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We study nonequilibrium noise in chiral Luttinger liquids using the Landauer-Buttiker scattering approach,
obtaining the current and voltage noise spectrum for a four-terminal measurement scheme. Experimental
consequences of the tunneling of charges are present in the four-terminal measurement of both the low-
frequency shot noiseo near 0, and the high-frequency Josephson noise rear w;=e*V/#). Within
perturbation theory, an algebraic singularity is present at the Josephson frequeneyV/%, whose position
depends on the chargg of the tunneling particles, either electrons or fractionally charged quasiparticles.
These two types of tunneling are related by a strong-weak—coupling duality transformation. We show in a
nonperturbative calculation for an exactly solvable point that the singularity at the quasiparticle frequency
exists only in the limit of vanishing coupling, whereas the singularity at the electron frequency is present for
all coupling strengths. The vanishing coupling limit corresponds to perfectly quantized Hall conductance in the
case of quasiparticle tunneling between edge states in the fractional quantum Hall regime, and thus tunneling
destroys the singularity at the quasiparticle frequency concomitantly with the quantized current.

[. INTRODUCTION Luttinger liquids extends well beyond transport measure-
ments aloné?~®One should expect, based on experience in
Recently it was realized that a strongly correlated onenoninteracting systems, that the noise spectrum contains in-
dimensional(1D) system, namely a chiral Luttinger liquid formation not attainable, in the most general case, from just
(xLL), exists in the edges of fractional quantum H&QH)  transport measurements. In general, the shape of the noise
liquids ! Because of their chiral nature, i.e., the excitations inspectrum is determined by the dynamical properties of the
a given branch move only in one direction, spatially sepasystem, which in turn contain information about the excited
rated branches cannot interfere and cause localization sftates. Even for noninteracting electronic systems, nontrivial
states. In contrast, nonchiral Luttinger liquids are extremelystructures appear in the noise;°the simplest example be-
sensitive to the presence of even the smallest amounts #1fg the suppression of classical shot noise due to quantum
impurity in the sample, for in 1D all states are localized, andstatistics. In chiral Luttinger liquids, the tunneling particles
long enough wires will behave as insulators. The characteisometimes carry fractional charge and fractional statistics,
istic property of(chiral) Luttinger liquids is that the tunnel- and thus such strongly correlated 1D systems also provide
ing conductance between the edge states has a power-ldire natural experimental realization for the study of features
dependence on the temperaturecT2(9"1) whereg de- that arise in the noise spectrum for generalized quantum sta-
pends on the filling factow of the FQH state, taking the tistics.
values g=v or g=v"! depending on the tunneling In Ref. 15, the noise spectrum of the tunneling current
geometry?~® By experimentally studying the tunneling be- between edge states directly at the point contact was calcu-
tween edge states in the FQH regime using a point contadéted perturbatively. To low orders in the tunneling ampli-
geometry, Milliken, Umbach, and Weblfound this type of tude, we found that there was a singularitysat 0; for small
power-law dependence of the tunneling conductance on the the noise spectrum has the for8y+ Sgnf @), where
temperature. Their finding is consistent with the theoreticaSsy is the zero-frequency shot noise aBd;,{»)=c|w|.
predictionoo T# for the v=1/3 FQH state:’ The slopec of the |w| singularity has a strong non-
The experimental confirmation of the Luttinger liquid be- linear dependence on the applied voltagé [c
havior in tunneling between edge states has boosted theoreti{2g—1)?v*©~1)], which is another signature of Luttinger
cal interest in further studies of properties of theliquid behavior(to be contrasted with the case of noninter-
conductanc&~1° An exact solution for the conductance has acting electronsy= 1, where the slope is independent\ot
been obtained using the thermodynamic Bethe ansatz, and die exponenty characterizes the Luttinger liquid behavior.
exact duality between they and 1§ cases has been This low-frequency part of the spectrum is the one more
showrt*? in the context of the tunneling current, as sug-easily accessible experimentally. Second, there is another
gested in Ref. 13. The rich behavior of tunneling in chiralsingularity atw = w; wherew ;= €e*V/# is the Josephson fre-
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1(b)]. Their tunneling should once again behave like tunnel-
ing in a chiral Luttinger liquid, but with new exponent
g=1/g and charge equal te. This is the physical picture
behind the duality seen in Ref. 12; as the tunneling amplitude
is increasedor the voltage is decreasegl goes to 1g. Simi-
larly, if we start with the two quantum Hall droplets with
exponeni and increase the tunneling amplitude of the elec-
tron, eventually we will obtain the single droplet picture with
exponenty=1/3.

In light of this duality and the results of Ref. 15, the
following question arises. If we start with the two discon-
nected droplets, we expect the singularity in the noise to
occur at multiples ofv;=eV/%, the Josephson frequency for
the electron. As the tunneling amplitude is increased, at some
point we expect the singularity at the Josephson frequency
for the quasiparticlew;=€*V/#, to appear. However, ac-
cording to the perturbative calculations, to all orders in the
electron tunneling amplitude the quasiparticle singularity
does not appear. This question is of interest because the lo-
cation of the singularities tells us which particles are tunnel-
ing and, as mentioned above, should give a way to measure
the fractional charge of the quasipatrticles.

In this paper we will address the question of what happens
to this quasiparticle singularity and show how these two

: seemingly contradictory statements above are resolved in the
(b) special case ofj=1/2 andg=2. The current in thg=1/2
case is known to be exactly solvabIt¥?9-22 Here we

FIG. 1. Geometries for tunneling between edge states. By adpresent an exact solution for the_noneq_uilibrium noise_ Spec-
justing the gate voltag®/; one can obtain either a simply con- trum. We find that fog=1/2 the S'ngqla”ty at the quasipar-
nected QH dropleta), or two disconnected QH dropletis). For the  ticle Josephson frequenQyJ:.e* VI is destroyed by non-
geometry in(a) both electrons and quasiparticlésarrying frac- perturbative effects, and exists only in the limit of zero
tional charge can tunnel from one edge to the other, whereas forquasiparticle tunneling amplitude The quasiparticle singu-
the tunneling geometry ib) only electrons can tunnel. The Lut- Iarity that was obtained by perturbative calculations is in-
tinger liquid behavior is characterized by the exporgaty in (a), stead smeared for finite tunneling strength: the noise spec-
andg= "t in (b). The tunneling current, depends on the applied trum is analytic neaw;=¢e*V/7%, but it still has structure
voltage between the right and left edges, and by increasing thisvithin a region of widthA w~4x|T"|2. Thus, for zero cou-
voltage one can also cross over from the geom@ryo the geom-  pling a “fake” singularity appears as this width vanishes.
etry (a). The results in this paper, together with the previous pertur-

bative results valid to all orders in the electron tunneling
quency of the electronef =e) or quasiparticle ¢* =ve)  amplitude, suggest what may be happening at other values of
that tunnels through the point contact. The shape of this sing also. The quasiparticle singularity should only exist in the
gularity depends oy and goes a$w=* w;|?9"1. Measure- limit of vanishing quasiparticle tunneling amplitude, and it
ments of the location of this singularity would give the value should acquire a finite width controlled by a nonzero tunnel-
e* of the charge of the carriers of the current, which woulding amplitude. In physical terms, tunneling between edges
be yet another way of observing fractional charge from noiselestroys both the perfectly quantized Hall conductance and
measurements. The method originally suggested is to meahe quasiparticle singularity in the noise spectrum.
sure the shot noise, which for small tunneling amplitude is One of the tools we use in this paper is the Landauer-
related to the tunneling currerl by Sgy=2e*1,.2471®  Buttiker scattering approach. The geometry is illustrated in
Lastly, for g>1, we found that the singularities at both Fig. 2. The choice of the Landauer-Buttiker approach is jus-
=0 andw= w; should persist to all orders in perturbation tified for a number of reasons. The chiral nature of the sys-
theory. tem under study naturally poses the problem in terms of

These results present a puzzle which we describe belomcoming and outgoing scattering states to and from the point
and address in this paper. The cas@efr<<1 corresponds contact region. The incoming branches should be in equilib-
to a single quantum Hall droplet with a constriction. In this rium with their respective reservoirs of departure, and should
case, quasiparticles can tunnel across the constriction, frotme insensitive to the tunneling of charges in the tunneling
one edge to the othdsee Fig. 1a)]. These quasiparticles region shown in Fig. 2. This is so because information on
have fractional charge*, given bywve. If the constriction is  tunneling events cannot propagate in the direction opposite
made narrower, the tunneling amplitude will increase. As theo the incoming branch chirality. Also, the Landauer-Bulttiker
constriction is further narrowed, eventually the droplet will approach and the chiral nature of the system suggest natu-
break into two disconnected pieces, and now only electronglly a four-terminal geometry for experimental measure-
will be able to tunnel from one edge to the otljeee Fig. ments, probing voltage fluctuations in the two incoming and
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correlation$ do not satisfy the naive duality relation. We

P3 show that the correct dual Lagrangian to te 1/2 theory is
the g=2 theory plus a neutral density-density coupling,
which has the same dimension as the tunneling operator. The
effect of the neutral coupling appears in the noise, but not in
the conductance.

P2 Il. EDGE STATE TUNNELING

In this section we shall briefly review the bosonization
X scheme for edge states in the FQH efféfctr a thorough
review, see Ref. 23 The Lagrangian we will use is better
FIG. 2. Four terminal geometry for the measurement of tunnelcast in this bosonic language.
ing between edge states. The terminals 1 and 2 correspond to The right and left moving excitations along the edges can
branches that are incoming to the scatterer, while terminals 3 and Be described by boson fieldsg . Right and left moving
correspo_nd to outg_oing ones. The a_rrows_indicate the dire(_:tion O_électron and quasiparticle ope’rators on the edges of a FQH
propagation for a given branch. The incoming branches are in equ\'iquid can be written a¥ x , (t x)oce:i"a‘ﬁR,L("x) whereg is

librium with their reservoirs of origin, while the outgoing ones do .
get affected by the scatterer. Voltages and currents in the fourr(alated to the FQH bulk state. For example, for a Laughlin

probes are directly related to the densitiedi = 1,2,3,4). By mea-  State With filling fraction»=1/m we haveg=m for electrons
suring fluctuations in the voltages or currents at the four terminal@nd 9=1/m for quasiparticles carrying fractional charge
(V; orl;, 1=1,2,3,4), the autocorrelation spec8a(), with i =j, e/m. The ¢y fields satisfy the equal-time commutation re-
and the cross-correlation spec8a(w), withi #j, can be obtained. lations

These voltage and current fluctuations contain information on the .
fluctuations of the tunneling current. [#rL(1.X), PR L(LY)]=FimsgrX—y). (o

The dynamics ofpr | is described by

two outgoing branches. The tunneling takes place in the
point contact, or scattering region, which is not directly ac- o o
cessible by the probing leads. Autocorrelations of current and "’R'L_477(7X¢R¢(— h= V) PR L
voltage fluctuations measured in the four terminals, as well ) ) o ) .
as cross correlations between different terminals, are the eX¥herev is the velocity of edge excitation@hich we will set
perimental probes that should allow the remote measuremef 1)- Density operators can be defined in terms of ¢he
of the tunneling events and noise spectrum. through pg = (Vv/27) 3¢, . Here, for convenience, we

The paper is organized as follows. In Sec. Il we brieflyhave set the unit charge in the definition of the density to be
review the bosonization scheme for chiral Luttinger liquids.the electron charge, so thate=1 ande*=wv. One can
In Sec. Il we obtain the noise spectrum perturbatively forverify that [pR,L(t,x),\IfL,L(t,y)]z \/V—g\IfE’L(t,y) S(x—vy),
the four terminal geometry, using the Keldysh nonequilib-so that indeed the cases=»"! and g=v correspond to
rium formalism. We show that only the noise spectrum forelectron and quasiparticle charged operators, respectively.
the outgoing branches is affected by the tunneling, whereas The tunneling operators from right to left moving
the incoming branches are completely insensitive to théranches and vice versa can be written \H%\PR and
charge transfer between the edges. This is consistent with thp;xpL_ Thus we can write, in terms op= ¢r+ ¢, the
Landauer-Buttiker picture and the chirality of the system.following total Lagrangian density:
The noise spectrum for the incoming branches can thus serve
as a reference level for the measurement of the excess noise _ ) | G0
on the outgoing branches due to tunneling. The noise spec- = gL (9td)"— v (9xp)"]~T'5(x)e"8* T+ H.c.,
trum obtained contains interesting structures both at low and (3)
high frequencies. The tunneling excess noise vanishes for o )
frequencies above the Josephson frequengye* V/#. The ~ With ¢ satisfying[ ¢(t,x),d;$(t,y)]=4mi6(x—y). In the
issue of how the singularity moves from the quasiparticlefollowing we will set the edge velocity = 1. The tunneling
frequency to the electron frequency is resolved in Sec. IvVoperatore'9#% has an anomolous dimension which we
where we use the Landauer-Buttiker approach to solve exwill absorb in the definition ofl’. This redefinition can be
actly for the noise spectrum in the casegef 1/2, for which ~ viewed as multiplyind” by powers of a cutoff obtained from
the problem can be cast as a free fermion problem. We shogelf-interactions of the' 940,
that the singularity at the quasiparticle frequency is smeared A voltage difference between the two edges of the QH
for finite tunneling and is not a true singularity, whereas theliquid can be easily introduced in the model by letting
singularity at the electron frequency survives for all nonzerd —I'e 0!, wherew,=w;=€*V/#, with e* =e for elec-
coupling. In Sec. V we discuss the duality whga 1/2 goes  tron tunneling and* =e/m for quasiparticle tunneling.
to g=2, which we show is not exact in the naive sense for In the following sections we will study nonequilibrium
the case of noise, in contrast to the case of conductance. Wwmise in chiral Luttinger liquids described by the model
find that the noise spectrum of the current correlations on above. The Lagrangian in E3) should describe the tunnel-
single branchautocorrelationssatisfies the duality relation, ing over the full range of’, including the crossover regime
while current correlations between distinct branckemss between electron and quasiparticle tunneling. However, usu-

@
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5L g2 o FIG. 3. Plots of the excess noise of outgoing
branchegprobes 3 and 4 of Fig.)Zalculated to
second order in perturbation theofiq. (11)].

4| 4 The excess noise in branch 3 is shown normal-
ized to the zero-frequency shot noise level, and
the frequencyw normalized to the Josephson fre-
sl J qguency w;=€e*V/# (i.e., we show the plot of
[Ssa( @) — Sy; %(w)]/2e* |, vs wlw,). Different
singularities are obtained ai= w; for different

oL | values ofg: 1/3, 1/2,2/3, 1, and 2. One should
keep in mind that, although the singularities all
occur atw= wj, the value ofw; depends on the
chargee* of the current carrier, which in turn
also depends og. The results are exactly the
same for the excess noise measured in branch 4.

(S33(w) -SH (@) /(26T

ally one can only calculate quantities for the weak tunnelinghe noise in either the current or the voltage yields informa-
limit. Thus, to calculate the strong-coupling limit for the qua- tion about the other. This kind of relationship between volt-
siparticles, one would resort to the duality symmetry of theage and current noise was obtained in Ref. 14. We will thus
system and instead calculate the weak-coupling limit forfocus on the calculation of density-density correlations, for
electron tunneling. In Sec. Ill, we will calculate the noise inthese will give us information on both current and voltage
these two weak-coupling limits. Naively, the quasiparticlenoise.

picture and the electron picture should be dual to one an- We will label the densities at the four terminals shown in
other, but once short distance effects are taken into accourfig. 2 byp;, i=1,2,3,4. In terms of the right and left moving
this may not be the case. For the casayefl/2, in Sec. IV  fields we have

we will calculate the exact noise spectrum of the Lagrangian

in Eq. (3) for the full range of quasiparticle tunneling ampli- p1(1)=pgr(t,X1), p3(t)=pg(t,X3),
tudes. This will give us the behavior of the spectrum in the
crossover regime and will also enable us to determine to p2() =pL(t,X2), pa(t)=pL(t,Xa), )

what extent the naive duality symmetry is valid. wherex; ,x,<0, X,,X5>0. The noise spectrum of the den-

sity fluctuations in terminals,j is obtained from the corre-
lations between the densitigs, p; :

In this section we treat the tunneling between edge states .
perturbatively, and obtain the noise spectrum for the current (0)=S:(—w :f dte L o (1) . (0. 6
and voltage fluctuations at the four leads as shown in Fig. 2. Sij(@)=Si(~ ) —w {{pi(V).p;(0)}) ©
In the figure we separate the branches into their right and left . ) , )
moving components, as well as incident and scattered onesN€se quantities are calculated perturbatively in Appendix A,
Right and left branches are incoming or outgoing dependind/Sing the techniques in Ref. 15. The components wit))

Ill. PERTURBATIVE APPROACH

on their position relative to the scatterer: are very sensitive to phases which depend on the position of
the probesx; andx;. These phases cancel in the case of
incident: ¢r(t,x<0) and ¢ (t,x>0), autocorrelations, i.e., whemn=j. The quantitiesS;(w),
which correspond to the noise spectrum obtained entirely
scattered: ¢r(t,x>0) and ¢ (t,x<0). (4) from one of the four probes far=1 to 4 are thus the most

Both the currents and the densities at the four terminals caﬁ)bUSt measurements of fluctuations, because when they are

be related to the fieldgg . The densities are simply given extracted away from the junction they are independent of the

by p —(\/;/277)5 b \oltage measurements probe positionx; where they are taken.
RL™AN XFR,L - ) T nd order in perturbation th . is given
these densities. The currents at the four terminals can be 'O SccOnd orderin perturbation theofy, is given by

trivially related to the densities at those same terminals Si(@) =Sy 0)=S(w) @)
through the continuity equation for#0. The currents are '
given by jR’L:i(\/;/ZW)anSR,L, with positive currents Sif( @) =S @) =S () + S?(w), @®)

flowing to the right. By choosing the convention that positive
currents flow in the direction of the arrows in Fig. 2, we canwhere
write new currentsjgr, ==*jgr =prL. It then becomes
transparent that there is a tight relationship between current

and voltage in the chiral branches. For example, measuring

14

$%w)=5,

|ol, ©)
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4mvg 2 1 this issue of the singularity.in the noise sp.ect.rum because in
mm | =@l 6(|wy] = [ w]). (10 this case the two frequencies, and w,, coincide.

Before answering the question about the high-frequency
Using the perturbative result to orddF|? for the tunneling  singularity, we will close this section with the implications of
current It=[27-r/1“(29)]e*|F|2w§g’l,2 S@)(w) can be tunneling between edge states to the low-frequency noise

S?(w)=

wrtitten as measured in the four terminal geometry. In Ref. 15, a correc-
tion to the low-frequency shot noise spectrum was found,
w291 which corresponded to am| singularity, or a cusp, in the
S (w)=2e*1, 1—‘w—J 0(|ws|—lo]). (1)  noise spectrum. This correction was found to ortf,

while to order|I’|2 the low-frequency corrections to the flat
Notice that the effects of tunneling are contained inshot noise started asw?2. In the four terminal geometry
S®)(w), and only appear in the outgoing branches, terminalproposed in this paper, what is probed is not the tunneling
i =3,4. The incoming branches are insensitive to the tunneleurrent in the junction aregas in Ref. 13, but its conse-

ing between edges, due to the chiral nature of the systenquences in the current and voltage in the four terminals away
Information about what goes on in the junction cannot propafrom the scattering region. The four terminal measurement,
gate in the direction opposite to the chirality of the branch,as seen from Eq11), does have a correction|w| to order

and therefore the noise in the incoming branches is indepenf'|?. For w<w; we have, for example,

dent of the tunneling of charged particles between edges. V=0 )

This result of chirality is clear within the Landauer-Buttiker ~ Ssa(®)— S35 (0)=S?(w)

scattering approach. Another physical consequence closely — Sy @) — Syy(@)

related to this is the fact that the average voltage along the 11

branches remains constant outside the scattering region. Also w2971

notice that the equilibrium noises;=e* V/#=0) in an out- =2€e*1{|1- ‘w— (|, —|wl)
going branch[S¥; °(w), for examplé is simply the total )

noise in an incoming brandts,;(w), for examplg; thus, the . ®

incoming branches can be used as the reference level for ~2e*l1-(29-1) || (12)

measurements of excess noise. ) ) )

The second point to notice from E€L1) is that to order Ong recovers the classical shot n0|se'expres5|onufzeo.
IT'|? the noise in the outgoing branches that is in excess tdlotice that, since these results are valid only to ofdgf,
the noise in the incoming branches has a singularity at thEhere is no correc_tlon to the classical srlot noise expression
Josephson frequenay; , vanishing forw> w,, as illustrated  fof @=0. Corrections appear at ordgr|* (see Ref. 15
in Fig. 3. The nonequilibrium voltag¥ determines the fre- Also notice that the nonzere corrections to the shot noise
quency scalav;=e*V/4%, up to which there is structure in depend on whetheg is larger or smaller than 1/2. For
the excess noise due to tunneling. Such vanishing of th8>1/2, the difference between the outgoing and incoming
excess noise spectrum past a frequency set by the noneggRectrathe Szx(w) — Syy(w) above, for exampledecreases
librium voltage should be familiar to readers accustomed toVith o, whereas foig<1/2 it increases.
noise in noninteracting systemg= 1), in which the excess
noise goes to zero linearly at the Josephson frequétityis IV. SCATTERING APPROACH FOR g=1/2
point will be illustrated further in the next section, when we
will have at hand the exact solution for the noise spectrum in In this section we will use the Landauer-Buttiker scatter-
the case ofj=1/2. The strong-coupling limit of the solution ing approach to obtain an exact solution for the noise when
for g=1/2 also gives us the solution f@=2, which we g=1/2. In this approach, we use the quantum equations of
shall use for comparison purposes. motion derived from the Hamiltonian to solve for the scat-

The last, and most important, point about this high-tering states. These scattering states describe free left movers
frequency singularity in the noise spectrum is in regard to theand right movers that are incident on the impurity and then
connection between the two dual pictures illustrated in Figare reflected or scattered by the impurity. The solutions for
1. In Ref. 15 it was pointed out that the singularity at thethese states can be used to calculate the conductance and the
Josephson frequency remained to all orders in perturbationoise in the various branches.
theory. However, the perturbative expansion for the geom- The advantage of focusing @ 1/2 is that for this value
etries in Figs. (a8 and 1b) yields two distinct frequencies, of g the system can be described by free fermithS mak-
namely the quasiparticle frequeney,,=veV/% when qua- ing it straightforward to solve for the scattering states. How-
siparticles are the tunneling chardg€sg. 1(a)], and the elec- ever, already agj=1/2, we expect to see singularities in the
tron frequencywe =€ V/%, when electrons are the tunneling noise atw;=e*V/#, corresponding to quasiparticle tunnel-
current carrierdFig. 1(b)]. These configurations are con- ing. As the tunneling amplitudE increasegor V decreases
nected in the sense that one is the strong-coupling limit ofve expect to obtain the dual picture g 2, with electrons
the other, and thus there should be a nonperturbative mechawnneling and a singularity &V/%. Thus the full solution at
nism by which the singularity moves from one place to theg=1/2 will show us what happens to the quasiparticle sin-
other. This was the clearest open question in Ref. 15, andularity asT is increased. The hope is that the qualitative
which we can answer by focusing on the exactly solvablebehavior of these results will also apply for other values of
case ofg=1/2. Another exactly solvable point is the trivial g.
caseg=1, which unfortunately cannot be used to address Wheng=1/2, the Hamiltonian for the system is given by
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The fermionic model is solved using the equations of motion
obtained by commuting the operatoggx) and f with the
Hamiltonian:

—idyp(X)=[H, p(x)]= (i dy+ wg) Pp(x) + V27 [™* f 5(x),
whereHg’L are the free Hamiltonians for the right and left W [H4(x)] h ooy (18

moving fields, andvy=€e*V/#, with e* =e/2.
The Hamiltonian can be recast in terms of new chiral —ig,4"(x)=[H, s (x)]=(idy— wo) ¥ (x) — V27T f (%),
fields ¢ (t,x) =112 ¢r(t,X) = $(t,—X)]: (19
and

H=HC+ HO + Te~iwoteTs [ 4rtO + 4L10)]

4 T*eivote \;—i[¢R(t,0)+¢L(I,O)], (13)

H=H%+H? +Te woleld- (L0 T*glodte1-(10 (19

—igf=[H,f]=2\27[T¢(0)-T*y(0)]. (20
The densities of the new fielgs. = (1/27) d, ¢ are related f=(H.4] LT #1(0)]

to the densities pr = h1/2/277)¢9 drL by p.(t.X) According to these equations, far= 0, the fieldy satisfies
, X ) +\h . . . .
= pr(t,X) £ p_(t,—x). Notice that thes.. fields are decou- the free equation of motion for a rightmover with energy

pled in Eq.(14), and the Hamiltonian fos . is simply the  Shifted by

free HY . The Hamiltonian for¢_ can be fermionized by (1dy+idy+ wg)=0. (21
defining #(t,x)=1/y/27:e'¢-(t¥: One can check thay o . o . .
defined as such satisfies the proper commutation relatiorf8t X= 0, it picks up a discontinuity because of the impurity.

{n(t,x), 77 (t,y)} = 8(x—y).2® In order to preserve unitarity and obtain the proper commu-
In terms of the fermionic fieldsy, 5", the Hamiltonian tation relations in the solutions af, in Eq. (20) the field
H is #(0) must be given by (1/2),(0")+(07)]. With this

definition, it is straightforward to solve the equations of mo-
tion. The solutions are given by

9
—i— —wq|7(X)

X

H,:J dx| 77(X)
> A elereoxgTiot for x<0
+\2m8(X)[T n(x)+T* ﬂx)]], (15) P(x)= (22)

> B, el(@rwoxg=iot for x>0
where we absorbed the oscillating phasks' into a redefi- ¢
nition of the chemical potential. The Hamiltonian above con-and
tains terms linear in the fermionic fieldg and 7', which

prevent a direct qalculation Qf the commutators _that would D Al el woxgmiot  for x<0

give us the equations of motion for the fields. This problem ©

can be circumvented by redefining the fermionic fields to be yl(x)= (23
P(t,x)= n(t,x)f, with f=C+C" and{C,CT}=1, as in Ref. > BT el @oxe=iot for x>0,

22. More formally, such a transformation can be constructed
from the proper handling of the zero modes of the bosoniGynere
fields ¢,%? and one can identif§ with (— 1), the fermion
counting operator commonly used to switch from periodic to (1+e A, +(1—e ¢ AT
antiperiodic boundary conditions in fermionic conformal B.= 5 (24)
field theories.

The Hamiltonian we will use in the exact solution of the and
noise spectrum for thg=1/2 case is the one written in terms

: : : i+ 4|T|?
of the i, 4" fields andf: (o) 1@ ATIL
€ io—4m|l|?" 29
H_:f dx[ #T(x) —ii—wo P(X) Given_ the commutation relfation fap, the A, satisfy the
X following commutation relation:
Ty
+\/qué(x)[l“zp(x)f+I‘*f¢T(x)]], (16) Ao Aot =00y 0, (26)

These solutions can be interpreted as having an incident par-
where the nonvanishing equal-time commutation relationsicle at energyw that scatters into a particle with energy

betweeny(x), ¢'(x), andf are and a hole with energy- w (see Fig. 4. Both the particle
and hole scattering involve an energy-dependent phase shift.
{w(¥), ¢ (x" ) =8(x—x"), {g(x),f}=0, {f,f}=2. The reservoir is located to the left of the impurity, for

(17) somex<0. To obtain the scattering stat®), we assume
that the states leaving the reservoir are in equilibrium with
The densityp_ can be written in terms of the fieldsand  the reservoir, which has energy,. Thus, forx<0, at zero
Yt asp_(X)=y¢ (x)¥(x), so that all correlations between temperature all the states with= w, are filled. This means
p_'s can be derived from the correlations of the fermions.that
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S((,();Xl 1X2) = fjcwdteiw%{p*(tixl)7P*(OIX2)}>7 (33)

particle

where we take only the connected part of the correlation
function, andx; andx, are positive or negative depending
on whether the current is evaluated in the incoming or out-
going channel.

A. Calculation of autocorrelations

We will begin by calculating the noise wheqq=x,. In
this case, both of the currents are evaluated on the same side
of the impurity. Because of the time translational invariance
of the correlators, the expression for the noise simplifies to

hole ©
S(w;xl,xl)zJloodt(e“”“re*i‘”‘)(p,(t,xl)p,(o,xl».
(34

To find the noise in the incoming channel, we must evaluate
FIG. 4. A particle(plane wavég incoming from the left ¢<0)  the expectation value
with energyw scatters off the impurity at=0 into a superposition

of a particle at energy and a hole at energy » on the right side (p-(t,X_)p_(0x_))= (" (t,x_)y(t,x_)
of the impurity k>0). In the case where the incoming state is a +
filled Fermi sea up to the energyy, the scattered state on the right X (0x-)(0x-)), (39

side of the impurity will be completely filed up to energywo,  with x_<0. Using the solutiong22) and (23) for ¢ and
and partially filled betweenr- wy and wg. It is this partially filled sz we find

energy range from- wy and wy which is responsible for the non-
equilibrium properties of the system. .
(p-(tx)p_(Ox )= > e lortert

All®)=0 for w<wg 27) e
X(®|AT, A, AT A, |D)
and Wy W2l Twg Wy
(w1t wrt+wg+wg)X_
A,|®)=0 for w>wp. 29) xeltteerootoat. (39
: : : : This expectation value, and the resulting integrals for
#ﬁén,?h;?e commutation relations fév in Eq. (26), we then S(w;x_,X_), are evaluated in Appendix C, with the result
_ 1
<(I)|Aw1Aw2|(I)>_0 (29 S(a);X,,X,):Z|w|. (37

and

If we want to calculate the noise in one of the two original
<<I>|A21Aw2|<13>=nw15w1,w2, (300 R andL incoming branches, we must use the relations

where 1
Pr(X)=5[p+(X)+p-(X)]
1 for w<wg 3
=10 for w>w,. @D and
In this paper, we will just concentrate on the case when 1
T=0. However, we can obtain the finite temperature results pLX)=5Lp+(=X)=p-_(=X)]. (39
by replacingn,, with

Then the density-density correlations can be evaluated as fol-

1 lows:
nwzm. (32)
1

It is easy to show that these solutions reproduce the exact (PRLPRL) = Z((mipf)(mipf»
results for both the equilibriuff? and nonequilibriurt? tun-
neling current. 1 1

We can now use the solutions fgr and the scattering = 2{p-p )t 7(psps), (39
state to solve for the noise in both incoming and outgoing
channels. Our calculations will closely follow those by Butt- where the last equality follows from the fact thaf and
iker in Ref. 18. The noise is given by p_ are decoupled. Recall that, is a free field, so that the
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time 0 R time ¢ R Next, we will calculate the noise in the outgoing current.
This time we must evaluate the correlator
e* e* e* e*
L L (p-(t.x)p—(0x))y=(¥l(tx)w(t,x.)
So XYM (0x)P(0x,)),  (41)
(a)
with x, >0. According to Eqs(22) and(23), this is equal to
time 0 R time ¢ R
\_/'/
et e & >¢ (p-(tx)p_(0x )= 2 e ilerret
L L e T ©1:02:93:04
Sr x(o|8!, B,,BL, B, )
(b) X @l(w1+wy+wg+wgxy (42)

FIG. 5. The tunneling processsg (a) ands; (b). In the process
Sg, both at time 0 and, a quasiparticle tunnels from the left branch When we expand th®'’s in terms of theA’s, we will
to the right branch, and another quasiparticle tunnels in the oppositgptain two different types of processésee Fig. 5. In the
direction. In thes; process, at time 0 two quasiparticles tunnel from'first, at time 0 one particle is created while another is de-
say, the left to the right branch, aqd at timthe tWO.q“aSiparti.Cles stroyed, and then at timethe first particle is destroyed and
;gp?ﬁé Z?rfgullgrti?;:tptﬁzsgleeglrrgr?t;?:dJehn%gfgzss responsible o other is created. In terms of the original tunneling picture,
0 this describes the process where both at timmed at time 0
one quasiparticle tunnels from the left branch to the right
branch and another tunnels in the opposite direction. In the
second process, at time 0 two particles are created and then
at timet they are destroye(br vice versa. In the original
1 1wl tunneling picture, this corresponds to two quasiparticles tun-
Si(@) =S w)==S(w;x_ ,X_)+ ——=—]o|, (40 neling in one direction at time 0 and two quasiparticles tun-
4 427 47 LS - . . : :
neling in the opposite direction at time As shown in Ap-
just as we found in the perturbative calculation with1/2  pendix C, this second process is responsible for the electron
in Egs. (7)—(10). Using this scattering approach, it is clear singularity atog=2wq. In Appendix C, the expectation val-
that for these two incoming probes the noise is the same ases in Eq.(42) and the integrals foB(w;x, ,x,) are evalu-
for a free system, because in these two channels the densitiated. We find that the noise on the outgoing side of the im-
have not yet reached the impurity. purity is

contribution to the noise fromp, is simply 1/27|w|. We
find that the noise in each of the two incomifyand L
branches is given by

1 | gl | wol @]
. = " Jowl+ _ 2l 4a1 +tan L
S(w;X 1 ,X4) 271_|u)| 0(|2wo) |w|)[4|F| tan 47T tan ( 47T
167|'|*
+ 2L g a2 (ol - oo -l a2+ o). 43
In the limit «— 0, this reduces to the nonequilibrium zero- B. Discussion of autocorrelations

frequency noise found in Ref. 21 using a different approach. Tne first striking feature to note in E¢43) is that the
This agreement provides further support .for our choice of\hise due to the tunneling vanishes identically for
regulation of they(0) operator across the impurity. _ |w|>|2we|. This means that whenevs| is larger than the
. To compare with our perturbative calculat|en for the noiseg|ectron frequency, the noise shows no sign of the impurity:
in the original four probe geometry, we again make use Of; is the same as for the incoming branch. This is also what
Eq. (39. Thus, the noise in the two outgoing branches isy nnens for the free-electron case, wgth 1. To second or-
related toS(w;x ,x,) as follows: der in perturbation theory, this is indeed the case for gny
as seen in the preceding section. The strength of the results
1 1 o] presented here is that femy valueof the couplingl’ the
) w noise vanishes above the electron frequency when
Sl @) =Sud0) = 70X, X )+ 7 50 (44 g=1/2, 1, and 2(The last caseg=2, is obtaine?j by rgsort-
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ing to the strong-coupling limit of thg=1/2 case.It is not  coupling limit with |T'|—0. To see the strong-coupling limit,
clear whether this will happen for the other valuesgobe-  in Fig. 6(b) we plot the excess noise divided ﬁag (in order
yond second order in perturbation theory. to fit in the same scaleAs @y becomes small, this clearly
Next, we can expan8(w;x, ,x;) out for small and large has the cubic behavior in E¢46). Finally, the full noise,
|| to compare with the perturbative results. /A goes to  divided byay, is plotted in Fig. 6(c). The cubic singularity
zero, the noise becomes at ®=2my decays too quickly to appear in the full noise.
1 However, formg=100 andwy= 10, there is clearly a “blip”
_ - 2 _ in the plot of the noise, which shows the “smoothed out”
Sed @) =Sud @)= g7l el T 7T 1"0(wol o). (49 quasiparticle singularity. We note that the width of the

This agrees with the perturbative result fipr 1/2. We note “s_moothed oqt” quasiparticle singularity .iS4W|F|2' This .
h idth can be interpreted as the inverse lifetime of the quasi-

that the quasiparticle singularity arises because we took t 1ot . !
|T'|— 0 limit of the arctangents. In addition, because this ste articles. Thus_, for' nonzero values of the.tl'mm'alln.g ampli-
function is already zero fdiw|>|wy|, the electron singular- ude, the quasiparticles appear to have a finite lifetime.

ity at | w|=|2wg| drops out. Thus, to this order we only have

the quasiparticle singularity. However, for any finite value of C. Calculation of cross correlations

II'| the quasiparticle singularity becomes smoothed out and For completeness, we will conclude this section by giving
the electron singularity appears. As we shall see latefihe result for the nois&(w;x. ,x_) between incoming and

though, the “smoothed out” quasiparticle singularity is still & gutgoing currents. By comparing this with the perturbative
more distinctive feature in the plots of the full noise than iscajculations of the cross correlations, we will see to what

the electron singularity. extent the duality symmetry holds. In addition, once we have
Next, for |I'| -, the noise becomes S(w;Xs ,X_), S(w;X; ,X4), andS(w;x_,x_), we can cal-
1 1 culate the noise in the Hall current and the tunneling current.
Saa( @) =Sy @) = —] 0| + 553717 0(| 2w0| — | @) The Hall current |s.the to.tal current running down the
s “ Am 3847°|T'|* ° sample, given by =], (x)+jr(X)=pr(X)— p.(x) and the
(12l — 3. 0O(1/T18). 46 tunneling cur_rent is the_ current that tunnels across the
(|20 = |oD*+OCUT). (46 sample, which is given by I,=pr(X,)—pr(X_)
If we make the identification thdt,,,, the tunneling ampli- =p, (x_)—p (X4).

tude forg=1/2, is related td",, the tunneling amplitude for The expression for th&(w;x, ,x_) noise is
g=2, by

T, = 1 @ S(w;x+,x,)=Jiwdte""‘<{p,(t,x+),p,(O,x,)}>, (49
2 16n’ Ll
then this answer agrees with the perturbative result fo}/vhere x-<0 and X-+>0' Again, we can expe_md the
; p_(x;) andp_(x_) in terms of theA,’s andB,’s in the
g=2.[To make the comparison, we must recall that#te o\ ,tion for 4. After evaluating the expectation values and
in this equation corresponds to the Josephson frequency f?ferforming the integrals ovep, andt, we find

the quasiparticle, whereas thg in the perturbative calcula-

tion Egs.(7)—(10) is the Josephson frequency for the elec- ol |-
tron, which is twice as larggIn addition, the expansion in  S(w;x, ,x_)={ =——2|'|/tan" ! 20)
1T'| of the scattering solution only contains powers of 2m 4|l
1/T|*=|T",|?, and at every order ifil,|? the electron sin- ||+ wg
gularity at|w|=|2w,| remains. These two properties also +tan ! 2 TIZ +i|T|?sgn( @) {2In 3
agree with the perturbative results found in Ref. 15. 4|l

Lastly, we can make use of the scaling properties of the +(47|T|?)?]=In[(w+ wo) >+ (47| T'|?)?]
noise to write S=S/2|T'|2 as a function only of
d=wl47|T|? and@= wy/4|T'|2. The noise is then given N[ (0— wg)2+ (4m|T|?)2]} | et —x-)
by 0 '

. . 1 { 1 (50
@0)=Su( @)= 5|o|+ 0(|200| — |@|)] z[tan *(|@
Sod( ©) = S4d &) 2|w| (|26 =] a1) 2[ (@) We can again use Eq39) to obtain the expression for the
1 cross correlations of the currents in the original four reser-
+tan‘1(|&>0| _|5)|)]_|_ m{|n[:|__}_(|5)| _ |5’0|)2] voirs. We find, for example,
1o

1 i —X
_|n(1+5)(2))}]' (48) S31(w)=ZS(w;x+,X,)+ZEe""(X+ -) (51)

In Fig. 6(a), the excess nois&—S#0=° is plotted against and
ol o for different values ofo,. As @y becomes large, the 1 10|
i 1 i w| .
excess noise approaches the step function in45s). Recall Syy(w) = ot —x) (5D

that &o=o/(47|T'|?), so this limit is equal to the weak- 7 S(@ix, X ) 427
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The other cross correlations, name8s, and S,,, can be agree, but they differ fog=2. In Sec. V, we will also discuss

calculated similarly. For small’|, the noise is this apparent breakdown of the duality transformation.
-
Sai(w)=|—— AT |*[sgr(| | + wg) + sgn| w| — ()]
47 4
2_ .2 V. DISCUSSION OF THE DUALITY SYMMETRY
1o, w 0 . B
—i=|T')%n . gl —x), (53 . . . .
2 g As we have seen in the preceding sections, we expect this

. : system to exhibit a duality symmetry. In this section, we will
and whenI'| is large, the noise becomes first describe this duality symmetry more fully, and then
ol 1 1 1 1 compare the results from the perturbative and scattering cal-
— 455 3 02SgN ©) — 553 =l (|0l culation to see how consistent they are with this symmetry.
4w 32m |1 384m° |I'| For g=1/2, the original picture of this system is a single
) quantum Hall droplet with “filling fraction”v=1/2. Quasi-
+600)3+(|w|—wo)s]]e"”(x*_x)- (54 particles can tunnel from one branch to the other, and they
have chargee* = ve, tunneling amplitudd’y, and Joseph-

In the following section, we will compare these results with son frequencywy=e€*V/%. The Lagrangian describing this
the perturbative calculation. We will find that fgre=1/2 they ~ system can be written as

Sy(w)=

16 T T T T T
R @p = 108 —
@ Bl
M . Bl
12 F .
1 - -
o FIG. 6. Plots for the renormal-
o ol ] ized noise in one of the outgoing
oF branches(probe 3 in Fig. 2, S,
06 | | vs. @/ wg. Sz3, ®, anda, are the
’ renormalized noise and frequen-
cies, using the coupling constant
04 r i as  the  scaling factor
(Ss=S33/2|T|?, @=w/4m|T|?,
02| . and  @y=wq/4w|l'|?,  where
w0=e*~V/h)~. In (a) the excess
0 . . noise S;;—Sy; ° is plotted for
-3 2 o 2 3 large values ofig, which illus-
/&g trates the weak coupling
(IT|—0) limit. The rescaled ex-
07 ' ' T ' ' cess noise $33—S%; 9)/ad is
(b) plotted in(b). It shows the strong-
os L coupling limit (T'[—=) as
@o—0. The full noiseSz3/ @ is
plotted in(c). For the larger values
05 of @y, notice that the singularity
at ®=2mg is hidden in the full
“13° 04k noise. Meanwhile, some reminis-
5 ’ cent signs of the quasiparticle sin-
75 gularity appear neab=w,. The
w03 results for the noise in the other
2 outgoing brancKprobe 4 are ex-
actly the same.
02|
01 F




53 NONEQUILIBRIUM QUANTUM NOISE IN CHIRAL LUTTINGER . .. 4043

(c)

8., 7 B

FIG. 6 (Continued.

s= %[(a@)z— 02 (G p)?] ~Tge™ !0t a(x) e o0
+H.c., (59)

with g=1/2 and ¢= ¢pr(X)+ ¢ (—x). If we use the four
probe geometry to study this system, then Eg).gives the
relation between the densities in the four probes, p,,

PR R_ Ps
P4 L L pZ
X
(@)
PR L _ Ps
X
p4 R L p2

(b)

FIG. 7. The association of the four densitigs(i=1,2,3,4) to

pa, andp,, and the densities of the leftmovers and right-
movers. They are shown in Fig(d.

Once I' is increased(or V is decreased the droplet
should split into two. Each of the two new droplets is still
characterized by filling fractiom. However, now only elec-
trons can tunnel across the gap from one branch to the other.
Forg=1/2, the electron is made up of two quasiparticles, so
the tunneling operator for the electron should be

Fe(ei v“md)(t,O))Z: Feei \s‘7¢(t,0); (56)

the charge i and the Josephson frequencyag=2wg.
Thus, whenl'y in Eg. (55 becomes large, this system can
also be described by the Lagrangian density

1 - -
= 5[0 203 3p)2] ~Tee™ 1%t 5(x) e B0

+H.c., (57)

whereg=2 andI is small. However, in this geometry with
the two droplets, we must be careful when we write the
densities in the four probes in terms of the left-moving and
right-moving densities. According to Fig(ly), this relation

is given by

p1(t)=pgr(t,X) for X<O,
pa(t)=p.(t,x) for x>0,
pa(t)=p(t,x) for Xx<O,

With these identifications$;;(w) in the four probe geometry
equals S g(w;X_ ,X_) in the two-droplet geometry, and

the left and right moving branches for the dual pictures correspondsimilarly, Sy () is given by Sgr(@; X ,X_), wherex_<0

ing to (a) g=v and(b) g=»"! [compare to Figs. (& and Xb)].

andX, >0. Also, we see that the Hall current in the single

Notice thatp, and p, change chirality under duality, and that the droplet,pg(t,x) —py(t,X), is dual to the tunneling current in
space coordinateghe x andx axis) should also be redefined under the two droplets,pr(t,X_)—pgr(t,X,), because both are

the duality transformation.

equivalent top,(t) — p4(t).
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We will first verify that the scattering and perturbative cause the tunneling operator g2 has dimension 2 and
calculations agree fog=1/2. We have already found that should be an irrelevant operator. In spite of this, both calcu-
when the noise is evaluated on only one side of the junctionations do agree to ordes (which is all that the derivations
then both the scattering and perturbative results agree. If o the duality transformation in Ref. 13 would prediat is
probe is in an incoming channel and the other probe is in awonly the higher-order terms in that disagree. This suggests
outgoing channel, then according to Appendix A the perturthat we are on the right track with the perturbative calcula-

bative result for the noise is tion, but we just need to add in the appropriate counter terms.
To see which counter term we should add, we begin by
. — i, —x_) |i| recalling that we used the most relevant tunneling operator to
Sai@iX X-)=e 41 describe the system. However, f@g=2 the operators
(pL)%+ (pr)? andp, pg are just as relevant as the tunneling
|Fq|2 . w?— 0 operator, so we must consider their effects also. In fact,
——g |14 sgriw)in e [pr(0)—p (0)]? also encourages tunneling because it tries

to equalize the density of rightmovers and leftmovers. An-
other way to look at it is that we cannot have quasiparticles

]’ (59 tunneling between the droplets, but density fluctuations on
one side may affect the other side.

+2m{[1+sgn(|w|—|wo]) ]}

where we have sed=v=1/2 in Eq.(A19). On comparing In Appendix B, we found that when the interaction
this with the expansion of the scattering calculation for small
I' in Eq. (53), we find that also in this case the scattering and Zier= YL Pr(t,0)— pL(t,00]128(x) (62)

perturbative results agree.

Next, to check the duality transformation, we must com-
pare the scattering calculation Bs-« with the perturbative
calculation ag=2. Again we found that if both probes are in i
the same branch, then the two calculations agree. This is SRR(Xl,Xz)=0(—X1X2)[ —yzwzsgr(wxl)—
rather remarkable, because whgr2 the system can be r 8m
sensitive to short distance behavior, which means that it
could depend on the detailed structure of the junction and on —2i% 8 (O)wzsgr(wxl)]] gleti=x2)  (63)
how it is regulated. However, here we found that the weak-

goqpling perturba_tive calcula}tion and the strong-couplingyhere 5’ (0) is a regulation-dependent divergent term.
limit of the scattering calculation are the same, even though First we note that the density-density coupling does not

they treat the junction very differently. We conclude that, ataffect the noise evaluated on only one side of the impurity

least to the order in perturbation theory that we have calcuj o whenx;x,>0.) According to Eqs(7) — (10), (46), and

lated, the noise extracted from a single channel is not aft47) this is necessary for the scattering and the perturbative

fected by the short-distance properties of the impurity.  cajcylations to agree. It is reasonable that the noise evaluated
To complete the comparison, we need the results for thgp, only one side of the junction should be less affected by

noise between the incoming and outgoing channels. Usinghe counter terms and the regulator than the noise between

Eq. (47) to relate the quasiparticle tunneling amplitude to thepohes on either side of the junction, because even though in

electron tunneling amplitude, we find that the expansion ol cases all the measurements are done far from the junc-

I'—c of the scattering calculation becomes tion, in the second case the information must travel from one

1 i o side of the junction to the other. _

Su(@iXs X_)= E|w| + §|Fe|w239r(w)— ?|Fe|2[(|w| . Second, we note that whenx,<0, Eq.(63) contains the
linear term iny, which also appears in the scattering calcu-
lation, but not in the original perturbative calculation. We

+w0)3+(|w|_w0)3]]eiw<x+X—>_ (60)  find that the only density-density interaction that gives the
same linear term as in the scattering resultdibof the cross

This must be compared with the perturbative calculation oforrelations is the one given in E(62), with y=1/(4Ig).

Srr(®: X4 ,X_). To obtain this perturbative result, we set When we add the density-density term with this choice for

v=1/2,g=2, and replace, by 2w, in Eq. (A19). Thenthe ¥ to the original perturbative calculation, we obtain

perturbative calculation of the noise across the junction
yields

is included in the Lagrangian, it gives the following contri-
bution to the noise:

¥2
1673

[lof®

SR (w;x, x_)= i|w|+i—|r |w?sgr( w)
pert. & A 0B 47 2" ¢

1 (0
ST ,i>=(—|wl—|relz[—[<|wl+|2w Do+ (ol 2
4m 6 i - ST 0]+ 00+ (|0l - 0))
2

2iw

Jeiw(x+x_)_ (61)
+2i |Fe|2wzsgr(w)( 7 5" (0)

We first note that this expression for the noise contains a
linear divergence in the cuto#f. Thus this perturbative cal- _ i)]eiw(x+—x)
36 '

culation is regulator dependent, which is not surprising be- (64)
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Thus, (except for the divergent partthis perturbative result connect to the electron tunneling picture, we calculated the
agrees with the scattering result. exact noise spectrum fgr=1/2 (or g=2 due to duality. We

To cancel the divergent part, we must regulatedfanc-  find that the singularity at the quasiparticle Josephson fre-
tion properly and adjust the counterterm accordingly. Therquency 3eV/% is smeared for finite tunneling and is not a
the two results will agree in the limit as, andx_— *oo, true singularity, while the singularity at the electron Joseph-
Another approach, which may be more appropriate, is tason frequencgV/% survives in the exact result. Thus, for all
“smooth out” the density-density interaction. This is accom- nonzero values oF, the electron singularity coexists with a
plished by replacing the interaction in E@?2) by the fol-  smoothed out quasiparticle singularity, and only in the limit

lowing expression: of the quasiparticle tunneling going to zero is there a “tran-
) sition” where the quasiparticle singularity appears. An inter-
Zint= YLPr(1,0) = p(1,0)]F (), (65  pretation of this is that at finite tunneling the quasiparticles

can acquire a finite lifetime, so there is no sharp quasiparticle
singularity. This is consistent with the calculations of the
%ﬁall current, which is no longer at its quantized value once
e quasiparticles can tunnel. In light of our perturbative cal-
&ulatlons we expect that this qualitative picture will also
apply for other values ofj<1/2. It would be interesting to
check this picture by direct calculation for sorgec1/2. It
does not appear that the thermal Bethe ansatz techniques of
Ref. 12 will be applicable because they do not give informa-
tion about the excited states. However, it might be possible

wheref (X)— 8(x) as e—0. This new interaction does not
change the finite part of E¢64), and the functiorf can be
chosen so that the divergence cancels. As a result, ev
though the duality symmetry is not exactly obeyed for the
cross correlations, it is possible to add in counter terms t
bring the strong-coupling limit of one picture into agreement
with the weak-coupling limit of the dual picture.

To summarize, to the order i we have calculated, the
action for g=1/2 is dual to the renormalized action for

g=2, given by to use a leading-log calculation, perhaps along the lines of
1 . _ Ref. 10, to solve for values aroump= 1/2.
= 8—[(at¢>)2—v2(ax¢)2]—Fee"2“0t5(x)e\’2¢<t*°)+ H.c. From the exact result we also find that the noise spectrum
i of the current correlations on a single bran@utocorrela-
+ 47T 5(X)[ pr(t,0)— p. (1,013, (66)  tions satisfies the duality relation, while current correlations

between distinct branchdsross correlationsdo not satisfy
and if we only want to calculate the noise in one particularthe naive duality relation.

channel, then it is not necessary to include glpeinteraction
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where 02=v2+4m8(x)T'3 is the “renormalized” velocity. In order to obtain the noise spectrum of density-density

In this case, the velocity remains the same everywhere buforrelations on given leads, we start by writing the correla-
right at the junction. If, instead, we use E(5) for the tions between density operators as follows:
density interaction, then the velocity is renormalized in a

region around the junction. (Palt,X1) pp(0X2)), (A1)
wherea,b take the valuest+1 for R moving branches and
VI. CONCLUSION —1 for L moving ones. Such compressed notation makes it

5|mpler to identify incoming and outgoing branches in a uni-
fied way for both left and right moversi,(t,x;), for ex-
ample, is the density in an incoming or outgoing branch if
ax;<0 orax;>0, respectively.

The densities are related to the fieldss | through
\f [27) dypr |, SO that we can write

In this paper we studied the four terminal tunneling noise,
spectrum for chiral Luttinger liquids characterized by an ex-
ponentg. Perturbative results are obtained for arbitrgry
Perturbative calculations for quasiparticle tunneling reveal a
singularity at the quasiparticle Josephson frequerey/7,
while perturbative calculations for electron tunneling onlpr'-
produce a singularity at the electron Josephson frequency
eV/h. This appears to be inconsistent with the duality pic- (pa(t,X1)pp(t’,X2))= ﬁﬂxléxz( Da(t,X1) Pp(t’,X2)),
ture that quasiparticle and electron tunneling describe the ) A2)
same tunneling junction in two different limits. To under-
stand how the quasiparticle tunneling picture can smoothlyhere it is convenient to use
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r . <-|-c(ei)\1¢a(t,x1)efi>\2¢b(t’,xz))>m2
o, = =(i)(iT*)$.dt, $.dt_e wot+e w0t~
—— - ¥ ) ><<0|Tc(eiqlf>(t+,o)e—iQ¢(t7,0)ei)\1¢a(t’X1)
FIG. 8. An insertion of an operata™ '9¢(") corresponds to the x e Mt x2))| ), (A5)

insertion of an operatoe™'9(") corresponds to an insertion of a ér+ ¢, . The expression above is simplified using
charge— at timet. The timet is ordered along the contour shown,

and there is a distinction between charges placed on the top an i (LX) o= D a0 Tt X)) B(t x0))[0)
bottom branches. In the illustration, we consider the particular casefzolTC H enm |0>—e IE>J s e
when the— charge is inserted on the top contour, and-theharge (AB)

is inserted on the bottom contour. o .
Substituting it into Eq(A3) we obtain

(balt,X1) bi(t' Xp)) = % %<em&<r,xl> (Te(a(t:x2) ¢o(t" X2))rye
1 2

) ) - |I‘|2 % dt, % dt_eq2<0|T0(‘[’(t+'0)‘/’(t*'O))|0>
xe Ml X)) o (A3)

The last correlation function is easy to calculate perturba- x !0ttt g?[(0]Te(b(t 4 ,0) dalt, X1))|0)
tively using — (O] To((t-,0) $a(t,x1))]|0)]
(To(ehataltxagmiadn(txa))) X[(0[T(o(t,0) pp(t',X2))[0)
= (0| To(S(— o0, — )M 1Paltxe=N2du(t' X2))| 0y —(0[Te(¢(t-,0) pp(t',%2))[0)]
(A4) +(0[Te(@a(t,X1) dp(t',%2))[0)}. (A7)

where |0) is the unperturbed ground state, afid is the  The last term in the expression above, the one proportional to
ordering along the Keldysh conto(fig. 8). The scattering (0|T.(¢a(t,X1) dp(t',X5))|0), vanishes. The reason why this
operatorS(—oo, —o0) takes the initial state, evolves it from happens is very simple: the factor in front of it is the term of
t=—o tot=o and back td = —=. The use of the Keldysh order|I'|? in the expansion oF=(0|S(— =, —%=)|0); since
contour is necessary in the treatment of nonequilibrium probZ=1, the correction at any order in must vanish.
lems, such as the one we have in hand. A more detailed In order to carry out the calculations, we introduce nota-
description of the method in the context treated here can bton that keeps track of the position of the two inserted
found in Ref. 15. charges along the contour, i.e., whether they are in the for-
In order to proceed we expar®(—«~,—x) to second ward (or top branch, or in the returfor bottom branch(see
order in perturbation theory. In terms of the Coulomb gas ofFig. 8). The position of the charges is important for the com-
Ref. 15, we have an insertion of two charges of oppositgutation of the contour-ordered correlation function, given
sign: by

(O] Te(@r,L(t1,X1) PR L(12,X2))|0)
—In{&s+i sgrt;—ty)[(t;—t2) F(X1—X,)]}  botht; andt, in the top branch
—In{8—i sgnt;—ty)[(t;—ty) *(X;—X,)]} botht; andt, in the bottom branch
=In{S—i[(t;—t2) F (X.—X2) ]} t; in the top and, in the bottom branch
=In{S+i[(t1—t2) F(X1—X2) ]} t; in the bottom and, in the top branch.

The compact notation consists of giving indices to the times Giﬁ(tl,xl;tz,xz)zGj‘f;(tl—tz,xl—xz)
which contain the information about which branch of the

=(0|T th,x t3,%))|0
Keldysh contour they are on, so th#tis on the top branch (OITe(a(ti X1) do(t2.x2)I0)
for u=+1, and on the bottom fop=—1. In this way, we = = g pIn{0+iK (11— tx)[(t1—1p)
can compress the correlations to a compact form: —a(x;— X2}, (A8)
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where Again, we have used,b==*1 for R andL fields, respec-
tively. The correlation in Eq(A7) can be written, using this
Ko(t)=60(uv)sgrnivt) + 6(— uv)sgnv). (A9) compressed notation, as

(Telalt) ult' D=7, saman) [ i, [ dieote om0~ 63—t o)

—G3(t—t_ X)) [G2, (1 —ty %) —GL(t' —t_ ,xp)], (A10)

whereP St —t_ :eq2[6+]f(t+7’[_,O)+G7;(t+ft_,0)], or ex- © i
plicitly (temt) ’ ’ Fap(@;X1,X2) = fﬁ dte! “YTe(pa(t,x1) pp(0X2))) )2
1 1 v t
P..(t)= W, P.-(t)= m (All) (2 )2 (9)(1(9)(2] dtel® (Tc(¢a(t X1)
The factor sgngv) simply keeps track of the sign coming % X ¢b(0X2))>|F\2 (A12)

from the integration of the timets. along the contour. Notice
that the timeg andt’ are taken to be on the top branch.

Now, let which can be easily shown, using E&10), to yield
2
Fab(w;xl!XZ):l (2 )22 sgr(lu’v){P,uV wo [g (w Xl)g+/,L( o X2)+g+v(w Xl)g+v( w XZ)] P,uv(wo w)g+/,L
(—0.%2)g%(0,X1) ~ P, (wo+ ©) g%, (0,X) 90— 0.X,)}. (A13)

In this equationg is given byg%’, (w,x) = dy Gaa «(@,X) and can be obtained from Eq#8) and(A9):

miae'“®sgnw)+sgnax)], wu=+1pr=+1
miae' ™ sgnw)— sgnax)], w=-1p=-1
g/”(cux) OapX —2miae “®g(— w), pu=+1py=-1
2miae “g(w), pu=—1lyv=+1.

The spectrum to second order can be obtained from - * e'oP
Fan(®,X1,X5) as follows: P++(w):t(_w):f— dp(5+i|p|)2g,
(2) .. =<2 - er
S (ix1,%2) = S2(— 03Xz X1) P (0)=b(-w)= f P Cs—ilpp7
=f_ dtei“’t<{pa(t,X1).pb(O.Xz)}>\F\2
B - eiwp
=Fap(@;X1,X2) + FA(— @;X1,X). P++(w)zc+(_w)=Jmdp(51ip)29' (A1)

(A14)

Thet,b,c. are the same as in Ref.15. One can easily check
The only ingredients remaining to be calculated are thdhat t(w)+b(w)=c,(w)+c_(w), and that thec. are
P(w)’s, which are given by given by
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e oP 27 4y
Cx(w)= f olnc>(5+|p)2g Flag)le® e o= o). Saa(@1X4 X0 = Fg0s |F|2 (axy)| o] =[wol P97

(Al6)

X 6(| wol —|]). (AL7)
Now, we have the tools we need in order to obtain all

correlations. In particular, correlations within the same

branch and taken at the same point, issb andx;=x,, The zero order term il is trivially obtained from the un-

can be shown to yield perturbed density-density correlation functions:

S(O) . — (0), _ .. — - dt i wt 0 t 0 0 :L S iwa(x1—Xp) A18
ab (@;X1,X2) = Sy (— wiX2,X1) . € “Y(0[{pa(t,x1),pp(0X2)}0) 277|w| a,b€ ) (A18)

so that, in particularS)(w;x; ,X;) = v/27| o).
Combining the zeroth and second-order results, we obtain the results used in Sec. lll for the noise in incoming
(ax;<0) and outgoing &x,>0) branches, namely

14 . .
2_|w|, incoming branches
aa

S(w)=

14 .
310l + g T Pllol ~ ool 0(|wo|~]), outgoing branches.

It is straightforward to show that the noise in the incoming Hg(®)=2[t(wo) —b(w)]—[t(wo— ) —b(we— )]
branch remains equal to/27|w| to all orders in perturba-
tion theory.

Next, we will obtain correlations between densities of an o
incoming and an outgoing brandthe cross correlations =8f dtcog wot)sir(wt/2)
Without loss of generality, we will focus on the correlations 0
between twdR branches &=1), one outgoingX,;>0), and 1
another incoming X,<<0). The results for other combina- - m}
tions of branches are trivially obtained from the case we
consider. We have, again, all the tools at hand, namely Eq
(A13) and (A14), as well as our expressions fgw(w,x)
andP,,(w). We find

~[t(wot ®)—b(wet+w)]

(8+it)?9

(A20)

can show particularly that Hqp(w)
4|In[|(w —0dlod],  Hi(w)=0, and Hy(w)
—4i w?/36—» as 6—0.
The zero-order contribution to the cross correlations is
read directly from Eq. (A18): S(w;x;>0x,<0)
= 27| w|e' a2,

S2((w;%;>0x,<0)
APPENDIX B: PERTURBATIVE CALCULATION FOR THE

- Jl dtei“’t<{pR(t,X1>0),pR(O,X2< O)}>|F|2 DENSITY-DENSITY COUPLING

Here we consider the neutral couplingl;y
. T | gv =[] pr(t,0)—p.(t,0)]?, and show that it contributes to the
=g/t ——= (Sgr(w)Hg(w) correlations between incoming and outgoing branches, al-
though it does not contribute to correlations between two
2 g1 incoming or two outgoing ones. The calculations are simpler
oy L@+ @)™ than the ones in Appendix A. We will demonstrate the point
 T(29) . . .
by calculating the correlatiofiT .(pr(t,X1) pr(0.X5))) to first
and second order iry. Other correlations can be calculated
+|w| | wo| P9 *sgr(| | — |wo|)]], (A19) i a very similar Waﬁ’y.
As in Appendix A, contour integrals are simplified by
keeping track of insertions in the top and bottom branches
where the functiorHy(w) is defined as with indicesu,v=*1. It is useful to define
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(t1 X1t %) =h7 O (t1—t2,X1—X2) = (0| Te(pa(t ,X1) pu(ts,X2))|0)

- 2 37 O Tel 14 1) (15, 520)|0) (81)

14
=W6’x10x2Gw( —t2. X1 = X), (B2)

wherea andb, as in Appendix A, take the valuesl for R moving branches ané 1 for L moving ones. It follows from the
calculations of Appendix A that®®(w,x) = —[v/(2m)?]02G2(w,X) = — v/ (2)23,g%(w,x), which gives

27T|w|9(awx)ei“’ax—27ri5(X), p=+1ly=+1
27 w|6(—awx)e' P+ 27 5(x), wpu=—-1lp=-1
W00 = 70 )zéabx 27| w| 6(— w)el >, p=+1lpy=-1
27| w| 6(w)[e]'“®, u=—1lv=+1.

The perturbative results can be easily written in terms of these
Notice that the only term in the interactiqﬁ=p§—2pRpL+pE that contributes td T (pr(t,X1) pr(0X,))) to ordery is
the p2 term. The first order iny correction to the correlation function can be written as

(Te(pr(t,X1) pr(0X2))), =1 v$cdt1(0| To(pr(t,X1) pr(0.X) pr(11,0) pr(11,0))[0) = 2i y$ . dt; (0| Tc(pr(t,X1) pr(t1,0))[|0)
X (0| T(pr(0X2) pr(t1,0))[0). (B3)

The Fou-rier.transfornF(RlF)e(w;xl,xz) of the expression in S(Rlp)e(w;xl,xz)zs%)q(—w;Xz,Xl)
Eq. (B3) is simply

= j_o;dtei“’t<{pR(t1X1)uPR(O,XZ)}>7

=F(lge(w;x1,x2)+F<l *(— w;Xq,Xp)

W
FRR(©0iX1,X) =21y, sgrim)h ) (@x)hlf(~w,xp), 2m
o
(B4) (BS)
Turning now to second order in the perturbation expan-
sion, both thepEe and thepgrp, terms in the interaction
p% =p3—2prpL+p? can contribute to the ordey? correc-

and thus to first order iry the cross-correlation spectrum is tion to ( T.(pr(t,X1) pr(0X2))). Consider theyp% coupling,
given by so that to second order we have

——7 0(—X1Xp) w?Sgn{ wXy )€ 17X,

)2
<Tc(PR(th1)PR(nyz))>(7p§)2 (271 $cdty$:dt(0[Te(pr(t,X1) pr(0X2) pr(t1,0) pr(t1,0) pr(t2,0) pr(t2,0))[0)

_g’
8¢ cdt16:dt;(0[ Te(pr(t,X1) pr(t1,0))[0)

X (0| T¢(pr(0X2) pr(t2,0))[0)(0| Tc(pr(t1,0) pr(t2,0))[0). (B6)
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The effect of they2prp, coupling can be calculated likewise. The Fourier transform of these two contributions combined gives

FRR(@1X1, %) = —4%% sgnuv)hi;(wx)hi(—0x)[h), (0,0+h,, (0,0)], (87)
so that the cross-correlation spectrum to second order is
SHA(©3X1,X2) = SEH(— i Xz, X1)
:fj;dteiwt<{PR(t,X1),PR(nyz)}>y2

2 . 2 .
=F@(@;%Xq,%p) + F 2 (— wiXq,X,)

72])3 .
=-53 6(—X1X,) €' X[ | [3—2i* 6" (0) 0? sgr wX;)], (B8)
|
where ‘6" (0) is a regulator-dependent divergent term. <q>|AT_w A, Ajw A, |P)con
Notice that, both to first and second orderyin the cor- Lo 3
relations on the same side of the junction, ixx,>0, do =(®|AT A, |DND|A, AT |D) (C4)
I wy T !

not feel the density-density coupling, whereas correlations

across the junctionx;x,<0) do feel the coupling. More Evaluating these correlations using E¢g6) and (30), we
generally, when one considers all possible correlations infind that the current-current correlation reduces to
volving R andL branches, only those which contain an in-

coming and an outgoing branch will have a nonzero correc- (p_(t,x_)p_(0X_))= Z e"(“’1+“’2”n_w1(1—nw2).

tion due to the density-density coupling. Correlations w10y
between two incoming or two outgoing branches will be (CH
Zero. Substituting this expression back into Eg4) for the noise,

and performing the integrals overand w,, we obtain
APPENDIX C: SCATTERING CALCULATION

o

dwz
In this appendix, we evaluate the expectation values and (@i X-)(w)= waﬁnwz*w(l_nwz)
integrals used for calculating the noise in Sec. IV. The meth-
ods of calculation are very similar to those in Ref. 18. = dw,
First, we will evaluate the noise in the incoming reservoir, + waﬁnwzﬂ)(l_ N,,)- (C6)
which is given by
At zero temperature, the integrands are given by

S(w;X_ !X—):f dt(eiwt+eiiwt)<p_(t,x_)p_(O,X_)>. n. ..(1-n ): 1 for iw.>0 andwo$w2$woiw
- w2re “2 0 otherwise.
(CY (C7)

The expectation value we must calculate is given by Performing the integral, we obtain the desired result:

(p-(t,x)p-(0x))=(¢ (t,x )t x)

1
S(@ix- . x)(0)=5o]. (C8
Xy (0x)¢(0x)), (C2)
Next, we will calculate the noise in the outgoing current,

with x _<0. Using the solutions in Eq$22) and (23) for  which is given by
 and g, we find

. — ” ot —iwt
<p,(t,X,)p,(O,X,)>: 2 efi(“’l+w2)t<CI)|AT A S(a),X+ 1X+) ledt(e +e )(P—(tax+)P—(0aX+)>,

T W2

W1,0,03,04 (C9)
><AiwsAw4|<D>e‘(‘”l+‘”2+‘”3*“’4”‘*. where x, >0. This time we must evaluate the expectation
value
(C3
gt
The connected part dA", A, AT, A,,) hasAl, paired (p-(t,X1)p-(0X:))= (W' (t,x4) h(t,X2)

with Ao, andAa,2 paired withAJﬂm3 and is given by X T (0x,)p(0x,)). (C10
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According to Egs(22) and(23), this is equal to 1
S0=7=2[C0.Cu.Cu.Cu (AL L AL AT A, )
16" @1 W w3y 0wy wg ey

—i(w+ow + +

<p_(t,X+)p_(0,X+)>: 2 e I( 1+ z)t +Cwlcwzdw3dw4<A_wlszAw3A_w4>

01,02,03,04
T T
x(®(B!, B, B', B, |®) +dy,00,C0 Cu,{Au AL, AL, A, )
Wy w wgz

+d,.d, d,.d, (A, AT A, AT )] (C13

1@y wgmwg\ oy 3 4

~w,

><ei(“’1+‘”2+’“3+‘”4)x+_ (Cll)
and

Because the scattering states are defined in terms of the op-
eratorA,, , we will use Eq(24) to rewrite all theB’s in terms 1 £t
of the A’s, with the result $1=1g[du;C0,Codu, (A AuAl 0 Al

+c,.d, d,.c, (AL AT A, A,)]. (Cl4
(BL, Bu,Bl. Bu,)=SotS- (C12 o180, 80;Co (A0 A0 Auug]- - (€14
In these equations,, andd, are given by

In this equations, describes events where at both time 0 and . :
at timet one particle is destroyed and another is created. The c,=1+€%“ andd,=1-€?%"), (C15
second terms;, describes events where at one time twowith ¢(w) defined in Eq(25). The correlations of the four
particles are created, and at the other time two are destroyed's can be evaluated using Eq26) and (30). If we inter-
All the other terms in the correlation function of the fd8ils  changew; with w, in the second two lines of,, and per-
will vanish. s, ands; are given by form the sums ovew; and w,, we obtain

. 1
+toytwgt _
2 SOeI(w1 vzt ogtogXs = 1_6[Cwlcwchwlcfw2_Cwlcwzdfwldfwz_dwldwchwlcfwz_l—dwldwzdfwldfwz]

w3,y
xn_wl(l—nwz). (C19

In this equation, the expression containing the number operators is the same as for the noise in the incoming current, so we will
obtain the same limits of integration as in E.7). Next, we can expand out the,’s andd,’s in terms ofw and substitute

this back into Eq(34) for the noise. After performing the integrals oweand w4, we find that the contribution to the noise

due tos, has the form

worodw, [(47|T|?)2— wy(w,F )]

So(@iX Xy )= LO 27 [(wp7 )2+ (4T P20l (aaT |57 2 @) (€17

where we sum over the two different signs in front@f  cases, eithew, is paired withw; and w, is paired with

Upon performing thew, integral, we obtain w4, OF wq is paired withw, and w, with w5. Thus we have
| o, aflel=wo
So(w,X+,X+)—E—2|F| tan W
AT N (1_ _
. |w|+w0 | |4 ) <Aw1Aw2A7w3A7w4>_(1 nwl)(l nwz)(5w1,7w45w2,7w3
+ u e — — —_—
| Zarp ) B Ty t2intws B 0B 0 (c19

+(47|T1?)2] = In[(w+ wo)*+ (47|T'|?)?]
and
—In[(w— wo)?+ (4m|T'|?)?]}. (C18

<A1w Atw Aw Aw >:n—w n—w (6—(» [ 5—0) ®
1 2 3 4 1 2 1:%4 2°"3

Next, we will calculate the contribution to the noise due
to s;. The two expectation values we must evaluate are

(A, A, AT, AT ) and (AT, AT, A, A} In both — -

(C20

wl,wsafwz,wll)'
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Substituting these expressions into the equatiorsf@nd performing the integrals over; and w,, we obtain

- dwlc— wlcwzd - “’2]

. 1
+wytwzt —
2, sellerteatestodt= 0d, d_,,Co,Co0,

w3,y
X[(l_nwl)(l_ nw2)+n7w1n7w2]'
(C2)

When we expand the’s andd’s in terms ofw and perform the integral oveér we find that the contribution to the noise due
to s, is given by

dw, do, (477|F|2)2(w§—w1w2)

27 27 [wi+ (47T P[0}t (47T [?)?]

s[<w;x+,x+>=f Swi+wy w)[(1-n,)(1-n,)+n_,n_, ],  (C22

where again it is understood that we sum the two integrands with the different sign in frentAdter the integration over
w1 is performed, the expression in square brackets becomes

1 forewg<wr,<Fw—wgand*w—2wy>0
(1—n_w21w)(1—nw2)+nwztwn_wzz 1 for—wo<wr<Fw+wgand+* w+2wy>0 (Cc23
0 otherwise.

We note that this time the limits of integration determined by the factons iofipose cutoffs atv=*2w,. These are the
origins of the singularities ab=2w,, which, as we shall see shortly, persist for|&l| # 0. After Eq.(C23 is substituted into
the equation foiS;(w;X, ,X;), the noise becomes

o2 47T 02
Soix, X)=_ 3, #aw+b2e) f dop (il wpt wlwptaw)] (C24)

boy 27 [(wpt+aw)?+(4alT PP wa+(4n|T P’
The integration ovemw, yields

8|4
aw

1 —1

+tan

2|T|?[ tan {In[(47|T'|?)%+ w3]

=+

aw+bwg
47| |?

: _ b2 @0
St(w,X+,X+)—avb lﬁ(aw+ wo) P

—|n[(47T|F|2)2+(aw+bwo)z]}]. (C25

We note that this contribution to the noise has the step function which provides a “sharp” singuldtity=d@ w,|, for any
nonzero value of[|. This is the electron singularity. However, foF|—0, the arctangents provide a singularity at
|w|=|we|, which is the quasiparticle singularity.

When we add the two contributions to the noise together, we find that the noise on the outgoing side of the impurity
is

S(w;x; X ):M'F@(le |—|w|) 4|1"|2 tan ! |w0| +tan ! |w0|_|w|
T 2 T 2]l 2T
|
+16m (L4727 + (|| ~ ol ] - Inl (47[T %)+ o]} . (26

Finally, the noise between the currents on either side of the impurity can be calculated similarly, so we will omit the details
here.
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