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We present a theoretical tool to compute the Brillouin-scattering cross section for shear horizontal~SH!
surface phonons in an inhomogeneous medium with any type of depth profiles of elastic, dielectric, and
elasto-optic properties. The acoustic eigenmodes are found by means of numerical solution of a self-adjoint
Liouville equation with the boundary conditions of a finite slab. Both discrete and continuous phonon spectra
are studied. The layer projected phonon density of states for the SH polarization is used to analyze the surface
character of the modes. Also, the transmitted~zeroth-order! electromagnetic field and the reflection coefficient
are obtained numerically solving Maxwell’s equations. The scattered field is computed~in a way similar to that
of the zeroth-order field! by first-order perturbation theory as a result of the smallness of the phonon excita-
tions. The backscatteringp-s Brillouin spectrum is obtained by summing the scattering intensity from indi-
vidual acoustic modes over the density of phonon states at a generic incidence angle. As an example, we
present the case of a Si/SiO2 bilayer on a Si~001! substrate with sharp or smooth interfaces between silicon and
silica. We think the method is promising in view of the application of surface Brillouin-scattering spectroscopy
to real imperfect materials.

I. INTRODUCTION

The spectrum of long-wavelength surface acoustic
phonons in opaque or semiopaque materials, mainly in the
form of homogeneous media or of supported films, has been
extensively investigated by means of Brillouin scattering of
laser light. For a review see, e.g., Ref. 1.

Most of the studies have dealt with surface acoustic
phonons polarized in the sagittal plane, defined by the sur-
face phonon propagation wave vector,quu , and the surface
normal. For this type of excitation, light scattering occurs
through the surface ripple and the volume elasto-optic effect.
So far, instead, the case of shear horizontal~SH! surface
phonons, polarized parallel to the surface, has not received
great attention. The main reason is the experimental diffi-
culty of detecting this type of phonon peak in Brillouin spec-
tra. Yet a great deal of acoustic and geophysical literature
exists about shear horizontal surface elastic waves,2 and the
corresponding mathematical treatment is easier than that
needed to treat saggital waves. Only recently two papers3,4

have appeared treating the case of shear horizontal phonons
in silicon on insulator structures~SOI! obtained by ion im-
plantation of oxygen in silicon~SIMOX technology!. These
works showed and explained theoretically the existence and
the dispersion properties of a surface mode localized in the
buried silica layer characteristic of the SIMOX structures and
of a pseudosurface mode nearly localized in the top silicon
layer. At the present state of the art good SIMOX structures
have rather sharp interfaces between silicon and silica, the
transition region being of the order of a few nanometers.
Sometimes, however, these structures present silicon inclu-
sions in the silica layer and silica inclusions both in the top
and substrate silicon, as can be seen by SIMS and TEM
measurements.5 Provided a local effective medium approxi-
mation is applicable,6 depending on the acoustic and electro-
magnetic wavelengths and inclusion sizes and concentration,
the real structure can be seen as one with diffuse~smooth!

interfaces; see Fig. 1. Aside from this particular case we have
in mind a much more general situation of variable composi-
tion materials where, at least at the mesoscopic level, the
inhomogeneity of all relevant physical properties is one
dimensional.6

The problem of computing thep-s Brillouin cross section
for such media has been recently solved by Bottani and Ca-
porali and presented in Ref. 7. Hereafter we give a more
detailed account of our method with explicit expressions for
the acoustic and electromagnetic fields and further examples
of application.

The existing algorithms for computing Brillouin cross
sections (p-p, p-s! in layered media assume that~a! all the
physical properties are space independent in each layer;~b!
the displacement vector field and the normal component
stress of the tensor are continuous across the ideally sharp
interfaces connecting all neighboring layers. Both Green
function and mode-matching methods have been used to
treat these problems always using the concept of partial
plane-wave analysis for the acoustic and the electromagnetic
fields in each layer. Here, we adopt a completely different
but equivalent approach. We consider the whole medium as a
thick slab with two free surfaces and depth-dependent physi-
cal properties in a limited subsurface region at one side. The
inhomogeneous portion of the system is described giving the
z profiles of all the physical coefficients. Photon absorption
is normally assumed to make the transmitted field to vanish
within a depth much smaller than the slab thickness, allow-
ing one to consider semi-infinite the medium as far as the
electromagnetic computation is concerned even though this
is not a must to apply our method. The paper is organized as
follows. We describe the theoretical tools needed to compute
the following.

~i! The spectrum of surface SH phonons in the structure
by means of a numerical solution of the self-adjoint Liouville
equation governing the propagation of this kind of surface
acoustic waves.

~ii ! The fluctuating polarization vector fieldPy produced
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by thermal agitation through the elasto-optic coupling. The
knolewdge ofPy required a numerical computation of the
transmitted zeroth-order field in the medium.

~iii ! the p-s Brillouin cross section. This implies solving
the wave equation for the scattered electromagnetic field in
the medium with a numerical method.

~iv! At last, the theoretical results are applied to the par-
ticular case of a model imperfect silicon on insulator struc-
ture with diffuse effective interfaces. The intensity, nature,
and position of found peaks can be explained in terms of the
layer projected phonon spectrum, the corresponding polar-
ization vector fields, and the transmission properties of the
medium.

II. LAYER-PROJECTED SHEAR HORIZONTAL
ACOUSTIC PHONON SPECTRUM

The mechanical displacement vector fieldu5@ui # pro-
duced by a thermal acoustic wave crossing the medium sat-
isfies the equation8

divS5r
]2u

]t2
, ~1!

whereS5@s i j # is the stress tensor field andr(z) the mass
density depth profile.

We consider only shear horizontal~SH! surface acoustic
waves~SAW’s! propagating in a layered medium along any
direction parallel to they50 plane~which is both the sagittal
and the scattering plane in our scheme! and, therefore, we
deal only with the displacement field componentuy . Be-
sides, we assume that the SH SAW’s propagate along thex
direction. We take into account only@100# and@110# propa-
gation directions and~001! surfaces because, in these cases,
sagittal motion is decoupled from the SH one. In particular,
the wave equation foruy , when thex axis corresponds to the

@100# direction, can be obtained from Eq.~1! and general-
ized Hooke’s law for cubic media as8

r~z!
]2uy
]t2

5C44~z!
]2uy
]x2

1
]

]z FC44~z!
]uy
]z G , ~2!

whereC44(z) is the depth profile of one of the three inde-
pendent elastic moduli of the system. Instead of considering
an ideal semi-infinite medium we treat here the case of a
thick slab9 with two free surfaces and depth-dependent
physical properties in a limited region at one side. The inho-
mogeneous portion of the system is described giving thez
profiles of the elastic coefficients, mass density, dielectric
function, and elasto-optic coefficients.6 Practically, anyz de-
pendence of the above properties is allowed. All the func-
tions of z are required to become smoothly constant in the
‘‘bulk’’ portion of the system, i.e., the substrate.

As a consequence of the translational invariance of the
system in thex direction parallel to the surface, we define the
(v,quu) Fourier component of theuy SH displacement field,
being the parallel wave vectorqzz5quuêx , as

uy~v,quu ;x,z,t !5j~v,quu!fy~v,quu ,z!exp@ i ~quux2vt !#,
~3!

wherej(v,quu) is the normal coordinate of the SH phonon
(v,quu). If we introduce~3! in the wave equation~2! it re-
sults the self-adjoint Liouville equation10

d

dzFC44~z!
dfy~v,quu ,z!

dz G
1@r~z!v22C44~z!quu

2#fy~v,quu ,z!50, ~4!

where the modez profiles fy(v,quu ,z) are the real eigen-
functions of Eq. 4 corresponding to the real eigenvalues
v25v2(quu), that is, the SH phonon eigenfrequencies. We
can think that thefy(v,quu ,z)’s correspond, in our con-

FIG. 1. Typical depth profile of the densityr(z) of two model SOI structures with different widthd. d51 nm ~solid line!, d540 nm
~dashed line!.
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tinuum model, to the polarization unit vectors in lattice
dynamics.9 An analogous Liouville equation is obtained for
the ^110& case substituting12@C11(z)2C12(z)# to C44(z) as
the multiplying coefficient ofquu

2 in Eq. ~4!.
The normalization conditions are10

E
0

h

r~z!fy
2~v,quu ,z!dz51, ~5!

h being the overall slab thickness.
We assume stress-free boundary conditions at bothz50

andz5h. This implies the vanishing of thez derivative of
the mode profiles at these surfaces:

S dfy~v,quu ,z!

dz D
z50

5S dfy~v,quu ,z!

dz D
z5h

50. ~6!

Equations ~4!, ~5! and ~6! form a well-posed Sturm-
Liouville eigenvalue problem.10 Furthermore, we note that,
as the interfaces between layers are smooth, this Sturm-
Liouville problem is not singular as it would be in the hy-
pothesis of perfectly sharp interfaces. In this last case the
popular method using the partial plane waves of each layer
together with continuity conditions at each interface would
be more appropriate.

It is well known that the spectrum of SH long-wavelength
acoustic phonons in a semi-infinite~in our case, when the
slab thicknessh goes to infinity! layered medium is the
union of a discrete and a continuous part.1 The latter starts at
the transverse threshold of the substratev t5ctquu , where
ct is the shear horizontal sound velocity of the substrate in
the corresponding propagation direction. In the continuous
part of the spectrum (v>v t), the partial waves of the semi-
infinite substrate must be nondecaying bulk waves with real
perpendicular wave vectorsq'5(v2/ct

22quu
2)1/2. Thus only

the discrete eigenvalues (v,v t) correspond to true surface
modes or Love waves~bounded states! with purely imagi-
naryq'5 i (v2/ct

22quu
2)1/2, and so exponentially decaying in

the substrate. Yet also in the continuous spectrum important
structures of surface character~pseudo-Love waves or qua-
siresonances! can be found.3,4 With the slab approximation
all the phonon spectrum is discrete but shows up as quasi-
continuous beyond the transverse threshold of the substrate
provided the slab is thick enough. It is then possible to com-
pute the density of phonon states numerically and to simulate
the true continuous spectrum of a semi-infinite medium.

We find the whole spectrum of eigenvalues and the cor-
responding eigenfunctions using the NAG~Ref. 13! routine
D02KEF based on a Prufer transformation and a shooting
method of integration. In the following, as the most impor-
tant spectral features are in the low energy part of the spec-
trum, we use the first 200 eigenvalues with a slab thickness
such that the corresponding spectral resolution is better than
200 MHz, in agreement with typical Brillouin
measurements.3,4 In the case of backscattering spectra taken
at an incidence angle of 60° the maximum eigenvalue we
computed corresponds to approximately 20.5 GHz@see Fig.
3~b!#.

The layer-projected phonon density of states LPPDS for
the SH polarization9 is the tool we used to carefully investi-
gate the surface character of the found phonon modes.

The LPPDS can be written as

gyy~v,qiuz,z8!

5(
a

Ar~z!r~z8!fy„va~quu!,quu ,z…

3fy„va~quu!,quu ,z8…d@v2va~quu!# ~7!

and, when computed forz5z8,

gyy~v,quuuz,z!5(
a

r~z!fy
2
„va~quu!,quu ,z…d@v2va~quu!#.

~8!

For Brillouin light scatteringgyy(v,quuuz,z8) is not simply
related to the cross section4 by a double space integration as
it is instead in the case for, e.g., low energy electron surface
scattering;9 the LPPDS is, however, useful to understand
both thez ~surface! localization and the frequency localiza-
tion of the phonon modes. If we consider the spectral expan-
sion of the retarded and advanced Green functions of Eq. 4
Gyy(v7 i e,quu ;z,z8) as the solutions of the nonhomoge-
neous equation

d

dzFC44~z!
dGyy

dz G1@r~z!~v7 i e!22C44~z!quu
2#Gyy

5d~z2z8! ~9!

with the same boundary conditions holding for thefy’s, we
obtain a smooth versionḡyy(v,quuuz,z) of the LPPDS for SH
phonons as

ḡyy~v,quuuz,z!5
r~z!

2p i
@Gyy~v2 i e,quu ;z,z!

2Gyy~v1 i e,quu ;z,z!#, ~10!

wheree is an infinitesimal real quantity that can be adjusted
to simulate a finite experimental spectral resolution.

Once the eigenfrequencies and the corresponding eigen-
functions have been computed, the Green functions can be
calculated by means of the spectral expansion11

Gyy~v7 i e,quu ;z,z!5(
a

fy
2~va~quu!,quu ,z!

~v7 i e!22va
2~quu!

. ~11!

In the special case of SIMOX structures with sharp interfaces
~see below!, the analysis of contour plots of the LPPDS put
into evidence the surface character of a Brillouin peak, in the
continuous part of the spectrum, associated with scattering
from pseudo-Love waves.3,4

III. TRANSMITTED AND SCATTERED
ELECTROMAGNETIC FIELDS

Basically two inelastic light scattering mechanisms are
active near the surface of a material: the corrugation~ripple!
and the elasto-optic effect.14 Yet, if we consider only SH
waves in@100# and @110# propagation directions of a cubic
crystal, the saggital motion is found to be decoupled from the
SH one and if, furthermore, we studyp-s scattering, the
ripple contribution is absent for the SHuy motion and does
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not contribute to the vertical displacement of the surface.4

Thus we consider only the elasto-optic effect. Should not
thermal fluctuations be considered, cubic media~like silicon!
would have isotropic dielectric properties. Long-wavelength
acoustic phonons do cause a variation of the dielectric prop-
erties of the medium that can be accounted for by means of
an instantaneous anisotropic susceptibility, a second-order
random tensor field the components of which are linear func-
tions of the fluctuating elastic strains. Because of dispersion,
a simple relation between the polarization vectorP and the
electric field can be written only for monochromatic compo-
nents. We assume that the electric field incident from the
vacuum onto the superior surface of the structure is that of a
monochromatic planep wave (Ex,0,Ez) with circular fre-
quencyv0 and consider at first the presence of only one SH
phonon mode„v(quu),quu….

The scattered electric field can be computed by first-order
perturbation theory because of the smallness of the thermal
elastic strains produced in the medium by the phonon
excitations.15

Neglecting fluctuations at zeroth order, it is convenient to
compute first they component of the magnetic induction
field By

v0(x,z)5ei (kuux)B(z) of the incidentp wave transmit-
ted in the medium at depthz and with parallel wave vector
kuu5(2p/l)sinui5(v0 /c)sinui . In fact Maxwell’s equations
for p waves reduce to a single ordinary differential equation
for B(z):12

d

dzS 1

e~z!

dB

dzD 1S v0
2

c2
2

kuu
2

e~z!
DB50. ~12!

e(z) is thez profile of the complex dielectric function of the
structure at frequencyv0 .

In the vacuum (z,0), above the surface,B(z)
5(E0 /c)(e

i (k'z)2r pe
2 i (k'z)), whereE0 is the electric field

amplitude of the incidentp wave,k'5(v0 /c)cosui the com-
ponent perpendicular to the surface of the wave vector of the
incident wave in the vacuum, andr p the reflection coeffi-
cient. Assuming that the substrate is absorbing, we also im-
pose thatB(z) vanish asz→`.

Following Lekner,12 we defineq2(z) as the component
perpendicular to the surface of the wave vector of the trans-
mitted field in the medium and, writinge(z)5e r(z)
1 i e i(z), the real and imaginary parts ofq2(z) are found
from

q2
2~z!5e~z!

v0
2

c2
2kuu

25
v0
2

c2
@e r~z!1 i e i~z!2sin2~u i !#.

~13!

In the case of a homogeneous medium the dielectric function
has just one step atz50, passing from its vacuum value
e51 to a constant valuee.1. In this case integration of Eq.
~12! gives us a simple plane wave and, imposing thatB(z)
and e21(z)(dB/dz) are continuous atz50, we find the re-
flection coefficient as

2r p5
Q12Q2~0!

Q11Q2~0!
5
Q12Qr~0!2 iQi~0!

Q11Qr~0!1 iQi~0!
, ~14!

whereQ15k' andQ2(z)5q2(z)/e(z) are the reduced per-
pendicular components of the wave vectors. The latter is the

ratio of the two complex quantitiesqr(z)1 iqi(z) and
e r(z)1 i e i(z) with real and imaginary part:

Qr~z!5
e r~z!qr~z!1e i~z!qi~z!

e r
2~z!1e i

2~z!
, ~15!

Qi~z!5
e r~z!qi~z!2e i~z!qr~z!

e r
2~z!1e i

2~z!
. ~16!

r p is a functional of the whole fieldB(z) and must be com-
puted self-consistently together with it.

Equation~12! can now be rewritten as

d2B

dz2
1e~z!F ddzS 1

e~z! D GdBdz1q2
2~z!B50. ~17!

We used a numerical method to solve the above equation
and obtain bothB(z) andr p . The method was based on the
NAG ~Ref. 13! FORTRAN routine D02HBF. Because one
needs an initial value forr p to start D02HBF, we obtain such
a trial value solving first the problem in the case of a homo-
geneous semi-infinite medium@see Eqs.~14!, ~15! and~16!#.

OnceB(z) has been computed,Ex
v0(x,z) and Ez

v0(x,z)
can be easily obtained as12

Ex
v052 i

c2

v0e~z!

]By
v0

]z
52 i

c2

v0e~z!

dB

dz
ei ~kuux!, ~18!

Ez
v05 i

c2

v0e~z!

]By
v0

]x
52

c2kuu

v0e~z!
B~z!ei ~kuux!. ~19!

In these last equations the time dependence of all zeroth-
order fields has been omitted and ise2 iv0t.

The next step is to compute the fluctuating part of the
polarization vector in the medium. The first-order result in
perturbation theory is

Pi
vs5e0@e~z!21#Ei

vs1e0dx i j „v0 ,6va~quu!…Ej
v0 ,

~20!

wheree(z)215x(z) is the unperturbed isotropic suscepti-
bility in the absence of the phononic field@because
va„quu)!v0 , we can write e(z,v06va(quu)…'e(z,v0)
5e(z)]anddx i j „v0 ,6va(quu)… is the anisotropic fluctuating
part of the susceptibility due to the excitation of a single SH
„va(quu),quu… phonon mode. The second term on the right
hand side of Eq.~20! is responsible for the radiation of the
Brillouin light, that is, for the scattered fieldEvs at frequen-
ciesvs5v06va(quu).

For p-s scattering it turns out that the fluctuating polar-
ization vector radiating the scattered field has a single com-
ponent (Py

vs)R which is written as a function of the fluctuat-
ing thermal elastic strainsuyx5(1/2)@]uy(va ,quu)/]x# and
uyz5(1/2)@]uy(va ,quu)/]z# as

4

~Py
vs!R5e0k44~z!@uyx~va ,quu!Ex

v01uyz~va ,quu!Ez
v0#

~21!

for @100# and as
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~Py
vs!R5e0$

1
2 @k11~z!2k12~z!#uyx~va ,quu!Ex

v0

1k44~z!uyz~va ,quu!Ez
v0% ~22!

for @110#; the ki j (z) are thez profiles of the elasto-optic
coefficients. We notice that Brillouin scattering of an incident
p electromagnetic wave off a pure SH phonon produces a
scattereds electromagnetic wave, that is, scattering rotates
the polarization of 90°.

(Py
vs)R can then be written in the compact form@to save

space we write only the anti-Stokes term, radiating at the
circular frequencyvs5v01va(quu), corresponding to the
annihilation of pre-existing phonons of the modea]

~Py
vs!R5j~va ,quu!Py~zuv0 ,kuu ;va ,quu!e

i ~kuu1quu!x.
~23!

Py~zuv0 ,ki;va ,qi!

5
c2e0k44~z!

2v0e~z! Fquufy„va~quu!,quu ,z…
dB

dz

2kuu
dfy„va~quu!,quu ,z…

dz
B~z!G ~24!

are spectral weights depending on both the phonon mode
profiles and the zeroth-order incident electromagnetic field in

the medium. Around thermal equilibrium, the thermal aver-
age ofj(va ,quu) is zero and, therefore, the same is of the
average of the scattered field amplitude. Thus, the statistical
properties of the Brillouin light depend on the mean square
value ofj(va ,quu) and on its time autocorrelation function.
If there is no free charge divEvs52e0

21divPvs. The inho-
mogeneous wave equation for the radiation of the scattered

field componentEy
sa(x,z,t)5Ey

a(z)ei (kuu
sx2vst) in the me-

dium (z.0) is then obtained from Maxwell’s equations as

d2Ey
a

dz2
1Fe~z!

vs
2

c2
2kuu

s 2GEy
a

52
vs
2

e0c
2 j~va ,quu!Py~zuv0 ,kuu ;va ,quu!,

~25!

wherekuu
s5kuu1quu is the rule expressing the conservation of

parallel wave vector for an anti-Stokes event. The electric
field componentEy

a(z) of the scattereds wave is the solu-
tion, in the vacuum, above the surface (z,0), of the homo-
geneous wave equation obtained equating to zero the rhs of
Eq. ~25! with e(z)51. It takes the plane-wave form

Ey
a(z)5Ey

a(02)e2 ik'
s z, where k'

s 25vs
2/c22kuu

s 2 . To com-
pute, in the far field approximation, the total scattered field in
the vacuum at the observation pointr within an infinitesimal

FIG. 2. Zeroth-order transmitted field intensities vsz atu i530°:d51 nm~solid line!, d540 nm~dashed line!. ~a! Mean square magnetic
field By ; ~b! mean square electric fieldEx ; ~c! mean square electric fieldEz .
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solid angledV around the direction ofks5k'
s 1kuu

s we are
led to calculateEy

a(02)5Ey
a(01)5Ey

a(0).
This task can be accomplished by means of numerical

integration of Eq.~25!, again using the NAGFORTRAN rou-
tine D02HBF~Ref. 13! with infinitesimal values of the scat-
tered field and of itsz derivative at a depth below the surface
much bigger than the skin depth of the substrate.

To obtain the total fluctuating scattered field component
(v,ks), we have to sum up the scattered amplitude at the
observation point over alla ’s, that is, to consider the contri-
bution of all phonon modes having the same parallel wave
vector. As a consequence, the differential scattering cross
section is proportional, through the factorScosus (S is the
illuminated area of the sample surface andus the angle be-
tweenks and the outgoing surface normal!, to the thermal

average of the power spectrum of the total scattered field
component, i.e., to the time Fourier transform of its time
autocorrelation function.

For the total scattered field we are finally led to the ex-
pression

Ey
s~r ,t !52

vs
2

e0c
2e

iksr(
a

Aaj~va ,quu!e
i @v01va~quu!#t,

~26!

whereAa is proportional toEy(0).
Making use now of the fact that thej(va ,quu)’s are inde-

pendent random variables with mean square values fixed by
the thermal equilibrium conditionŝja

2& th5KBT/Sva
2(quu),

FIG. 3. Theoretical cross section ford 5 1
nm ~solid line! andd 5 20 nm ~dashed line! for
different backscattering geometries:~a! u i530°;
~b! u i560°.

FIG. 4. Mode profiles of Love phonons which
would give rise to a Brillouin peak in the discrete
part of the spectrum for backscattering with inci-
dence angleu i530°. d 5 1 nm ~solid line! and
d 5 40 nm ~dashed line!.
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we find that the differential scattering cross section for anti-
Stokes Brillouin scattering from SH phonons is proportional
to

d2s

dVdv
}cosus(

a

uAau2

va
2~quu!

d$v2@v01va~quu!#%. ~27!

The Stokes cross section is obtained in a similar way.

IV. A CASE STUDY: IMPERFECT SOI SIMOX
STRUCTURES

Recent experimental results onperfect SIMOX
structures3,4 motivated us to compute the Brillouin cross sec-
tions for scattering from SH acoustic phonons in model im-

perfect structures too. An experimental activity on real im-
perfect structures is in progress and will be reported
elsewhere. For instance, here we treat the case of the pres-
ence of silica inclusions in silicon above and below the bur-
ied oxyde layer. Figure 1 shows the density profiles of two
model SOI SIMOX structures, one with sharp and one with
smooth interfaces.

Assuming that the mean inclusion size is much smaller
than the typical wavelength of the phonons and photons in-
volved in Brillouin scattering, we are in the Rayleigh scat-
tering regime. Within this approximation the medium can be
described by effective constants.6 Hence our smoothly vary-
ing elastic, dielectric, and elasto-optic coefficients can be
considered aslocal effective constants.

FIG. 5. Theoretical cross section foru i530°:
d51 nm ~solid line!; d540 nm ~dashed line!.

FIG. 6. Modulus of the reflection coefficient
r p vs incidence angle.~1! line, semi-infinite sili-
con; solid line, SOI structure withd 5 5 nm;
dashed line, SOI structure withd 5 1 nm.
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The vacuum-Si~001! interface coincides with thez50
plane and thez axis points downwards in the medium. The
first Si/SiO2 interface is atz5d and the second SiO2/Si
interface is atz5d1L. In this application, we assumed that
all the functions which describe physical properties of the
medium have a local hyperbolic tangent profile. For ex-
ample, we take ar(z) of the form

r~z!5~r12r2!H 12
1

2 F tanhS z2d1
d1

D11G J 1r2

1~r12r2!
1

2 F tanhS z2d2
d2

D11G , ~28!

where~a! r1 andr2 are, respectively, the mass density of Si
and SiO2; ~b! d15d , d25d1L are, respectively, the first
and the second interface depths; and~c! d1 andd2 character-
ize the more or less sharpness of the profiles where the prop-
erties of the medium change. Ifd15d2 we will write d for
both d1 andd2 .

The wavelength of the light incident on the medium is
taken asl05514.5 nm. In our computation we used the
dielectric (e), elastic (Ci j ), and elasto-optic constants of
bulk Si and SiO2 . The Si constants aree518.510.52i ,
C115166 GPa,C12563.9 GPa,C44579.6 GPa,K11553.2,
K12525.0, K44523.4, r52330 k gm23. The SiO2 con-
stants are e52.16, C11578.5 GPa, C44531.2 GPa,
K11520.55,K4450.345,r52200 k gm23.

Theoretical cross sections are all convoluted with a
Lorentzian of 200 MHz width to account for a finite experi-
mental spectral resolution.

Figure 2 shows the depth profiles of the incident transmit-
ted fields at 30° incidence in a SIMOX structure with either
d51 nm or d540 nm. One can see that, in the sharper in-
terface case, the surface field intensities are higher than in
the smoother case. On the contrary, the penetration depth is
higher in the smoother case because the field gradients in the
interfacial regions are lower.

In Fig. 3 we illustrate the effect of smooth interfaces on
the cross section forp-s Brillouin scattering at two different
backscattering angles. As reported in Ref. 3 two peaks asso-
ciated with scattering off SH phonons exist in the spectrum.
The first, belowv t , is due to the interaction of light with a
mode guided in the silica buried layer~a modified Love
wave!, while the second, beyondv t , is to be associated with
scattering from a pseudosurface mode, localized mainly in
the top silicon layer~a pseudo-Love wave!. The principal
visible effect is the spectral shift undergone by the low en-
ergy peak~Love wave!. Repeating this type of computation
for several angles, the dispersion laws of both peaks can be
obtained.7

A comparison between a model structure with sharp and
one with smooth interfaces is fully exploited in Figs. 4, 5,
and 6. Figure 4 shows the mode profiles@Eq. ~4!# corre-
sponding to a Love wave~discrete mode! for these two ex-
treme cases. From a purely acoustic point of view the differ-
ences between the two situations are small but visible. One
can see that the mode is less localized in the buried oxide
layer in the smooth interface case, as one could expect from
simple physical considerations. The corresponding phase ve-

locity is higher ~see also Fig. 3! because the mode tails
propagate in silicon, which has a higher transverse sound
speed. It could equally be seen, by a thorough inspection of
the LPPDS@Eq. ~10!#, that the differences in the continuous
part of the spectrum are negligible.

In spite of these small differences in the phonon spectrum
the cross sections for the two cases look substantially diverse
~Fig. 5!. Apart from the spectral shift of the first peak~Fig.
4!, the main effect is the decrease in the intensity of the peak
in the continuum, immediately beyond the transverse thresh-
old. The explanation for the above decrease is to be found in
the competition between two antagonist mechanisms. While
smooth interfaces tend to allow for a stronger fluctuating
polarization in the top silicon they depress~at least with this
geometry! the overall back transmission in the vacuum of the
scattered light with respect to sharp interfaces. In the chosen
example the second phenomenon dominates.

To illustrate the intrinsically self-consistent nature of our
method, we also show the computed reflection coefficients.
In Fig. 6 the case of semi-infinite silicon is compared with
those of two different SIMOX structures with increasingly
smooth interfaces. The principal visible effect is the washing
out of the pseudo-Brewster angle phenomenon due to inter-
ference effects. This last type of information could be corre-
lated with ellipsometry measurements.

V. CONCLUSIONS

We have introduced a method to compute the cross sec-
tion for Brillouin scattering of light by SH surface acustic
phonons in an inhomogeneous medium which is represented
by a layered finite slab with arbitrarily smooth interfaces.

The spectra of the acoustic field, the transmitted~zeroth-
order!, and the scattered~first-order! electromagnetic fields
are computed by means of a numerical algorithm which can
take into account any depth profile of the physical param-
eters of the system.

The special case of a model imperfect silicon on insulator
structure, with a distribution of silica inclusions in the near-
interface regions, is analyzed, putting in evidence the differ-
ences between the case with effective sharp interfaces and
that with effective smooth interfaces.

We notice that, in different physical situations, the con-
tinuous depth profiles would correspond to real diffuse inter-
faces down to the atomic scale. This is the case of GaAs/
Al xGa12xAs superlattices or other realphononic crystals16

for which the application of our method does not require any
effective medium approximation but implies the consider-
ation of scattering from longitudinal modes too. Work on
normal incidence Brillouin scattering from longitudinal
acoustic bulk phonons in imperfect superlattices, following
similar guidelines, is in progress and will be published else-
where.

We wish to stress that only experimental results can allow
one to decide which are the more appropriate depth profiles
for a given structure; in particular, the theoretical electro-
magnetic fields can be strongly affected by the specific pro-
files.

Nevertheless, we emphasize the generality of our method,
which is limited only by the requirement of a unidimensional
~z! inhomogeneity of the scattering body.
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