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The motion of holes on the triangular lattice is studied using thet-J model. Within the Born self-consistent
approximation and the exact Lanczos diagonalization, the single-hole physics is first analyzed. Then the spiral
phase theory of Shraiman and Siggia is used to investigate the case of a finite density of holes.

I. INTRODUCTION

The main motivation for the recent innumerable works on
the Hubbard model is the Anderson suggestion1 that says that
this model, in its simple version, can explain the physics of
the CuO planes in high critical temperature superconductors.
The Hamiltonian of this model is written as follows:

H52t(
^ i , j &

~ci ,s
† cj ,s1H.c!1U(

i
ni ,↑ni ,↓ ~1!

whereni ,s5ci ,s
† ci ,s is the occupation number of an electron

with a spins at the sitei . The first term ofH is the kinetic
energy which allows for an electron to hop from one site to
one of its nearest neighbors with an amplitudet. The second
term stands for the on-site Coulomb repulsion (U.0) and
ci ,s
† andci ,s are respectively creation and annihilation opera-
tors.

For largeU, the double occupancy of a site with two
electrons↑ and↓ is energetically discarded. In this limit the
Hubbard model becomes equivalent to the so-calledt-J
model:

Ht-J5P0H 2t(
^ i , j &

~ci ,s
† cj ,s1H.c.!J P0

1J(
^ i , j &

SSi•Sj2 1

4
ninj D ~2!

where P05) i(12ni ,↑ni ,↓) applies the constraint of non
double occupancy.S5(1/2)(a,bci ,a

† sa,bci ,b is the spin op-
erator (sx, sy, andsz are the Pauli matrices!. The coupling
constant of the magnetic part,J54t2/U, is positive.

At half filling ~one electron per site on average!, the first
term of Ht2J is effectiveless and the model reduces to the
Heisenberg model. It is now widely believed that the ground
state (T50 K! of the Heisenberg model on the square and
triangular lattices presents antiferromagnetic long range or-
der in the thermodynamic limit.2

In this paper, the motion of a single hole is first studied on
the triangular lattice using the slave fermion representation
and an exact diagonalization. Then the collective instabilities
for a finite density of holes are investigated in the framework
of a mean-field approach introduced by Shraiman and
Siggia3 and known to lead to spiral phases. The main result
in that part of our work is that spiral phases in the doped case

can only develop within the preexisting plane of the 120°
antiferromagnetic~AF! structure of the pure system. The dis-
cussion of the present results is made together with a com-
parison with the square lattice results.

In the second section, the slave fermion representation is
used to write down an effective Hamiltonian from~2!. Sec-
tion III describes the self-consistent Born approximation
within which the single-particle properties are calculated.
The results, analyzed in Secs. IV and V, distinguish between
the casesJÞ0 andJ50. For the former case aFermi liquid
description can be done. However, for the latter one and for
positivet, the quasiparticle vanishes away from the center of
the Brillouin zone. The question of a ‘‘liquid’’ where the
quasiparticle depends on the position of the wave vector on
the Brillouin zone arises naturally and will be addressed else-
where. Section VI is devoted to an exact calculation using
the Lanczos method. Good agreement concerning the posi-
tion of the energy minima as a function ofk is obtained.
Finaly, the motion of a finite density of holes is considered in
Secs. VII and VIII where the spiral phase is calculated.

II. THE MODEL

A. Slave fermion representation

The t-J model is characterized by the existence of spin
and charge degrees of freedom. In one dimension~1D!, these
degrees of freedom separate and one ends with a free propa-
gation of the hole and the domain wall in the AF back-
ground. This illustrates the mechanism of spin-charge sepa-
ration in 1D. In 2D, a string of unsatisfied bonds occurs
behind the moving hole. Spin and charge degreesremain
coupled.

The constrained electronic operator is written as follows:

ci ,s~12ni ,s![ c̃i ,s5c i
†bi ,s ~3!

wherec i
† is a fermionic operator which creates a spinless

hole at the sitei andbi ,s
† is the Schwinger boson4 operator

which creates a spins at i . The number of bosons and fer-
mions on each site must satisfy the following constraint:

c i
†c i1(

s
bi ,s
† bi ,s52S. ~4!

The spin operator is written in the form
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S¢ i5x i
†s¢ x i , ~5!

where

x i5S bi ,↑bi ,↓
D ~6!

is a two-component spinor. The Schwinger boson formalism
is easily generalized to higher values of the spinS where an
expansion on 1/2S allows one to recover the spin wave
theory, that is,

x i5S A2S2bi
†bi

bi
D 'S A2S2bi

†bi /2A2S
bi

D ~7!

for largeS. Herebi is the Holstein-Primakoff bosonic opera-
tor describing small deviations around the classical spin con-
figuration which minimizes the energy~this configuration is
hereafter called the classical Ne´el state as on the square lat-
tice!:

x i5S 2S0 D . ~8!

The constraint~4! is transformed into a nonholonomic con-
straint

c i
†c i1bi

†bi<2S ~9!

which is more difficult to handle than~4!. The latter is taken
into account by introducing a site-dependent Lagrange mul-
tiplier l i and the effective action is written as follows:

S 5E
0

b

dtH 2t(
i

c i
†]tc i1(

i
bi ,s
† ]tbi ,s

2t(
^ i , j &

c i
†c jbj ,sbi ,s

† 1J(
^ i , j &

S 12 x i
†sx i D S 12 x j

†sx j D
1(

i
l i~c i

†c i1x i
†x i22S!J . ~10!

In the spin wave theory the constraint is neglected and we do
so in the present work.

B. Effective Hamiltonian on the triangular lattice

The classical Ne´el state on the triangular lattice is dis-
played in Fig. 1. The spins are oriented, on a coplanar con-
figuration, in such a way that two adjacent spins make an
angle of 2p/3. These different orientations define three sub-
latticesA, B, andC instead of two sublattices as is the case
on the square lattice where two adjacent spins are antiparal-
lel. By carrying out a local rotation of 2p/3 and22p/3 on
the sublatticesB andC, respectively, that is,

xB~C!5RB~C!S A12b†b

ib
D ~11!

whereRB(C) is the SU~2! matrix representing the rotation on
B(C), the system is made formally ferromagnetic but the
resulting Hamiltonian keeps naturally its AF character:

Ht-J→H52
t

2(^ i , j & ~c i
†c j1H.c.!2

t

2(^ i , j & ~c j
†c jbj

†bi1H.c.!2
tA3
2 S (8c i

†c j~bi2bj
†!2(9c i

†c j~bi2bj
†! D

1
3J

2 (
i
bi
†bi1

J

8(^ i , j & @bi
†bj1bj

†bi23~bibj1bj
†bi

†!#. ~12!

The hole moves as a free particle~coherent motion! through
the first term in~12! which is present since the spinors on
adjacent sites are not orthogonal. In the case of the square
lattice, such a term is absent. The second term in~12! allows
an exchange of a spin flip and the hole by conserving the
total number of overturned spins. In the third term, there is a
change in the sign depending on whether the spin flip is
absorbed or created after the hopping of the hole.(8 ((9)
refers to the propagation of the hole in the three directions
ei (2ei), Fig. 1. The last term is the AF exchange interaction
written in spin wave theory.

The presence of coherent and incoherent propagations of
the hole is a salient feature of the triangular antiferromag-

netic lattice, which in some sense interpolates between the
ferromagnetic and antiferromagnetic limits on the square lat-
tice. In the last case, only incoherent propagation is possible
in the absence of quantum spin fluctuations. Arguments
taken from the Brinkman-Rice picture5 show that the most
important hopping terms in~12! are the first and the third.
The point is that the coherent propagation alone would give
a minimum in the hole dispersion of23t for t.0 or of
3t/2 for t,0. But the hole can still lower its kinetic energy in
a quite significant manner by using the incoherent channel.
Indeed, were the third term alone, then the estimate2tA15
obtained in the self-retracing path approximation would ap-

FIG. 1. Theclassical Ne´el state in the case of the triangular
lattice is drawn on one plaquette. The three sublatticesA, B, andC
are shown as well.ei correspond respectively to the vectors onA,
B, andC sublattices fori51, i52, andi53.
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ply. On the other hand, we expect the second term to play
only a minor role and shall therefore neglect it in the
following.

Transcribed ink space, Eq.~12! yields

H52 i t
A3
N (

k,q
ck1q
† ck@~uqhk2vqhk1q!aq1~vqhk

2uqhk1q!a2q
† #2t(

k
gkck

†ck1J(
q

vqaq
†aq ~13!

where

gk5(
ei

cos~k•ei !, hk5(
ei

sin~k•ei !,

and

vq5
3

2
JAS 12

gq

3 D S 11
2gq

3 D .
The operatoraq obtained frombq by using the Bogoliubov
transformation creates a spin wave with a wave vectorq.
uq andvq are the coherence factors:

uq5A J

2vq
A3

2
1

gq

4
1

vq

J
,

vq5sgn~2gq!A J

2vq
A3

2
1

gq

4
2

vq

J
.

In the following,~13! is investigated using the self-consistent
Born approximation as developed in Ref. 6.

III. SELF-CONSISTENT BORN APPROXIMATION

The single-particle Green’s function is defined as follows:

Gs~k,v!5 K F0uck,s
† 1

v2H
ck,suF0L ~14!

whereuF0& is the ground state of the AF Heisenberg part of
the Hamiltonian. Using~3! one gets

ck,s5
1

AN(
k8

ck8
† bk1k8,s ~15!

for the electronic operator in the slave fermion representa-
tion. As an approximation, the operatorbk1k8,s is replaced
by its mean value in the Ne´el configuration since we con-
sider that the important physics is contained in the fermionic
partc. We define the Green’s function related toc by

G~k,v!5 K F0uck

1

v2H
ck
†uF0L . ~16!

In the Néel state, we have

^bi ,↑&'exp~2imp/3! and^bi ,↓&'exp~22imp/3!

wherem takes the values 0, 1, and21 on the three sublat-
ticesA, B, andC, respectively. This can be written in the
form

^bi ,↑&'exp~2 iG•Ri ! and ^bi ,↓&'exp~ iG•Ri !

where G5(4p/3)x. Transcribed in Fourier space, these
yield

^bk,↑&'ANdk,2G and ^bk,↓&'ANdk,G .

A simple correspondence between the true Green’s function,
~14!, and thec Green’s function,~16!, namely,

G↑~k,v!'G~2k2G,v!, G↓~k,v!'G~2k1G,v!,
~17!

allows the evaluation of the true electronic Green’s function
Gs usingG. In this section, we concentrate on the Green’s
function of the slave fermion.

The Dyson equation forG(k,v) is

G~k,v!5
1

v2e~k!2S~k,v!
~18!

wheree(k)52tg(k) is the free part of the kinetic energy
andS(k,v) is the self-energy resulting from the incoherent
motion of the hole. The evaluation ofS(k,v) is done using
the diagram of Fig. 2 which corresponds to the following
expression:

S~k,v!5
3t2

N (
q

uM ~k,q!u2G~0!
„k1q,v2v~q!… ~19!

whereG(0) is thec Green’s function of the free part of the
Hamiltonian. The self-consistent approximation consists in
replacingG(0) in ~19! by the total Green’s functionG. In this
approximation,~18! becomes

G~k,v!5S v2e~k!2
3t2

N (
q

uM ~k,q!u2G„k1q,v

2v~q!…D 21

~20!

whereM (k,q)5vqhk2uqhk1q .
In this approach, a series of an infinite number of dia-

grams which neglect vertex corrections is considered as
shown in Fig. 2. Vertex corrections roughly correspond to
Trugman processes,7 which are known to become important
for t@J. In the most elementary process of this type on the
triangular lattice, the hole makes one turn and a half around
a triangular plaquette, which gives rise to coherent nearest-
neighbor hopping. Trugman processes tend to push the en-
ergy minima towards the corners of the hexagonal Brillouin

FIG. 2. On the left hand side of the figure, the diagram used for
self-energy is shown~with the bare propagator substituted by the
true one!. The expansion in the bare propagator is shown on the
right hand side. The wavy line refers to the spin wave propagator.
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zone ~independent of the sign oft!. Their influence should
remain weak for moderate values ofJ/t, as on the square
lattice.

IV. RESULTS

Equation ~20! is computed by means of an iterative
method. We fix an arbitrary initial functionG(k,v) for all
wave vectorsk, belonging to the hexagonal Brillouin zone,
and frequenciesv, and use~20! to iterate until convergence
towards the unique solution. The uniqueness has been proved
by starting from different initial functions.

The numerical calculation is performed for hexagonal
clusters where the sites are labeled as shown in Fig. 3 and
parametrized as follows

kx5
2p

3l
m, 0<m,3l ,

ky5
4p

A3l
S n1

1

2

12~21!m

2 D , 0<n,l , ~21!

to get the right number of independent sites inside the first
Brillouin zone. The results presented here are from a cluster
of 108 sites (l 56). The number of independent sites is
3l 2.

The quantity of interest is the spectral function which is
related to the Green’s function through the relation

A~k,v!52
1

p
ImG~k,v!. ~22!

At finite J, A(k,v) presents ak-dependent quasiparticle
peak at low energies. This is consistent with a Fermi liquid
picture for positive and negativet. Note that, because the
electron-hole symmetry is absent for thet-J model on the
triangular lattice, the spectral function depends on the sign of
t. This is not the case on the square lattice where there is a
t→2t symmetry.

For negativet and finiteJ, the energy minimum of the
quasiparticle peak is located atk5(p,p/A3) which corre-
sponds to the middle of the edges of the Brillouin zone. For
positivet, however, the minimum is realized at the center of
the Brillouin zone:k5(0,0). The spectral functions of these
wave vectors, together with those ofk5(4p/3,0), are dis-
played in Fig. 4 and Fig. 5 forJ/utu50.2.

V. PROPERTIES OF THE QUASIPARTICLE

A. Spectral weight of the quasiparticle for t<0

In this section, we are interested in analyzing the proper-
ties of the quasiparticle in the case of negativet. The spectral
weight a(k) of the quasiparticle is calculated by computing
the area under the quasiparticle peak. The results for small
values ofJ suggest a simple power law as a function ofJ:

a~k!.bJa ~23!

where the values ofa andb are summarized in Table I for
the three characteristic wave vectorsk5(0,0), (4p/3,0),
and (p,p/A3). a(k) is k dependent. The zero quasiparticle
weight atJ50 implies the absence of the quasiparticle peak
at low energies as may be shown by the spectral function.
What the absence of the quasiparticle means is the break-
down of the Fermi liquid picture. However, the Nagaoka
theorem8 applies for negativet and ensures that the ground
state is ferromagnetic atU5` (J54t2/U). Our result in this
case is an artifact of the approximation which states an AF
background. For finiteJ, it is natural to consider such a
background and our results are physically meaningful.

For J@utu, the spectral weight goes to unity since

a~k!5
1

12~]/]v!ReS~k,v!
, v5E~k!,

and

]

]v
ReS~k,v!.2

3t2

N (
q

uM ~k,q!u2

@v~q!2tgk#
2;

t2

J2
.

B. Quasiparticle dispersion relation for t<0

By performing the numerical calculation of the position of
the quasiparticle peak for every wave vector belonging to the
Brillouin zone, we get the dispersion ink of the energy mini-
mum. This energy is well fitted by the following simple ex-
pression

E~k!5A1Bgk1Chk
2 ~24!

suggested by the arguments developed in Ref. 9.A, B, and
C areJ dependent as seen in Table II.

FIG. 3. The Brillouin zone is displayed forl 52. In this case,
the wave vectorsk5(0,0), (p,p/31/2), and (4p/3,0) correspond,
respectively, to the points (m,n)5(0,0), (3,0), and (4,0).
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This fit contains hopping processes to nearest neighbors
through theB term and second nearest neighbors through the
C term. Bgk comes from the coherent part of the Hamil-
tonian, whereasChk

2 originates from the incoherent part with
the participation of quantum spin fluctuation. So at finite

small J a Fermi liquid picture is appropriate to describe the
motion of the hole as a quasiparticle with the dispersion
relation given by~24!.

For J@utu, one gets an analytical expression forE(k),
namely,

FIG. 5. The spectral functions of~a! (0,0), ~b! (4p/9,0), and~c!
(p,p/31/2) are presented as a function of frequency.l 56, t521,
andJ50. k5(4p/9,0) is located near the point (2,0) of Fig. 3. The
quasiparticle broadens.

FIG. 4. The spectral functions of~a! (0,0), ~b! (4p/3,0), and~c!
(p,p/31/2) are presented as a function of frequency.l 56, t521,
andJ50.2utu.

406 53MOHAMED AZZOUZ AND THIERRY DOMBRE



E~k!.2tgk2(
q

uM ~k,q!u2

v~q!2tgk1q
. ~25!

C. The case oft>0

At finite J and positivet, the physics is similar to that of
the case oft,0. But for J50 the situation is quite different
since the Nagaoka theorem is not satisfied and the energy of
the hole can be minimized further in a singlet spin state. It is
then natural to consider the AF background as a good ap-
proximation fort.0 even whenJ50. From the calculation
of the spectral functionA(k), we found that the energy
minimum is located atk5(0,0). Fork5(0,0) (J50), a well
defined quasiparticle peak is present. However, the quasipar-
ticle is stronglyk dependent. The peak loses in intensity and
broadens, as illustrated in Fig. 5, when we move away from
the center of the Brillouin zone. Therefore, depending on the
wave vector, a Fermi liquid interpretation is either possible
or not. We believe that Trugman processes will not spoil this
conclusion since they only renormalize~slightly! the coher-
ent part of the hole motion. This discussion raises the ques-
tion of an electronic system where the quasiparticle weight
depends on the wave vectork and vanishes on some points
of the Brillouin zone.10 Work concerning this question is in
progress.

VI. EXACT DIAGONALIZATION

The exact diagonalization is performed using the Lanczos
method on a 3322 hexagonal cluster~Fig. 3!. The dispersion
relation and the total spin are calculated.

The results fort,0 andt.0 are presented. Fort,0 the
dispersion relationE(k) and the total spinStot are summa-
rized in Tables III and IV, respectively.E(k) is reported as a
function of the wave vectork andJ/utu. First let us consider
the caset,0. For 0<J<0.3 the energies have a small de-
pendence onk. But for J.0.3, the energy minimum is lo-
cated atk5(2p/3,0) which transforms into the middle of the
Brillouin zone sides, namely,k[(p,p/A3), by a translation
G5(4p/3,0). This is consistent with what is obtained in the

approach of the previous sections. However, a translation of
2G produces a meaningless result. The reason for this dis-
crepancy is due to the fact that in the slave fermion approach
the chiral symmetry is broken, whereas in the exact diago-
nalization the symmetry cannot be spontaneously broken.

Things become more understandable if we calculate the
total spin Stot . What is clear from Table IV is that for
J.0.3 Stot is small for all the values ofk and the ground
state is a singlet:Stot51/2. For 0<J<0.3, Stot is big:
5/2<Stot<11/2. For J50, the ground state, given at
k5(0,0), is ordered ferromagnetically, a result which agrees
with the Nagaoka theorem which applies only to negativet
on the triangular lattice. For 0<J<0.3 andkÞ(0,0), the
energies are very close to26 ~the lowest energy!. The fer-
romagnetic states have, however, the energies 2,21, and 3
~in units of utu) for (p,p/A3), (2p/3,0), and (4p/3,0), re-
spectively. A possible explanation is that the system finds a
compromise in which the spins deviate slightly from the fer-
romagnetic state~the spins do not remain in coplanar posi-
tions! to keep a high value ofStot but the energies are close to
26. This phenomenon is similar to the Aharonov-Bohm
effect.11 The stability of this phase as the size of the cluster
increases has to be clarified. On the other hand, it is natural
to think that the AF correlations, growing with the cluster
size, will rise above any other correlations atJ.0.

For large J, the antiferromagnetic correlations become
dominant and the total spin becomes small. In this case the
exact results of the minimum of the dispersion relation com-
pare well with the self-consistent approach.

The situation is simpler for positivet. The results are
summarized in Tables V and VI. There is no crossing in the
energy levels as is the case fort,0 ~Table III!. The mini-

TABLE I. The values of the coefficientsa andb of Eq. ~23! are
reported.

k b a

(0,0) 0.112 1.056
(4p/3,0) 0.440 1.473

(p,p/A3) 0.517 0.610

TABLE II. The values of the coefficientsA, B, andC of Eq.
~24! are reported.

J A B C

0.05 -4.186 0.019 0.013
0.1 -4.018 0.032 0.025
0.2 -3.766 0.049 0.040
0.3 -3.585 0.070 0.058
0.5 -3.271 0.107 0.077

TABLE III. The hole energy as a function ofk andJ for nega-
tive t (521) is reported.

J k ~0,0! (p,p/A3) (2p/3,0) (4p/3,0)

0.00 -6.000 -5.410 -5.662 -5.348
0.05 -5.258 -4.856 -5.040 -4.807
0.10 -4.517 -4.302 -4.418 -4.276
0.20 -3.368 -3.342 -3.349 -3.382
0.30 -2.917 -2.907 -2.898 -2.838
0.50 -2.368 -2.195 -2.454 -2.065
0.70 -1.832 -1.562 -2.073 -1.609
0.80 -1.567 -1.359 -1.895 -1.483

TABLE IV. The total spin as a function ofk andJ for negative
t (521) is reported.

J k ~0,0! (p,p/A3) (2p/3,0) (4p/3,0)

0.00 11/2 9/2 9/2 7/2
0.05 11/2 9/2 9/2 7/2
0.10 11/2 9/2 9/2 7/2
0.20 7/2 5/2 5/2 5/2
0.30 1/2 3/2 1/2 3/2
0.50 1/2 3/2 1/2 3/2
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mum is always located atk5(4p/3,0) which transforms into
k5(0,0) using Eq.~17!. The total spin of the ground state is
Stot51/2. Here also a good agreement concerning the
minima ofE(k) between the two approaches is obtained. For
J50, the fact that the ground state is not ferromagnetic con-
firms that the Nagaoka theorem does not apply fort.0.

VII. MOTION OF A FINITE DENSITY OF HOLES

We assume that the holes exist around the minima calcu-
lated in the case of one hole. They form small pockets or
valleys, whose area is proportional to their density. We shall
use the slave fermion picture from now on. There is only one
valley around the center of the Brillouin zone fort.0 but
three of them on the edges of the Brillouin zone fort,0. We
are interested in the long range interaction between holes, as
mediated by low energy spin waves.

The expression of the coupling of holes to the spin waves
is

2 i t
A3
N (

k,q
ck1q
† ck@~uqhk2vqhk1q!aq

1~vqhk2uqhk1q!a2q
† ]. ~26!

Among the three Goldstone modes@q50 and
q56(4p/3,0)#, only q50 is relevant since it is easily seen
that two valleys cannot be coupled by a momentum transfer
q56(4p/3,0), Fig. 6, in the caset,0. This is a fortiori
true in the caset.0 where there is only one valley left. For
q;0, ~26! becomes

2 i t
A3
2N(

k,q
ck1q
† ck@hk~uq2vq!~aq2a2q

† !#

2 i t
A3
4N(

k,q
ck1q
† ck@~uq1vq!~2q–“hk!~aq1a2q

† !# ~27!

which transforms into

2 i t
A3
2N(

k,q
ck1q
† ckhk@2 iSz~q!#

1t
A3
2N(

k,q
ck1q
† ck$pk•@ iqf~q!#% ~28!

where

Sz~q!5 i ~bq2b2q
† !/2 ~29!

is the slowly varying component of the magnetization in the
z direction, while

f~q!5~bq1b2q
† !/2 ~30!

parametrizes the slow distortion of the ordered 120° sructure
within its plane. The vectorial quantity

pk5¹khk ~31!

appears like the effective dipolar momentum carried by the
hole. It can be shown that the coupling toSz(q), which semi-
classically behaves as]f/]t, does not lead to long range
interaction between holes. On the other hand, the second
term, once written in real space, becomes

t
A3
2N(

r
(
i

c i~r !
†c i~r !@pi•“ rf~r !# ~32!

where thei indicates the different valleys~see Fig. 6!. The
effective dipolar momentum can safely be taken equal to its
value at the center of each valley for small hole density. Two
cases are to be considered.

~i! t.0: the minimum of the dispersion relation is located
at k50. There is only one valley and the dipolar momentum
p50. So no dipolar interaction between the holes and the
spin waves can be generated. The interaction is at least qua-
drupolar and decays asr24.

~ii ! t,0: the minima of the dispersion relation are located
at k5(p,p/A3) and equivalent momenta, Fig. 6. The dipo-
lar momenta in this case do not vanish. They take the fol-
lowing values:

FIG. 6. The positions of the valleys and their dipolar momenta
pi are presented on the Brillouin zone fori51, i52, andi53.

TABLE V. The hole energy as a function ofk andJ for positive
t (511) is reported.

J k ~0,0! (p,p/A3) (2p/3,0) (4p/3,0)

0.00 -4.230 -4.120 -4.149 -4.270
0.05 -4.076 -3.928 -3.971 -4.192
0.10 -3.941 -3.760 -3.810 -4.117
0.50 -2.964 -2.706 -2.699 -3.569
2.00 0.574 0.208 0.328 -1.725
15.0 18.068 16.615 16.383 13.496

TABLE VI. The total spin as a function ofk andJ for positive
t(511) is reported.

J k ~0,0! (p,p/A3) (2p/3,0) (4p/3,0)

0.0 3/2 1/2 3/2 1/2
0.10 3/2 1/2 1/2 1/2
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p152x,p252x1A3y,p352x2A3y. ~33!

VIII. SPIRAL PHASES

According to the results of the previous sections and fol-
lowing the idea of Shraiman and Siggia,3 we introduce a
phenomenological Hamiltonian for the motion of a finite
density of holes. The spatial density of this Hamiltonian is
given by

H5 (
i51,2,3

H 2
1

2
c i
†
“

2c i1gac i
†c i~p“ !fJ

1
1

2 S r~“f!21
M2

x D ~34!

whereM is thez component of the magnetization (M;0).
The coupling constantg is of the order of t for t!J
(g5taA3/4). WhenJ!t, the vertex corrections become im-
portant and are expected to renormalizeg to an order ofJ.
Using the expressions forp1 , p2 , andp3 given above, it can
be seen that]xf and ]yf are respectively coupled to
2n12n22n3 andA3(n22n3) whereni5^c i

†c i& is the hole
density in the valleyi . At the mean-field level, we can write

H int5gaRe$~n11n2e
22ip/31n3e

2ip/3!~]xf1 i ]yf!%

1u]xf1 i ]yfu2. ~35!

The minimization with respect tof yields

]xf1 i ]yf52
ga

r
~n11n2e

22ip/31n3e
2ip/3!. ~36!

Equation ~35! becomes

H int52
1

2

g2a2

r
un11n2e

22ip/31n3e
2ip/3u2 ~37!

and the kinetic energy can be written as follows:

p

m
~n1

21n2
21n3

2!5
p

3m
@~n11n21n3!

212un11n2e
22ip/3

1n3e
2ip/3u2# ~38!

so that the normal phase becomes unstable when

2p

3m
2
1

2

g2a2

r
,0,

that is, when 3g2a2m/rp. Once this condition is satisfied,
the system maximizes

un11n2e
22ip/31n3e

2ip/3u25
1

2
@~n12n2!

21~n22n3!
2

1~n32n1!
2#.

This is realized forn15n.0 andn25n350 or all the solu-
tion obtained by cyclic permutation of the indices 1, 2, and 3.
This implies that only one valley is occupied and the two
others are empty in the spiral phase. A simple interpretation
of this phase in the real space is obtained using Eq.~36!. For
the phasen15n andn25n350 one has

^]xf&52
ga

r
n and ^]yf&50,

which means that the spins rotate around their position in the
normal phase uniformly when moving along thex axis. In
the other solutions forni , the rotation occurs along the axes
e2 and e3 for n15n350 and n25n, and n15n250 and
n35n, respectively.
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