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We study nonequilibrium noise in chiral Luttinger liquids using the Landauer-Buttiker scattering approach,
obtaining the current and voltage noise spectrum for a four-terminal measurement scheme. Experimental
consequences of the tunneling of charges are present in the four-terminal measurement of both the low-
frequency shot noise (v near 0!, and the high-frequency Josephson noise (v near vJ5e*V/\). Within
perturbation theory, an algebraic singularity is present at the Josephson frequencyvJ5e*V/\, whose position
depends on the chargee* of the tunneling particles, either electrons or fractionally charged quasiparticles.
These two types of tunneling are related by a strong-weak–coupling duality transformation. We show in a
nonperturbative calculation for an exactly solvable point that the singularity at the quasiparticle frequency
exists only in the limit of vanishing coupling, whereas the singularity at the electron frequency is present for
all coupling strengths. The vanishing coupling limit corresponds to perfectly quantized Hall conductance in the
case of quasiparticle tunneling between edge states in the fractional quantum Hall regime, and thus tunneling
destroys the singularity at the quasiparticle frequency concomitantly with the quantized current.

I. INTRODUCTION

Recently it was realized that a strongly correlated one-
dimensional~1D! system, namely a chiral Luttinger liquid
(xLL !, exists in the edges of fractional quantum Hall~FQH!
liquids.1 Because of their chiral nature, i.e., the excitations in
a given branch move only in one direction, spatially sepa-
rated branches cannot interfere and cause localization of
states. In contrast, nonchiral Luttinger liquids are extremely
sensitive to the presence of even the smallest amounts of
impurity in the sample, for in 1D all states are localized, and
long enough wires will behave as insulators. The character-
istic property of~chiral! Luttinger liquids is that the tunnel-
ing conductance between the edge states has a power-law
dependence on the temperatures}T2(g21), where g de-
pends on the filling factorn of the FQH state, taking the
values g5n or g5n21 depending on the tunneling
geometry.2–5 By experimentally studying the tunneling be-
tween edge states in the FQH regime using a point contact
geometry, Milliken, Umbach, and Webb6 found this type of
power-law dependence of the tunneling conductance on the
temperature. Their finding is consistent with the theoretical
predictions}T4 for the n51/3 FQH state.2,7

The experimental confirmation of the Luttinger liquid be-
havior in tunneling between edge states has boosted theoreti-
cal interest in further studies of properties of the
conductance.8–10 An exact solution for the conductance has
been obtained using the thermodynamic Bethe ansatz, and an
exact duality between theg and 1/g cases has been
shown11,12 in the context of the tunneling current, as sug-
gested in Ref. 13. The rich behavior of tunneling in chiral

Luttinger liquids extends well beyond transport measure-
ments alone.14–16One should expect, based on experience in
noninteracting systems, that the noise spectrum contains in-
formation not attainable, in the most general case, from just
transport measurements. In general, the shape of the noise
spectrum is determined by the dynamical properties of the
system, which in turn contain information about the excited
states. Even for noninteracting electronic systems, nontrivial
structures appear in the noise,17–19 the simplest example be-
ing the suppression of classical shot noise due to quantum
statistics. In chiral Luttinger liquids, the tunneling particles
sometimes carry fractional charge and fractional statistics,
and thus such strongly correlated 1D systems also provide
the natural experimental realization for the study of features
that arise in the noise spectrum for generalized quantum sta-
tistics.

In Ref. 15, the noise spectrum of the tunneling current
between edge states directly at the point contact was calcu-
lated perturbatively. To low orders in the tunneling ampli-
tude, we found that there was a singularity atv50; for small
v the noise spectrum has the formSSN1Ssing(v), where
SSN is the zero-frequency shot noise andSsing(v)5cuvu.
The slope c of the uvu singularity has a strong non-
linear dependence on the applied voltageV @c
}(2g21)2V4(g21)#, which is another signature of Luttinger
liquid behavior~to be contrasted with the case of noninter-
acting electrons,g51, where the slope is independent ofV!.
The exponentg characterizes the Luttinger liquid behavior.
This low-frequency part of the spectrum is the one more
easily accessible experimentally. Second, there is another
singularity atv5vJ wherevJ5e*V/\ is the Josephson fre-
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quency of the electron (e*5e) or quasiparticle (e*5ne)
that tunnels through the point contact. The shape of this sin-
gularity depends ong and goes asuv6vJu2g21. Measure-
ments of the location of this singularity would give the value
e* of the charge of the carriers of the current, which would
be yet another way of observing fractional charge from noise
measurements. The method originally suggested is to mea-
sure the shot noise, which for small tunneling amplitude is
related to the tunneling currentI t by SSN52e* I t .

14–16

Lastly, for g.1, we found that the singularities at both
v50 andv5vJ should persist to all orders in perturbation
theory.

These results present a puzzle which we describe below
and address in this paper. The case ofg5n,1 corresponds
to a single quantum Hall droplet with a constriction. In this
case, quasiparticles can tunnel across the constriction, from
one edge to the other@see Fig. 1~a!#. These quasiparticles
have fractional chargee* , given byne. If the constriction is
made narrower, the tunneling amplitude will increase. As the
constriction is further narrowed, eventually the droplet will
break into two disconnected pieces, and now only electrons
will be able to tunnel from one edge to the other@see Fig.

1~b!#. Their tunneling should once again behave like tunnel-
ing in a chiral Luttinger liquid, but with new exponent
g̃51/g and charge equal toe. This is the physical picture
behind the duality seen in Ref. 12; as the tunneling amplitude
is increased~or the voltage is decreased! g goes to 1/g. Simi-
larly, if we start with the two quantum Hall droplets with
exponentg̃ and increase the tunneling amplitude of the elec-
tron, eventually we will obtain the single droplet picture with
exponentg51/g̃.

In light of this duality and the results of Ref. 15, the
following question arises. If we start with the two discon-
nected droplets, we expect the singularity in the noise to
occur at multiples ofṽJ5eV/\, the Josephson frequency for
the electron. As the tunneling amplitude is increased, at some
point we expect the singularity at the Josephson frequency
for the quasiparticle,vJ5e*V/\, to appear. However, ac-
cording to the perturbative calculations, to all orders in the
electron tunneling amplitude the quasiparticle singularity
does not appear. This question is of interest because the lo-
cation of the singularities tells us which particles are tunnel-
ing and, as mentioned above, should give a way to measure
the fractional charge of the quasiparticles.

In this paper we will address the question of what happens
to this quasiparticle singularity and show how these two
seemingly contradictory statements above are resolved in the
special case ofg51/2 andg̃52. The current in theg51/2
case is known to be exactly solvable.3,12,20–22 Here we
present an exact solution for the nonequilibrium noise spec-
trum. We find that forg51/2 the singularity at the quasipar-
ticle Josephson frequencyvJ5e*V/\ is destroyed by non-
perturbative effects, and exists only in the limit of zero
quasiparticle tunneling amplitudeG. The quasiparticle singu-
larity that was obtained by perturbative calculations is in-
stead smeared for finite tunneling strength: the noise spec-
trum is analytic nearvJ5e*V/\, but it still has structure
within a region of widthDv;4puGu2. Thus, for zero cou-
pling a ‘‘fake’’ singularity appears as this width vanishes.
The results in this paper, together with the previous pertur-
bative results valid to all orders in the electron tunneling
amplitude, suggest what may be happening at other values of
g also. The quasiparticle singularity should only exist in the
limit of vanishing quasiparticle tunneling amplitude, and it
should acquire a finite width controlled by a nonzero tunnel-
ing amplitude. In physical terms, tunneling between edges
destroys both the perfectly quantized Hall conductance and
the quasiparticle singularity in the noise spectrum.

One of the tools we use in this paper is the Landauer-
Buttiker scattering approach. The geometry is illustrated in
Fig. 2. The choice of the Landauer-Buttiker approach is jus-
tified for a number of reasons. The chiral nature of the sys-
tem under study naturally poses the problem in terms of
incoming and outgoing scattering states to and from the point
contact region. The incoming branches should be in equilib-
rium with their respective reservoirs of departure, and should
be insensitive to the tunneling of charges in the tunneling
region shown in Fig. 2. This is so because information on
tunneling events cannot propagate in the direction opposite
to the incoming branch chirality. Also, the Landauer-Buttiker
approach and the chiral nature of the system suggest natu-
rally a four-terminal geometry for experimental measure-
ments, probing voltage fluctuations in the two incoming and

FIG. 1. Geometries for tunneling between edge states. By ad-
justing the gate voltageVG one can obtain either a simply con-
nected QH droplet~a!, or two disconnected QH droplets~b!. For the
geometry in~a! both electrons and quasiparticles~carrying frac-
tional charge! can tunnel from one edge to the other, whereas for
the tunneling geometry in~b! only electrons can tunnel. The Lut-
tinger liquid behavior is characterized by the exponentg5n in ~a!,
andg5n21 in ~b!. The tunneling currentI t depends on the applied
voltage between the right and left edges, and by increasing this
voltage one can also cross over from the geometry~b! to the geom-
etry ~a!.
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two outgoing branches. The tunneling takes place in the
point contact, or scattering region, which is not directly ac-
cessible by the probing leads. Autocorrelations of current and
voltage fluctuations measured in the four terminals, as well
as cross correlations between different terminals, are the ex-
perimental probes that should allow the remote measurement
of the tunneling events and noise spectrum.

The paper is organized as follows. In Sec. II we briefly
review the bosonization scheme for chiral Luttinger liquids.
In Sec. III we obtain the noise spectrum perturbatively for
the four terminal geometry, using the Keldysh nonequilib-
rium formalism. We show that only the noise spectrum for
the outgoing branches is affected by the tunneling, whereas
the incoming branches are completely insensitive to the
charge transfer between the edges. This is consistent with the
Landauer-Buttiker picture and the chirality of the system.
The noise spectrum for the incoming branches can thus serve
as a reference level for the measurement of the excess noise
on the outgoing branches due to tunneling. The noise spec-
trum obtained contains interesting structures both at low and
high frequencies. The tunneling excess noise vanishes for
frequencies above the Josephson frequencyvJ5e*V/\. The
issue of how the singularity moves from the quasiparticle
frequency to the electron frequency is resolved in Sec. IV,
where we use the Landauer-Buttiker approach to solve ex-
actly for the noise spectrum in the case ofg51/2, for which
the problem can be cast as a free fermion problem. We show
that the singularity at the quasiparticle frequency is smeared
for finite tunneling and is not a true singularity, whereas the
singularity at the electron frequency survives for all nonzero
coupling. In Sec. V we discuss the duality wheng51/2 goes
to g̃52, which we show is not exact in the naive sense for
the case of noise, in contrast to the case of conductance. We
find that the noise spectrum of the current correlations on a
single branch~autocorrelations! satisfies the duality relation,
while current correlations between distinct branches~cross

correlations! do not satisfy the naive duality relation. We
show that the correct dual Lagrangian to theg51/2 theory is
the g52 theory plus a neutral density-density coupling,
which has the same dimension as the tunneling operator. The
effect of the neutral coupling appears in the noise, but not in
the conductance.

II. EDGE STATE TUNNELING

In this section we shall briefly review the bosonization
scheme for edge states in the FQH effect~for a thorough
review, see Ref. 23!. The Lagrangian we will use is better
cast in this bosonic language.

The right and left moving excitations along the edges can
be described by boson fieldsfR,L . Right and left moving
electron and quasiparticle operators on the edges of a FQH
liquid can be written asCR,L(t,x)}e

6 iAgfR,L(t,x), whereg is
related to the FQH bulk state. For example, for a Laughlin
state with filling fractionn51/m we haveg5m for electrons
and g51/m for quasiparticles carrying fractional charge
e/m. ThefR,L fields satisfy the equal-time commutation re-
lations

@fR,L~ t,x!,fR,L~ t,y!#56 ipsgn~x2y!. ~1!

The dynamics offR,L is described by

LR,L5
1

4p
]xfR,L~6] t2v]x!fR,L , ~2!

wherev is the velocity of edge excitations~which we will set
to 1!. Density operators can be defined in terms of thefR,L

throughrR,L5(An/2p)]xfR,L . Here, for convenience, we
have set the unit charge in the definition of the density to be
the electron chargee, so thate51 and e*5n. One can
verify that @rR,L(t,x),CR,L

† (t,y)#5AngCR,L
† (t,y)d(x2y),

so that indeed the casesg5n21 and g5n correspond to
electron and quasiparticle charged operators, respectively.

The tunneling operators from right to left moving
branches and vice versa can be written asCL

†CR and
CR

†CL . Thus we can write, in terms off5fR1fL , the
following total Lagrangian density:

L5
1

8p
@~] tf!22v2~]xf!2#2Gd~x!eiAgf~ t,0!1H.c.,

~3!

with f satisfying @f(t,x),] tf(t,y)#54p id(x2y). In the
following we will set the edge velocityv51. The tunneling
operatoreiAgf(t,0) has an anomolous dimension which we
will absorb in the definition ofG. This redefinition can be
viewed as multiplyingG by powers of a cutoff obtained from
self-interactions of theeiAgf(t,0).

A voltage difference between the two edges of the QH
liquid can be easily introduced in the model by letting
G→Ge2 iv0t, wherev0[vJ[e*V/\, with e*5e for elec-
tron tunneling ande*5e/m for quasiparticle tunneling.

In the following sections we will study nonequilibrium
noise in chiral Luttinger liquids described by the model
above. The Lagrangian in Eq.~3! should describe the tunnel-
ing over the full range ofG, including the crossover regime
between electron and quasiparticle tunneling. However, usu-

FIG. 2. Four terminal geometry for the measurement of tunnel-
ing between edge states. The terminals 1 and 2 correspond to
branches that are incoming to the scatterer, while terminals 3 and 4
correspond to outgoing ones. The arrows indicate the direction of
propagation for a given branch. The incoming branches are in equi-
librium with their reservoirs of origin, while the outgoing ones do
get affected by the scatterer. Voltages and currents in the four
probes are directly related to the densitiesr i ( i51,2,3,4). By mea-
suring fluctuations in the voltages or currents at the four terminals
(Vi or I i , i51,2,3,4), the autocorrelation spectraSi j (v), with i5 j ,
and the cross-correlation spectraSi j (v), with iÞ j , can be obtained.
These voltage and current fluctuations contain information on the
fluctuations of the tunneling current.
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ally one can only calculate quantities for the weak tunneling
limit. Thus, to calculate the strong-coupling limit for the qua-
siparticles, one would resort to the duality symmetry of the
system and instead calculate the weak-coupling limit for
electron tunneling. In Sec. III, we will calculate the noise in
these two weak-coupling limits. Naively, the quasiparticle
picture and the electron picture should be dual to one an-
other, but once short distance effects are taken into account,
this may not be the case. For the case ofg51/2, in Sec. IV
we will calculate the exact noise spectrum of the Lagrangian
in Eq. ~3! for the full range of quasiparticle tunneling ampli-
tudes. This will give us the behavior of the spectrum in the
crossover regime and will also enable us to determine to
what extent the naive duality symmetry is valid.

III. PERTURBATIVE APPROACH

In this section we treat the tunneling between edge states
perturbatively, and obtain the noise spectrum for the current
and voltage fluctuations at the four leads as shown in Fig. 2.
In the figure we separate the branches into their right and left
moving components, as well as incident and scattered ones.
Right and left branches are incoming or outgoing depending
on their position relative to the scatterer:

incident: fR~ t,x,0! and fL~ t,x.0!,

scattered:fR~ t,x.0! and fL~ t,x,0!. ~4!

Both the currents and the densities at the four terminals can
be related to the fieldsfR,L . The densities are simply given
by rR,L5(An/2p)]xfR,L . Voltage measurements probe
these densities. The currents at the four terminals can be
trivially related to the densities at those same terminals
through the continuity equation forxÞ0. The currents are
given by j R,L56(An/2p)]xfR,L , with positive currents
flowing to the right. By choosing the convention that positive
currents flow in the direction of the arrows in Fig. 2, we can
write new currents j̃ R,L56 j R,L5rR,L . It then becomes
transparent that there is a tight relationship between current
and voltage in the chiral branches. For example, measuring

the noise in either the current or the voltage yields informa-
tion about the other. This kind of relationship between volt-
age and current noise was obtained in Ref. 14. We will thus
focus on the calculation of density-density correlations, for
these will give us information on both current and voltage
noise.

We will label the densities at the four terminals shown in
Fig. 2 byr i , i51,2,3,4. In terms of the right and left moving
fields we have

r1~ t !5rR~ t,x1!, r3~ t !5rR~ t,x3!,

r2~ t !5rL~ t,x2!, r4~ t !5rL~ t,x4!, ~5!

wherex1 ,x4,0, x2 ,x3.0. The noise spectrum of the den-
sity fluctuations in terminalsi , j is obtained from the corre-
lations between the densitiesr i ,r j :

Si j ~v!5Sji ~2v!5E
2`

`

dteivt^$r i~ t !,r j~0!%&. ~6!

These quantities are calculated perturbatively in Appendix A,
using the techniques in Ref. 15. The components withiÞ j
are very sensitive to phases which depend on the position of
the probesxi and xj . These phases cancel in the case of
autocorrelations, i.e., wheni5 j . The quantitiesSii (v),
which correspond to the noise spectrum obtained entirely
from one of the four probes fori51 to 4 are thus the most
robust measurements of fluctuations, because when they are
extracted away from the junction they are independent of the
positionxi where they are taken.

To second order in perturbation theory,Sii is given by

S11~v!5S22~v!5S~0!~v!, ~7!

S33~v!5S44~v!5S~0!~v!1S~2!~v!, ~8!

where

S~0!~v!5
n

2p
uvu, ~9!

FIG. 3. Plots of the excess noise of outgoing
branches~probes 3 and 4 of Fig. 2! calculated to
second order in perturbation theory@Eq. ~11!#.
The excess noise in branch 3 is shown normal-
ized to the zero-frequency shot noise level, and
the frequencyv normalized to the Josephson fre-
quencyvJ5e*V/\ „i.e., we show the plot of
@S33(v)2S33

V50(v)#/2e* I t vs v/vJ…. Different
singularities are obtained atv5vJ for different
values ofg: 1/3, 1/2,2/3, 1, and 2. One should
keep in mind that, although the singularities all
occur atv5vJ , the value ofvJ depends on the
chargee* of the current carrier, which in turn
also depends ong. The results are exactly the
same for the excess noise measured in branch 4.
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S~2!~v!5
4png

G~2g!
uGu2zuvu2uvJuz2g21u~ uvJu2uvu!. ~10!

Using the perturbative result to orderuGu2 for the tunneling
current I t5@2p/G(2g)#e* uGu2vJ

2g21 ,2 S(2)(v) can be
wrtitten as

S~2!~v!52e* I tZ12U v

vJ
UZ2g21

u~ uvJu2uvu!. ~11!

Notice that the effects of tunneling are contained in
S(2)(v), and only appear in the outgoing branches, terminals
i53,4. The incoming branches are insensitive to the tunnel-
ing between edges, due to the chiral nature of the system.
Information about what goes on in the junction cannot propa-
gate in the direction opposite to the chirality of the branch,
and therefore the noise in the incoming branches is indepen-
dent of the tunneling of charged particles between edges.
This result of chirality is clear within the Landauer-Buttiker
scattering approach. Another physical consequence closely
related to this is the fact that the average voltage along the
branches remains constant outside the scattering region. Also
notice that the equilibrium noise (vJ5e*V/\50) in an out-
going branch@S33

V50(v), for example# is simply the total
noise in an incoming branch@S11(v), for example#; thus, the
incoming branches can be used as the reference level for
measurements of excess noise.

The second point to notice from Eq.~11! is that to order
uGu2 the noise in the outgoing branches that is in excess to
the noise in the incoming branches has a singularity at the
Josephson frequencyvJ , vanishing forv.vJ , as illustrated
in Fig. 3. The nonequilibrium voltageV determines the fre-
quency scalevJ5e*V/\, up to which there is structure in
the excess noise due to tunneling. Such vanishing of the
excess noise spectrum past a frequency set by the nonequi-
librium voltage should be familiar to readers accustomed to
noise in noninteracting systems (g51), in which the excess
noise goes to zero linearly at the Josephson frequency.24 This
point will be illustrated further in the next section, when we
will have at hand the exact solution for the noise spectrum in
the case ofg51/2. The strong-coupling limit of the solution
for g51/2 also gives us the solution forg52, which we
shall use for comparison purposes.

The last, and most important, point about this high-
frequency singularity in the noise spectrum is in regard to the
connection between the two dual pictures illustrated in Fig.
1. In Ref. 15 it was pointed out that the singularity at the
Josephson frequency remained to all orders in perturbation
theory. However, the perturbative expansion for the geom-
etries in Figs. 1~a! and 1~b! yields two distinct frequencies,
namely the quasiparticle frequencyvqp5neV/\ when qua-
siparticles are the tunneling charges@Fig. 1~a!#, and the elec-
tron frequencyvel5eV/\, when electrons are the tunneling
current carriers@Fig. 1~b!#. These configurations are con-
nected in the sense that one is the strong-coupling limit of
the other, and thus there should be a nonperturbative mecha-
nism by which the singularity moves from one place to the
other. This was the clearest open question in Ref. 15, and
which we can answer by focusing on the exactly solvable
case ofg51/2. Another exactly solvable point is the trivial
caseg51, which unfortunately cannot be used to address

this issue of the singularity in the noise spectrum because in
this case the two frequenciesvel andvqp coincide.

Before answering the question about the high-frequency
singularity, we will close this section with the implications of
tunneling between edge states to the low-frequency noise
measured in the four terminal geometry. In Ref. 15, a correc-
tion to the low-frequency shot noise spectrum was found,
which corresponded to anuvu singularity, or a cusp, in the
noise spectrum. This correction was found to orderuGu4,
while to orderuGu2 the low-frequency corrections to the flat
shot noise started as}v2. In the four terminal geometry
proposed in this paper, what is probed is not the tunneling
current in the junction area~as in Ref. 15!, but its conse-
quences in the current and voltage in the four terminals away
from the scattering region. The four terminal measurement,
as seen from Eq.~11!, does have a correction}uvu to order
uGu2. Forv!vJ we have, for example,

S33~v!2S33
V50~v!5S~2!~v!

5S33~v!2S11~v!

52e* I tZ12U v

vJ
UZ2g21

u~ uvJu2uvu!

'2e* I tF12~2g21!U v

vJ
UG . ~12!

One recovers the classical shot noise expression forv50.
Notice that, since these results are valid only to orderuGu2,
there is no correction to the classical shot noise expression
for v50. Corrections appear at orderuGu4 ~see Ref. 15!.
Also notice that the nonzerov corrections to the shot noise
depend on whetherg is larger or smaller than 1/2. For
g.1/2, the difference between the outgoing and incoming
spectra@the S33(v)2S11(v) above, for example# decreases
with v, whereas forg,1/2 it increases.

IV. SCATTERING APPROACH FOR g51/2

In this section we will use the Landauer-Buttiker scatter-
ing approach to obtain an exact solution for the noise when
g51/2. In this approach, we use the quantum equations of
motion derived from the Hamiltonian to solve for the scat-
tering states. These scattering states describe free left movers
and right movers that are incident on the impurity and then
are reflected or scattered by the impurity. The solutions for
these states can be used to calculate the conductance and the
noise in the various branches.

The advantage of focusing ong51/2 is that for this value
of g the system can be described by free fermions,20,22mak-
ing it straightforward to solve for the scattering states. How-
ever, already atg51/2, we expect to see singularities in the
noise atvJ5e*V/\, corresponding to quasiparticle tunnel-
ing. As the tunneling amplitudeG increases~or V decreases!,
we expect to obtain the dual picture atg52, with electrons
tunneling and a singularity ateV/\. Thus the full solution at
g51/2 will show us what happens to the quasiparticle sin-
gularity asG is increased. The hope is that the qualitative
behavior of these results will also apply for other values of
g.

Wheng51/2, the Hamiltonian for the system is given by
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H5HR
01HL

01Ge2 iv0te
i

A2
@fR~ t,0!1fL~ t,0!#

1G* eiv0te2
i

A2
@fR~ t,0!1fL~ t,0!#, ~13!

whereHR,L
0 are the free Hamiltonians for the right and left

moving fields, andv05e*V/\, with e*5e/2.
The Hamiltonian can be recast in terms of new chiral

fieldsf7(t,x)51/A2@fR(t,x)6fL(t,2x)#:

H5H1
0 1H2

0 1Ge2 iv0teif2~ t,0!1G* eiv0te2 if2~ t,0!. ~14!

The densities of the new fieldsr65(1/2p)]xf6 are related
to the densities rR,L5(A1/2/2p)]xfR,L by r6(t,x)
5rR(t,x)6rL(t,2x). Notice that thef6 fields are decou-
pled in Eq.~14!, and the Hamiltonian forf1 is simply the
free H1

0 . The Hamiltonian forf2 can be fermionized by
defining h(t,x)[1/A2p:eif2(t,x): . One can check thath
defined as such satisfies the proper commutation relations
$h(t,x),h†(t,y)%5d(x2y).25

In terms of the fermionic fieldsh,h†, the Hamiltonian
H2 is

H25E dxH h†~x!F2 i
]

]x
2v0Gh~x!

1A2pd~x!@Gh~x!1G*h†~x!#J , ~15!

where we absorbed the oscillating phaseseiv0t into a redefi-
nition of the chemical potential. The Hamiltonian above con-
tains terms linear in the fermionic fieldsh and h†, which
prevent a direct calculation of the commutators that would
give us the equations of motion for the fields. This problem
can be circumvented by redefining the fermionic fields to be
c(t,x)5h(t,x) f , with f5C1C† and$C,C†%51, as in Ref.
22. More formally, such a transformation can be constructed
from the proper handling of the zero modes of the bosonic
fieldsf,1,26 and one can identifyf with (21)F, the fermion
counting operator commonly used to switch from periodic to
antiperiodic boundary conditions in fermionic conformal
field theories.

The Hamiltonian we will use in the exact solution of the
noise spectrum for theg51/2 case is the one written in terms
of thec,c† fields andf :

H25E dxH c†~x!F2 i
]

]x
2v0Gc~x!

1A2pd~x!@Gc~x! f1G* fc†~x!#J , ~16!

where the nonvanishing equal-time commutation relations
betweenc(x), c†(x), and f are

$c~x!,c†~x8!%5d~x2x8!, $c~x!, f %50, $ f , f %52.
~17!

The densityr2 can be written in terms of the fieldsc and
c† as r2(x)5c†(x)c(x), so that all correlations between
r2’s can be derived from the correlations of the fermions.

The fermionic model is solved using the equations of motion
obtained by commuting the operatorsc(x) and f with the
Hamiltonian:

2 i ] tc~x!5@H,c~x!#5~ i ]x1v0!c~x!1A2pG* fd~x!,
~18!

2 i ] tc
†~x!5@H,c†~x!#5~ i ]x2v0!c

†~x!2A2pG fd~x!,
~19!

and

2 i ] t f5@H, f #52A2p@Gc~0!2G*c†~0!#. ~20!

According to these equations, forxÞ0, the fieldc satisfies
the free equation of motion for a rightmover with energy
shifted byv0:

~ i ]x1 i ] t1v0!c50. ~21!

At x50, it picks up a discontinuity because of the impurity.
In order to preserve unitarity and obtain the proper commu-
tation relations in the solutions ofc, in Eq. ~20! the field
c(0) must be given by (1/2)@c(01)1c(02)#. With this
definition, it is straightforward to solve the equations of mo-
tion. The solutions are given by

c~x!5H (
v

Ave
i ~v1v0!xe2 ivt for x,0

(
v

Bve
i ~v1v0!xe2 ivt for x.0

~22!

and

c†~x!5H (
v

A2v
† ei ~v2v0!xe2 ivt for x,0

(
v

B2v
† ei ~v2v0!xe2 ivt for x.0,

~23!

where

Bv5
~11eif~v!!Av1~12eif~v!!A2v

†

2
~24!

and

eif~v!5
iv14puGu2

iv24puGu2
. ~25!

Given the commutation relation forc, the Av satisfy the
following commutation relation:

$Av1
,Av2

† %5dv1 ,v2
. ~26!

These solutions can be interpreted as having an incident par-
ticle at energyv that scatters into a particle with energyv
and a hole with energy2v ~see Fig. 4!. Both the particle
and hole scattering involve an energy-dependent phase shift.

The reservoir is located to the left of the impurity, for
somex,0. To obtain the scattering stateuF&, we assume
that the states leaving the reservoir are in equilibrium with
the reservoir, which has energyv0 . Thus, forx,0, at zero
temperature all the states withv<v0 are filled. This means
that
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Av
† uF&50 for v,v0 ~27!

and

AvuF&50 for v.v0 . ~28!

Using the commutation relations forA in Eq. ~26!, we then
find that

^FuAv1
Av2

uF&50 ~29!

and

^FuAv1

† Av2
uF&5nv1

dv1 ,v2
, ~30!

where

nv5H 1 for v,v0

0 for v.v0 .
~31!

In this paper, we will just concentrate on the case when
T50. However, we can obtain the finite temperature results
by replacingnv with

nv5
1

eb~v2v0!11
. ~32!

It is easy to show that these solutions reproduce the exact
results for both the equilibrium3,22 and nonequilibrium12 tun-
neling current.

We can now use the solutions forc and the scattering
state to solve for the noise in both incoming and outgoing
channels. Our calculations will closely follow those by Butt-
iker in Ref. 18. The noise is given by

S~v;x1 ,x2!5E
2`

`

dteivt^$r2~ t,x1!,r2~0,x2!%&, ~33!

where we take only the connected part of the correlation
function, andx1 and x2 are positive or negative depending
on whether the current is evaluated in the incoming or out-
going channel.

A. Calculation of autocorrelations

We will begin by calculating the noise whenx15x2 . In
this case, both of the currents are evaluated on the same side
of the impurity. Because of the time translational invariance
of the correlators, the expression for the noise simplifies to

S~v;x1 ,x1!5E
2`

`

dt~eivt1e2 ivt!^r2~ t,x1!r2~0,x1!&.

~34!

To find the noise in the incoming channel, we must evaluate
the expectation value

^r2~ t,x2!r2~0,x2!&5^c†~ t,x2!c~ t,x2!

3c†~0,x2!c~0,x2!&, ~35!

with x2,0. Using the solutions~22! and ~23! for c and
c†, we find

^r2~ t,x2!r2~0,x2!&5 (
v1 ,v2 ,v3 ,v4

e2 i ~v11v2!t

3^FuA2v1

† Av2
A2v3

† Av4
uF&

3ei ~v11v21v31v4!x2. ~36!

This expectation value, and the resulting integrals for
S(v;x2 ,x2), are evaluated in Appendix C, with the result

S~v;x2 ,x2!5
1

2p
uvu. ~37!

If we want to calculate the noise in one of the two original
R andL incoming branches, we must use the relations

rR~x!5
1

2
@r1~x!1r2~x!#

and

rL~x!5
1

2
@r1~2x!2r2~2x!#. ~38!

Then the density-density correlations can be evaluated as fol-
lows:

^rR,LrR,L&5
1

4
^~r16r2!~r16r2!&

5
1

4
^r2r2&1

1

4
^r1r1&, ~39!

where the last equality follows from the fact thatr1 and
r2 are decoupled. Recall thatr1 is a free field, so that the

FIG. 4. A particle~plane wave! incoming from the left (x,0)
with energyv scatters off the impurity atx50 into a superposition
of a particle at energyv and a hole at energy2v on the right side
of the impurity (x.0). In the case where the incoming state is a
filled Fermi sea up to the energyv0 , the scattered state on the right
side of the impurity will be completely filled up to energy2v0 ,
and partially filled between2v0 andv0 . It is this partially filled
energy range from2v0 andv0 which is responsible for the non-
equilibrium properties of the system.
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contribution to the noise fromr1 is simply 1/2puvu. We
find that the noise in each of the two incomingR and L
branches is given by

S11~v!5S22~v!5
1

4
S~v;x2 ,x2!1

1

4

uvu
2p

5
1

4p
uvu, ~40!

just as we found in the perturbative calculation withn51/2
in Eqs. ~7!–~10!. Using this scattering approach, it is clear
that for these two incoming probes the noise is the same as
for a free system, because in these two channels the densities
have not yet reached the impurity.

Next, we will calculate the noise in the outgoing current.
This time we must evaluate the correlator

^r2~ t,x1!r2~0,x1!&5^c†~ t,x1!c~ t,x1!

3c†~0,x1!c~0,x1!&, ~41!

with x1.0. According to Eqs.~22! and~23!, this is equal to

^r2~ t,x1!r2~0,x1!&5 (
v1 ,v2 ,v3 ,v4

e2 i ~v11v2!t

3^FuB2v1

† Bv2
B2v3

† Bv4
uF&

3ei ~v11v21v31v4!x1. ~42!

When we expand theB’s in terms of theA’s, we will
obtain two different types of processes~see Fig. 5!. In the
first, at time 0 one particle is created while another is de-
stroyed, and then at timet the first particle is destroyed and
another is created. In terms of the original tunneling picture,
this describes the process where both at timet and at time 0
one quasiparticle tunnels from the left branch to the right
branch and another tunnels in the opposite direction. In the
second process, at time 0 two particles are created and then
at time t they are destroyed~or vice versa!. In the original
tunneling picture, this corresponds to two quasiparticles tun-
neling in one direction at time 0 and two quasiparticles tun-
neling in the opposite direction at timet. As shown in Ap-
pendix C, this second process is responsible for the electron
singularity atṽ052v0 . In Appendix C, the expectation val-
ues in Eq.~42! and the integrals forS(v;x1 ,x1) are evalu-
ated. We find that the noise on the outgoing side of the im-
purity is

S~v;x1 ,x1!5
1

2p
uvu1u~ u2v0u2uvu!H 4uGu2F tan21S uv0u

4puGu2D1tan21S uv0u2uvu
4puGu2 D G

1
16puGu4

uvu $ ln@~4puGu2!21~ uvu2uv0u!2#2 ln@~4puGu2!21v0
2#%J . ~43!

In the limit v→0, this reduces to the nonequilibrium zero-
frequency noise found in Ref. 21 using a different approach.
This agreement provides further support for our choice of
regulation of thec(0) operator across the impurity.

To compare with our perturbative calculation for the noise
in the original four probe geometry, we again make use of
Eq. ~39!. Thus, the noise in the two outgoing branches is
related toS(v;x1 ,x1) as follows:

S33~v!5S44~v!5
1

4
S~v;x1 ,x1!1

1

4

uvu
2p

. ~44!

B. Discussion of autocorrelations

The first striking feature to note in Eq.~43! is that the
noise due to the tunneling vanishes identically for
uvu.u2v0u. This means that wheneveruvu is larger than the
electron frequency, the noise shows no sign of the impurity;
it is the same as for the incoming branch. This is also what
happens for the free-electron case, withg51. To second or-
der in perturbation theory, this is indeed the case for anyg,
as seen in the preceding section. The strength of the results
presented here is that forany valueof the couplingG the
noise vanishes above the electron frequency when
g51/2, 1, and 2.~The last case,g52, is obtained by resort-

FIG. 5. The tunneling processess0 ~a! andst ~b!. In the process
s0 , both at time 0 andt, a quasiparticle tunnels from the left branch
to the right branch, and another quasiparticle tunnels in the opposite
direction. In thest process, at time 0 two quasiparticles tunnel from,
say, the left to the right branch, and at timet the two quasiparticles
tunnel back in the opposite direction. The processst is responsible
for the singularity at the electron frequencyṽ052v0 .
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ing to the strong-coupling limit of theg51/2 case.! It is not
clear whether this will happen for the other values ofg be-
yond second order in perturbation theory.

Next, we can expandS(v;x1 ,x1) out for small and large
uGu to compare with the perturbative results. AsuGu goes to
zero, the noise becomes

S33~v!5S44~v!5
1

4p
uvu1puGu2u~ uv0u2uvu!. ~45!

This agrees with the perturbative result forg51/2. We note
that the quasiparticle singularity arises because we took the
uGu→0 limit of the arctangents. In addition, because this step
function is already zero foruvu.uv0u, the electron singular-
ity at uvu5u2v0u drops out. Thus, to this order we only have
the quasiparticle singularity. However, for any finite value of
uGu the quasiparticle singularity becomes smoothed out and
the electron singularity appears. As we shall see later,
though, the ‘‘smoothed out’’ quasiparticle singularity is still a
more distinctive feature in the plots of the full noise than is
the electron singularity.

Next, for uGu→`, the noise becomes

S33~v!5S44~v!5
1

4p
uvu1

1

384p3uGu4
u~ u2v0u2uvu!

3~ u2v0u2uvu!31O~1/uGu8!. ~46!

If we make the identification thatG1/2, the tunneling ampli-
tude forg51/2, is related toG2 , the tunneling amplitude for
g52, by

uG2u5
1

16p2uG1
2
u2
, ~47!

then this answer agrees with the perturbative result for
g52. @To make the comparison, we must recall that thev0
in this equation corresponds to the Josephson frequency for
the quasiparticle, whereas thevJ in the perturbative calcula-
tion Eqs.~7!–~10! is the Josephson frequency for the elec-
tron, which is twice as large.# In addition, the expansion in
1/uGu of the scattering solution only contains powers of
1/uGu45uG2u2, and at every order inuG2u2 the electron sin-
gularity at uvu5u2v0u remains. These two properties also
agree with the perturbative results found in Ref. 15.

Lastly, we can make use of the scaling properties of the
noise to write S̃5S/2uGu2 as a function only of
ṽ5v/4puGu2 andṽ05v0 /4puGu2. The noise is then given
by

S̃33~ṽ !5S̃44~ṽ !5
1

2
uṽu1u~ u2ṽ0u2uṽu!H 12 @ tan21~ uṽ0u!

1tan21~ uṽ0u2uṽu!#1
1

2uṽu $ ln@11~ uṽu2uṽ0u!2#

2 ln~11ṽ0
2!%J . ~48!

In Fig. 6~a!, the excess noiseS̃2S̃ṽ050 is plotted against
ṽ/ṽ0 for different values ofṽ0 . As ṽ0 becomes large, the
excess noise approaches the step function in Eq.~45!. Recall
that ṽ05ṽ/(4puGu2), so this limit is equal to the weak-

coupling limit with uGu→0. To see the strong-coupling limit,
in Fig. 6~b! we plot the excess noise divided byṽ0

3 ~in order
to fit in the same scale!. As ṽ0 becomes small, this clearly
has the cubic behavior in Eq.~46!. Finally, the full noise,
divided byṽ0 , is plotted in Fig. 67~c!. The cubic singularity
at ṽ52ṽ0 decays too quickly to appear in the full noise.
However, forṽ05100 andṽ0510, there is clearly a ‘‘blip’’
in the plot of the noise, which shows the ‘‘smoothed out’’
quasiparticle singularity. We note that the width of the
‘‘smoothed out’’ quasiparticle singularity is;4puGu2. This
width can be interpreted as the inverse lifetime of the quasi-
particles. Thus, for nonzero values of the tunneling ampli-
tude, the quasiparticles appear to have a finite lifetime.

C. Calculation of cross correlations

For completeness, we will conclude this section by giving
the result for the noiseS(v;x1 ,x2) between incoming and
outgoing currents. By comparing this with the perturbative
calculations of the cross correlations, we will see to what
extent the duality symmetry holds. In addition, once we have
S(v;x1 ,x2), S(v;x1 ,x1), andS(v;x2 ,x2), we can cal-
culate the noise in the Hall current and the tunneling current.
The Hall current is the total current running down the
sample, given byI H5 j L(x)1 j R(x)5rR(x)2rL(x) and the
tunneling current is the current that tunnels across the
sample, which is given by I t5rR(x1)2rR(x2)
5rL(x2)2rL(x1).

The expression for theS(v;x1 ,x2) noise is

S~v;x1 ,x2!5E
2`

`

dteivt^$r2~ t,x1!,r2~0,x2!%&, ~49!

where x2,0 and x1.0. Again, we can expand the
r2(x1) and r2(x2) in terms of theAv’s andBv’s in the
solution forc. After evaluating the expectation values and
performing the integrals overv i and t, we find

S~v;x1 ,x2!5H uvu
2p

22uGu2F tan21S uvu2v0

4puGu2 D
1tan21S uvu1v0

4puGu2 D G1 i uGu2sgn~v!$2ln@v0
2

1~4puGu2!2#2 ln@~v1v0!
21~4puGu2!2#

2 ln@~v2v0!
21~4puGu2!2#%J eiv~x12x2!.

~50!

We can again use Eq.~39! to obtain the expression for the
cross correlations of the currents in the original four reser-
voirs. We find, for example,

S31~v!5
1

4
S~v;x1 ,x2!1

1

4

uvu
2p

eiv~x12x2! ~51!

and

S41~v!52
1

4
S~v;x1 ,x2!1

1

4

uvu
2p

eiv~x12x2! . ~52!
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The other cross correlations, namely,S32 and S42, can be
calculated similarly. For smalluGu, the noise is

S31~v!5F uvu
4p

2
p

4
uGu2@sgn~ uvu1v0!1sgn~ uvu2v0!#

2 i
1

2
uGu2lnS Uv22v0

2

v0
2 U D Geiv~x12x2!, ~53!

and whenuGu is large, the noise becomes

S41~v!5H uvu
4p

1 i
1

32p2

1

uGu2
v2sgn~v!2

1

384p3

1

uGu4 @~ uvu

1v0!
31~ uvu2v0!

3#J eiv~x12x2!. ~54!

In the following section, we will compare these results with
the perturbative calculation. We will find that forg51/2 they

agree, but they differ forg52. In Sec. V, we will also discuss
this apparent breakdown of the duality transformation.

V. DISCUSSION OF THE DUALITY SYMMETRY

As we have seen in the preceding sections, we expect this
system to exhibit a duality symmetry. In this section, we will
first describe this duality symmetry more fully, and then
compare the results from the perturbative and scattering cal-
culation to see how consistent they are with this symmetry.

For g51/2, the original picture of this system is a single
quantum Hall droplet with ‘‘filling fraction’’n51/2. Quasi-
particles can tunnel from one branch to the other, and they
have chargee*5ne, tunneling amplitudeGq , and Joseph-
son frequencyv05e*V/\. The Lagrangian describing this
system can be written as

FIG. 6. Plots for the renormal-
ized noise in one of the outgoing
branches~probe 3 in Fig. 2!, S̃33
vs. ṽ/ṽ0 . S̃33, ṽ, andṽ0 are the
renormalized noise and frequen-
cies, using the coupling constant
as the scaling factor
(S̃335S33/2uGu2, ṽ5v/4puGu2,
and ṽ05v0 /4puGu2, where
v05e*V/\). In ~a! the excess
noise S̃332S̃33

V50 is plotted for
large values ofṽ0 , which illus-
trates the weak coupling
(uGu→0) limit. The rescaled ex-
cess noise (S̃332S̃33

V50)/ṽ0
3 is

plotted in~b!. It shows the strong-
coupling limit (uGu→`) as
ṽ0→0. The full noiseS̃33/ṽ0 is
plotted in~c!. For the larger values
of ṽ0 , notice that the singularity
at ṽ52ṽ0 is hidden in the full
noise. Meanwhile, some reminis-
cent signs of the quasiparticle sin-
gularity appear nearṽ5ṽ0 . The
results for the noise in the other
outgoing branch~probe 4! are ex-
actly the same.
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L5
1

8p
@~] tf!22v2~]xf!2#2Gqe

2 iv0td~x!eiAgf~ t,0!

1H.c., ~55!

with g51/2 andf5fR(x)1fL(2x). If we use the four
probe geometry to study this system, then Eq.~5! gives the
relation between the densities in the four probes,r1 , r2 ,

r3 , and r4 , and the densities of the leftmovers and right-
movers. They are shown in Fig. 7~a!.

Once G is increased~or V is decreased!, the droplet
should split into two. Each of the two new droplets is still
characterized by filling fractionn. However, now only elec-
trons can tunnel across the gap from one branch to the other.
For g51/2, the electron is made up of two quasiparticles, so
the tunneling operator for the electron should be

Ge~e
iA1/2f~ t,0!!25Gee

iA2f~ t,0!; ~56!

the charge ise and the Josephson frequency isṽ052v0 .
Thus, whenGq in Eq. ~55! becomes large, this system can
alsobe described by the Lagrangian density

L5
1

8p
@~] tf!22v2~]xf!2#2Gee

2 i ṽ0td~x!eiAg̃f~ t,0!

1H.c., ~57!

whereg̃52 andGe is small. However, in this geometry with
the two droplets, we must be careful when we write the
densities in the four probes in terms of the left-moving and
right-moving densities. According to Fig. 7~b!, this relation
is given by

r1~ t !5rR~ t,x̃! for x̃,0,

r2~ t !5rL~ t,x̃! for x̃.0,

r3~ t !5rL~ t,x̃! for x̃,0,

r4~ t !5rR~ t,x̃! for x̃.0. ~58!

With these identifications,S31(v) in the four probe geometry
equals SLR(v; x̃2 ,x̃2) in the two-droplet geometry, and
similarly, S41(v) is given bySRR(v; x̃1 ,x̃2), wherex̃2,0
and x̃1.0. Also, we see that the Hall current in the single
droplet,rR(t,x)2rL(t,x), is dual to the tunneling current in
the two droplets,rR(t,x̃2)2rR(t,x̃1), because both are
equivalent tor1(t)2r4(t).

FIG. 7. The association of the four densitiesr i ( i51,2,3,4) to
the left and right moving branches for the dual pictures correspond-
ing to ~a! g5n and ~b! g5n21 @compare to Figs. 1~a! and 1~b!#.
Notice thatr3 and r4 change chirality under duality, and that the
space coordinates~thex and x̃ axis! should also be redefined under
the duality transformation.

FIG. 6 ~Continued!.
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We will first verify that the scattering and perturbative
calculations agree forg51/2. We have already found that
when the noise is evaluated on only one side of the junction,
then both the scattering and perturbative results agree. If one
probe is in an incoming channel and the other probe is in an
outgoing channel, then according to Appendix A the pertur-
bative result for the noise is

S31~v;x1 ,x2!5eiv~x12x2!H uvu
4p

2
uGqu2

8 F i4 sgn~v!lnS Uv22v0
2

v0
2 U D

12p$@11sgn~ uvu2uv0u!#%G J , ~59!

where we have setg5n51/2 in Eq. ~A19!. On comparing
this with the expansion of the scattering calculation for small
G in Eq. ~53!, we find that also in this case the scattering and
perturbative results agree.

Next, to check the duality transformation, we must com-
pare the scattering calculation asG→` with the perturbative
calculation atg52. Again we found that if both probes are in
the same branch, then the two calculations agree. This is
rather remarkable, because wheng52 the system can be
sensitive to short distance behavior, which means that it
could depend on the detailed structure of the junction and on
how it is regulated. However, here we found that the weak-
coupling perturbative calculation and the strong-coupling
limit of the scattering calculation are the same, even though
they treat the junction very differently. We conclude that, at
least to the order in perturbation theory that we have calcu-
lated, the noise extracted from a single channel is not af-
fected by the short-distance properties of the impurity.

To complete the comparison, we need the results for the
noise between the incoming and outgoing channels. Using
Eq. ~47! to relate the quasiparticle tunneling amplitude to the
electron tunneling amplitude, we find that the expansion for
G→` of the scattering calculation becomes

S41~v;x1 ,x2!5H 1

4p
uvu1

i

2
uGeuv2sgn~v!2

2p

3
uGeu2@~ uvu

1v0!
31~ uvu2v0!

3#J eiv~x12x2!. ~60!

This must be compared with the perturbative calculation of
SRR(v; x̃1 ,x̃2). To obtain this perturbative result, we set
n51/2, g52, and replacev0 by 2v0 in Eq. ~A19!. Then the
perturbative calculation of the noise across the junction
yields

SRR~v; x̃1 ,x̃2!5H 1

4p
uvu2uGeu2Fp6 @~ uvu1u2v0u!31~ uvu

2u2v0u!3#1
2iv2

3d G J eiv~x12x2!. ~61!

We first note that this expression for the noise contains a
linear divergence in the cutoffd. Thus this perturbative cal-
culation is regulator dependent, which is not surprising be-

cause the tunneling operator atg52 has dimension 2 and
should be an irrelevant operator. In spite of this, both calcu-
lations do agree to orderv ~which is all that the derivations
of the duality transformation in Ref. 13 would predict!; it is
only the higher-order terms inv that disagree. This suggests
that we are on the right track with the perturbative calcula-
tion, but we just need to add in the appropriate counter terms.

To see which counter term we should add, we begin by
recalling that we used the most relevant tunneling operator to
describe the system. However, forg52 the operators
(rL)

21(rR)
2 andrLrR are just as relevant as the tunneling

operator, so we must consider their effects also. In fact,
@rR(0)2rL(0)#

2 also encourages tunneling because it tries
to equalize the density of rightmovers and leftmovers. An-
other way to look at it is that we cannot have quasiparticles
tunneling between the droplets, but density fluctuations on
one side may affect the other side.

In Appendix B, we found that when the interaction

L int5g@rR~ t,0!2rL~ t,0!#2d~x! ~62!

is included in the Lagrangian, it gives the following contri-
bution to the noise:

Srr
RR~x1 ,x2!5u~2x1x2!H ig

8p2v2sgn~vx1!2
g2

16p3 @ uvu3

22i ‘‘ d ’’ ~0!v2sgn~vx1!#J eiv~x12x2!, ~63!

where ‘‘d’’ ~0! is a regulation-dependent divergent term.
First, we note that the density-density coupling does not

affect the noise evaluated on only one side of the impurity
~i.e., whenx1x2.0.) According to Eqs.~7! – ~10!, ~46!, and
~47!, this is necessary for the scattering and the perturbative
calculations to agree. It is reasonable that the noise evaluated
on only one side of the junction should be less affected by
the counter terms and the regulator than the noise between
probes on either side of the junction, because even though in
both cases all the measurements are done far from the junc-
tion, in the second case the information must travel from one
side of the junction to the other.

Second, we note that whenx1x2,0, Eq.~63! contains the
linear term ing, which also appears in the scattering calcu-
lation, but not in the original perturbative calculation. We
find that the only density-density interaction that gives the
same linear term as in the scattering result forall of the cross
correlations is the one given in Eq.~62!, with g51/(4Gq

2).
When we add the density-density term with this choice for
g to the original perturbative calculation, we obtain

Spert
RR~v;x1 ,x2!5H 1

4p
uvu1

i

2
uGeuv2sgn~v!

2
2p

3
uGeu2@~ uvu1v0!

31~ uvu2v0!
3#

12i uGeu2v2sgn~v!S p ‘‘ d ’’ ~0!

2
1

3d D J eiv~x12x2!. ~64!
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Thus,~except for the divergent part!, this perturbative result
agrees with the scattering result.

To cancel the divergent part, we must regulate thed func-
tion properly and adjust the counterterm accordingly. Then
the two results will agree in the limit asx1 andx2→6`.
Another approach, which may be more appropriate, is to
‘‘smooth out’’ the density-density interaction. This is accom-
plished by replacing the interaction in Eq.~62! by the fol-
lowing expression:

L int5g@rR~ t,0!2rL~ t,0!#2f e~x!, ~65!

where f e(x)→d(x) as e→0. This new interaction does not
change the finite part of Eq.~64!, and the functionf can be
chosen so that the divergence cancels. As a result, even
though the duality symmetry is not exactly obeyed for the
cross correlations, it is possible to add in counter terms to
bring the strong-coupling limit of one picture into agreement
with the weak-coupling limit of the dual picture.

To summarize, to the order inG we have calculated, the
action for g51/2 is dual to the renormalized action for
g52, given by

L5
1

8p
@~] tf!22v2~]xf!2#2Gee

2 i2v0td~x!eA2f~ t,0!1H.c.

14p2Ged~x!@rR~ t,0!2rL~ t,0!#2, ~66!

and if we only want to calculate the noise in one particular
channel, then it is not necessary to include therr interaction
to obtain the dual picture. As explained above, this action
can be interpreted as containing two different terms that in-
duce or encourage tunneling. We can also use the relation

rR~0!2rL~0!5
1

2A2p
]xf~0! ~67!

to write the action as

L5
1

8p
@~] tf!22 ṽ2~]xf!2#2Gee

2 i2v0td~x!eA2̃f~ t,0!

1H.c., ~68!

where ṽ25v214pd(x)Ge
2 is the ‘‘renormalized’’ velocity.

In this case, the velocity remains the same everywhere but
right at the junction. If, instead, we use Eq.~65! for the
density interaction, then the velocity is renormalized in a
region around the junction.

VI. CONCLUSION

In this paper we studied the four terminal tunneling noise
spectrum for chiral Luttinger liquids characterized by an ex-
ponentg. Perturbative results are obtained for arbitraryg.
Perturbative calculations for quasiparticle tunneling reveal a
singularity at the quasiparticle Josephson frequencyneV/\,
while perturbative calculations for electron tunneling only
produce a singularity at the electron Josephson frequency
eV/\. This appears to be inconsistent with the duality pic-
ture that quasiparticle and electron tunneling describe the
same tunneling junction in two different limits. To under-
stand how the quasiparticle tunneling picture can smoothly

connect to the electron tunneling picture, we calculated the
exact noise spectrum forg51/2 ~or g52 due to duality!. We
find that the singularity at the quasiparticle Josephson fre-
quency 1

2eV/\ is smeared for finite tunneling and is not a
true singularity, while the singularity at the electron Joseph-
son frequencyeV/\ survives in the exact result. Thus, for all
nonzero values ofG, the electron singularity coexists with a
smoothed out quasiparticle singularity, and only in the limit
of the quasiparticle tunneling going to zero is there a ‘‘tran-
sition’’ where the quasiparticle singularity appears. An inter-
pretation of this is that at finite tunneling the quasiparticles
can acquire a finite lifetime, so there is no sharp quasiparticle
singularity. This is consistent with the calculations of the
Hall current, which is no longer at its quantized value once
the quasiparticles can tunnel. In light of our perturbative cal-
culations, we expect that this qualitative picture will also
apply for other values ofg<1/2. It would be interesting to
check this picture by direct calculation for someg,1/2. It
does not appear that the thermal Bethe ansatz techniques of
Ref. 12 will be applicable because they do not give informa-
tion about the excited states. However, it might be possible
to use a leading-log calculation, perhaps along the lines of
Ref. 10, to solve for values aroundg51/2.

From the exact result we also find that the noise spectrum
of the current correlations on a single branch~autocorrela-
tions! satisfies the duality relation, while current correlations
between distinct branches~cross correlations! do not satisfy
the naive duality relation.
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APPENDIX A: PERTURBATIVE CALCULATION

In order to obtain the noise spectrum of density-density
correlations on given leads, we start by writing the correla-
tions between density operators as follows:

^ra~ t,x1!rb~0,x2!&, ~A1!

wherea,b take the values11 for R moving branches and
21 for L moving ones. Such compressed notation makes it
simpler to identify incoming and outgoing branches in a uni-
fied way for both left and right movers:ra(t,x1), for ex-
ample, is the density in an incoming or outgoing branch if
ax1,0 or ax1.0, respectively.

The densities are related to the fieldsfR,L through
rR,L5(An/2p)]xfR,L , so that we can write

^ra~ t,x1!rb~ t8,x2!&5
n

~2p!2
]x1]x2^fa~ t,x1!fb~ t8,x2!&,

~A2!

where it is convenient to use
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^fa~ t,x1!fb~ t8,x2!&5
d

dl1

d

dl2
^eil1fa~ t,x1!

3e2 il2fb~ t8,x2!&ul1 ,l250 . ~A3!

The last correlation function is easy to calculate perturba-
tively using

^Tc~e
il1fa~ t,x1!e2 il2fb~ t8,x2!!&

5^0uTc„S~2`,2`!eil1fa~ t,x1!e2 il2fb~ t8,x2!
…u0&,

~A4!

where u0& is the unperturbed ground state, andTc is the
ordering along the Keldysh contour~Fig. 8!. The scattering
operatorS(2`,2`) takes the initial state, evolves it from
t52` to t5` and back tot52`. The use of the Keldysh
contour is necessary in the treatment of nonequilibrium prob-
lems, such as the one we have in hand. A more detailed
description of the method in the context treated here can be
found in Ref. 15.

In order to proceed we expandS(2`,2`) to second
order in perturbation theory. In terms of the Coulomb gas of
Ref. 15, we have an insertion of two charges of opposite
sign:

^Tc~e
il1fa~ t,x1!e2 il2fb~ t8,x2!!& uGu2

5~ iG!~ iG* !rcdt1rcdt2e
iv0t1e2 iv0t2

3^0uTc~eiqf~ t1,0!e2 iqf~ t2,0!eil1fa~ t,x1!

3e2 il2fb~ t8,x2!!u0&, ~A5!

whereq5Ag, andf without subscript stands for the sum
fR1fL . The expression above is simplified using

^0uTcS)
j
eiq jf~ t j ,xj !D u0&5e2(

i. j
qiqj ^0uTc~f~ t i ,xi !f~ t j ,xj !!u0&.

~A6!

Substituting it into Eq.~A3! we obtain

^Tc„fa~ t,x1!fb~ t8,x2!…& uGu2

5uGu2 R dt1 R dt2e
q2^0uTc„f~ t1,0!f~ t2,0!…u0&

3eiv0~ t12t2!$q2@^0uTc„f~ t1,0!fa~ t,x1!…u0&

2^0uTc„f~ t2,0!fa~ t,x1!…u0&#

3@^0uTc„f~ t1,0!fb~ t8,x2!…u0&

2^0uTc„f~ t2,0!fb~ t8,x2!…u0&#

1^0uTc„fa~ t,x1!fb~ t8,x2!…u0&%. ~A7!

The last term in the expression above, the one proportional to
^0uTc„fa(t,x1)fb(t8,x2)…u0&, vanishes. The reason why this
happens is very simple: the factor in front of it is the term of
order uGu2 in the expansion ofZ5^0uS(2`,2`)u0&; since
Z[1, the correction at any order inG must vanish.

In order to carry out the calculations, we introduce nota-
tion that keeps track of the position of the two inserted
charges along the contour, i.e., whether they are in the for-
ward ~or top! branch, or in the return~or bottom! branch~see
Fig. 8!. The position of the charges is important for the com-
putation of the contour-ordered correlation function, given
by

^0uTc„fR,L~ t1 ,x1!fR,L~ t2 ,x2!…u0&

55
2 ln$d1 i sgn~ t12t2!@~ t12t2!7~x12x2!#% both t1 and t2 in the top branch

2 ln$d2 i sgn~ t12t2!@~ t12t2!7~x12x2!#% both t1 and t2 in the bottom branch

2 ln$d2 i @~ t12t2!7~x12x2!#% t1 in the top andt2 in the bottom branch

2 ln$d1 i @~ t12t2!7~x12x2!#% t1 in the bottom andt2 in the top branch.

The compact notation consists of giving indices to the times
which contain the information about which branch of the
Keldysh contour they are on, so thattm is on the top branch
for m511, and on the bottom form521. In this way, we
can compress the correlations to a compact form:

Gmn
ab~ t1 ,x1 ;t2 ,x2!5Gmn

ab~ t12t2 ,x12x2!

5^0uTc„fa~ t1
m ,x1!fb~ t2

n ,x2!…u0&

52da,bln$d1 iKmn~ t12t2!@~ t12t2!

2a~x12x2!#%, ~A8!

FIG. 8. An insertion of an operatore1 iqf(t) corresponds to the
insertion of a charge1 on the contour at timet. Similarly, an
insertion of an operatore2 iqf(t) corresponds to an insertion of a
charge2 at timet. The timet is ordered along the contour shown,
and there is a distinction between charges placed on the top and
bottom branches. In the illustration, we consider the particular case
when the2 charge is inserted on the top contour, and the1 charge
is inserted on the bottom contour.
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where

Kmn~ t !5u~mn!sgn~nt !1u~2mn!sgn~n!. ~A9!

Again, we have useda,b561 for R andL fields, respec-
tively. The correlation in Eq.~A7! can be written, using this
compressed notation, as

^Tc„fa~ t,x1!fb~ t8,x2!…& uGu25uGu2q2(
mn

sgn~mn!E
2`

`

dt1E
2`

`

dt2e
iv0~ t12t2!Pmn~ t12t2!@G1m

aa ~ t2t1 ,x1!

2G1n
aa ~ t2t2 ,x1!#@G1m

bb ~ t82t1 ,x2!2G1n
bb ~ t82t2 ,x2!#, ~A10!

wherePmn(t12t2)5eq
2@Gmn

11(t12t2,0)1Gmn
22(t12t2,0)#, or ex-

plicitly

P66~ t !5
1

~d6 i utu!2g
, P67~ t !5

1

~d7 i t !2g
. ~A11!

The factor sgn(mn) simply keeps track of the sign coming
from the integration of the timest6 along the contour. Notice
that the timest and t8 are taken to be on the top branch.

Now, let

Fab~v;x1 ,x2!5E
2`

`

dteivt^Tc„ra~ t,x1!rb~0,x2!…& uGu2

5
n

~2p!2
]x1]x2E2`

`

dteivt^Tc„fa~ t,x1!

33fb~0,x2!…& uGu2, ~A12!

which can be easily shown, using Eq.~A10!, to yield

Fab~v;x1 ,x2!5uGu2
nq2

~2p!2(mn
sgn~mn!$P̃mn~v0!@g1m

aa ~v,x1!g1m
bb ~2v,x2!1g1n

aa ~v,x1!g1n
bb ~2v,x2!#2 P̃mn~v02v!g1m

bb

~2v,x2!g1n
aa ~v,x1!2 P̃mn~v01v!g1m

aa ~v,x1!g1n
bb ~2v,x2!%. ~A13!

In this equation,g is given byg1m
aa (v,x)5]xG̃1m

aa (v,x) and can be obtained from Eqs.~A8! and ~A9!:

gmn
ab~v,x!5da,b35

p iaeivax@sgn~v!1sgn~ax!#, m511,n511

p iaeivax@sgn~v!2 sgn~ax!#, m521,n521

22p iaeivaxu~2v!, m511,n521

2p iaeivaxu~v!, m521,n511.

The spectrum to second order can be obtained from
Fab(v,x1 ,x2) as follows:

Sab
~2!~v;x1 ,x2!5Sba

~2!~2v;x2 ,x1!

5E
2`

`

dteivt^$ra~ t,x1!,rb~0,x2!%& uGu2

5Fab~v;x1 ,x2!1Fab* ~2v;x1 ,x2!.

~A14!

The only ingredients remaining to be calculated are the
P(v)’s, which are given by

P̃11~v!5t~2v!5E
2`

`

dp
eivp

~d1 i upu!2g
,

P̃22~v!5b~2v!5E
2`

`

dp
eivp

~d2 i upu!2g
,

P̃67~v!5c6~2v!5E
2`

`

dp
eivp

~d7 ip !2g
. ~A15!

The t,b,c6 are the same as in Ref.15. One can easily check
that t(v)1b(v)5c1(v)1c2(v), and that thec6 are
given by
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c6~v!5E
2`

`

dp
e2 ivp

~d7 ip !2g
5

2p

G~2g!
uvu2g21e2uvudu~6v!.

~A16!

Now, we have the tools we need in order to obtain all
correlations. In particular, correlations within the same
branch and taken at the same point, i.e.,a5b and x15x2 ,
can be shown to yield

Saa
~2!~v;x1 ,x1!5

4png

G~2g!
uGu2u~ax1!zuvu2uv0uz2g21

3u~ uv0u2uvu!. ~A17!

The zero order term inG is trivially obtained from the un-
perturbed density-density correlation functions:

Sab
~0!~v;x1 ,x2!5Sba

~0!~2v;x2 ,x1!5E
2`

`

dteivt^0u$ra~ t,x1!,rb~0,x2!%u0&5
n

2p
uvuda,beiva~x12x2!, ~A18!

so that, in particular,Saa
(0)(v;x1 ,x1)5n/2puvu.

Combining the zeroth- and second-order results, we obtain the results used in Sec. III for the noise in incoming
(ax1,0) and outgoing (ax1.0) branches, namely

S~v!55
n

2p
uvu, incoming branches

n

2p
uvu1

4png

G~2g!
uGu2zuvu2uv0uz2g21u~ uv0u2uvu!, outgoing branches.

It is straightforward to show that the noise in the incoming
branch remains equal ton/2puvu to all orders in perturba-
tion theory.

Next, we will obtain correlations between densities of an
incoming and an outgoing branch~the cross correlations!.
Without loss of generality, we will focus on the correlations
between twoR branches (a51), one outgoing (x1.0), and
another incoming (x2,0). The results for other combina-
tions of branches are trivially obtained from the case we
consider. We have, again, all the tools at hand, namely Eqs.
~A13! and ~A14!, as well as our expressions forgmn

ab(v,x)
and P̃mn(v). We find

SRR
~2!~v;x1.0,x2,0!

5E
2`

`

dteivt^$rR~ t,x1.0!,rR~0,x2,0!%& uGu2

5eiv~x12x2!
uGu2gn

2 H sgn~v!Hg~v!

2
2p

G~2g!
@~ uvu1uv0u!2g21

1 zuvu2uv0uz2g21sgn~ uvu2uv0u!#J , ~A19!

where the functionHg(v) is defined as

Hg~v!52@ t~v0!2b~v0!#2@ t~v02v!2b~v02v!#

2@ t~v01v!2b~v01v!#

58E
0

`

dtcos~v0t !sin
2~vt/2!F 1

~d1 i t !2g

2
1

~d2 i t !2gG . ~A20!

One can show particularly that H1/2(v)
524i ln@u(v22v0

2)/v0
2u#, H1(v)50, and H2(v)

524iv2/3d→` asd→0.
The zero-order contribution to the cross correlations is

read directly from Eq. ~A18!: SRR
(0)(v;x1.0,x2,0)

5n/2puvueiv(x12x2).

APPENDIX B: PERTURBATIVE CALCULATION FOR THE
DENSITY-DENSITY COUPLING

Here we consider the neutral couplingL int
5g@rR(t,0)2rL(t,0)#

2, and show that it contributes to the
correlations between incoming and outgoing branches, al-
though it does not contribute to correlations between two
incoming or two outgoing ones. The calculations are simpler
than the ones in Appendix A. We will demonstrate the point
by calculating the correlation̂Tc„rR(t,x1)rR(0,x2)…& to first
and second order ing. Other correlations can be calculated
in a very similar way.

As in Appendix A, contour integrals are simplified by
keeping track of insertions in the top and bottom branches
with indicesm,n561. It is useful to define
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hmn
ab~ t1 ,x1 ;t2 ,x2!5hmn

ab~ t12t2 ,x12x2!5^0uTc„ra~ t1
m ,x1!rb~ t2

n ,x2!…u0&

5
n

~2p!2
]x1]x2^0uTc„fa~ t1

m ,x1!fb~ t2
n ,x2!…u0& ~B1!

5
n

~2p!2
]x1]x2Gmn

ab~ t12t2 ,x12x2!, ~B2!

wherea andb, as in Appendix A, take the values11 for R moving branches and21 for L moving ones. It follows from the
calculations of Appendix A thath̃mn

ab(v,x)52@n/(2p)2#]x
2G̃mn

ab(v,x)52n/(2p)2]xgmn
ab(v,x), which gives

h̃mn
ab~v,x!5

n

~2p!2
da,b35

2puvuu~avx!eivax22p id~x!, m511,n511

2puvuu~2avx!eivax12p id~x!, m521,n521

2puvuu~2v!eivax, m511,n521

2puvuu~v!@e# ivax, m521,n511 .

The perturbative results can be easily written in terms of theseh̃’s.
Notice that the only term in the interactionr2

2 5rR
222rRrL1rL

2 that contributes tôTc„rR(t,x1)rR(0,x2)…& to orderg is
the rR

2 term. The first order ing correction to the correlation function can be written as

^Tc„rR~ t,x1!rR~0,x2!…&g5 igrcdt1^0uTc„rR~ t,x1!rR~0,x2!rR~ t1,0!rR~ t1,0!…u0&52igrcdt1^0uTc„rR~ t,x1!rR~ t1,0!…u0&

3^0uTc„rR~0,x2!rR~ t1,0!…u0&. ~B3!

The Fourier transformFRR
(1)(v;x1 ,x2) of the expression in

Eq. ~B3! is simply

FRR
~1!~v;x1 ,x2!52ig(

m
sgn~m!h̃1m

11~v,x1!h̃1m
11~2v,x2!,

~B4!

and thus to first order ing the cross-correlation spectrum is
given by

SRR
~1!~v;x1 ,x2!5SRR

~1!~2v;x2 ,x1!

5E
2`

`

dteivt^$rR~ t,x1!,rR~0,x2!%&g

5FRR
~1!~v;x1 ,x2!1FRR

~1!* ~2v;x1 ,x2!

5
ign2

2p2 u~2x1x2!v
2sgn~vx1!e

iv~x12x2!.

~B5!

Turning now to second order in the perturbation expan-
sion, both therR

2 and therRrL terms in the interaction
r2
2 5rR

222rRrL1rL
2 can contribute to the orderg2 correc-

tion to ^Tc„rR(t,x1)rR(0,x2)…&. Consider thegrR
2 coupling,

so that to second order we have

^Tc„rR~ t,x1!rR~0,x2!…&~gr
R
2
…

25
~ ig!2

2!
rcdt1rcdt2^0uTc„rR~ t,x1!rR~0,x2!rR~ t1,0!rR~ t1,0!rR~ t2,0!rR~ t2,0!…u0&

58
~ ig!2

2!
rcdt1rcdt2^0uTc„rR~ t,x1!rR~ t1,0!…u0&

3^0uTc„rR~0,x2!rR~ t2,0!…u0&^0uTc„rR~ t1,0!rR~ t2,0!…u0&. ~B6!
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The effect of theg2rRrL coupling can be calculated likewise. The Fourier transform of these two contributions combined gives

FRR
~2!~v;x1 ,x2!524g2(

mn
sgn~mn!h̃1m

11~v,x1!h̃1n
11~2v,x2!@ h̃mn

11~v,0!1h̃mn
22~v,0!#, ~B7!

so that the cross-correlation spectrum to second order is

SRR
~2!~v;x1 ,x2!5SRR

~2!~2v;x2 ,x1!

5E
2`

`

dteivt^$rR~ t,x1!,rR~0,x2!%&g2

5FRR
~2!~v;x1 ,x2!1FRR

~2!* ~2v;x1 ,x2!

52
g2n3

2p3 u~2x1x2!e
iv~x12x2!@ uvu322i ‘‘ d ’’ ~0!v2 sgn~vx1!#, ~B8!

where ‘‘d’’ ~0! is a regulator-dependent divergent term.
Notice that, both to first and second order ing, the cor-

relations on the same side of the junction, i.e.,x1x2.0, do
not feel the density-density coupling, whereas correlations
across the junction (x1x2,0) do feel the coupling. More
generally, when one considers all possible correlations in-
volving R andL branches, only those which contain an in-
coming and an outgoing branch will have a nonzero correc-
tion due to the density-density coupling. Correlations
between two incoming or two outgoing branches will be
zero.

APPENDIX C: SCATTERING CALCULATION

In this appendix, we evaluate the expectation values and
integrals used for calculating the noise in Sec. IV. The meth-
ods of calculation are very similar to those in Ref. 18.

First, we will evaluate the noise in the incoming reservoir,
which is given by

S~v;x2 ,x2!5E
2`

`

dt~eivt1e2 ivt!^r2~ t,x2!r2~0,x2!&.

~C1!

The expectation value we must calculate is given by

^r2~ t,x2!r2~0,x2!&5^c†~ t,x2!c~ t,x2!

3c†~0,x2!c~0,x2!&, ~C2!

with x2,0. Using the solutions in Eqs.~22! and ~23! for
c andc†, we find

^r2~ t,x2!r2~0,x2!&5 (
v1 ,v2 ,v3 ,v4

e2 i ~v11v2!t^FuA2v1

† Av2

3A2v3

† Av4
uF&ei ~v11v21v31v4!x2.

~C3!

The connected part of^A2v1

† Av2
A2v3

† Av4
& hasA2v1

† paired

with Av4
andAv2

paired withA2v3

† and is given by

^FuA2v1

† Av2
A2v3

† Av4
uF&con

5^FuA2v1

† Av4
uF&^FuAv2

A2v3

† uF&. ~C4!

Evaluating these correlations using Eqs.~26! and ~30!, we
find that the current-current correlation reduces to

^r2~ t,x2!r2~0,x2!&5 (
v1 ,v2

e2 i ~v11v2!tn2v1
~12nv2

!.

~C5!

Substituting this expression back into Eq.~34! for the noise,
and performing the integrals overt andv1 , we obtain

S~v;x2 ,x2!~v!5E
2`

` dv2

2p
nv22v~12nv2

!

1E
2`

` dv2

2p
nv21v~12nv2

!. ~C6!

At zero temperature, the integrands are given by

nv27v~12nv2
!5H 1 for6v.0 andv0<v2<v06v

0 otherwise.
~C7!

Performing the integral, we obtain the desired result:

S~v;x2 ,x2!~v!5
1

2p
uvu. ~C8!

Next, we will calculate the noise in the outgoing current,
which is given by

S~v;x1 ,x1!5E
2`

`

dt~eivt1e2 ivt!^r2~ t,x1!r2~0,x1!&,

~C9!

where x1.0. This time we must evaluate the expectation
value

^r2~ t,x1!r2~0,x1!&5^c†~ t,x1!c~ t,x1!

3c†~0,x1!c~0,x1!&. ~C10!
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According to Eqs.~22! and ~23!, this is equal to

^r2~ t,x1!r2~0,x1!&5 (
v1 ,v2 ,v3 ,v4

e2 i ~v11v2!t

3^FuB2v1

† Bv2
B2v3

† Bv4
uF&

3ei ~v11v21v31v4!x1. ~C11!

Because the scattering states are defined in terms of the op-
eratorAv , we will use Eq.~24! to rewrite all theB’s in terms
of theA’s, with the result

^B2v1

† Bv2
B2v3

† Bv4
&5s01st . ~C12!

In this equation,s0 describes events where at both time 0 and
at timet one particle is destroyed and another is created. The
second term,st , describes events where at one time two
particles are created, and at the other time two are destroyed.
All the other terms in the correlation function of the fourB’s
will vanish. s0 andst are given by

s05
1

16
@cv1

cv2
cv3

cv4
^A2v1

† Av2
A2v3

† Av4
&

1cv1
cv2

dv3
dv4

^A2v1

† Av2
Av3

A2v4

† &

1dv1
dv2

cv3
cv4

^Av1
A2v2

† A2v3

† Av4
&

1dv1
dv2

dv3
dv4

^Av1
A2v2

† Av3
A2v4

† &# ~C13!

and

st5
1

16
@dv1

cv2
cv3

dv4
^Av1

Av2
A2v3

† A2v4

† &

1cv1
dv2

dv3
cv4

^A2v1

† A2v2

† Av3
Av4

&#. ~C14!

In these equations,cv anddv are given by

cv511eif~v! and dv512eif~v!, ~C15!

with f(v) defined in Eq.~25!. The correlations of the four
A’s can be evaluated using Eqs.~26! and ~30!. If we inter-
changev1 with v2 in the second two lines ofs0 , and per-
form the sums overv3 andv4 , we obtain

(
v3 ,v4

s0e
i ~v11v21v31v4!x15

1

16
@cv1

cv2
c2v1

c2v2
2cv1

cv2
d2v1

d2v2
2dv1

dv2
c2v1

c2v2
1dv1

dv2
d2v1

d2v2
#

3n2v1
~12nv2

!. ~C16!

In this equation, the expression containing the number operators is the same as for the noise in the incoming current, so we will
obtain the same limits of integration as in Eq.~C7!. Next, we can expand out thecv’s anddv’s in terms ofv and substitute
this back into Eq.~34! for the noise. After performing the integrals overt andv1 , we find that the contribution to the noise
due tos0 has the form

S0~v;x1 ,x1!5E
v0

v06vdv2

2p

@~4puGu2!22v2~v27v1!#
2

@~v27v!21~4puGu2!2#@v2
21~4puGu2!2#

u~6v!, ~C17!

where we sum over the two different signs in front ofv.
Upon performing thev2 integral, we obtain

S0~v;x1 ,x1!5
uvu
2p

22uGu2F tan21S uvu2v0

4puGu2 D
1tan21S uvu1v0

4puGu2 D G28p
uGu4

uvu $2ln@v0
2

1~4puGu2!2#2 ln@~v1v0!
21~4puGu2!2#

2 ln@~v2v0!
21~4puGu2!2#%. ~C18!

Next, we will calculate the contribution to the noise due
to st . The two expectation values we must evaluate are
^Av1

Av2
A2v3

† A2v4

† & and ^A2v1

† A2v2

† Av3
Av4

&. In both

cases, eitherv1 is paired withv3 and v2 is paired with
v4 , or v1 is paired withv4 andv2 with v3 . Thus we have

^Av1
Av2

A2v3

† A2v4

† &5~12nv1
!~12nv2

!~dv1 ,2v4
dv2 ,2v3

2dv1 ,2v3
dv2 ,2v4

! ~C19!

and

^A2v1

† A2v2

† Av3
Av4

&5n2v1
n2v2

~d2v1 ,v4
d2v2 ,v3

2d2v1 ,v3
d2v2 ,v4

!. ~C20!
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Substituting these expressions into the equation forst and performing the integrals overv3 andv4 , we obtain

(
v3 ,v4

ste
i ~v11v21v31v4!x15

1

16
@dv1

d2v1
cv2

c2v2
2dv1

c2v1
cv2

d2v2
#

3@~12nv1
!~12nv2

!1n2v1
n2v2

#.

~C21!

When we expand thec’s andd’s in terms ofv and perform the integral overt, we find that the contribution to the noise due
to st is given by

St~v;x1 ,x1!5E dv1

2p

dv2

2p

~4puGu2!2~v2
22v1v2!

@v1
21~4puGu2!2#@v2

21~4puGu2!2#
d~v11v26v!@~12nv1

!~12nv2
!1n2v1

n2v2
#, ~C22!

where again it is understood that we sum the two integrands with the different sign in front ofv. After the integration over
v1 is performed, the expression in square brackets becomes

~12n2v27v!~12nv2
!1nv26vn2v2

5H 1 forv0,v2,7v2v0 and7v22v0.0

1 for2v0,v2,7v1v0 and7v12v0.0

0 otherwise.

~C23!

We note that this time the limits of integration determined by the factors ofn impose cutoffs atv562v0 . These are the
origins of the singularities atv52v0 , which, as we shall see shortly, persist for alluGuÞ0. After Eq.~C23! is substituted into
the equation forSt(v;x1 ,x1), the noise becomes

St~v;x1 ,x1!5 (
a,b561

u~av1b2v0!E
2bv0

bv02avdv2

2p

~4puGu2!2@v2
21v2~v21av!#

@~v21av!21~4puGu2!2#@v2
21~4puGu2!2#

. ~C24!

The integration overv2 yields

St~v;x1 ,x1!5 (
a,b561

u~av1b2v0!H 2uGu2F tan21S bv0

4puGu2D1tan21S av1bv0

4puGu2 D G1
8puGu4

av
$ ln@~4puGu2!21v0

2#

2 ln@~4puGu2!21~av1bv0!
2#%J . ~C25!

We note that this contribution to the noise has the step function which provides a ‘‘sharp’’ singularity atuvu5u2v0u, for any
nonzero value ofuGu. This is the electron singularity. However, foruGu→0, the arctangents provide a singularity at
uvu5uv0u, which is the quasiparticle singularity.

When we add the two contributions to the noise together, we find that the noise on the outgoing side of the impurity
is

S~v;x1 ,x1!5
uvu
2p

1u~2uv0u2uvu!H 4uGu2F tan21S uv0u
4puGu2D1tan21S uv0u2uvu

4puGu2 D G
116p

uGu4

uvu $ ln@~4puGu2!21~ uvu2uv0u!2#2 ln@~4puGu2!21v0
2#%J . ~C26!

Finally, the noise between the currents on either side of the impurity can be calculated similarly, so we will omit the details
here.

4052 53C. de C. CHAMON, D. E. FREED, AND X. G. WEN



1X. G. Wen, Phys. Rev. B41, 12 838~1990!.
2X. G. Wen, Phys. Rev. B44, 5708~1991!.
3C. L. Kane and Matthew P. A. Fisher, Phys. Rev. Lett.68, 1220

~1992!; Phys. Rev. B46, 15 233~1992!; Phys. Rev. Lett.72, 724
~1994!.

4Akira Furusaki and Naoto Nagaosa, Phys. Rev. B47, 3827
~1993!; 47, 4631~1993!.

5C. de C. Chamon and X. G. Wen, Phys. Rev. Lett.70, 2605
~1993!.

6F. P. Milliken, C. P. Umbach, and R. A. Webb~unpublished!.
7K. Moon, H. Yi, C. L. Kane, S. M. Girvin, and Matthew P. A.
Fisher, Phys. Rev. Lett.71, 4381~1993!.

8F. Guinea, G. Gomez-Santos, M. Sassetti, and U. Ueda~unpub-
lished!.

9C. H. Mak, Reinhold Egger, Maura Sassetti, and Ulrich Weiss
~unpublished!.

10R. Egger, M. Sassetti, and U. Weiss~unpublished!.
11P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev. Lett.74,

3005 ~1995!.
12P. Fendley, A. W. W. Ludwig, and H. Saleur~unpublished!.
13A. Schmid, Phys. Rev. Lett.51, 1506~1983!; M. P. A. Fisher and

W. Zwerger, Phys. Rev. B32, 6190~1985!; C. G. Callan and D.

E. Freed, Nucl. Phys. B374, 543 ~1992!.
14C. L. Kane and Matthew P. A. Fisher, Phys. Rev. Lett.72, 724

~1994!.
15C. de C. Chamon, D. E. Freed, and X. G. Wen, Phys. Rev. B51,

2363 ~1995!.
16P. Fendley, A. W. W. Ludwig, and H. Saleur~unpublished!.
17Rolf Landauer, Phys. Rev. B47, 16 427~1993!, and references

therein.
18M. Buttiker, Phys. Rev. B46, 12 485 ~1992!, and references

therein.
19G. B. Lesovik, Pis’ma Zh. E´ksp. Teor. Fiz.49, 513 ~1989! @JETP

Lett. 49, 592 ~1989!#.
20F. Guinea, Phys. Rev. B32, 7518~1985!.
21Maura Sassetti, Manfried Milch, and Ulrich Weiss, Phys. Rev. A

46, 4615~1992!.
22K. A. Matveev, Phys. Rev. B51, 1743~1995!; A. Furusaki and K.

A. Matveev~unpublished!.
23Xiao-Gang Wen, Int. J. Mod. Phys. B6, 1711~1992!.
24S.-R. Eric Yang, Solid State Commun.81, 375 ~1992!.
25R. Floreanini and R. Jackiw, Phys. Rev. Lett.59, 1873~1987!.
26M. B. Green, J. H. Schwartz, and E. Witten,Superstring Theory

~Cambridge University Press, Cambridge, 1988!, Vol. I.

53 4053NONEQUILIBRIUM QUANTUM NOISE IN CHIRAL LUTTINGER . . .


