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We investigate vicinal surfaces of fcc~111! transition metals with close-packed step edges in the tight-
binding model. There are two types of such vicinals,A and B, since there exist two types of steps with
close-packed edges obtainable on fcc~111! surfaces. We calculate energies and energy differences of these
vicinal surfaces, their steps, and the interaction between steps for a number of terrace widths. It is seen that
steps of typeA are preferred for metals with highd band fillings~e.g., Pt! while for lowerd band fillings~e.g.,
Ir!, steps of typeB are more stable. Finally, the interaction energy between steps is shown to be a~decaying!
oscillatory function with both terrace width and band filling. Its magnitude is found to be comparable to the
elastic interaction energy between steps at short distances and low temperatures.

I. INTRODUCTION

The study of vicinal surfaces is a handy tool in the quest
of finding reliable models of various surface processes. They
provide well-defined defects~steps! for understanding,
among many other situations, diffusion at surfaces, roughen-
ing transitions, surface growth, and chemical reactions such
as chemisorption and catalysis.

One specific example is the equilibrium shapes observed
at Pt~111! — hexagons with two different edge sizes.1 This is
explained by the existence of two types of dense steps on fcc
~111! surfaces having different energies. The ratio between
their free energies gives the ratio between the lengths of the
hexagon edges. Equilibrium shapes of Ir clusters on Ir~111!
have also been studied2 where the above-mentioned differ-
ences in step energies manifest in a similar way. It is thus of
interest to make a systematic investigation of the energy dif-
ferences of the two kinds of dense steps encountered on fcc
~111! transition metals.

Furthermore, steps have been shown to modify the ada-
tom motion at surfaces.3 It is thus of importance also for
understanding diffusion at surfaces to chart the energetics of
steps. We emphasize that both possible growth shapes and
atom diffusion are crucial ingredients in industrial growth of
metals, which make their study all the more interesting to
pursue.

Finally, the existence of interactions between steps plays
an important role in some physical phenomena. Indeed such
interactions are a crucial mechanism for roughening transi-
tions at surfaces4 and the stabilization of vicinals. The inter-
step interactions can have various sources. There are elastic
interactions5 due to atomic relaxations around the steps. The
deformation fields around each step, in an elastic continuum
model, interact repulsively with each other6 and give rise to
an interaction energy varying as 1/d2 with distanced. Then,
there is an entropic interaction7 coming from the fact that

meandering steps cannot cross each other. This interaction is
also repulsive and varying as 1/d2. Thirdly, there exist
dipole-dipole interactions between steps. Due to charge re-
distribution at the steps, similarly to a metal surface, dipoles
are formed that interact either repulsively or attractively with
each other.8,9 Also these interactions vary as 1/d2.

Several theoretical investigations have been made of in-
teracting steps where elastic and/or dipolar interactions are
present.4–6,8,10There have though, to our knowledge, been
much fewer considerations of conduction electron-mediated
interactions,11,12 although some electronic structure calcula-
tions have been performed on Al stepped surfaces13,14 not
discussing step interactions.

In our analysis, we will concentrate on electronic effects
at the temperatureT50 K. This means that no entropic term
will be present and since we study unrelaxed structures, no
elastic deformation contribution will be present either. Nev-
ertheless, since the electronic contribution is seldom consid-
ered in step interactions, it is of interest to give an estimate
of its magnitude and sign.

The paper is organized as follows. In Sec. II, we present
the tight-binding model used for calculating total energies of
transition metals. The model is made explicit for application
on vicinals of fcc~111! surfaces consisting of the two pos-
sible kinds of dense steps that exist on such surfaces. Simple
analytical models for total energies are also presented in or-
der to illuminate and discuss certain aspects of step and in-
teraction energies. In Sec. III, our numerical results are pre-
sented and discussed in detail. Finally, our conclusions and a
summary are presented in Sec. IV.

II. MODEL

A. Tight-binding model

Our aim is to compute the total energies of different crys-
tal configurations in order to compare them and find the most
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stable ones. In a tight-binding~TB! model, the crystal energy
is usually expressed as being composed of an attractive and a
repulsive part as

E5Eband1Erep, ~1!

whereEband is due to the broadening of valence electronic
levels into a band andErepwould be any other effect, notably
the ion-ion repulsion.

The repulsive energy will be described by a Born-Mayer
pairwise potential limited to first nearest neighbors:

Erep5(
j, i

Ae2p~Ri j /R021!, ~2!

whereA and p are parameters that may be fitted, e.g., to
bulk properties,Ri j is the distance between atomsi and j ,
andR0 is a reference distance, usually the equilibrium inter-
atomic distance in the bulk.

Since we are interested in computing band energies for
transition metals, we use a tight-binding scheme where only
the d electrons are taken into account. It has been shown15

that, at least for transition metals not too close to the ex-
tremes of the transition-metal series, the cohesive properties
are by far dominated by the valenced electrons. The bulk
band energy is written as

Eband5E
2`

EF
EN ~E!dE, ~3!

whereN (E) is the ~total! density of states andEF is the
Fermi energy of the system. The zero energy is chosen to be
at the center of gravity ofN (E).

When our system deviates from a bulk crystal, i.e., we
deal with impurities, surfaces, etc., it is convenient to intro-
duce the notion of local density of states~LDOS!, which will
be defined more precisely in the following. To each atomic
site i , we assign a local density of statesni(E). For an atom
at a site different from the bulk, the LDOS will be perturbed
compared to a bulk atom:ni(E)5n(E)1dni(E) where
n(E) is the bulk density of states per atom anddni(E) is the
LDOS perturbation. The perturbationdni(E) causes a per-
turbationdVi of the potential at sitei . Both perturbations are
interdependent and should be calculated self-consistently.
However, in metals, screening of charge takes place within
an interatomic distance and the change of the potentials
dVi may be obtained by requiring local charge neutrality.16

The band energy becomes

Eband5(
i

H E
2`

EF
Eni~E,dV1 ,dV2 , . . . ,dVj , . . . !dE

2NidVi J , ~4!

whereNi is the number ofd electrons at sitei and the second
term in the brackets avoids the double counting of the
change in electron-electron interactions responsible for the
shift dVi .

16

The density of states of a system is calculated using a
tight-binding HamiltonianHTB . It is assumed that the set of
d orbitals, F il (l5xy,yz,zx,x22y2,3z22r 2) centered at
all sites i, provides a complete orthonormal basis on which

we can expand the electronic wave functionsCn of energy
En . The matrix elements of the Hamiltonian in this basis
will be determined by the hopping integrals^F iluVi uF jm&,
usually limited to nearest neighbors, and the effective atomic
levels ^F iluHTBuF im&5dVidlm .

The hopping integrals are completely determined by three
hopping parametersdds, ddp, ddd,17 and the direction co-
sines of the vectorRi j connecting sitesi and j . The variation
of these parameters with distance is taken to be exponential:

ddl5ddl0e
2q~Ri j /R021!, l5s,p,d. ~5!

The parametersddl0 and q are usually fitted to band-
structure calculations at high-symmetry points in the Bril-
louin zone.

The local density of states of a given atom is defined
using the Green operator:

G~z!5
1

z2HTB
~6!

as

ni~E!52(
l

2
1

p
lim

«→01

Im^ iluG~E1 i«!u il&

52(
l

2
1

p
lim

«→01

ImGii
ll~E1 i«!

52(
n,l

u^F iluCn&u2d~E2En!. ~7!

The quantity Gii
ll can be expanded as a continued

fraction.16 When the corresponding coefficients are exact up
to the leveln, the LDOS has 2n exact moments. The more
accurate a calculation is required to be, the more exact mo-
mentsmp

i :

mp
i 5E

2`

1`

Epni~E!dE ~8!

need to be included.
In this work, the LDOS of an atom in a system is evalu-

ated by calculating exactlync first levels in a recursion
scheme and replacing the remaining part of the continued
fraction by the square-root terminator, which corresponds to
using the asymptotic values for the remaining coefficients.16

In practice, a cluster of atoms is built around the atomi for
which we wish to calculate the LDOS. The number of atoms
in the cluster is determined by the requirement that all atoms
should be reached fromi within nc jumps. A great advantage
of this technique is that we do not need to assume any peri-
odicity of the system.

Sometimes, for simplicity, only the first three moments
(m0 ,m1 ,m2) are used for computing the LDOS. In this case,
the total energy of a system~relative to the energy of the free
atoms! can be written as18

E5(
i

S (
j, i

Ae2p~Ri j /R021!2BA(
jÞ i

e22q~Ri j /R021!D ,
~9!
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whereB is a constant depending on the band filling and the
ddl0 . This form of writing the energy goes under the name
‘‘second-moment approximation.’’

B. Application to vicinal surfaces

1. Free energies of vicinal surfaces

Our purpose is to calculate energies of vicinal surfaces of
fcc ~111! transition metals. We choose dense-step vicinal sur-
faces, i.e., such that two consecutive atoms along the step
edges are nearest neighbors in the crystal. For fcc~111! met-
als, such step edges run in the^110& direction. However,
there are two ways to cut the crystal to obtain the desired
orientation of step edges. If we, e.g., choose to cut at an
angleu that will give a dense-step vicinal, the angle2u will
also give a dense-step vicinal but of a different structure. In
Fig. 1, the two different typesA and B of resulting ~111!
vicinals are shown. The typeA vicinals can be described by
the Miller indices (m,m,m12), wherem11 gives the num-
ber of rows at the terraces that are parallel to the step edges
~including the inner edge of the steps!. The typeB vicinals
are described by the Miller indices (m11,m11,m21). An-
other way to describe these vicinals is to note that the atoms
at the inner edges of the steps have 10 nearest neighbors for
type A vicinals while the corresponding atoms for typeB
vicinals have 11 nearest neighbors. Finally, we note that
these vicinals also can be characterized by the orientation of
their microfacets: (001) and (111)̄ for type A and typeB,
respectively.

It is interesting to find out if the small structural differ-
ence for fcc~111! dense steps will manifest in different sta-
bilities between them. To this aim, we compute the energy
~per unit area! of the vicinal surfaces neglecting possible
atomic relaxations.

The vicinal surface energy per unit area,g, as a function
of m is usually expressed as

g~m!5g~111!cosu~m!1
b0

d
sinu~m!1Eint~m!, ~10!

whereg (111) is the surface energy~per unit area! of the flat
surface,u(m) is the misorientation angle,b0 is the step en-
ergy per unit length,d is the normal distance between~111!
atomic planes, andEint(m), also in eV per unit area, is due to
the interactions between steps. This term not only includes
the interaction between pairs of steps at all possible dis-
tances, but also many-body contributions. Consequently, we
have not tried to express it as a sum of pairwise interactions.
As usually done in the literature,Eint(m) is written as

Eint~m!5b int~m!
sinu~m!

d
, ~11!

whereb int(m) is called the step interaction energy per unit
length.

Consequently the step energy per unit lengthb0 is ob-
tained as the limit whenm→` of the function:

b~m!5d
g~m!2g~111!cosu~m!

sinu~m!
, ~12!

and

b int~m!5b~m!2b0 . ~13!

2. Consideration on simple models

We first consider simple models in which the contribution
Ei of a given atomi to the total energy is only a function of
its coordination:Ei5E(Zi), where Zi is the coordination
number.

On the vicinalsA andB, the atoms at the surface, save for
the outer and inner step edges, have the coordinationZF of
the flat surface. The atoms at the outer and inner step edges
have coordinationZO andZI , respectively. All other atoms
have the bulk coordinationZB . The inner and outer step
edges are horizontally shifted with respect to each other~see
Fig. 1 for the illustration!, parallel to the terraces and normal
to the step edges. This shift is denotedga, wherea is the
interrow spacing on the terrace in the direction normal to the
step edge. It can be shown then that the step energy is

b~m!5
1

l
@E~ZO!1E~ZI !2~11g!E~ZF!2~12g!E~ZB!#,

~14!

where l is the interatomic distance along the edge, here
l5R0 . Sinceb(m) is found to be independent ofm, the
interaction between steps vanishes in these models forany
choice ofE(Zi). Thus, we haveb(m)5b0 .

It can also be shown that the shift parameterg is written
as

FIG. 1. Atomic structure of vicinal surfaces of fcc~111!. ~a! The
differences of the stepsA andB on fcc ~111! surfaces are shown.
~b! Schematic view from the side of a fcc~111! vicinal surface. The
various distances, used in our analysis, are indicated:a, the normal
distance between terrace rows~the full terrace width is thusma on
this vicinal!, d, the normal distance between~111! atomic planes,
andga, the horizontal distance between inner and outer step edges
„g52/3 for fcc (m,m,m12) or type A vicinals, g51/3 for fcc
(m11,m11,m21) or typeB vicinals….
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g5
ZB2ZI
ZB2ZF

. ~15!

We are interested in the differencebB2bA of step energy
between typeA and typeB steps. Several energy functions
depending on the coordination numberZ have been proposed
in the literature. If nearest-neighbor pairwise interactions are
assumed, then

E~Zi !5Zi
A

2
, ~16!

whereA is the pair interaction between nearest neighbors.
Substituting Eq.~15! and Eq.~16! for g andE(Zi) in Eq.
~14!, we find

b05
1

l
~ZO2ZF!

A

2
. ~17!

Consequently, in this model, steps of typeA and typeB have
the sameenergy since the atoms at their respective outer
edges have the same coordination number, which is 7.

A more complex choice forE(Zi) can be derived from a
form of the effective-medium theory~EMT!,19 mostly appro-
priate for simple metals. Neglecting relaxations and includ-
ing density contributions to the atomi in a system only from
its nearest neighbors, we can write this atom energy relative
to a bulk atom as19

E~Zi !2E~ZB!5CF12S Zi12D
h/bh2G2

1a in0F S Zi12D
h/bh2

2S Zi12D G , ~18!

where the parametersC, h, h2 , a i , andn0 are extracted
from self-consistent calculations of an atom embedded in a
homogeneous electron gas andb is characteristic of the fcc
lattice:b5(16p/3)1/3/A2.

Using Eq.~14!, we get

b0
B2b0

A5
1

l SE~ZI
B!2E~ZI

A!1
1

3
E~ZF!2

1

3
E~ZB! D .

~19!

The parameters in this model are material dependent and we
will arrive at different values forb0

B2b0
A depending on the

system at hand. As an example,20 using appropriate param-
eters for Pt,21 the differenceb0

B2b0
A amounts to;20.7

meV, which is to say that theB step is slightly more stable
on Pt. The difference is so small though that the result seems
indecisive. Using parameters for Al~Ref. 19! gives a similar
value forb0

B2b0
A : ;20.5 meV.

Another possible choice forE(Zi) is the so-called
‘‘second-moment approximation’’@Eq. ~9!# which yields

E~Zi !5Zi
A

2
2BAZi . ~20!

The first term comes fromErep and the second fromE band.
Also here, the stepsA andB have different energies. It is
found that

b0
A5

1

l S 2A1
B

3
@5A91A1223~A101A7!# D ,

b0
B5

1

l S 2A1
B

3
@4A912A1223~A111A7!# D ,

~21!

so that:

b0
B2b0

A5
B

3l
~2A913A1023A111A12!'

B

l
3.5331024.

~22!

From the treatment of the above simple pairwise model, it
was in fact clear beforehand that only the band energy could
contribute to the energy difference — the repulsive part be-
ing of pairwise form not giving rise to any difference. Since
B, the band energy parameter, is positive for all band fill-
ings, stepA is always more stable than stepB in this model.

Let us look at the order of magnitude ofb0
A , b0

B , and
b0
B2b0

A in the ‘‘second-moment approximation.’’ The ratio
A/B can be obtained from the equilibrium condition with
respect to a small variation of the lattice parameter. From Eq.
~9!, we find that

A

B
5

1

A3
q

p
, ~23!

and

Ecoh~R0!5S 12
q

pDBAZB. ~24!

Using the value p/q53 derived from universal
potentials,22 we obtain

b0
Al'6.631022Ecoh~R0!, ~25!

and

b0
Bl2b0

Al'1.731024Ecoh~R0!. ~26!

SinceEcoh(R0) is of the order of a few eV,15 b0
Al andb0

Bl are
of the order of a few tenths of an eV, whileb0

Bl2b0
Al is only

of the order of 1 meV. Thus, if we expect that such a model
gives a reasonable order of magnitude ofb0l , the energy
difference between stepsA andB is so small that the influ-
ence of higher-order moments may drastically change, not
only the numerical values, but also the general behavior as a
function of band filling. Moreover, higher-order moments in-
troduce indirect long-range interactions between steps. This
can be shown qualitatively before any numerical calcula-
tions, which we proceed to do in the following.

3. Qualitative discussion on the influence
of higher order moments

To this aim, we will keep the pairwise form of the repul-
sive energy but go beyond the second-moment approxima-
tion for the band energy. We will also neglect alldVi
(dVi50) and ensure the conservation of total charge by a
small variation of the Fermi level,23 i.e., we impose global
charge conservation instead of local charge neutrality. Thus
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we write the variation of the total band energy due to a
variationdN (E) of the total density of states as

dEband5E
2`

EF
~E2EF!dN ~E!dE. ~27!

When the first p moments (m0 , . . . ,mp21 ,p>3) of
dN (E) vanish, a mathematical theorem23 states that
dEband changes sign at leastp22 times whenEF varies in
]b,B[, b andB being the bottom and the top of thed band,
respectively.

For the interaction energy between steps, similarly to the
case of interactions between adatoms,24 it is easily seen that
the first moment that is modified by the presence of several
steps is the moment that includes the shortest closed paths
starting from a step edge, going to the next step edge and
coming back. This moment ism2m12 . Note that, since
m>2 in order to meaningfully speak about vicinal surfaces,
the very first moment that can be altered ism6 . Any calcu-
lation with fewer moments than 2m12, meaning of course
TB calculations employing global charge neutrality, will fail
to reproduce interaction energies.

The consequences due to the theorem cited above for the
interaction energy are that, for a given value ofm,
Eint(EF) changes sign at least for 2m values ofEF . Further-
more, for a given value ofEF , Eint will also change sign as
a function ofm since the positions and the number of zeroes
of Eint(EF) depend onm. As a conclusion,Eint oscillates as
a function of bothEF andm and may thus be either attractive
or repulsive depending on the considered transition metal
and on the actual width of the terraces.

We consider now the implications of the theorem on the
difference in step energiesb0

B2b0
A . To this aim, we need to

be able to express this difference as an integral similar to the
right-hand side of~27!. The momentm3 of the local density
of statesni(E) is completely determined from the knowledge
of the number and location of the first nearest neighbors of
atomi . This means that, in the present case, the band energy,
also whenm3 is taken into account, can be written as a
function of the coordination number. Thus the quantity
b0
B2b0

A can, in a straightforward way, be expressed as in Eq.
~19! when all the LDOS are calculated with exact
m0 ,m1 ,m2 ,m3 . In this ‘‘third-moment approximation,’’ the
difference of step energies is given by

b0
Bl2b0

Al5E
2`

EF
dE~E2EF!

1

3
@3nI

B~E!23nI
A~E!

1nF~E!2nB~E!#

5E
2`

EF
dE~E2EF!dN BA~E!, ~28!

wherenI
A@B#(E) is the LDOS of an atom at the inner edge of

stepA[B], and nF(E)@nB(E)# is the LDOS of an atom in
the flat surface@bulk#. It can be shown analytically that the
momentsm0 ,m1 ,m2 ,m3 of dN BA(E) cancel. If a larger
number of exact moments are taken into account in the cal-
culation, an expression similar to Eq.~28! for b0

B2b0
A can be

derived, butdN BA(E) will include additional LDOS com-
ing from the atomic rows, which are farther from the inner

step edge. In this case we can no longer express the band
energy as a function of coordination number. We have veri-
fied numerically that the momentm4 of dN BA(E) does not
cancel. Consequently,b0

B2b0
A cancels at least twice when

EF varies in ]b,B[. We conclude thus that the calculation of
Eband must include at least five exact moments in order to
describe the difference between stepA and stepB for any
band filling.

Let us emphasize that on the one hand the approximation
~27!, which ensures a global neutrality rather than a local
neutrality, tends to overestimate the number of zeroes of
dEband(EF) and displace their position.

25 On the other hand,
the so-called second moment approximation, which implic-
itly assumes local neutrality, gives a constant sign for
b0
B2b0

A as a function ofEF , but with a very poor descrip-
tion of the LDOS.

In the above discussion the atomic relaxation effects have
been completely disregarded. A calculation including these
effects is, in principle, possible in the tight-binding theory
since the laws of variation with distance of all the parameters
entering into the Hamiltonian are known. However, such a
calculation is a formidable numerical task if the LDOS are
computed with a large number of exact moments but remains
accessible in the framework of the second-moment approxi-
mation of Eq. ~9!. This has recently been carried out on
vicinal surfaces of Cu.26 In this study the step-step interac-
tion comes from the interference between the deformation
fields induced by the atomic relaxation at each step since, as
shown above, this interaction vanishes on a rigid lattice in
this approximation. Consequently, this work substantially
improves the description of the elastic interactions since the
discrete nature of the lattice is taken into account contrary to
the previous studies based on the elasticity theory of continu-
ous media. It is found that at large terrace width this inter-
action decreases as 1/m2. Moreover the relative energies of
stepsA andB have been compared and it was found that
relaxation effects do not modify qualitatively the results of
the second-moment approximation with a rigid lattice at least
for Cu: step A is preferred by.1 meV.

From this discussion, we can deduce that it is instructive
to calculateb int andb0

B2b0
A with LDOS calculated using a

large number of exact moments with the local charge neu-
trality condition, even when relaxation effects are neglected.
Indeed, on the one hand, such a calculation should give a
reasonable estimate of the conduction electron mediated
step-step interaction to compare with the elastic one and, on
the other hand, to determine if the stepB can be stabilized by
a better description of the LDOS in the domain of band
filling of fcc crystals.

III. RESULTS AND DISCUSSION

The question is how many moments should be included in
the computation of the LDOS. The convergence require-
ments are set by the minimum energy differences that we
calculate which are of the order of 1 meV. In order to reach
sufficient accuracy in the calculated energies, we use 10 ex-
act levels in the continued fractions — i.e., 20 exact mo-
ments — for ~111! vicinals. In terms of cluster sizes, this
translates to at most 3871 atoms per cluster. We assume that
potential perturbations occur on all atoms that can be reached
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in 10 nearest-neighbor jumps from the central atom of the
system~chosen to be an atom at the inner step edge!. We
need thus to calculate the LDOS on all geometrically in-
equivalent atoms and, consequently, to construct as many
clusters. The number of such atoms is a function of terrace
width. For ~111! vicinals, it isnc(m11)11, wherenc is the
number of levels used in the continued fraction. As an ex-
ample, for a vicinal withm54, we need to construct 51
clusters.

We calculate energies of unrelaxed structures and use the
parameters

dds520.798 eV, ddp50.317 eV, ddd520.0367 eV
~29!

for finding the band energy. The repulsive energy parameter
A is determined from the condition that the total bulk en-
ergy is at a minimum at equilibrium (Ri j5R0). This gives
the relation

Eband~R0!

Erep~R0!
52

p

q
. ~30!

As above, we use the valuep/q53.

A. Vicinal surfaces of typeA

As already discussed, the vicinal surfaces of typeA on fcc
~111! metals have steps with~001! facets and they are de-
noted by the Miller indices fcc (m,m,m12) wherem11
also denotes the number of rows at the terraces that are par-
allel to the steps.

For these vicinals, using Eq.~10!, gA as a function ofm is
given by

gA~m!5g~111!
3~m12/3!

A9~m12/3!218

1
b0
A1b int

A ~m!

lA2/3
2A2

A9~m12/3!218
. ~31!

Here and in the following, the units ofg andg (111) will be in
eV/unit area and the units ofb andb int in eV/unit length.
The interatomic distance is chosen as the length unit. The
figures will be presented in eV, i.e.,g l 2, b l , and b intl in
order for them to be independent of the lattice parameter. For
purposes of comparing directly with experiments, the appro-
priate band filling and interatomic distance should be chosen.

In Fig. 2~a!, we present the vicinal surface energiesgAl
2

as a function ofm for severald band fillings f and compare
them to the flat surface energies. Since the intra-atomic po-
tentialsdVi are determined from the local charge neutrality
condition, the number of electronsNi on each site is a con-
stant that is set equal tof . The vicinal surface energies,
gA , and the flat surface energiesg (111) are obtained directly
by integrating the local density of states of the different rep-
resentative atoms and subtracting the double counting terms
and the bulk energy. Since we are interested in fcc transition
metals, the band fillings are chosen to be representative of
those, i.e., since the fcc metals are situated at the end of the
transition-metal series, we choose band fillings larger than
6.8.

The vicinal surface energies are seen to decrease
smoothly withm and with band filling. The difference be-
tween vicinal and flat surface energies is in the range
0.0120.1 eV and decreases with increased band filling and
with m. The energy difference between subsequent vicinal
surfaces is in the range 0.002–0.02 eV — the largest differ-
ences being for low band fillings and betweenm52 and
m53 and the smallest ones for high band fillings and be-
tweenm55 andm56. In terms of ratios, we have, e.g.,
gA(6)/g

(111)'1.1 for f56.8, but this ratio increases with
band filling and is'1.2 for f59.2.

In order to extractb0 , the single step energy, we examine
the behavior ofb(m). In Fig. 3, the step energybA(m) l as a
function of terrace width is shown for a band filling of 7.6.
We note thatbA(m) l converges rapidly withm. The inter-
action energy becomes unimportant already form56. This
means that, for our purposes,b05b(6).

The energy of the actual step,b0
Al , as a function of band

filling is shown in Fig. 4~a!. Its band and repulsive parts are
shown separately in order to compare their respective impor-
tance. The value ofb0

Al is smoothly decreasing with increas-

FIG. 2. Vicinal surface energiesg(m) l 2 ~in eV!, wherel is the
nearest-neighbor distance as a function of the terrace widthm and
for several band fillingsf . The flat ~111! surface energy for each
band filling is shown at the vertical rightmost axis in corresponding
symbols.~a! fcc (m,m,m12) vicinals, i.e., with steps of typeA.
~b! fcc (m11,m11,m21) vicinals, i.e., with steps of typeB.
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ing band filling with a slight flattening in the region
7.428.0. This has to do with the way that the band and
repulsive energy contributions interplay. The band energy
part ofb0

A is decreasing at about a constant rate up to a band

filling of 8.6 and decreases even faster after that, whereas the
repulsive energy part is less and less negative with increasing
band filling.

Onceb0
A is known, we can extract the value of the step

interaction energy per unit lengthb int
A from Eq. ~31!. In Fig.

5~a!, we present the step interaction energy again as a func-
tion of band filling form5225. As seen, the interaction
between steps of typeA is oscillating and exhibits changes of
sign 3–5 times as a function of band filling for all terrace
widths. The oscillatory behavior is solely caused by the band
energy contribution and as such, illustrates the theory of mo-
ments discussed in Sec. II. We note that inclusion ofdVi ’s
and local charge neutrality requirements do not affect the
qualitative trends predicted by the theorem. As stated in Sec.
II, the step interaction for a givenm may thus be either
attractive or repulsive depending on the band filling of the
material.

In Fig. 6~a!, the step interaction energy as a function of
terrace width is presented for several band fillings. We have
oscillations in the curves and changes of sign just as for
b int
A as a function of band filling save for thef59.2 curve

whereb int
A is always attractive. For the same metal, at least

for band fillings less than 9.2, the electronic part of the step
interaction energy may thus be either attractive or repulsive
depending on the width of the terraces.

The magnitude ofb int
A l is a few meV and diminishes dras-

FIG. 3. EnergybA(m) l ~in eV per step atom,l being the
nearest-neighbor distance! needed for creating a step of typeA at
vicinal surfaces of fcc~111! crystals as a function of the numberm
of interrow spacings at the terraces. The band filling isf57.6 . The
value ofbA(m) is seen to converge rapidly whenm tends to infinity
towards the valueb0

A , which corresponds to noninteracting steps.

FIG. 4. Energyb0l ~in eV per step atom,l being the nearest-
neighbor distance! needed for creating an isolated step on an a fcc
~111! surface as a function of the band fillingf . The energy is
decomposed in its band and repulsive contributions in order to com-
pare their respective importance.~a! step of typeA ~b! step of type
B.

FIG. 5. Interaction energyb intl ~in eV per step atom,l being the
nearest-neighbor distance! between steps on vicinal surfaces of fcc
~111!. It is given as a function of band filling and for terrace widths
of m5225 wherem denotes the number of interrow spacings at
the terraces.~a! fcc (m,m,m12) vicinals, i.e., with steps of typeA.
~b! fcc (m11,m11,m21) vicinals, i.e., with steps of typeB.
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tically beyond m54. Various experimental and
theoretical26,27 extractions of step interaction magnitudes at
different vicinals show that the elastic interaction energy de-
creases from about 10 to 1 meV when the terrace width
increases from 2 to 5 interrow spacings. Furthermore, the
dipolar interaction is about a factor of 103 smaller. For low
temperatures, entropic interactions are small and can be dis-
carded. The order of magnitude of indirect electronic inter-
actions for small terrace widths is then seen to be comparable
to the elastic interactions and may thus, due to its oscillating
nature, give rise to attractive step interactions. Evidence to
that effect is claimed to have been seen for vicinals of Ag.9,12

B. Vicinal surfaces of typeB

The typeB vicinal surfaces of fcc~111! metals have
(111̄) facets. Their Miller indices are fcc
(m11,m11,m21). Analogous to Eq.~31!, we can express
theB vicinal surface energy as a function of terrace widthm
as

gB~m!5g~111!
3~m11/3!

A9~m11/3!218

1
b0
B1b int

B ~m!

lA2/3
2A2

A9~m11/3!218
, ~32!

where notations are as in Eq.~31!.
In Fig. 2~b!, the surface energies of the typeB vicinals are

shown for several band fillings. The behavior of these curves
is similar to the typeA curves — they decrease smoothly
with band filling. The energy difference between vicinal and
flat surfaces as well as the difference between vicinal sur-
faces with differentm’s are analogous to the typeA case —
the vicinal surfaces have energies 0.01–0.1 eV larger than
the surface energy and there are energy differences of 0.002–
0.02 eV between subsequent vicinals. The ratios
gB(m)/g

(111) behave similarly to the corresponding ratios
for the vicinals of typeA: they increase slightly with band
filling and their values are around the ones for the typeA
vicinals.

The value of the step energyb0
B is extracted in the same

way asb0
A and is shown as a function of band filling in Fig.

4~b!. Its band and repulsive part are shown separately.b0
B

resemblesb0
A but exhibits a local minimum in the region

7.227.8 instead of just flattening, which comes from the less
pronounced decrease of the band energy part ofb0

B com-
pared tob0

A . This will allow the repulsive energy part to
dominate more inb0

B for band fillings less than 7.8.
The step interaction energyb int

B l , obtained in the same
manner asb int

A l , is shown in Fig. 5~b! as a function of band
filling for m5225. The form of the step interaction curves
for vicinal surfaces of typeB is similar to the typeA curves
— we have oscillations and changes of sign 2–4 times as a
function of band filling.

The step interaction energyb int
B l as a function of interstep

distance is shown in Fig. 6~b!. The curves oscillate slightly
differently from the correspondingb int

A l curves in Fig. 6 but
the overall behavior is exactly analogous. We notice also
here changes of sign for band fillings less than 9.2.

b int
A andb int

B resemble each other closely~see Fig. 5! but
are far from identical. A noteworthy example is for the low
band fillings in the casem53 where b int

A is repulsive
whereasb int

B is attractive. We note that the magnitude of
b int
B for short terrace widths is a few meV which, similarly to

the analysis for typeA interactions, may be comparable to
the magnitude of elastic interaction energies.

C. Energy difference betweenA and B

As we found in the previous subsections, there are notice-
able differences between energies of fcc~111! vicinal sur-
faces of typeA andB. We will here examine these differ-
ences in more detail.

Firstly, we show the difference of vicinal surfaces ener-
gies gA and gB as a function of band filling. In Fig. 7 the
difference (gB2gA) l

2 is shown for terrace widths of
m5226. The shapes of the curves are similar for allm, but
the amplitudes differ. Form>4, the amplitudes are very
similar but the curves exhibit quasirigid shifts towards a
‘‘zero’’ level. The energy is always larger forgB , which is
the effect of the contribution of the band energy. It is thus the
band energy that is responsible for the stability of typeA
vicinals in our calculations.

In Fig. 8, the energy difference (b0
B2b0

A) l between the
isolated steps of typeB andA is shown as a function ofd
band filling. This energy difference is less than 10 meV and

FIG. 6. Interaction energyb intl ~in eV per step atom,l being the
nearest-neighbor distance! between steps on vicinal surfaces of fcc
~111! as a function of terrace widthm for several band fillingsf . ~a!
fcc (m,m,m12) vicinals, i.e., with steps of typeA. ~b! fcc
(m11,m11,m21) vicinals, i.e., with steps of typeB.

4090 53S. PAPADIA, M. C. DESJONQUE`RES, AND D. SPANJAARD



shows a change of sign at a band filling of 7.6. We have thus
the range of band fillings divided into two regions: for band
fillings <7.6, steps of typeB are preferred while for band
fillings .7.6, steps of typeA are preferred. There is though
an uncertain region for band fillings 8.6–8.8 where the en-
ergy difference is very small.

Since the energy difference between stepB and stepA at
T50 K is very small one can wonder if at high temperature
~for instance,T.900 K! the vibrational contribution to the
difference in the free energies of stepB and stepA may play
a significant role. To estimate the order of magnitude of this
contribution we have used the Einstein model with a force
constantk limited to first nearest neighbors. In this model
the contributions of the surface vibrational internal energy,
dUB2A, and entropy,dSB2A, to (b0

B2b0
A) l are given by16

dUB2A5E
0

vmax \v

2
coth

\v

2kBT
dN BA~v!dv, ~33!

and

dSB2A5kBE
0

vmax F \v

2kBT
coth

\v

2kBT

2 lnS 2sinh \v

2kBT
D GdN BA~v!dv, ~34!

with

dN BA~v!5
1

3
@3nI

B~v!23nI
A~v!1nF~v!2nB~v!#.

~35!

Indeed, when considering phonons the electronic LDOS ap-
pearing indN BA(E)@Eq. ~28!# should simply be replaced by
the corresponding local spectral densities of phonons.

In the Einstein model it is found that

dN BA~v!5~1/3!@3d~v2A3v0!23d~v2A5/2v0!

1d~v2A2v0!2d~v2A7/2v0!#, ~36!

with v0
25k/M , M being the mass of an atom. In the high-

temperature limit,dUB2A vanishes and

dSB2A52.131023kB . ~37!

More specifically atT5900 K, dUB2A.1029 eV and the
contribution of the surface vibrational free energy to the dif-
ference of energy between stepB and stepA is

dFB2A.2TdSB2A.21.631024 eV. ~38!

Consequently vibrational effects, at least for straight steps,
favor stepB for any element but are one order of magnitude
smaller than electronic effects.

In order to compare with experimental findings, we may
look at Ir, which has;7.5 electrons per atom in thed band
and Pt, which has around one more electron. We find that
typeB steps would be more stable than typeA steps on Ir,
which seems to be the case also in experiments.2 For Pt, we
find that steps of typeA are very slightly more stable than
steps of typeB. However, the band filling of Pt falls in the
above-mentioned uncertain region. Experimentally1 it is
found that for this metal theB steps are more stable. There
may be several reasons behind this apparent discrepancy.
First the influence of atomic relaxation and the spin-orbit
coupling effect may distort the curve (b0

B2b0
A) l but we do

not expect drastic changes.26 A more serious approximation
may be the neglect ofs electrons at the end of the series, i.e.,
for Pt. Indeed, they may play a dominant role since the ef-
fects ofd electrons for this metal do not favor clearly one
type of step relative to the other. According to the calcula-
tions performed on Al~111! steps,14 s electrons favor theB
steps: this could be the reason whyB steps are energetically
more favorable in Pt. In these numerical calculations,14 the
difference between typeA and typeB steps on Al is found to
be 16 meV with the typeB step being more stable than the
typeA step, which is more in line with what was found for
Pt. This energy difference seems larger than the energy dif-
ferences we find, but the comparison cannot be immediately
done since Al is a free-electron metal and the calculations in
Ref. 14 also include relaxation effects. In view of these cal-

FIG. 7. The difference in free energy (gB2gA) l
2 ~in eV! be-

tween vicinal surfaces of typeA @fcc (m,m,m12)# and typeB @fcc
(m11,m11,m21)# is shown as a function of band filling,f , for
terrace widthsm5226. The numberm denotes the number of
interrow spacings at the terraces andl is the nearest-neighbor dis-
tance.

FIG. 8. The difference in energy (b0
B2b0

A) l ~in eV per atom,l
being the nearest-neighbor distance!, between steps of typeB and
steps of typeA of fcc ~111! surfaces is shown as a function of the
band filling f . The domains where stepB and stepA are more
stable are indicated, respectively.
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culations and from our estimates within EMT, it might be
said that the effect ofs electrons could well be to renderB
type steps energetically more favorable at the end of the
series.

Other semiempirical calculations28 have also found theB
type steps energetically more favorable than theA type steps
on Pt, the so-called equivalent crystal theory being closer to
experimental values than the so-called embedded-atom
method. To what extent one may distinguish thes and d
electron contributions in those calculations is, however, not
clear to us.

IV. SUMMARY AND CONCLUSIONS

The properties of vicinal surfaces with dense steps of fcc
~111! transition metals have been investigated within a tight-
binding model where the local densities of states are calcu-
lated from a continued fraction expansion of the Green func-
tion with 10 exact levels.

The ~111! surfaces of fcc metals can have two types of
dense steps,A andB ~see Fig. 1!, which give rise to two
different types of vicinals. We have calculated the energies of
A andB vicinal surfaces of various terrace widths, the ener-
gies of their single steps, and the step interaction energies.

We have first investigated simple models for describing
the energies. It is found that models where the energy of an
atom in a system is written as a function of its coordination
number cannot produce the interaction energies between
steps at vicinal surfaces. We have shown that, within the
tight-binding model, at least 2m12 moments~wherem11
gives the number of rows at the terraces! have to be included
in order to sense the electronic interactions between steps.
Furthermore, we have proved that a ‘‘second-moment ap-

proximation’’ to the energy cannot give the correct answer
for all d band fillings for the energy differences between
steps of typeA andB.

The interaction energies between steps is seen to oscillate
as a function of both band filling and terrace width and can
be either attractive or repulsive, depending on the particular
metal and the particular terrace width. This oscillatory be-
havior is consistent with the predictions of the theorem of
moments, as demonstrated in Sec. II. The magnitude of the
interaction energy is compared to experimental and other
theoretical findings and is seen to be comparable to the elas-
tic energy for short distances. Since entropic contributions
are small for low temperatures and dipolar contributions
have been estimated to be three orders of magnitude smaller
than the elastic interaction, we conclude that the important
effects for the interaction between steps on vicinal surfaces
are elastic and electronic at low temperatures and short ter-
race widths.

The energy difference between stepsA andB exhibits a
clear change of sign as a function ofd band filling. Ford
band fillings<7.6, theB step is energetically favored while
for band fillings.7.6, theA step is more stable. However,
the region around 8.7 electrons per atom is so uncertain that
the effects ofs electrons may be dominating for this range of
band fillings.
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