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A quantum theory for mesoscopic electric circuits in accord with the discreteness of electric charges is
proposed. On the basis of the theory, the Schro¨dinger equation for the quantumLC design andL design is
solved exactly. The uncertainty relation for electric charge and current is obtained and a minimum uncertainty
state is solved. By introducing a gauge field, a formula for persistent current arising from magnetic flux is
obtained.

I. INTRODUCTION

Along with the dramatic achievement in nanotechnology,
such as molecular-beam epitaxy, atomic-scale fabrication or
advanced lithography, mesoscopic physics and nanoelectron-
ics are undergoing a rapid development.1,2 It has been a
strong and definite trend in the miniaturization of integrated
circuits and components towards atomic-scale dimensions3

for the electronic device community. When the transport di-
mension reaches a characteristic dimension, namely, the
charge carrier inelastic coherence length, one must address
not only the quantum mechanical property but also the dis-
creteness of electron charge. Thus a correct quantum theory
is indispensable for the device physics in integrated circuits
of nanoelectronics. The classical equation of motion for an
electric circuit ofLC design is the same as that for a har-
monic oscillator, whereas the ‘‘coordinate’’ means electric
charge. The quantization of the circuit was carried out4 in the
same way as that of a harmonic oscillator. This only results
in energy quantization. In fact, a different kind of fluctuation
in mesoscopic systems, which inherently has nothing to do
with energy quantization and interference of wave functions,
is due to the quantization of electronic charge. Recently we
studied the quantization of electric circuit ofLC design un-
der consideration of the discreteness of electric charge.5

In the present paper we extend the main idea of our pre-
vious Letter5 and present a quantum mechanical theory for
electric circuits based on the fact that electronic charge takes
discrete values. In Sec. II, a finite-difference Schro¨dinger
equation for the mesoscopic electric circuit is obtained. In
Sec. III, the Schro¨dinger equation for a mesoscopic circuit of
LC design is turned to the Mathieu equation in
p-representation and solved exactly. The average value of
electric current for the ground state is calculated. In Sec. IV,
the uncertainty relation for charge and current is discussed. A
minimum uncertainty state, which recovers the usual Gauss-
ian wave packet in the limit of vanishing discreteness, is
solved. In Sec. V, the Schro¨dinger equation for a quantumL
design both in the presence of an adiabatic power source and
in the absence of source are solved exactly. A gauge field is
introduced and a formula for persistent current that is a pe-

riodic function of the magnetic flux is obtained. It provides a
formulation of the persistent current in the mesoscopic ring
from a different point of view. Finally, some discussions and
conclusions are made in Sec. VI.

II. QUANTIZATION OF ELECTRIC CIRCUIT IN ACCORD
WITH THE DISCRETENESS OF ELECTRIC CHARGE

We recall that for a classical nondissipative electric circuit
of LC design in the presence of a source«(t), the equation
of motion, as a consequence of Kirchoff’s law, reads
d2q/dt21(1/LC)q2(1/L)«(t)50, where q(t) stands for
electric charge,L for inductance, andC for the capacity of
the circuit. This equation of motion can be formulated in
terms of Hamiltonian mechanics, namely,

q̇5
]H

]p
, ṗ52

]H

]q
,

with H(t)5(1/2L)p21(1/2C)q21«(t)q. Here the variable
q stands for the electric charge instead of the conventional
‘‘coordinate,’’ while its conjugation variablep(t)5Ldq/dt
represents~apart from a factorL! the electric current instead
of the conventional ‘‘momentum.’’ Analogous to the forced
harmonic oscillator, the electric circuit was quantized by
many authors,4 where the electric charge was treated as a
continuous variable. As a matter of fact, the electronic charge
is discrete and it must play an important role in the theory for
mesoscopic circuits. Taking account of the discreteness of
electric charge, we must reconsider the quantization of a me-
soscopic circuit. According to the standard quantization prin-
ciple, one associates with each of the two observable quan-
tities q and p a linear Hermitian operator, namely,q̂ and
p̂. The Hamiltonian, also an observable quantity, corre-
sponds to a Hermitian operatorH5(1/2L) p̂21V(q̂), which
is a function of the operatorsp̂ and q̂. The commutation
relation for the conjugation variables are

@ q̂,p̂#5 i\. ~2.1!
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Up to now, the discreteness of electronic charge was not
taken into account. Regarding the discreteness, we must im-
pose that the eigenvalues of the self-adjoint operatorq̂ take
discrete values,5 i.e.,

q̂uq&5nqeuq&, ~2.2!

wherenPZ ~set of integers! and qe51.602310219 C, the
elementary electric charge. Obviously, any eigenstate ofq̂
can be specified by an integer. This allows us to introduce a
minimum ‘‘shift operator’’ Q̂:5eiqep̂/\, which is shown to
satisfy the following commutation relations5

@ q̂,Q̂#52qeQ̂,

@ q̂,Q̂1#5qeQ̂
1,

Q̂1Q̂5Q̂Q̂151. ~2.3!

These relations can determine the structure of the whole
Fock space. Forq̂un&5nqeun&, the algebraic relations~2.3!
enable us to derive the following

Q̂1un&5eian11un11&,

Q̂un&5e2 ianun21&, ~2.4!

wherean’s are undetermined phases. ObviouslyQ̂1 and Q̂
are ladder operators, respectively, for charge increasing and
decreasing in the diagonal representation of charge operator.
The Fock space for our present algebra differs from the well-
known Fock space for the Heisenberg-Weyl algebra, because
the spectrum of the former is isomorphic to the set of inte-
gersZ but that of the latter is isomorphic to the set of non-
negative integersZ11$0%. Since $un&unPZ% constitutes a
Hilbert space, we have the completeness(nPZun&^nu51.
We also have the orthogonality^num&5dnm due to the self-
adjointness ofq̂. As a result, the inner product in charge
representation takes the form

^fuc&5 (
nPZ

^fun&^nuc&5 (
nPZ

f* ~n!c~n!. ~2.5!

One can now study the eigenstates and eigenvalues of the
operator p̂. Obviously, if p̂up&5pup& then
f ( p̂)up&5 f (p)up& for any analytical functionf . Supposing
up&5(nPZcn(p)u&, and usingQ̂up&5eiqep/\up& we can find
that cn11 /cn5exp(iqep/\1ian11), which yields the follow-
ing solution

up&5 (
nPZ

kne
inqep/\un&, ~2.6!

wherekn5ei( j51
n a j , k2n5e2 i( j50

n-1 a2 j for n.0. Obviously
up1\(2p/qe)&5up&, the eigenvalues of the operatorp̂ is a
periodic parameter. Topologically, the parameter space of the
spectrum is isotopic to theS1.

Since the spectrum of charge is discrete and the inner
product in charge representation is a sum instead of the usual
integral, one may define a right and left discrete derivative
operators¹qe

and ¹̄qe
by

¹qe
f ~n!5

f ~n11!2 f ~n!

qe
,

¹̄qe
f ~n!5

f ~n!2 f ~n21!

qe
. ~2.7!

They can be understood as the inverse of a discrete definite
integral, which is in accord with the inner product~2.5!, i.e.,

E
xi

xf
f ~x!dx:5 (

n5ni

nf

qef ~nqe!

5H Q̂F~xf !2F~xi ! if ¹qe
F5 f ,

F~xf !2Q̂1F~xi ! if ¹̄qe
F5 f .

Clearly, it recovers the conventional differential-integral cal-
culus as long as the minimum intervalqe goes to zero. The
discrete derivative operators defined by~2.7! can be ex-
pressed explicitly by the minimum shift operators

¹qe
5~Q̂21!/qe ,

¹̄qe
5~12Q̂1!/qe . ~2.8!

It is easy to check6 that ¹qe
1 52¹̄qe

. Then we can write

down two important self-adjoint operators: ‘‘momentum’’
operator,

P̂5
\

2i
~¹qe

1¹̄qe
!5

\

2iqe
~Q̂2Q̂1! ~2.9!

and free Hamiltonian operator

Ĥ052
\2

2
¹qe

¹̄qe
52

\2

2qe
~¹qe

2¹̄qe
!

52
\2

2qe
2 ~Q̂1Q̂122!, ~2.10!

which we call as momentum and free Hamiltonian operators,
respectively, because they are really those whenqe→0. Now
we have finished the quantization of mesoscopic electric cir-
cuits and obtained the following finite-difference Schro¨-
dinger equation,

F2
\2

2qeL
~¹qe

2¹̄qe
!1V~ q̂!G uc&5Euc&. ~2.11!

III. THE QUANTUM LC DESIGN

As an application of our quantization strategy of the me-
soscopic circuit, we discuss a mesoscopicLC design in this
section. We only considered the adiabatic approximation so
that«(t) is considered as a constant«. Then the Schro¨dinger
equation~2.11! for a LC design is written as

F2
\2

2qeL
~¹qe

2¹̄qe
!1

1

2C
q̂21«q̂G uc&5Euc&. ~3.1!

We consider a representation in which the operatorp̂ is
diagonal and called it thep representation. We must address
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that thep̂ is the conjugation of the charge variableq̂ within
the meaning of the usual canonical commutator~2.1!, and it
is the ‘‘current’’ operator only if the charge is treated as a
continuous variable. However, the operatorP̂ associated
with the physical quantity, electric current~apart from a fac-
tor 1/L), differs from the operatorp̂ as long as the discrete-
ness of charge is taken into account. Clearly,P̂ will become
the usual p̂ when qe goes to zero. The orthogonality of
eigenstates ofp̂ is an immediate consequence of~2.6! and
the orthogonality of the charge eigenstates, i.e.,

^pup8&5
2p

qe\
(
nPZ

dFp2p81nS 2p

qe
D\G .

The completeness is also verified:

qe
2pE2\~p/qe!

\~p/qe! dp

\
up&^pu5 (

nPZ
un&^nu51. ~3.2!

The transformation of wave functions between charge repre-
sentation andp representation is given by

^nuc&5S qe
2p\ D E

2\~p/qe!

\~p/qe!

dp^puc&e2 inqep/\. ~3.3!

Using ~2.6!, we can obtain the following relations

^p8u¹qe
2¹̄qe

up&5
4p\

qe
2 FcosS qe\ pD21Gd~p2p8!,

^p8uq̂2up&52
2p\3

qe

]2

]p2
d~p2p8!. ~3.4!

In the p representation, the finite-difference Schro¨dinger
equation ~3.1! becomes a differential equation for
c̃(p):5^puc&

H 2
\2

2C

]2

]p2
2

\2

qe
2L FcosS qe\ pD 21G J c̃~p!5Ec̃~p!,

~3.5!

which is the well-known Mathieu equation.7,8 This equation
appeared in Ref. 9 on the discussion of Pade´ approximates.
In deriving ~3.5!, we have adopted«50 for simplicity. Ac-
tually, the linear term in~3.1! can be moved by a translation
in the ‘‘coordinate’’~charge! space. Apart from a redefinition
of q̂ and a shift of the energyE, the same equation as~3.5!
would be derived.

In terms of the conventional notations,7,8 the wave func-
tions in p representation can be solved as follows

c̃ l
1~p!5ce l S p

2
2

qe
2\

p,j D
or

c̃ l11
2 ~p!5sel11S p

2
2

qe
2\

p,j D , ~3.6!

where the superscripts1 and2 specify the even and odd
parity solutions, respectively; l50,1,2, . . . ;
j5(2\/qe

2)2C/L; ce(z,j) and se(z,j) are periodic Mathieu
functions. In this case, there exist infinitely many eigenval-

ues $al% and $bl11% that are not identically equal to zero.
Then the energy spectrum is expressed in terms of the eigen-
valuesal , bl of the Mathieu equation,

El
15

qe
2

8C
al~j!1

\2

qe
2L

,

El11
2 5

qe
2

8C
bl11~j!1

\2

qe
2L

. ~3.7!

As an exercise, one may calculate the fluctuation of elec-
tric current for the ground state. It is known that the explicit
results of eigenvalues and eigenfunctions of the Mathieu
equation are complicated. They are related to continued frac-
tions and trigonometric series, respectively. For the concrete
values of the Plank constant and the elementary electric
charge, the WKB method is valid. From the series solution of
Mathieu equation for ground state, we obtained the fluctua-
tion of electric currentP̂ ~apart from a factor 1/L! for the
ground state

^P̂2&ground5
1

2S hqeD
2F12

3

2S \2C

qe
4L D 21•••G . ~3.8!

This result is valid for the caseC/L!(q e
2/\)2.

IV. UNCERTAINTY RELATION AND THE MINIMUM
UNCERTAINTY STATE

In order to understand the main conclusions in this sec-
tion, we begin with a brief view of the derivation of the
uncertainty relation in standard quantum mechanics. IfÂ and
B̂ are two Hermitian~self-adjoint! operators that do not com-
mute, the physical quantitiesA andB cannot both be sharply
defined simultaneously. The variances ofA andB are defined
as (DÂ)25^(Â2^Â&)2& and (DB̂)25^(B̂2^B̂&)2&. Their
positive square roots,DA andDB, are called the uncertain-
ties in A and B. In terms of the properties of self-adjoint
operators and the knowledge of Schwarz inequality, one can
prove that

~DÂ!2~DB̂!2>u^~1/2!~$Â,B̂%2^A&^B&!&u2

1u^~1/2!@Â,B̂#&u2, ~4.1!

where$,% denotes the anticommutator, and the equality sign
holds if and only ifB̂uc&}Âuc&. In deriving ~4.1!, the fact
that the expectation value of a Hermitian~or anti-Hermitian!
operator is a real number~or purely imaginary number! has
been used. As a direct consequence of~4.1!, the uncertainty
relation is conventionally written as

~DÂ!2~DB̂!2>u^~1/2!@Â,B̂#&u2. ~4.2!

Clearly. the equality sign in~4.2! holds if and only if both the
equality sign in~4.1! holds and the first term of the right-
hand side in~4.1! vanishes. These conditions imply that
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~B̂2^B̂&!uc&5l~Â2^Â&!uc&,

l5
^cu@Â,B̂#uc&

2~DÂ!2
. ~4.3!

Now we go directly to our main purpose. After some cal-
culations, we obtain the following commutation relations for
the chargeq̂, the currentP̂, and the free HamiltonianĤ0 ,

@Ĥ0 ,P̂#50, @Ĥ0 ,q̂#5 i\ P̂, @ q̂,P̂#5 i\S 11
qe
2

\2 Ĥ0D ,
~4.4!

where the operatorsP̂ andĤ0 have been defined respectively
by ~2.9! and ~2.10!. The term (qe

2/\2)Ĥ0 in the third equa-
tion of ~4.4! occurs due to the discreteness of electric charge.
Now we are ready to write out the uncertainty relation for
electric charge and electric current, namely,

Dq̂•D P̂>
\

2 S 11
qe
2

\2 ^Ĥ0& D . ~4.5!

This uncertainty relation recovers the usual Heisenberg un-
certainty relation ifqe goes to zero, i.e., in the case that the
discreteness of electric charge vanishes. Moreover, the un-
certainty relation~4.5! has shown us further knowledge than
the traditional Heisenberg uncertainty relation.

It is of interest to study the particular stateuc&, for which
~4.5! becomes an equality. This is the state in which the
product of the uncertainties in electric charge and current is
as small as the noncommutivity allows:Dq̂•D P̂
5(\/2)(11qe

2/\2^Ĥ0&). Such a minimum uncertainty state
must obey the condition~4.3! for Â5 P̂ and B̂5q̂

~ q̂2^q̂&!uc&52
i\~11qe

2/\2^Ĥ0&!

2~D P̂!2
~ P̂2^P̂&!uc&.

~4.6!

Using ~2.6! and ~2.4!, one can find that

^p8uq̂up&5
h

qe

\

i

]

]p
d~p2p8!

^p8uP̂up&5
h

qe

\

qe
sinS qep\ D d~p2p8!. ~4.7!

Then ~4.6! becomes the following differential equation inp
representation

S \

i

]

]p
1^q̂& D c̃~p!5

i\~11qe
2/\2^Ĥ0&!

2~D P̂!2
S \

qe
sin~qep/\!

2^P̂& D c̃~p!. ~4.8!

This differential equation is solved by a plane wave with
modulated amplitude:

c̃~p!5NexpH 11qe
2/\2^Ĥ0&

2~D P̂!2
F\2

qe
2cosS qe\ pD 1^P̂&pG

2
i ^q̂&p

\ J . ~4.9!

whereN is the normalization constant. Equation~4.9! is ob-
viously a deformation of the usual Gaussian wave packet and
recovers the Gaussian wave-packet if the discreteness van-
ishes.

V. QUANTUM L DESIGN, GAUGE FIELD,
AND PERSISTENT CURRENTS

In this section, we will solve the Schro¨dinger equation for
anL design in the presence of an adiabatic source and in the
absence of source. Introducing a gauge field and gauge trans-
formation, we derive a formula for persistent current in a
pureL design, i.e., a mesoscopic metal ring.

A. The L design in the presence of an adiabatic source

The Schro¨dinger equation for anL design in the presence
of an adiabatic source reads

F2
\2

2qeL
~¹qe

2¹̄qe
!1«q̂G uc&5Euc&. ~5.1!

In order that the quantization of a mesoscopic circuit be
valid, the size of the circuit must be restricted, while the
voltage source can come from an infinite reservoir to keep
the chemical potential constant. We consider the present
problem in charge representation and expand the eigenstate
of ~5.1! in terms of the orthonormal set of charge eigenstates,
namely,uc&5(n52`

` unun&. Substituting it into~5.1!, we ob-
tain the following recursion relations:

2S \2

qeL
1nqe«2EDul2 \2

2qeL
~ul211ul11!50. ~5.2!

The knowledge of the recursion formula of Bessel func-
tions, z@Jn11(z)1Jn21(z)#52nJn(z) enables us to write
down a solution of~5.2!

un5Jnqe«1z02E~z0!, ~5.3!

wherez05\2/qeL. In terms of~5.3! the eigenstates of the
Schrödinger equation~5.1! are written out

ucE&5 (
n52`

`

Jnqe«1z02E~z0!un&, ~5.4!

which is the solution of eigenstates for quantumL design in
the presence of an adiabatic source.

B. Pure L design

Now we consider a pure L design, ĤL

52(\2/2qeL)(¹qe
2¹̄qe

). The Hamiltonian operator of the

pureL designĤL , the current operatorP̂, and the operator
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p̂ commute each other, so they can have simultaneous eigen-
states. Actually,~2.6! is the simultaneous eigenstate of those
operators, i.e.,

P̂up&5
\

qe
sinS qep\ D up&,

ĤLup&5
\2

qe
2L F12cosS qep\ D G up&. ~5.5!

This result tells us that the magnitude of electric current in a
mesoscopic electric circuit of pureL design are bounded
taking values between2\/qeL and\/qeL. It also indicates
that the maximum quantum noise in a pureL design~a me-
soscopic ring is an example! takes a finite value if the el-
ementary chargeqe should not be considered as the infini-
tesimal ~particularly for the mesoscopic circuit!. It is also
worthwhile to notice that both the current and energy of a
pureL design become null whenp52p\/qe as long asqe is
not zero. Clearly, the lowest-energy states correspond to
p5nh/qe for any integern. Thus the energy spectrum is
infinitely degenerated.

C. Gauge field and persistent current

In the previous discussion, we have used the terminology
p representation and solved the eigenstates ofp̂. Now let us
find out what the eigenvalues ofp̂ means. If introducing a
operatorĜ:5e2 ibq̂/\, we can find thatĜup&5up2b& and
Ĝ1up&5up1b&. Considering a unitary transformation to the
eigenstates of the Schro¨dinger operator given by

uc&→uc8&5Ĝuc&,

we find that the Schro¨dinger equation~2.11! is not covariant.
This requires that we introduce a gauge field and define a
reasonable covariant discrete derivative. By making the fol-
lowing definitions,

Dqe
:5e2 i ~qe /\!f

Q̂2ei ~qe /\!f

qe
,

D̄qe
:5ei ~qe /\!f

e2 i ~qe /\!f2Q̂1

qe
, ~5.6!

we can verify that they are covariant under a gauge transfor-
mation. The gauge transformations are expressed as

ĜDqe
Ĝ215Dqe

8 ,

ĜD̄qe
Ĝ215D̄qe

8 , ~5.7!

as long as the gauge fieldf transforms in such a way that

f→f85f2b.

From either the transformation law or the dimension of the
field f, we may realize thatf plays the role of the magnetic
flux threading the circuit.

In terms of those covariant discrete derivatives~5.6!, one
can write down the Schro¨dinger equation in the presence of

the gauge field~magnetic flux!. Here we write out the Schro¨-
dinger equation for a pureL design in the presence of mag-
netic flux,

2
\2

2qeL
~Dqe

2D̄qe
!uc&5Euc& ~5.8!

because its eigenstates can be simultaneous eigenstates of
p̂. Equation~5.8! is solved by the same eigenstateup& in
~2.6!. The energy spectrum is easily calculated as

E~p,f!5
2\

qe
2sin

2F qe2\
~p2f!G , ~5.9!

which has an oscillatory property with respect tof or p.
Differing from the usual classical pureL design, the energy
of a mesoscopic quantum pureL design cannot be larger
than 2\/qe

2 . Clearly, the lowest-energy states are those states
wherep5f1n(h/qe). Thus the eigenvalues of the electric
current@i.e., (1/L) P̂ # of the ground state are calculated

I ~f!5
\

qeL
sinS qe\ f D . ~5.10!

Obviously, the electric current on a mesoscopic circuit of
pureL design is not null in the presence of a magnetic flux
exceptf5n(h/qe). Clearly, this is a pure quantum charac-
teristic. Equation~5.10! exhibits that the persistent current in
a mesoscopicL design is an observable quantity periodically
depending on the fluxf. Because a mesoscopic metal ring is
a natural pureL design, the formula~5.10! is valid for per-
sistent current on a single mesoscopic ring.10 Differing from
the conventional formulation of the persistent current on the
basis of quantum dynamics for electrons, our formulation
presented a method from a new point of view. Formally, the
I (f) we obtained here is a sine function with periodicity of
f05h/qe . But either the model where the electrons move
freely in an ideal ring,11 or the model where the electrons
have hard-core interactions between them12 can only give the
sawtooth-type periodicity. Obviously, the sawtooth-type
function is only the limit case forqe /\→0.

Certainly the experiment13 should be considered as the
case of persistent current in aLC design because the junction
of semiconductors will contribute a capacitance to the ‘‘cir-
cuit.’’

VI. CONCLUSIONS AND DISCUSSIONS

In the above, we studied the quantization of a mesoscopic
electric circuit. Differing from the literature, in which it is
simply treated as the quantization of a harmonic oscillator,
we addressed the importance of the discreteness of electric
charge. Taking the discreteness into account, we proposed a
quantum theory for mesoscopic electric circuit and give a
finite-difference Schro¨dinger equation for the mesoscopic
electric circuit. As the Schro¨dinger equation forLC design in
p representation becomes the well-known Mathieu equation,
it is exactly solved. We obtain the wave functions in terms of
Mathieu functions and the energy spectrum in terms of the
eigenvalues of Mathieu equation. The discussion on the un-
certainty relation for the charge and current shed some light
on the knowledge of the transitional Heisenberg uncertainty
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relation. The discreteness of electric charge increased the un-
certainty, which is related to the expectation value of the
‘‘free’’ Hamiltonian. The minimum uncertainty state we ob-
tained is a deformation of the standard Gaussian wave
packet. As further applications of our theory, the eigenstates
of L design in the presence and in the absence of source were
solved respectively. Introducing a gauge field and gauge
transformation, we successfully obtained a formula for the
persistent current on the mesoscopic pureL design in the
presence of the magnetic flux. As the mesoscopic metal ring
is a natural pureL design, the formula is certainly valid for
the persistent current on mesoscopic rings. In our formula,
the mass of electrons, the carriers for electric current, is not
involved. This is worthwhile to check by experiment. Our
present theory is believed to explain the Coulomb blockade
on which research is in progress.

In addition, all the results in the present paper will recover
the standard knowledge if one takes the continuous limit

qe→0, e.g.,~5.10! becomesf5LI in the limit of qe→0, the
well-known formula in electromagnetism. So the whole
theory and their results are believed to be consistent and
reasonable. One may notice that we used the charge repre-
sentation and the so-calledp representation. Because of the
discreteness of electric charge,p̂ is no longer a current op-
erator, but should be understood as the usual Dirac conjuga-
tion of the charge operator satisfying~2.1! only. The operator
P̂, which is associated with a physical observable, electric
current, obeys the commutation relation~4.4!. Clearly, the
current operatorP̂ is not a Dirac conjugation of the charge
operatorq̂. So we need a new definition about such conju-
gation defined by~4.4!.
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