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Quantum theory for mesoscopic electric circuits
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A quantum theory for mesoscopic electric circuits in accord with the discreteness of electric charges is
proposed. On the basis of the theory, the Sdimger equation for the quantulC design and. design is
solved exactly. The uncertainty relation for electric charge and current is obtained and a minimum uncertainty
state is solved. By introducing a gauge field, a formula for persistent current arising from magnetic flux is
obtained.

[. INTRODUCTION riodic function of the magnetic flux is obtained. It provides a
formulation of the persistent current in the mesoscopic ring
Along with the dramatic achievement in nanotechnology,from a different point of view. Finally, some discussions and
such as molecular-beam epitaxy, atomic-scale fabrication otonclusions are made in Sec. VI.
advanced lithography, mesoscopic physics and nanoelectron-
ics are undergoing a rapid developméftlt has been a
strong and definite trend in the miniaturization of integrated
circuits and components towards atomic-scale dimen3ions
for the electronic device community. When the transport di-  We recall that for a classical nondissipative electric circuit
mension reaches a characteristic dimension, namely, thef LC design in the presence of a soukgg), the equation
charge carrier inelastic coherence length, one must addreg$ motion, as a consequence of Kirchoff's law, reads
not only the quantum mechanical property but also the disd?qg/dt>+ (1/LC)q— (1/L)e(t)=0, whereq(t) stands for
creteness of electron charge. Thus a correct quantum theogfectric chargel for inductance, and€ for the capacity of

is indispensable for the device physics in integrated circuitshe circuit. This equation of motion can be formulated in
of nanoelectronics. The classical equation of motion for anerms of Hamiltonian mechanics, namely,

electric circuit of LC design is the same as that for a har-
monic oscillator, whereas the “coordinate” means electric
charge. The quantization of the circuit was carried quthe - ﬁ - ﬁ
same way as that of a harmonic oscillator. This only results a= ap’ P= a9’
in energy quantization. In fact, a different kind of fluctuation

in. mesoscopic systems, whic_h inherently has nothing to dovith H(t)=(1/2L) p?+ (1/2C) g+ &(t)q. Here the variable
with energy quantization and interference of wave functionsy giangs for the electric charge instead of the conventional
is due to the quantization of electronic charge. Recently Wecoordinate,” while its conjugation variable(t) =Ldg/dt

studied the qu_antization O.f electric circuit bC Qesigg Un- representsgapart from a factot.) the electric current instead
der consideration of the discreteness of electric charge. ¢ the conventional “momentum.” Analogous to the forced

_In the present paper we extend the main idea of our preqarmonic oscillator, the electric circuit was quantized by
vious Lette? and present a quantum mechanical theory formany authoré, where the electric charge was treated as a
electric circuits based on the fact that electronic charge tak

) A e €ontinuous variable. As a matter of fact, the electronic charge
discrete values. In Sec. I, a finite-difference Sclinger

. ) = X is discrete and it must play an important role in the theory for
equation for the mesoscopic electric circuit is obtained. |

- : obtained. megoscopic circuits. Taking account of the discreteness of
Sec. lIl, the Schrdinger equation for & mesoscopic Circuit of g et charge, we must reconsider the quantization of a me-

LC design is tuned to the Mathieu equation in gogeqnic circuit. According to the standard quantization prin-

p-representation and solved exactly. The average value Qfipie one associates with each of the two observable quan-
electric current for the ground state is calculated. In Sec. Vjsiag q and p a linear Hermitian operator, namel§j, and

th_e uncertainty re!at|on for charl]r_gﬁ and currenr: IS d|sc?ésed. . The Hamiltonian, also an observable quantity, corre-
minimum uncertainty state, which recovers the usual Gaus Sponds to a Hermitian operatbr=(1/2L)p2+V(§), which

ian wave packet in the limit of vanishing discreteness, isis a function of the operator and §. The commutation
solved. In Sec. V, the Schidinger equation for a quantuln rglation for the conjugation variables are

design both in the presence of an adiabatic power source an
in the absence of source are solved exactly. A gauge field is
introduced and a formula for persistent current that is a pe- [Q,p]=ih. (2.1

II. QUANTIZATION OF ELECTRIC CIRCUIT IN ACCORD
WITH THE DISCRETENESS OF ELECTRIC CHARGE
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Up to now, the discreteness of electronic charge was not f(n+1)—f(n)
taken into account. Regarding the discreteness, we must im- quf(n): q—
pose that the eigenvalues of the self-adjoint operattake ©
discrete values,i.e., B f(n)—f(n—1)
~ Vo f(n)=—. (2.7
qla)=naea), (2.2 ) e

wherene Z (set of integersand g.=1.602x 10~ %° C, the They can be understood as the inverse of a discrete definite
e . ’ . . . . . .
elementary electric charge. Obviously, any eigenstat of Ntégral, which is in accord with the inner produ@ts), i.e.,

can be specified by an integer. This allows us to introduce a ng
minimum “shift operator” Q:=e¢'%"" which is shown to f(x)dx - 2 9.f(Nqe)
satisfy the following commutation relatiohs Xi
[3,Q1=-0.Q, _ QF(Xf>jF(Xi> It Vo =T,
F(x)—QTF(x) if Vg F=f.

[3,Q"]=0.Q",
Clearly, it recovers the conventional differential-integral cal-
0"Q=00"=1. (2.3  culus as long as the minimum intervggl goes to zero. The
discrete derivative operators defined [8.7) can be ex-
These relations can determine the structure of the wholpressed explicitly by the minimum shift operators
Fock space. Fog|n)=ng|n), the algebraic relation&.3)

enable us to derive the following quz(é— 1)/Qe,
Q+|n>:eia’n‘*'l|r]-i-:|_>7 gqe:(l_éJr)/qe' (28)
Q|n>:e*ian|n_1>, (2.4 It is easy to checkthat Vge:_gqe' Then we can write
down two important self-adjoint operators: “momentum”

where a,'s are undetermined phases. Obviou@y and@ operator,
are ladder operators, respectively, for charge increasing an
decreasing in the diagonal representation of charge operator.

The Fock space for our present algebra differs from the well- P=57 (Vg t Vo) =5 =——(Q-Q") 2.9
known Fock space for the Heisenberg-Weyl algebra, because Ge

the spectrum of the former is isomorphic to the set of inte-and free Hamiltonian operator

gersZ but that of the latter is isomorphic to the set of non- , )

negative integer€* +{0}. Since{|n)|neZ} constitutes a 0 :—ﬁ—V v =—ﬁ—(V V)

Hilbert space, we have the completen&ss. z|n)(n|=1. 0 2 % % 2qe Yo %

We also have the orthogonalifyn|m)= 8, due to the self- )

adjointness_ ofg. As a result, the inner product in charge __ —2(Q+Q —2), (2.10
representation takes the form 20¢

which we call as momentum and free Hamiltonian operators,
()= (P|n)(n|g)=>, ¢*(N)y(n). (2.5  respectively, because they are really those wipen 0. Now
nez nez we have finished the quantization of mesoscopic electric cir-

cuits and obtained the following finite-difference Schro
One can now study the eigenstates and eigenvalues of ﬂ?ﬁ 9

operator p.  Obviously, if plp)=p|p) then nger equation,

f(p)Ip)=f(p)|p) for any analytical functiorf. Supposing %2

Ip)=S1.2Cn(p)|), and usingQ|p)=e'%P*|p) we can find T 20l Ve qe)+V(Q) ly)=Ely). (213
that ¢, 1/c,=exp(gep/f+ica,, 1), which yields the follow-

ing solution

Ill. THE QUANTUM LC DESIGN

p)= E PRLLELITNS (2.6) As an appli{:ation qf our quantization strategy of thel me-
nez soscopic circuit, we discuss a mesoscdp@ design in this

L section. We only considered the adiabatic approximation so

where k,=€'*i-1%, k_,=e” “oe-i for n>0. Obviously  thate(t) is considered as a constantThen the Schidinger

|p+7(27/9e))=]p), the e|genvalues of the operafpris a  equation(2.11) for a LC design is written as

periodic parameter. Topologically, the parameter space of the

spectrum is isotopic to thg&". — A ~
Since the spectrum of charge is discrete and the inner _m(vqe_vquiqz”qu [9)=El¥). @D

product in charge representation is a sum instead of the usual

integral, one may define a right and left discrete derivative \We consider a representation in which the opergtds

operatorsVqe and qu by diagonal and called it thp representation. We must address

|Z

hZ
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that thep is the conjugation of the charge varialgjevithin -~ ues{a,} and{b,,,} that are not identically equal to zero.
the meaning of the usual canonical commutdfbl), and it  Then the energy spectrum is expressed in terms of the eigen-
is the “current” operator only if the charge is treated as avaluesa,, b, of the Mathieu equation,

continuous variable. However, the operater associated

with the physical quantity, electric curre¢apart from a fac- o2 52

tor 1), differs from the operatop as long as the discrete- E,*=£a,(§)+ ——

ness of charge is taken into account. Cleddywill become
the usualp when g, goes to zero. The orthogonality of

eigenstates op is an immediate consequence @6) and B qg 72
the orthogonality of the charge eigenstates, i.e., Eiii=ge i)+ L (3.7
) 2 ) 2
(plp")= q_ﬁgz o p—p'+n q_)ﬁ} As an exercise, one may calculate the fluctuation of elec-
¢ ¢ tric current for the ground state. It is known that the explicit
The completeness is also verified: results of eigenvalues and eigenfunctions of the Mathieu
equation are complicated. They are related to continued frac-
&fﬁ("’qe) @| Wpl=S) [ny(n|=1 (3.2 tions and trigonometric series, respectively. For the concrete
27 ) ~p(mige B AL nez ' ' values of the Plank constant and the elementary electric

) ) charge, the WKB method is valid. From the series solution of
The transformation of wave functions between charge repréyathiey equation for ground state, we obtained the fluctua-

sentation ang representation is given by tion of electric currentP (apart from a factor 1) for the

q h(mlgy) ground state
e € —i
<n|¢>=(2wﬁ) [ applme et @3
(lde) ﬁz . h 2 3 hZC 2 a8
Using (2.6), we can obtain the following relations ( >ground—§ a 3 qg‘_L t- (3.8
— 47h Je . . : 2742
(P'|Vq, =V lp)= ra cog 2=p| -1 S(p—p'), This result is valid for the cas€/L<(q&/h)“.
e
a2 2mh® 92 , IV. UNCERTAINTY RELATION AND THE MINIMUM
(p'1&%p)= = —,— 557 0(P=P"). (3.4 UNCERTAINTY STATE
In the p representation, the finite-difference Sadirmer In order to understand the main conclusions in this sec-
equation (3.1) becomes a differential equation for tion, we begin with a brief view of the derivation of the
f/,(p);:<p| ) uncertainty relation in standard quantum mechanica.dhd

B are two Hermitiar(self-adjoin} operators that do not com-
Je ~ ~ mute, the physical quantities andB cannot both be sharply
cos(Xp) - 1” ¥(p)=Ey(p), defined simultaneously. The variancesohndB are defined
(3.5 as AA)*=((A—(A))? and (AB)*=((B—(B))?). Their
positive square roots\A andAB, are called the uncertain-
ties in A and B. In terms of the properties of self-adjoint
operators and the knowledge of Schwarz inequality, one can

h? 9? K2

which is the well-known Mathieu equatidrf. This equation
appeared in Ref. 9 on the discussion of Pagproximates.
In deriving (3.5, we have adopted=0 for simplicity. Ac-

rove that
tually, the linear term in3.1) can be moved by a translation P
in the “coordinate”(charge space. Apart from a redefinition T - A )
of g and a shift of the energi, the same equation 48.5) (AA)*(AB)“=[{(1/2({A,B} —(AXB)))|

would be derived.
In terms of the conventional notatiof& the wave func-
tions in p representation can be solved as follows

+[((12[ABD?, @.1)

where{,} denotes the anticommutator, and the equality sign

- T e holds if and only ifB|#)<A|). In deriving (4.1), the fact
i (p)=ce|| 5 — ﬁp,f) that the expectation value of a Hermitiéor anti-Hermitian
operator is a real numbéor purely imaginary numbgthas
or been used. As a direct consequencé4ot), the uncertainty
q relation is conventionally written as
~ T
¢F+1(p)=se|+1<§—§p,§), (3.6

(AA)2(AB)?=|((1/2)[A,B])|2 (4.2
where the superscripts and — specify the even and odd

parity solutions, respectively; 1=0,1,2...; Clearly. the equality sign it4.2) holds if and only if both the
§=(2ﬁ/q§)2C/L; ce(z,&) and set, &) are periodic Mathieu equality sign in(4.1) holds and the first term of the right-
functions. In this case, there exist infinitely many eigenval-hand side in(4.1) vanishes. These conditions imply that
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(B—(B))[9)=NA—(A)|p), - (14 gih¥(Ho) [ #2 S(q) -
A BTl w(p)_Nexpi aby [
A= (4.3 P
2(AA)? _i@p
et (4.9

Now we go directly to our main purpose. After some cal-

culations, we obtain the following commutation relations for WhereN is the normalization constant. Equatioh9) is ob-
the charge, the currentP. and the free Hamiltoniaﬁlo viously a deformation of the usual Gaussian wave packet and

recovers the Gaussian wave-packet if the discreteness van-
2 ishes.

Qe

_HO ,

1+ 72
4.9

[Ho,P]1=0, [Ho,4]=i%P, [§,P]=i%
V. QUANTUM L DESIGN, GAUGE FIELD,
AND PERSISTENT CURRENTS

where the operatoi andH, have been defined respectively | this section, we will solve the Schiimger equation for

by (2.9 and(2.10. The term (2/#?)H, in the third equa-  anL design in the presence of an adiabatic source and in the
tion of (4.4) occurs due to the discreteness of electric chargeabsence of source. Introducing a gauge field and gauge trans-
Now we are ready to write out the uncertainty relation forformation, we derive a formula for persistent current in a

electric charge and electric current, namely, pureL design, i.e., a mesoscopic metal ring.
L oa A a - ign i iabati
AG-AP= s 14 h_(Z(Ho))- 4.5 A. The L design in the presence of an adiabatic source

The Schrdinger equation for ah design in the presence

. : . . of an adiabatic source reads
This uncertainty relation recovers the usual Heisenberg un-

certainty relation ifq. goes to zero, i.e., in the case that the 52 _
discreteness of electric charge vanishes. Moreover, the un- — 5 (Vq.— Vo) +eq||¥)=E|y). (5.1
certainty relation4.5) has shown us further knowledge than 20l e e

the traditional Heisenberg uncertainty relation.
It is of interest to study the particular statg), for which
(4.5 becomes an equality. This is the state in which th

In order that the quantization of a mesoscopic circuit be
valid, the size of the circuit must be restricted, while the
T : -voltage source can come from an infinite reservoir to keep
product of the uncertainties in eIecFrl_c charge andAcur[ent i%he chemical potential constant. We consider the present
as small as the noncommutivity allowsAq-AP  hroplem in charge representation and expand the eigenstate
=(#1/2)(1+dg/h*(Ho)). Such a minimum uncertainty staté of (5.1) in terms of the orthonormal set of charge eigenstates,
must obey the conditiot¥.3) for A=P andB=q namely,|¢)=="___u,|n). Substituting it inta(5.1), we ob-

tain the following recursion relations:

o in(1+q2H%(Ho) ~ .
(Q—=(anly)=- - (P=(P))|#). 12 12
< > > Z(AP)Z < > > 2 —+nq98—E)U|——(U|_1+U|+1):0. (52)
(4.6) el 20eL
Using (2.6) and(2.4), one can find that The knowledge of the recursion formula of Bessel func-
tions, z[J,,1(2) +J,-1(2)1=2vJ,(2) enables us to write
h 9 down a solution of5.2)
(p'lG[p)=—=—-38(p—p")
J
Ge ! 9P Un:anes+zo—E(ZO)a (5.3
sa o hh[dep ) wherezy,=1%2/q.L. In terms of(5.3 the eigenstates of the
(p'[Plp)= e ism( 7) o(p=p"). (4.7 schidlinger equatior(5.1) are written out
Then (4.6) becomes the following differential equation jin *
representation |¢E>=H:Z_ Ingue+2,-£(20)[N), (5.9
hd .\~ iﬁ(1+q§/ﬁ2<l:lo>) ko which is the solution of eigenstates for quantunaesign in
T %+<Q> P(p)= AP isw{qep/ﬁ) the presence of an adiabatic source.
A~ B. Pure L design
—<P>) W), 4.9 ° .
Now we consider a pure L design, H_

This differential equation is solved by a plane wave with = ~ (#720cl)(Vq,~ Vg ). The Hamiltonian operator of the
modulated amplitude: pureL designH_, the current operatdP, and the operator
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p commute each other, so they can have simultaneous eigethe gauge fieldmagnetic flux. Here we write out the Schro
states. Actually(2.6) is the simultaneous eigenstate of thosedinger equation for a pure design in the presence of mag-
operators, i.e., netic flux,

iy B [deP h? ~
Plp)= o 2 ), et Pe De)l0=Ey) (53

QeP
1— COE( T)

This result tells us that the magnitude of electric current in a 2%
mesoscopic electric circuit of pure design are bounded E(p, )= —5sir?
taking values between #/g.L and#/qc.L. It also indicates Qe

that the maximum quantum noise in a plrelesign(a me-  which has an oscillatory property with respect door p.
soscopic ring is an exampleakes a finite value if the el- Differing from the usual classical pute design, the energy
ementary charge, should not be considered as the infini- of 5 mesoscopic quantum pute design cannot be larger
tesimal (particularly for the mesoscopic circpitlt is also  than % /qi. Clearly, the lowest-energy states are those states

worthwhile to notice that both the current and energy of Awherep= ¢+ n(h/q.). Thus the eigenvalues of the electric

pureL design become null whep=27#/qe as long asleis o antrie., (1L)P ] of the ground state are calculated
not zero. Clearly, the lowest-energy states correspond to

because its eigenstates can be simultaneous eigenstates of
Ip). (5.5 p. Equation(5.8) is solved by the same eigensta® in
(2.6). The energy spectrum is easily calculated as

2
HL|IO>=qTL
e

Qe
ﬂ(p_ ?) |, (5.9

p=nh/g. for any integern. Thus the energy spectrum is 5 e
infinitely degenerated. ()= —sin(—qﬁ . (5.10
geL h
C. Gauge field and persistent current Obviously, the electric current on a mesoscopic circuit of

ureL design is not null in the presence of a magnetic flux
xceptép=n(h/qg.). Clearly, this is a pure quantum charac-
X : « . . teristic. Equation(5.10 exhibits that the persistent current in

find out tht Tiq/ef:genvalues .‘Pf means. If_lntroducmg a a mesoscopit. design is an observable quantity periodically
gp+eratorG. =e , we can find thatG|p)=[p—B) and  yenending on the flus. Because a mesoscopic metal ring is
G"|p)=|p+B). Considering a unitary transformation to the 5 patyral pureL design, the formuld5.10 is valid for per-

In the previous discussion, we have used the terminolog\z
p representation and solved the eigenstates. dfiow let us

eigenstates of the Schiinger operator given by sistent current on a single mesoscopic fhd@iffering from
A the conventional formulation of the persistent current on the
) —14")=Gly), basis of quantum dynamics for electrons, our formulation

presented a method from a new point of view. Formally, the
(¢) we obtained here is a sine function with periodicity of
@o=hl/g.. But either the model where the electrons move
freely in an ideal ring! or the model where the electrons
have hard-core interactions between th&can only give the

we find that the Schiinger equatior§2.11) is not covariant.
This requires that we introduce a gauge field and define
reasonable covariant discrete derivative. By making the fol
lowing definitions,

Q_ei(qe/ﬁ)qs sawtooth-type periodicity. Obviously, the sawtooth-type
Dy Y R UL function is only the limit case fog./%—0.
¢ Qe Certainly the experimefit should be considered as the

case of persistent current irL& design because the junction
e (Gl of semiconductors will contribute a capacitance to the “cir-
e’ =g ‘e q ’ (56) CLIIt ”
. .

5 e_i(Qe/h)¢_é+

we can verify that they are covariant under a gauge transfor-

- . VI. CONCLUSIONS AND DISCUSSIONS
mation. The gauge transformations are expressed as

In the above, we studied the quantization of a mesoscopic

équé’l=Dée, electric circuit. Differing from the literature, in which it is
simply treated as the quantization of a harmonic oscillator,
équé—lzDé ’ (5.7) We addressed the importance of the discreteness of electric

charge. Taking the discreteness into account, we proposed a
quantum theory for mesoscopic electric circuit and give a
finite-difference Schrdinger equation for the mesoscopic
b =d—p. electric circuit. As the Schiinger equation fok. C design in
p representation becomes the well-known Mathieu equation,
From either the transformation law or the dimension of theit is exactly solved. We obtain the wave functions in terms of
field ¢, we may realize thap plays the role of the magnetic Mathieu functions and the energy spectrum in terms of the
flux threading the circuit. eigenvalues of Mathieu equation. The discussion on the un-
In terms of those covariant discrete derivativBs®), one  certainty relation for the charge and current shed some light
can write down the Schdinger equation in the presence of on the knowledge of the transitional Heisenberg uncertainty

as long as the gauge fiell transforms in such a way that
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relation. The discreteness of electric charge increased the ugz—0, e.g.,(5.10 becomesp=LI in the limit of g.— 0, the
certainty, which is related to the expectation value of thewell-known formula in electromagnetism. So the whole
“free” Hamiltonian. The minimum uncertainty state we ob- theory and their results are believed to be consistent and
tained is a deformation of the standard Gaussian waveeasonable. One may notice that we used the charge repre-
packet. As further applications of our theory, the eigenstatesentation and the so-callgdrepresentation. Because of the
of L design in the presence and in the absence of source wediscreteness of electric charge,is no longer a current op-
solved respectively. Introducing a gauge field and gaugerator, but should be understood as the usual Dirac conjuga-
transformation, we successfully obtained a formula for thetion of the charge operator satisfyif®.1) only. The operator
persistent current on the mesoscopic plrelesign in the P, which is associated with a physical observable, electric
presence of the magnetic flux. As the mesoscopic metal ringurrent, obeys the commutation relati¢h4). Clearly, the

is a natural pure. design, the formula is certainly valid for cyrrent operatoP is not a Dirac conjugation of the charge

the persistent current on mesoscopic rings. In our formulagperatorg. So we need a new definition about such conju-
the mass of electrons, the carriers for electric current, is NGjation defined by4.4).

involved. This is worthwhile to check by experiment. Our
present theory is believed to explain the Coulomb blockade
on which research is in progress.

In addition, all the results in the present paper will recover The work is supported by NSFC and NSF of Zhejiang
the standard knowledge if one takes the continuous limiProvince.
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