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We investigate vicinal surfaces of fdd11) transition metals with close-packed step edges in the tight-
binding model. There are two types of such vicinalsand B, since there exist two types of steps with
close-packed edges obtainable on {tt1) surfaces. We calculate energies and energy differences of these
vicinal surfaces, their steps, and the interaction between steps for a number of terrace widths. It is seen that
steps of typeA are preferred for metals with highband fillings(e.g., Pt while for lowerd band fillings(e.g.,

Ir), steps of typeB are more stable. Finally, the interaction energy between steps is shown t@eeaging
oscillatory function with both terrace width and band filling. Its magnitude is found to be comparable to the
elastic interaction energy between steps at short distances and low temperatures.

I. INTRODUCTION meandering steps cannot cross each other. This interaction is
also repulsive and varying as d?. Thirdly, there exist

The study of vicinal surfaces is a handy tool in the questdipole-dipole interactions between steps. Due to charge re-
of finding reliable models of various surface processes. Theglistribution at the steps, similarly to a metal surface, dipoles
provide well-defined defects(steps for understanding, are formed that interact either repulsively or attractively with
among many other situations, diffusion at surfaces, roughergach othef:® Also these interactions vary asd?
ing transitions, surface growth, and chemical reactions such Several theoretical investigations have been made of in-
as chemisorption and catalysis. teracting steps where elastic and/or dipolar interactions are

One specific example is the equilibrium shapes observegresent. % There have though, to our knowledge, been
at P{111) — hexagons with two different edge siZeshisis much fewer considerations of conduction electron-mediated
explained by the existence of two types of dense steps on fdteractions;“*? although some electronic structure calcula-
(111) surfaces having different energies. The ratio betweeiions have been performed on Al stepped surfecésnot
their free energies gives the ratio between the lengths of théiscussing step interactions.
hexagon edges. Equilibrium shapes of Ir clusters ¢hll In our analysis, we will concentrate on electronic effects
have also been studiedvhere the above-mentioned differ- at the temperatur€=0 K. This means that no entropic term
ences in step energies manifest in a similar way. It is thus oill be present and since we study unrelaxed structures, no
interest to make a Systematic investigation of the energy difE|aStiC deformation contribution will be present either. Nev-
ferences of the two kinds of dense steps encountered on f(gﬂ’theless, since the electronic contribution is seldom consid-
(111) transition metals. ered in step interactions, it is of interest to give an estimate

Furthermore, steps have been shown to modify the ad#f its magnitude and sign.
tom motion at surfacedlt is thus of importance also for ~ The paper is organized as follows. In Sec. I, we present
understanding diffusion at surfaces to chart the energetics dfe tight-binding model used for calculating total energies of
steps. We emphasize that both possib|e growth shapes aﬁ@nsition metals. The model is made eXp”Cit for application
atom diffusion are crucial ingredients in industrial growth of on vicinals of fcc(111) surfaces consisting of the two pos-
metals, which make their study all the more interesting tosible kinds of dense steps that exist on such surfaces. Simple
pursue. analytical models for total energies are also presented in or-

Finally, the existence of interactions between steps playger to illuminate and discuss certain aspects of step and in-
an important role in some physica| phenomena_ Indeed Sudﬁaraction energies. In Sec. Ill, our numerical results are pre-
interactions are a crucial mechanism for roughening transisented and discussed in detail. Finally, our conclusions and a
tions at surfacésand the stabilization of vicinals. The inter- summary are presented in Sec. IV.
step interactions can have various sources. There are elastic
interactions due to atomic relaxations around the steps. The Il. MODEL
deformation fields around each step, in an elastic continuum
model, interact repulsively with each othemd give rise to
an interaction energy varying asdf/with distanced. Then, Our aim is to compute the total energies of different crys-
there is an entropic interactibrtoming from the fact that tal configurations in order to compare them and find the most

A. Tight-binding model
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stable ones. In a tight-bindin@B) model, the crystal energy we can expand the electronic wave functiohg of energy
is usually expressed as being composed of an attractive andz,. The matrix elements of the Hamiltonian in this basis
repulsive part as will be determined by the hopping integra(l@m|vi|<bm>,
usually limited to nearest neighbors, and the effective atomic
E=Epand™ Erep: 1) levels(®;,|H+g|®;,) =6V, , -
where E,nqis due to the broadening of valence electronic ~ The hopping integrals are completely determined by three

levels into a band ani,.,would be any other effect, notably hopping parameterddo, ddw, dds, *"and the direction co-
the ion-ion repulsion. sines of the vectoR;; connecting sites andj. The variation

The repulsive energy will be described by a Born-Mayer©f these parameters with distance is taken to be exponential:
pairwise potential limited to first nearest neighbors:

dd)\=dd)\oe_q(Rii Ro=1  N=g¢,m,6. (5)
Erep=2 2" P(Rij/Ro=1) (2)  The parametersdd\, and q are usually fitted to band-
I<i structure calculations at high-symmetry points in the Bril-
where.Z and p are parameters that may be fitted, e.g., tolouin zone. _ _ _ _
bulk propertiesR;; is the distance between atorand j, The local density of states of a given atom is defined

andR, is a reference distance, usually the equilibrium inter-USing the Green operator:
atomic distance in the bulk.

Since we are interested in computing band energies for G(2)= (6)
transition metals, we use a tight-binding scheme where only z—Hqg
the d electrons are taken into account. It has been sfidwn
that, at least for transition metals not too close to the ex-
tremes of the transition-metal series, the cohesive properties 1
are by far dominated by the valendeelectrons. The bulk n(E)=22, — = lim Im(iX|G(E+ig)|iN)

N

band energy is written as 60t
Er . 1 AN ;
Eband:f EJ(E)dE, 3 =2; — — lim ImG}"(E+ie)
o e—0"

where ./ (E) is the (total) density of states anéy is the
Fermi energy of the system. The zero energy is chosen to be =22, (@i W) [28(E—Ey). )
at the center of gravity of/ (E). A

When our system deviates from a bulk crystal, i.e., we

deal with impurities, surfaces, etc., it is convenient to intro- . 16 . -
) ' " ' : . fraction:® When the corresponding coefficients are exact up
duce the notion of local density of statg€OS), which will _to the leveln, the LDOS has 8 exact moments. The more

be defined more precisely in the following. To each atomic T .
o . . accurate a calculation is required to be, the more exact mo-

sitei, we assign a local density of state¢E). For an atom i

at a site different from the bulk, the LDOS will be perturbed mentsu, :

compared to a bulk atomn;(E)=n(E)+ én;(E) where n

n(E) is the bulk density of states per atom afj(E) is the ,uip= f

LDOS perturbation. The perturbatiodn;(E) causes a per-

turbationésV; of the potential at sité. Both perturbations are need to be included.

interdependent and should be calculated self-consistently. In this work, the LDOS of an atom in a system is evalu-

However, in metals, screening of charge takes place W'th'%ted by calculating exactiy. first levels in a recursion

3?/ mteraLomlcE) d'lstadnct:)e and 't'he Icharllgeh of the po;%m'a@cheme and replacing the remaining part of the continued
i may be obtained by requiring local charge neutrality. (.5 :ion by the square-root terminator, which corresponds to

The band energy becomes using the asymptotic values for the remaining coefficiéfits.
In practice, a cluster of atoms is built around the atofaor
Eband:Ei {j

The quantity G}* can be expanded as a continued

prni(E)dE (8

—o0

E
FEni(E,(SVl,éVZ, ..,0Vj,...)dE which we wish to calculate the LDOS. The number of atoms
— in the cluster is determined by the requirement that all atoms

should be reached froimwithin n; jumps. A great advantage
— Niﬁvi], (4) of this technique is that we do not need to assume any peri-
odicity of the system.
whereN; is the number ofl electrons at sité and the second Sometimes, for simplicity, only the first three moments

term in the brackets avoids the double counting of thel#o:#1,42) are used for computing the LDOS. In this case,

change in electron-electron interactions responsible for thé€ total energy of a systefrelative to the energy of the free

shift 5V, .16 atomsg can be written &$§
The density of states of a system is calculated using a

tight-binding HamiltoniarHg . It is assumed that the set of E=D (S e PRiRo-D_ 5\ [ e-2a(Rj/Ro~1) |

d orbitals, ®;, (A=xy,yzzxx?>—y?,3z°—r?) centered at T\ = =i

all sitesi, provides a complete orthonormal basis on which 9)
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It is interesting to find out if the small structural differ-
ence for fcc(111) dense steps will manifest in different sta-
bilities between them. To this aim, we compute the energy
(per unit area of the vicinal surfaces neglecting possible
atomic relaxations.

The vicinal surface energy per unit areg,as a function
of m is usually expressed as

y(m)=y11cosh(m) + %sine( m)+E;«(m), (10)

where Y19 is the surface energgper unit arepof the flat
@ surface,§(m) is the misorientation anglgg, is the step en-

ergy per unit lengthd is the normal distance betwe€hll)

atomic planes, anf;(m), also in eV per unit area, is due to

/ the interactions between steps. This term not only includes
2 d the interaction between pairs of steps at all possible dis-
- a tances, but also many-body contributions. Consequently, we

have not tried to express it as a sum of pairwise interactions.

As usually done in the literatur&;,(m) is written as
{(b)

sing(m)
FIG. 1. Atomic structure of vicinal surfaces of f¢t11). (a) The Eint(m) = Bim(m) g (1)
differences of the stepa andB on fcc (111) surfaces are shown.

(b) Schematic view from the side of a mell) vicinal surface. The Whereﬁmt(m) is called the Step interaction energy per unit
various distances, used in our analysis, are indicaethe normal length.

distance between terrace rovtke full terrace width is thusna on Consequently the step energy per unit lengthis ob-
this vicinal), d, the normal distance betweéhll) atomic planes, tained as the limit whem— o of the function:
andga, the horizontal distance between inner and outer step edges '

e () g enls 043 for s AW eosm)
sing(m) '
where.7 is a constant depending on the band filling and theand
dd\y. This form of writing the energy goes under the name B
“second-moment approximation.” Bin(m) = B(M) = Bo. (13
2. Consideration on simple models
B. Application to vicinal surfaces We first consider simple models in which the contribution
1. Free energies of vicinal surfaces Ei of a gi_ven_atom' to the total energy is only a fun_ctio_n of
its coordination:E;=E(Z;), where Z; is the coordination

Our purpose is to calculate energies of vicinal surfaces o
fce (112 transition metals. We choose dense-step vicinal sur-
faces, i.e., such that two consecutive atoms along the st

eldges aLe nearesdt nelghbors n thle cré/_stal..Fofjlf_n;ﬂ:) Met- the flat surface. The atoms at the outer and inner step edges
als, such step edges run in t(&10 |rect|on.. OWEVET, " have coordinatiorZy and Z,, respectively. All other atoms
there are two ways to cut the crystal to obtain the desweqilave the bulk coordinatio@s. The inner and outer step

onelntatl(r)]n Of.”Ste.p edges. If we, €.9., fhﬁose to cuynat al(1.dges are horizontally shifted with respect to each otbee
ang th atwill give a dense-step vicinal, the angte wi Fig. 1 for the illustration, parallel to the terraces and normal
also give a dense-step vicinal but of a different structure. INo the step edges. This shift is denotgd, wherea is the

\ljiicg:]ih ;I,stgree tﬁ]%vgfe{ﬁgtt)%%e\ﬁc;ﬁfcg [)eesgléisngi(;;é) by interrow spacing on the terrace in the direction normal to the
o : ; tep edge. It can be shown then that the step energy i
the Miller indices fm,m,m+2), wherem+ 1 gives the num- step edg Show step 9y 1S

ber of rows at the terraces that are parallel to the step edges

(including the inner edge of the stgp3he typeB vicinals  B(m)= I—[E(Zo)+E(Z,)—(1+g)E(ZF)—(1—g)E(ZB)],
are described by the Miller indicesn+1,m+1m—1). An- (14)
other way to describe these vicinals is to note that the atoms
at the inner edges of the steps have 10 nearest neighbors f@here | is the interatomic distance along the edge, here
type A vicinals while the corresponding atoms for tyBe |=R,. Since 8(m) is found to be independent afh, the
vicinals have 11 nearest neighbors. Finally, we note thainteraction between steps vanishes in these modelarfgr
these vicinals also can be characterized by the orientation @hoice ofE(Z;). Thus, we haved(m)=g,.

their microfacets: (001) and (11Xor type A and typeB, It can also be shown that the shift parameges written
respectively. as

umber.
On the vicinalsA andB, the atoms at the surface, save for
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_ Zg—Z
9=z -z

(15

We are interested in the differeng&— p* of step energy
between typeA and typeB steps. Several energy functions
depending on the coordination numtZehave been proposed
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1

Bo=7

( — A+ ?[5@ V12-3(\/10+ ﬁ)]),

ﬁé‘%( — A+ ?[4J§+2Jl—2—3<¢ﬂ+ ﬁ)]),
(21)

in the literature. If nearest-neighbor pairwise interactions are
assumed, then so that:

S

> (16) BE—B§=§(—J§+3@—3J1—1+ J1_2)~?3.53>< 1074

(22

From the treatment of the above simple pairwise model, it
was in fact clear beforehand that only the band energy could
contribute to the energy difference — the repulsive part be-
ing of pairwise form not giving rise to any difference. Since
%, the band energy parameter, is positive for all band fill-
ings, stepA is always more stable than stBpin this model.

Consequently, in this model, steps of tydand typeB have Let us look at the order of magnitude @, B, and

the sameenergy since the atoms at their respective outeBg— /35 in the “second-moment approximation.” The ratio

edges have the same coordination number, which is 7. ~71.% can be obtained from the equilibrium condition with
A more complex choice foE(Z;) can be derived from a respect to a small variation of the lattice parameter. From Eq.

form of the effective-medium theoEMT),*® mostly appro-  (9), we find that

priate for simple metals. Neglecting relaxations and includ-

E(Z)=2

where. 7 is the pair interaction between nearest neighbors
Substituting Eq.(15) and Eq.(16) for g and E(Z;) in Eq.
(14), we find

Z

1 A
ﬁO:T(ZO_ZF)?- (17

ing density contributions to the atoirin a system only from A 19
its nearest neighbors, we can write this atom energy relative B ﬁ p' (23
to a bulk atom a$
and
Z; nlbny72
E(Zi)—E(ZB)=C[1—<—) } q)
e Ecar(Ro) = ( 1- 5) PZs. (24)
Zi nlbn, Zi
*aiNo (1_2) B (1_2) 19 Using the value p/q=3 derived from universal

potentials?> we obtain
where the parametelS, 5, 7,, «;, andng are extracted

from self-consistent calculations of an atom embedded in a B61~6.6X10 2Ec{Ry), (25
homogeneous electron gas amds characteristic of the fcc
lattice: b= (16m/3)¥3 /2. and

Using Eq.(14), we get BBl — B~ 1.7 10 *E o (Ry). (26)

Bg_ﬂézl E(Z8) - E(Z)+ EE(ZF)— EE(ZB) _ SinceE 1 Ry) is of the order of a few e%’ 8ol anAdggl are
| 3 3 of the order of a few tenths of an eV, whiggl — 351 is only
(19 of the order of 1 meV. Thus, if we expect that such a model

The parameters in this model are material dependent and wWHYeS & reasonable order of magnitude &y, the energy
will arrive at different values foﬁg—ﬁé depending on the difference between steps andB is so small that the influ-

system at hand. As an exampfeusing appropriate param- ence of higherl-order moments may drastically change, not
eters for PEL the differencegE— B2 amounts to~—0.7 only the numerical values, but also the general behavior as a
il 0 0 .

S L function of band filling. Moreover, higher-order moments in-
meV, which is to say that th8 step is slightly more stable troduce indirect long-range interactions between steps. This
on Pt. The difference is so small though that the result see g-rang PS.

ms o .
indecisive. Using parameters for ARef. 19 gives a similar ¢an be shown qualitatively before any numerical calcula-
value for,Gl'B A 0.5 meV. ' tions, which we proceed to do in the following.

0 - O . T . .
Another possible choice forE(Z;) is the so-called

. . . : 3. Qualitative discussion on the influence
“second-moment approximatio'Eq. (9)] which yields

of higher order moments

To this aim, we will keep the pairwise form of the repul-
sive energy but go beyond the second-moment approxima-
tion for the band energy. We will also neglect aiV;
(6V;=0) and ensure the conservation of total charge by a
small variation of the Fermi levéf i.e., we impose global
charge conservation instead of local charge neutrality. Thus

E(Z)=2— —NZ. (20
The first term comes frork ., and the second frork 0.
Also here, the stepé and B have different energies. It is
found that
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we write the variation of the total band energy due to astep edge. In this case we can no longer express the band
variation 5./ (E) of the total density of states as energy as a function of coordination number. We have veri-
fied numerically that the moment, of 6./ gA(E) does not

_ [EF » cancel. Consequentlys’g—ﬁé cancels at least twice when

O band= f_w(E_ Er) o/ (B)dE. @7) Er varies in b,B[. We conclude thus that the calculation of
Epang Must include at least five exact moments in order to

When the firstp moments fug,...,u,—1,p=3) of describe the difference between si&pand stepB for any
8/(E) vanish, a mathematical theorémstates that band filling.

S6Epang Changes sign at leagt—2 times whenEg varies in Let us emphasize that on the one hand the approximation
]b,B[, b andB being the bottom and the top of tikeband,  (27), which ensures a global neutrality rather than a local
respectively. neutrality, tends to overestimate the number of zeroes of

For the interaction energy between steps, similarly to the’E,..{ EF) and displace their positiof?.On the other hand,
case of interactions between adatdthi, is easily seen that the so-called second moment approximation, which implic-
the first moment that is modified by the presence of severdily assumes local neutrality, gives a constant sign for
steps is the moment that includes the shortest closed pat}ﬁ—ﬁé as a function ofeg, but with a very poor descrip-
starting from a step edge, going to the next step edge angbn of the LDOS.
coming back. This moment ig,,.-. Note that, since In the above discussion the atomic relaxation effects have
m=2 in order to meaningfully speak about vicinal surfaces,been completely disregarded. A calculation including these
the very first moment that can be altereduig. Any calcu-  effects is, in principle, possible in the tight-binding theory
lation with fewer moments thanr@+ 2, meaning of course since the laws of variation with distance of all the parameters
TB calculations employing global charge neutrality, will fail entering into the Hamiltonian are known. However, such a
to reproduce interaction energies. calculation is a formidable numerical task if the LDOS are

The consequences due to the theorem cited above for trmmputed with a large number of exact moments but remains
interaction energy are that, for a given value of, accessible in the framework of the second-moment approxi-
Ei.«((Er) changes sign at least fon2values ofEg. Further- mation of Eq.(9). This has recently been carried out on
more, for a given value oEg, E;, will also change sign as vicinal surfaces of C@° In this study the step-step interac-

a function ofm since the positions and the number of zeroedion comes from the interference between the deformation
of E;«(E¢) depend om. As a conclusionE;, oscillates as fields induced by the atomic relaxation at each step since, as
a function of bothEg andm and may thus be either attractive shown above, this interaction vanishes on a rigid lattice in
or repulsive depending on the considered transition metdhis approximation. Consequently, this work substantially
and on the actual width of the terraces. improves the description of the elastic interactions since the

We consider now the implications of the theorem on thediscrete nature of the lattice is taken into account contrary to
difference in step energiqﬁ%‘—,@é. To this aim, we need to the previous studies based on the elasticity theory of continu-
be able to express this difference as an integral similar to theus media. It is found that at large terrace width this inter-
right-hand side of27). The momeniu; of the local density action decreases asniy. Moreover the relative energies of
of statem; (E) is completely determined from the knowledge StepsA and B have been compared and it was found that
of the number and location of the first nearest neighbors ofelaxation effects do not modify qualitatively the results of
atomi. This means that, in the present case, the band energifieé second-moment approximation with a rigid lattice at least
also whenu; is taken into account, can be written as afor Cu: step Ais preferred by=-1 meV.
function of the coordination number. Thus the quantity From this discussion, we can deduce that it is instructive
BE— B2 can, in a straightforward way, be expressed as in EqlO calculateB;y and 85— Bg with LDOS calculated using a
(190 when all the LDOS are calculated with exact large number of exact moments with the local charge neu-
Lo, M1, Mo, ug. IN this “third-moment approximation,” the trality condition, even when relaxation effects are neglected.
difference of step energies is given by Indeed, on the one hand, such a calculation should give a

reasonable estimate of the conduction electron mediated

5 A Er 1.4 A step-step interaction to compare with the elastic one and, on
Bol = Bol = fﬁwd E(E—Ep)3[3n7(E) =3 (E) the other hand, to determine if the s@an be stabilized by
a better description of the LDOS in the domain of band
+ng(E)—ng(E)] filling of fcc crystals.
E
=f FdE(E—EF)d/I/'BA(E), (28) IIl. RESULTS AND DISCUSSION

The question is how many moments should be included in
wherenf!®J(E) is the LDOS of an atom at the inner edge of the computation of the LDOS. The convergence require-
stepA[B], and ng(E)[ng(E)] is the LDOS of an atom in  ments are set by the minimum energy differences that we
the flat surfacgbulk]. It can be shown analytically that the calculate which are of the order of 1 meV. In order to reach
moments ug, 1, mp,u3 Of 67 ga(E) cancel. If a larger sufficient accuracy in the calculated energies, we use 10 ex-
number of exact moments are taken into account in the calact levels in the continued fractions — i.e., 20 exact mo-
culation, an expression similar to E&8) for BE—BQ canbe ments — for(111) vicinals. In terms of cluster sizes, this
derived, buté./ za(E) will include additional LDOS com- translates to at most 3871 atoms per cluster. We assume that
ing from the atomic rows, which are farther from the inner potential perturbations occur on all atoms that can be reached
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in 10 nearest-neighbor jumps from the central atom of the 0.4
system(chosen to be an atom at the inner step édgée
need thus to calculate the LDOS on all geometrically in-
equivalent atoms and, consequently, to construct as many 03
clusters. The number of such atoms is a function of terrace
width. For(111) vicinals, it isn,(m+1)+1, wheren, is the
number of levels used in the continued fraction. As an ex-
ample, for a vicinal withm=4, we need to construct 51
clusters.

We calculate energies of unrelaxed structures and use the
parameters

027

Energy (eV)

0.1

ddo=-0.798 eV, dd7w=0.317 eV, ddé=-0.0367 eV

0.0 : . .
(29 2.0 3.0 4.0 5.0 6.0

Terrace width (m)
(a)

for finding the band energy. The repulsive energy parameter
% is determined from the condition that the total bulk en-

ergy is at a minimum at equilibriumR;; =Ry). This gives 040 168
the relation
E Ro) 0.30F
ban({ 0 __ B (30)
Erep( RO) q §
(2]
As above, we use the valygq=3. 5 020 |
b
A. Vicinal surfaces of type A
As already discussed, the vicinal surfaces of tjpen fcc 0.10°%
(111) metals have steps wittD01) facets and they are de-
noted by the Miller indices fccrg,m,m+2) wherem+1 . . .
also denotes the number of rows at the terraces that are par- 0'002.0 3.0 4.0 50 6.0
allel to the ste'p's. . . . Terrace width (m)
For these vicinals, using E¢L0), y, as a function om is (b)
given by
FIG. 2. Vicinal surface energieg(m)I? (in eV), wherel is the
3(m+2/3) nearest-neighbor distance as a function of the terrace wadémd
ya(m) =y for several band fillings. The flat(111) surface energy for each

2
\/9(m+ 2/3)°+8 band filling is shown at the vertical rightmost axis in corresponding
AL pA symbols.(a) fcc (m,m,m+2) vicinals, i.e., with steps of typA.
+ w 22 ) (32 (b) fcc (m+1,m+1m—1) vicinals, i.e., with steps of typB.
1V2/3  \9(m+2/3)%+8

Here and in the following, the units af and Y will be in The vicinal surface energies are seen to decrease
eV/unit area and the units g8 and B, in €V/unit length. smoothly yvithm and with band filling. The 'diff'erence be-
The interatomic distance is chosen as the length unit. ThBveen vicinal and flat surface energies is in the range
figures will be presented in eV, i.eyl?, Bl, and B, in  0.01-0.1 eV and decr_eases with increased band f|II|ng and
order for them to be independent of the lattice parameter. Fo¥ith m. The energy difference between subsequent vicinal
purposes of comparing directly with experiments, the approsurfaces is in the range 0.002-0.02 eV — the largest differ-
priate band filling and interatomic distance should be chosergnces being for low band fillings and betwesm=2 and

In Fig. 2(@), we present the vicinal surface energigeg? m=3 and the smallest ones for high pand fillings and be-
as a function ofm for severald band fillingsf and compare tweenm=5 andm=6. In terms of ratios, we have, e.g.,
them to the flat surface energies. Since the intra-atomic po¥a(6)/¥**Y~1.1 for f=6.8, but this ratio increases with
tentials 5V; are determined from the local charge neutralityband filling and is~1.2 for f=9.2.
condition, the number of electromé on each site is a con-  In order to extracpy, the single step energy, we examine
stant that is set equal tb. The vicinal surface energies, the behavior of3(m). In Fig. 3, the step energg”(m)! as a
Yas and the flat surface energi@élll) are obtained direcﬂy function of terrace width is shown for a band fllllng of 7.6.
by integrating the local density of states of the different rep-We note thatg”(m)| converges rapidly witm. The inter-
resentative atoms and subtracting the double counting tern@ftion energy becomes unimportant alreadyrfor 6. This
and the bulk energy. Since we are interested in fcc transitiomeans that, for our purposeSy= B(6).
metals, the band fillings are chosen to be representative of The energy of the actual stepl, as a function of band
those, i.e., since the fcc metals are situated at the end of tHf#ling is shown in Fig. 4a). Its band and repulsive parts are
transition-metal series, we choose band fillings larger thaishown separately in order to compare their respective impor-
6.8. tance. The value qﬁél is smoothly decreasing with increas-
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ing band filling with a slight flattening in the region

7.4—8.0. This has to do with the way that the band and
repulsive energy contributions interplay. The band energy
part of B3 is decreasing at about a constant rate up to a band
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FIG. 5. Interaction energg;,/ (in eV per step atom, being the
nearest-neighbor distanceetween steps on vicinal surfaces of fcc
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of m=2-5 wherem denotes the number of interrow spacings at
the terracesa) fcc (m,m,m+2) vicinals, i.e., with steps of type.

(b) fcc (m+1,m+1m—1) vicinals, i.e., with steps of typB.

filling of 8.6 and decreases even faster after that, whereas the
repulsive energy part is less and less negative with increasing
band filling.

Once 5 is known, we can extract the value of the step
interaction energy per unit leng(,, from Eq. (31). In Fig.

5(a), we present the step interaction energy again as a func-
tion of band filling form=2-5. As seen, the interaction
between steps of typk is oscillating and exhibits changes of
sign 3-5 times as a function of band filling for all terrace
widths. The oscillatory behavior is solely caused by the band
energy contribution and as such, illustrates the theory of mo-
ments discussed in Sec. Il. We note that inclusion5'f’s

and local charge neutrality requirements do not affect the
qualitative trends predicted by the theorem. As stated in Sec.
Il, the step interaction for a givem may thus be either
attractive or repulsive depending on the band filling of the
material.

In Fig. 6(a), the step interaction energy as a function of
terrace width is presented for several band fillings. We have
oscillations in the curves and changes of sign just as for
,Bi’r\n as a function of band filling save for the=9.2 curve

A . .
neighbor distandeneeded for creating an isolated step on an a fecVhere Biy is always attractive. For the same metal, at least

(112) surface as a function of the band fillinfg The energy is

for band fillings less than 9.2, the electronic part of the step

decomposed in its band and repulsive contributions in order to cominteraction energy may thus be either attractive or repulsive

pare their respective importande) step of typeA (b) step of type

B.

depending on the width of the terraces.
The magnitude of}/ is a few meV and diminishes dras-
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0.0100 . where notations are as in E@1).

0.0080 | 28 In Fig. 2(b), the surface energies of the tyBevicinals are

0.0060 | shown for several band fillings. The behavior of these curves

0.0040 | is similar to the typeA curves — they decrease smoothly
S 00020%; with band filling. The energy difference between vicinal and
; 0.0000 % flat surfaces as well as the difference between vicinal sur-
2 00020 Ny faces with differentn’s are analogous to the type case —
s the vicinal surfaces have energies 0.01-0.1 eV larger than

-0.0040 | .

the surface energy and there are energy differences of 0.002—

-0.0060 ¢ 0.02 eV between subsequent vicinals. The ratios

-0.0080 ya(m)/ ¥y behave similarly to the corresponding ratios

-0.0100, '~ 30 w0 50 for the vicinals of typeA: they increase slightly with band

Terrace width (m) filling and their values are around the ones for the type
) vicinals.

0.0100 - . The value of the step energg}g’ is extracted in the same

0.0080 f, . way as,Bé and is shown as a function of band filling in Fig.

o.ooeo;%\‘ . 4(b). Its band and repulsive part are shown separaﬁy.

0.0040 b N5 gy ] resemblesgly but exhibits a local minimum in the region
2 00020 F N\ N /g\ 3 7.2—7.8 instead of just flattening, which comes from the less
B 0.0000 w - pronounced decrease of the band energy parBgfcom-
G 00020 >0\ = ] pared toBg. This will allow the repulsive energy part to

=93> N . B -

-0.0040 SNl ] dominate more i3, for band fillings less than 7.8.

-0.0060 f ] The step interaction energg? |, obtained in the same

-0.0080 | ] manner a3y, is shown in Fig. &) as a function of band

20,0100~ 25 = 0 filling for m=2-5. The form of the step interaction curves

for vicinal surfaces of typ® is similar to the typeA curves
— we have oscillations and changes of sign 2—4 times as a
function of band filling.

Terrace width (m)

FIG. 6. Interaction energg; (in eV per step atorr, being the . . . .
nearest-neighbor distanceetween steps on vicinal surfaces of fcc The step interaction energgﬁtl as a function of interstep

(111) as a function of terrace widtm for several band filling$. (a) distance is shown in Fig.(b). The curves oscillate slightly

fcc (m,m,m+2) vicinals, i.e., with steps of typé. (b) fcc differently from the correspondingﬁnl curves in Fig. 6 but
(m+1,m+1m—1) vicinals, i.e., with steps of typB. the overall behavior is exactly analogous. We notice also
here changes of sign for band fillings less than 9.2.

A B H
tically beyond m=4. Various experimental and Bin and B"_“ res_emble each other cIose(Iyee_Flg. 3 but
theoretica®?’ extractions of step interaction magnitudes atare far from identical. A noteworthy example is for the low

different vicinals show that the elastic interaction energy dePand fillings in the casem=3 where B is repulsive
creases from about 10 to 1 meV when the terrace widtivhereasgi, is attractive. We note that the magnitude of
increases from 2 to 5 interrow spacings. Furthermore, théiy for short terrace widths is a few meV which, similarly to
dipolar interaction is about a factor of 18maller. For low the analysis for type\ interactions, may be comparable to
temperatures, entropic interactions are small and can be diie magnitude of elastic interaction energies.

carded. The order of magnitude of indirect electronic inter-
actions for small terrace widths is then seen to be comparable
to the elastic interactions and may thus, due to its oscillating ] ) ] ]
nature, give rise to attractive step interactions. Evidence to AS we found in the previous subsections, there are notice-

that effect is claimed to have been seen for vicinals ofAy. able differences between energies of {ad1) vicinal sur-
faces of typeA and B. We will here examine these differ-

o ences in more detail.
B. Vicinal surfaces of typeB Firstly, we show the difference of vicinal surfaces ener-

The type B vicinal surfaces of fcc(11) metals have gi€s ya and yg as a function of band filling. In Fig. 7 the
(111) facets. Their Miler indices are fcc difference (g—7ya)l* is shown for terrace widths of
(m+1,m+1m—1). Analogous to Eq(31), we can express M=2—6. The shapes of the curves are similar foma/lbut

the B vicinal surface energy as a function of terrace width  the amplitudes differ. Fom=4, the amplitudes are very
as similar but the curves exhibit quasirigid shifts towards a

“zero” level. The energy is always larger foyg, which is
the effect of the contribution of the band energy. It is thus the

C. Energy difference betweerA and B

yg(m)= (113 3(m+1/3) band energy that is responsible for the stability of type
B V9(m+1/3)%+8 vicinals in our calculations.
In Fig. 8, the energy difference8f— B85)l between the
B B 0
Bo+ Bim(M) 2y2 (32) isolated steps of typ8 and A is shown as a function o

+ 2
V2/3  9(m+1/3)?+8’ band filling. This energy difference is less than 10 meV and
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Oy =7 and
Omax | o how
. B—A_
0.009 | oS ks f . 2kB_I_cot KaT
0.007 7
. w Vs
s 0.005 | —In(ZSlnlm”fi/l pa(w)dw, (39
= 0.003 | .
] P with
4 0001 R
=5 1
| ' 3/ ga(@) = 3[3nP(w) =3n{(@) +ne(w) ~ng(w)].
-0.003 | (35)
O 7072747678 808284 8688909204 Indeed, when considering phonons the electronic LDOS ap-
Band filling (f) pearing ind./ g A(E)[ EQ. (28)] should simply be replaced by

the corresponding local spectral densities of phonons.

FIG. 7. The difference in free energyy§— y,)I? (in eV) be- In the Einstein model it is found that

tween vicinal surfaces of typ& [fcc (m,m,m+2)] and typeB [fcc

(m+1m+1m-1)]is shown as a function of band fillind, for SN ga(@)=(1/3)[38(w— \/§w0)—35(w— /_5/2(»0)
terrace widthsm=2—-6. The numbem denotes the number of

interrow spacings at the terraces dni$ the nearest-neighbor dis- +8(w— \/Ewo) —8(w—\T712wq)], (36
tance.

with w(z):K/M, M being the mass of an atom. In the high-
shows a change of sign at a band filling of 7.6. We have thugemperature limitoUB~* vanishes and

the range of band fillings divided into two regions: for band
fillings <7.6, steps of typd are preferred while for band 8SPA=2.1x10"3kg. (37
filings >7.6, steps of typd are preferred. There is though . _ BoA 5
an uncertain region for band fillings 8.6—8.8 where the enMore specifically atT=900 K, sU*""=10"" eV and the
ergy difference is very small. contribution of the surface vibrational free energy to the dif-
Since the energy difference between sBepnd stepA at  ference of energy between stBpand stepA is
T=0 K is very small one can wonder if at high temperature B—A__ B-A_ 4
(for instance . T=900 K) the vibrational contribution to the OF" "= —To5™ "= —1.6X107" eV. (38)
difference in the free energies of stBpand stepA may play  Consequently vibrational effects, at least for straight steps,
a significant role. To estimate the order of magnitude of thisavor stepB for any element but are one order of magnitude
contribution we have used the Einstein model with a forcesmaller than electronic effects.
constantx limited to first nearest neighbors. In this model  In order to compare with experimental findings, we may
the contributions of the surface vibrational internal energylook at Ir, which has~7.5 electrons per atom in trieband
sUB~A and entropysSE~4, to (B5— B5) are given byP and Pt, which has around one more electron. We find that
type B steps would be more stable than typesteps on Ir,
SUB—A f“’max ﬁ—wcot ho 51 sa(w)dw, (33  Which seems to be the case also in experiméfist Pt, we
0 2 DkeT O BA ' find that steps of typé\ are very slightly more stable than
steps of typeB. However, the band filling of Pt falls in the
By —B,)1 above-mentioned uncertain region. Experimentalty is
found that for this metal th® steps are more stable. There
may be several reasons behind this apparent discrepancy.
First the influence of atomic relaxation and the spin-orbit
coupling effect may distort the curvesf— B83)! but we do
not expect drastic chang&SA more serious approximation
may be the neglect af electrons at the end of the series, i.e.,
for Pt. Indeed, they may play a dominant role since the ef-
B stable fects ofd electrons for this metal do not favor clearly one
0005 P ] type of step relative to the other. According to the calcula-
tions performed on AlL11) stepst* s electrons favor thé
steps: this could be the reason wWRysteps are energetically
e T T TTe 55075704 more favorable in Pt. In these numerical calcqlatib”nthe
SO padsmine® difference between typ& and typeB_ steps on Al is found to
be 16 meV with the typ® step being more stable than the
FIG. 8. The difference in energysf — 2)! (in eV per atom| type A step, which is more in line with what was found for
being the nearest-neighbor distajdeetween steps of typg and  Pt. This energy difference seems larger than the energy dif-
steps of typeA of fcc (111) surfaces is shown as a function of the ferences we find, but the comparison cannot be immediately
band filling f. The domains where step and stepA are more done since Al is a free-electron metal and the calculations in
stable are indicated, respectively. Ref. 14 also include relaxation effects. In view of these cal-

0.010

0.005

A stable
0.000

Energy (eV)

-0.0
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culations and from our estimates within EMT, it might be proximation” to the energy cannot give the correct answer
said that the effect of electrons could well be to rend&  for all d band fillings for the energy differences between
type steps energetically more favorable at the end of theteps of typeA andB.
series. The interaction energies between steps is seen to oscillate
Other semiempirical calculatioffshave also found thB  as a function of both band filling and terrace width and can
type steps energetically more favorable thanAhtype steps be either attractive or repulsive, depending on the particular
on Pt, the so-called equivalent crystal theory being closer tonetal and the particular terrace width. This oscillatory be-
experimental values than the so-called embedded-atoimavior is consistent with the predictions of the theorem of
method. To what extent one may distinguish theand d moments, as demonstrated in Sec. Il. The magnitude of the
electron contributions in those calculations is, however, nointeraction energy is compared to experimental and other
clear to us. theoretical findings and is seen to be comparable to the elas-
tic energy for short distances. Since entropic contributions
are small for low temperatures and dipolar contributions
IV. SUMMARY AND CONCLUSIONS have been estimated to be three orders of magnitude smaller
The properties of vicinal surfaces with dense steps of fcghan the elasti(_: interaption, we conclude that_the important
(111 transition metals have been investigated within a tight_effects fqr the interaction between steps on vicinal surfaces
binding model where the local densities of states are calci@re elastic and electronic at low temperatures and short ter-
lated from a continued fraction expansion of the Green funcface widths. -
tion with 10 exact levels. The energy difference between stepsand B exhibits a
The (111 surfaces of fcc metals can have two types ofclear c;h.ange of sign as a fu'nction «tfpand filling. Ford'
dense stepsA and B (see Fig. 1, which give rise to two band f|II|ngs§7.6, theB step is er_lergetlcally favored while
different types of vicinals. We have calculated the energies ofor band fillings>7.6, theA step is more stable. However,
A andB vicinal surfaces of various terrace widths, the ener-the region around 8.7 electrons per atom is so uncertain that
gies of their single steps, and the step interaction energiesthe effects of electrons may be dominating for this range of
We have first investigated simple models for describingoand fillings.
the energies. It is found that models where the energy of an
atom in a system is written as a functi_on of its cpordination ACKNOWLEDGMENTS
number cannot produce the interaction energies between
steps at vicinal surfaces. We have shown that, within the We are very grateful to P. Hecquet and B. Salanon for
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