa, C,,=31.2GPa,
Kq;=—0.55, K 4=0.345, p=2200 k gm 3. We have introduced a method to compute the cross sec-
Theoretical cross sections are all convoluted with ation for Brillouin scattering of light by SH surface acustic
Lorentzian of 200 MHz width to account for a finite experi- phonons in an inhomogeneous medium which is represented
mental spectral resolution. by a layered finite slab with arbitrarily smooth interfaces.
Figure 2 shows the depth profiles of the incident transmit- The spectra of the acoustic field, the transmiteeroth-
ted fields at 30° incidence in a SIMOX structure with eitherorden, and the scattereirst-orde) electromagnetic fields
=1 nm or §=40 nm. One can see that, in the sharper in-are computed by means of a numerical algorithm which can
terface case, the surface field intensities are higher than itake into account any depth profile of the physical param-
the smoother case. On the contrary, the penetration depth &ers of the system.
higher in the smoother case because the field gradients in the The special case of a model imperfect silicon on insulator
interfacial regions are lower. structure, with a distribution of silica inclusions in the near-
In Fig. 3 we illustrate the effect of smooth interfaces oninterface regions, is analyzed, putting in evidence the differ-
the cross section fqgo-s Brillouin scattering at two different ences between the case with effective sharp interfaces and
backscattering angles. As reported in Ref. 3 two peaks assthat with effective smooth interfaces.
ciated with scattering off SH phonons exist in the spectrum. We notice that, in different physical situations, the con-
The first, beloww, , is due to the interaction of light with a tinuous depth profiles would correspond to real diffuse inter-
mode guided in the silica buried layéa modified Love faces down to the atomic scale. This is the case of GaAs/
wave, while the second, beyond, , is to be associated with Al Ga;_,As superlattices or other rephononic crystaf¥
scattering from a pseudosurface mode, localized mainly itfior which the application of our method does not require any
the top silicon layer(a pseudo-Love waye The principal effective medium approximation but implies the consider-
visible effect is the spectral shift undergone by the low en-ation of scattering from longitudinal modes too. Work on
ergy peak(Love wave. Repeating this type of computation normal incidence Brillouin scattering from longitudinal
for several angles, the dispersion laws of both peaks can becoustic bulk phonons in imperfect superlattices, following
obtained’ similar guidelines, is in progress and will be published else-
A comparison between a model structure with sharp andvhere.
one with smooth interfaces is fully exploited in Figs. 4, 5, We wish to stress that only experimental results can allow
and 6. Figure 4 shows the mode profilgsg. (4)] corre-  one to decide which are the more appropriate depth profiles
sponding to a Love wavéiscrete modefor these two ex- for a given structure; in particular, the theoretical electro-
treme cases. From a purely acoustic point of view the differmagnetic fields can be strongly affected by the specific pro-
ences between the two situations are small but visible. Ongles.
can see that the mode is less localized in the buried oxide Nevertheless, we emphasize the generality of our method,
layer in the smooth interface case, as one could expect fromvhich is limited only by the requirement of a unidimensional
simple physical considerations. The corresponding phase véz) inhomogeneity of the scattering body.

, (28)

V. CONCLUSIONS
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