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Motion of holes on the triangular lattice studied using thet-J model
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The motion of holes on the triangular lattice is studied usingtthenodel. Within the Born self-consistent
approximation and the exact Lanczos diagonalization, the single-hole physics is first analyzed. Then the spiral
phase theory of Shraiman and Siggia is used to investigate the case of a finite density of holes.

I. INTRODUCTION can only develop within the preexisting plane of the 120°
antiferromagneti¢AF) structure of the pure system. The dis-
The main motivation for the recent innumerable works oncussion of the present results is made together with a com-
the Hubbard model is the Anderson suggestibat says that parison with the square lattice results.
this model, in its simple version, can explain the physics of In the second section, the slave fermion representation is
the CuO planes in high critical temperature superconductorsised to write down an effective Hamiltonian frof®). Sec-
The Hamiltonian of this model is written as follows: tion Il describes the self-consistent Born approximation
within which the single-particle properties are calculated.
B + The results, analyzed in Secs. IV and V, distinguish between
H= _tUE’D (Ci,UCJ’”+H'C)+UZ Mi, 1M @ the cases#0 andJ=0. For the former case Bermi liquid
description can be done. However, for the latter one and for
whereni,g=cf’gci,‘, is the occupation number of an electron positivet, the quasiparticle vanishes away from the center of
with a spino at the sitei. The first term ofH is the kinetic  the Brillouin zone. The question of a “liquid” where the
energy which allows for an electron to hop from one site toquasiparticle depends on the position of the wave vector on
one of its nearest neighbors with an amplitdd&he second the Brillouin zone arises naturally and will be addressed else-
term stands for the on-site Coulomb repulsidah>0) and  where. Section VI is devoted to an exact calculation using
cl, andc; , are respectively creation and annihilation opera-the Lanczos method. Good agreement concerning the posi-
tors. tion of the energy minima as a function &fis obtained.
For largeU, the double occupancy of a site with two Finaly, the motion of a finite density of holes is considered in
electrons] and | is energetically discarded. In this limit the Secs. VIl and VIII where the spiral phase is calculated.
Hubbard model becomes equivalent to the so-called

model: Il. THE MODEL

N A. Slave fermion representation
Hia=Pof —t2 (¢l ,¢j ,+H.c)}Po _ _ _ _
gy The t-J model is characterized by the existence of spin

and charge degrees of freedom. In one dimengld), these
+3>, (3 S - En»n-) 2) degrees of freedom separate and one ends with a free propa-
i) gation of the hole and the domain wall in the AF back-

] . ground. This illustrates the mechanism of spin-charge sepa-
where Po=IIi(1—n;;n; |) applies the constraint of Non ration in 1D. In 2D, a string of unsatisfied bonds occurs
double occupancys=(1/2)=,, 4¢] .0, 4Ci 4 is the Spin 0p-  pehind the moving hole. Spin and charge degneesain
erator (0, ¥, ando” are the Pauli matricgsThe coupling  coupled

constant of the magnetic pait=4t*/U, is positive. The constrained electronic operator is written as follows:
At half filling (one electron per site on averagthe first
term of H;_; is effectiveless and the model reduces to the Ci (1= )=C = lﬁrbi,g 3)

Heisenberg model. It is now widely believed that the ground
state T=0 K) of the Heisenberg model on the square anqN

triangular lattices presents antiferromagnetic long range Ofole at the sitd andb’ _ is the Schwinger boséroperator
I,o

der in the thermodynamic limft. which creates a spinr ati. The number of bosons and fer-

In this paper, the motion of a single hole is first studied on_. . . . -
. . : : ._mions on each site must satisfy the following constraint:
the triangular lattice using the slave fermion representation

and an exact diagonalization. Then the collective instabilities

for a finite density of holes are investigated in the framework e+ bl b =25 4
of a mean-field approach introduced by Shraiman and i E;‘ horhe ' @
Siggia and known to lead to spiral phases. The main result

in that part of our work is that spiral phases in the doped cas&he spin operator is written in the form

here 1//? is a fermionic operator which creates a spinless
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The constrain{4) is transformed into a nonholonomic con-
B straint

ylyi+blb<2s 9)

which is more difficult to handle thaf#). The latter is taken
into account by introducing a site-dependent Lagrange mul-
C / tiplier \; and the effective action is written as follows:

B
=] df[—tz o+ bl,0b.,
0 i i ' '

FIG. 1. Theclassical Nel statein the case of the triangular
lattice is drawn on one plaquette. The three sublatifceB, andC

are shown as welle correspond respectively to the vectors An _ o nt E to E T
B, andC sublattices foi =1, i=2, andi=3. t% i ‘”wab'ﬂﬂgj) 2 Xi OXi || 2 X1 9X;

S=xiox, ©) +2 m<w?¢i+xﬁxi—28>}. (10
where '
In the spin wave theory the constraint is neglected and we do
_ by so in the present work.
Xi= ( b ) (6)
il
is a two-component spinor. The Schwinger boson formalism B. Effective Hamiltonian on the triangular lattice
is easily generalized to higher values of the spiwhere an The classical Nel state on the triangular lattice is dis-
expansion on 12 allows one to recover the spin wave played in Fig. 1. The spins are oriented, on a coplanar con-
theory, that is, figuration, in such a way that two adjacent spins make an
angle of 27/3. These different orientations define three sub-
V2S—Dbyb; V2S—bbi/2\2S latticesA, B, andC instead of two sublattices as is the case
Xi— b, = b, (7 on the square lattice where two adjacent spins are antiparal-

lel. By carrying out a local rotation of 2/3 and—2/3 on
for largeS. Hereb; is the Holstein-Primakoff bosonic opera- the sublattice® andC, respectively, that is,
tor describing small deviations around the classical spin con-
figuration which minimizes the enerdyhis configuration is J1-b'b
hereafter called the classical &lestate as on the square lat- XB((:)I%B(@( ib
tice):

11)

25 where.7g ¢ is the SU2) matrix representing the rotation on
_ ®) B(C), the system is made formally ferromagnetic but the
Xi 0/ resulting Hamiltonian keeps naturally its AF character:

t t 3 :
HeomH== 52 (uluytHe) =52, (9/4yblbi+He)— 5| 2wy (b= b]) = X ufuy(by—b])

3J J
+ 72 bl + gZ [b{b;+bb;—3(bib;+b/bl) 1. (12
i (i)

The hole moves as a free partigherent motionthrough  netic lattice, which in some sense interpolates between the
the first term in(12) which is present since the spinors on ferromagnetic and antiferromagnetic limits on the square lat-
adjacent sites are not orthogonal. In the case of the squatRe. In the last case, only incoherent propagation is possible
lattice, such a term is absent. The second terfi# allows  jy the absence of quantum spin fluctuations. Arguments
an exchange of a spin flip a'.”d the hole 'by Conservmg.thqaken from the Brinkman-Rice pictuteshow that the most
total number of overturned spins. In the third term, there is eimportant hopping terms ii2) are the first and the third.

change in the sign depending on whether the spin flip i o . :
abso?bed or crea%ed af{)er theghopping of the hEI’e?E”) P Sl'he_pplnt IS _that the coherent propagaﬂon alone would give
refers to the propagation of the hole in the three direction& Minimum in the hole dispersion of 3t for t>0 or of

e (—e), Fig. 1. The last term is the AF exchange interaction3t/2 for t<0. But the hole can still lower its kinetic energy in
written in spin wave theory. a quite significant manner by using the incoherent channel.

The presence of coherent and incoherent propagations dfideed, were the third term alone, then the estimate/15
the hole is a salient feature of the triangular antiferromagobtained in the self-retracing path approximation would ap-
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ply. On the other hand, we expect the second term to play
only a minor role and shall therefore neglect it in the _&_ B & ﬁi
following. N i

Transcribed irk space, Eq(12) yields

+
H——itEZ Pt (Ughe— v Ny o) @+ (vgh
N €5 kra¥kLttallk ™ Uallk+q) ¥q T (W qllk FIG. 2. On the left hand side of the figure, the diagram used for
self-energy is showrtwith the bare propagator substituted by the
_ toq T T true on@. The expansion in the bare propagator is shown on the
Ughk+q) &=l t; W(pkwk—’—‘]% wqaqaq (13 right hand side. The wavy line refers to the spin wave propagator.

where (b, )~exp(—iG-R;) and (b; )~expiG-R)
. where G=(4m/3)x. Transcribed in Fourier space, these
7k:2 Coqk'q)v hk:2 Sln(k'Q)y ield ( T ) P
0 q y
and <bk,T>%\/N5k,fG and(bk'l>%\/ﬁ5k'6.
3 v 2y A simple correspondence between the true Green'’s function,
=-3\/|1- 3|1+ =2 -
@q™5 3 3 (14), and theys Green’s function(16), namely,

The operatorr, obtained fromb, by using the Bogoliubov Gi(k,0)=~G(—k—G,0), G|(k,0)=~G(—k+G,0),
transformation creates a spin wave with a wave vegtor a7

Uq andv are the coherence factors: . . , .
allows the evaluation of the true electronic Green’s function

J 3 v, o G, using G. In this section, we concentrate on the Green’s
U= \/=—\/=+ 2+ —q, function of the slave fermion.
4 20g V2 4 ]

The Dyson equation foG(k,w) is

v=sgr(—7)\/L\/§+ﬁ—%- G(k,w)= ! (18
a V' N2w, V2 4 ) ) = ek -3 (K, )

In the following, (13) is investigated using the self-consistent
Born approximation as developed in Ref. 6.

where (k) = —ty(k) is the free part of the kinetic energy
andX (k,w) is the self-energy resulting from the incoherent
motion of the hole. The evaluation &f(k,w) is done using

ll. SELF-CONSISTENT BORN APPROXIMATION the diagram of Fig. 2 which corresponds to the following

The single-particle Green's function is defined as follows:EXPression:

3t?
G(,(k,w)=<(l)o|cl ‘,LHCk U|<DO> (14) E(k,w)=W§ IM(k,9)[*GV(k+q,0—w(q)) (19
o —R k.

where|®,) is the ground state of the AF Heisenberg part ofwhereG(® is the i Green’s function of the free part of the
the Hamiltonian. Usind3) one gets Hamiltonian. The self-consistent approximation consists in
replacingG(? in (19) by the total Green’s functio®. In this
approximation(18) becomes

1
Ck,a':\/_Ng lﬁlrbmk',o (15

t2
for the electronic operator in the slave fermion representa- G(k,w)=(w—6(k)— WZ IM(k,)|*G(k+0,0
tion. As an approximation, the operatbg, s , is replaced q
by its mean value in the N¢ configuration since we con- -1
sider that the important physics is contained in the fermionic —w(q))) (20
part ». We define the Green'’s function relatedgoby

whereM (K, q) =vghx—Ughy,q-
1 ; ; o .
G(k,w)=<¢’o|l//k ¢E|‘I’o>- (16) In this approach, a series of an infinite number of dia-
o—H grams which neglect vertex corrections is considered as
shown in Fig. 2. Vertex corrections roughly correspond to
Trugman processé€syhich are known to become important
(bi.;y~exp(2imm/3) and(b; ) ~exp( — 2im/3) fqr t>J. In th_e most elementary process of this type on the
‘ ’ triangular lattice, the hole makes one turn and a half around
wherem takes the values 0, 1, andl on the three sublat- a triangular plaquette, which gives rise to coherent nearest-
ticesA, B, andC, respectively. This can be written in the neighbor hopping. Trugman processes tend to push the en-
form ergy minima towards the corners of the hexagonal Brillouin

In the Neel state, we have
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At finite J, .Z(k,w) presents &-dependent quasiparticle
peak at low energies. This is consistent with a Fermi liquid
picture for positive and negative Note that, because the
electron-hole symmetry is absent for thd model on the

1
A 3,0 triangular lattice, the spectral function depends on the sign of
W\/\ t. This is not the case on the square lattice where there is a
t— —t symmetry.
For negativet and finiteJ, the energy minimum of the
/W8\74 quasiparticle peak is located lat=(7r,7rl\/§) which corre-

sponds to the middle of the edges of the Brillouin zone. For
positivet, however, the minimum is realized at the center of
the Brillouin zonekk=(0,0). The spectral functions of these
wave vectors, together with those bt (47/3,0), are dis-
played in Fig. 4 and Fig. 5 fad/|t|=0.2.

% V. PROPERTIES OF THE QUASIPARTICLE
A. Spectral weight of the quasiparticle fort<0

In this section, we are interested in analyzing the proper-
ties of the quasiparticle in the case of negativ&he spectral
x weighta(k) of the quasiparticle is calculated by computing
the area under the quasiparticle peak. The results for small
values ofJ suggest a simple power law as a functionJof

0 K

FIG. 3. The Brillouin zone is displayed fof =2. In this case,
the wave vector«=(0,0), (7, /3", and (47/3,0) correspond,
respectively, to the pointa,n)=(0,0), (3,0), and (4,0). a(k)=pBJ* (23

where the values of and 8 are summarized in Table | for
zone_(independent of the sign df. Their influence should the three characteristic wave vectdts=(0,0), (4+/3,0),
remain weak for moderate values &ft, as on the square gnq (7.,,77/\/5)_ a(k) is k dependent. The zero quasiparticle
lattice. weight atJ=0 implies the absence of the quasiparticle peak
at low energies as may be shown by the spectral function.
What the absence of the quasiparticle means is the break-
IV. RESULTS down of the Fermi liquid picture. However, the Nagaoka
theoreni applies for negative and ensures that the ground
Equation (20) is computed by means of an iterative state is ferromagnetic &t=cc (J=4t?/U). Our result in this
method. We fix an arbitrary initial functio®(k,w) for all ~ case is an artifact of the approximation which states an AF
wave vectors, belonging to the hexagonal Brillouin zone, background. For finitel, it is natural to consider such a
and frequencies, and usg20) to iterate until convergence background and our results are physically meaningful.
towards the unique solution. The uniqueness has been proved For J>|t|, the spectral weight goes to unity since
by starting from different initial functions.
The numerical calculation is performed for hexagonal 1
clusters where the sites are labeled as shown in Fig. 3 and a(k)= 1— (9l dw)Re (K, w)’
parametrized as follows

w=E(k),

and
2

kx=y

m, 0=m<3/, 3t2 IM(k,q)|? t2

? Res (k) =~ =3
- W)= — — I S S
dw N G [o(Q) —tyl? JI?
4w 11-(—1)"
I(y_ \/§/ n+ 2 2 B. Quasiparticle dispersion relation for t<0

. . ) . i By performing the numerical calculation of the position of
to get the right number of independent sites inside the firsfye o asiparticle peak for every wave vector belonging to the
Brillouin zone. The results presented here are from a C|USteérillouin z0ne, we get the dispersion knof the energy mini-

of 108 sites ('=6). The number of independent sites iS j,m_This energy is well fitted by the following simple ex-

o2
377, . . . . _ .. pression
The quantity of interest is the spectral function which is

related to the Green’s function through the relation E(K)=A-+ By, +Ch? (24)

), osn</, (22

suggested by the arguments developed in RefA, B, and

1
Ak o)== T ImG(K,w). @2 Cared dependent as seen in Table II.
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FIG. 5. The spectral functions ¢) (0,0), (b) (47/9,0), and(c)
(7, wI3Y?) are presented as a function of frequency: 6, t=—1,
andJ=0. k= (47/9,0) is located near the point (2,0) of Fig. 3. The
quasiparticle broadens.

FIG. 4. The spectral functions ¢) (0,0), (b) (47/3,0), and(c)
(7,732 are presented as a function of frequency: 6, t=—1,
andJ=0.2t|.

This fit contains hopping processes to nearest neighborsmall J a Fermi liquid picture is appropriate to describe the
through theB term and second nearest neighbors through thenotion of the hole as a quasiparticle with the dispersion
C term. By, comes from the coherent part of the Hamil- relation given by(24).
tonian, wherea€ h? originates from the incoherent part with ~ For J>[t|, one gets an analytical expression k),
the participation of quantum spin fluctuation. So at finite namely,



53 MOTION OF HOLES ON THE TRIANGULAR LATTICE . .. 407

TABLE I. The values of the coefficients and 3 of Eq. (23) are TABLE lll. The hole energy as a function & andJ for nega-
reported. tivet (=-—1) is reported.

k B o Jk (0,0 (,7/3) (27/3,0) (4w13,0)
(0,0) 0.112 1.056  0.00 -6.000 -5.410 -5.662 -5.348
(47/3,0) 0.440 1473  0.05 -5.258 -4.856 -5.040 -4.807
(7, 7l3) 0.517 0.610 0.10  -4.517 -4.302 -4.418 -4.276

0.20 -3.368 -3.342 -3.349 -3.382

0.30 -2.917 -2.907 -2.898 -2.838

IM(k,q)|? 050  -2.368 -2.195 -2.454 -2.065

B(k)=—tn- % (D —trrg’ @5 970 1832 -1.562 2,073 -1.609
0.80 -1.567 -1.359 -1.895 -1.483

C. The case oft>0
At finite J and positivet, the physics is similar to that of

the case of<0. But for J=0 the situation is quite different h of th . . Y lati ¢
since the Nagaoka theorem is not satisfied and the energy gpproach of the previous sections. However, a trans at_lon o
— G produces a meaningless result. The reason for this dis-

the hole can be minimized further in a singlet spin state. It is . ; :
then natural to consider the AF background as a good agEr€Pancy is due to the fact that in the slave fermion approach

proximation fort>0 even when)J=0. From the calculation the chiral symmetry is broken, whereas in the exact diago-

of the spectral function#(k), we found that the energy nalization the symmetry cannot be spontaneously broken.
minimum is located ak= (0 0)' Fork=(0,0) (J=0), a well Things become more understandable if we calculate the

: Lo ; ; tal spin S;;. What is clear from Table IV is that for
defined quasiparticle peak is present. However, the quasipar- tot
! quasiparice p sP Wev " IpdElD>0.3 St iIs small for all the values ok and the ground

ticle is stronglyk dependent. The peak loses in intensity an . . . )
o P P Y tate is a singletS,=1/2. For 0<J=<0.3, S is big:

broadens, as illustrated in Fig. 5, when we move away fro = ,
the center of the Brillouin zone. Therefore, depending on th /_2$Stot§11/2. For J=0, the .ground state, given at
wave vector, a Fermi liquid interpretation is either possible = (0:0), is ordered ferromagnetically, a result which agrees

or not. We believe that Trugman processes will not spoil thigVith the Nagaoka theorem which applies only to negative
conclusion since they only renormalizglightly) the coher- ©n the triangular lattice. For €J<0.3 andk+(0,0), the
ent part of the hole motion. This discussion raises the queEnergies are very close te6 (the lowest energy The fer-
tion of an electronic system where the quasiparticle weighfomagnetic states have, however, the energies L, and 3
depends on the wave vectorand vanishes on some points (in units of [t]) for (m,7/3), (2/3,0), and (4r/3,0), re-

of the Brillouin zone*® Work concerning this question is in SPectively. A possible explanation is that the system finds a
progress. compromise in which the spins deviate slightly from the fer-

romagnetic statéthe spins do not remain in coplanar posi-
tions) to keep a high value @, but the energies are close to
—6. This phenomenon is similar to the Aharonov-Bohm

The exact diagonalization is performed using the Lanczo€ffect™* The stability of this phase as the size of the cluster
method on a X 22 hexagonal cluste(Fig. 3). The dispersion increases has to be clarified. On the other hand, it is natural

VI. EXACT DIAGONALIZATION

relation and the total spin are calculated. to think that the AF correlations, growing with the cluster
The results fot<0 andt>0 are presented. For<0 the  Size, will rise above any other correlationsJat 0.
dispersion relatiorE(k) and the total spirS,, are summa- For largeJ, the antiferromagnetic correlations become

rized in Tables Il and IV, respectivelf(k) is reported as a dominant and the totql _spin becomes_ smal_l. In this_ case the
function of the wave vectdk andJ/|t|. First let us consider —€xact results of the minimum of the dispersion relation com-
the caset<0. For 0<J=<0.3 the energies have a small de- Pare well with the self-consistent approach.

pendence ork. But for J>0.3, the energy minimum is lo- The situation is simpler for positive. The results are
cated ak = (2/3,0) which transforms into the middle of the summarized in Ta_bles V and VI. There is no crossing in the
Brillouin zone sides, namelk= (r,7/+/3), by a translation €Nergy levels as is the case for0 (Table 1) The mini-

G=(4x/3,0). This is consistent with what is obtained in the
TABLE IV. The total spin as a function df andJ for negative

TABLE II. The values of the coefficientd, B, andC of Eq. t (=—1) is reported.
(24) are reported.

Jk 0,0 (m,7/3) (2713,0) (4w13,0)

J A B c 0.00 11/2 9/2 9/2 712
0.05 -4.186 0.019 0.013 0.05 11/2 9/2 9/2 712
0.1 -4.018 0.032 0.025 0.10 11/2 9/2 9/2 712
0.2 -3.766 0.049 0.040 0.20 72 52 5/2 5/2
0.3 -3.585 0.070 0.058 0.30 1/2 32 1/2 3/2

0.5 -3.271 0.107 0.077 0.50 1/2 3/2 1/2 3/2
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TABLE V. The hole energy as a function &fandJ for positive D
t (=+1) is reported. L S
Jk (0,0 (7, 7l\3) (27/3,0) (4/3,0)
0.00 -4.230 -4.120 -4.149 -4.270
0.05 -4.076 -3.928 -3.971 -4.192
0.10 -3.941 -3.760 -3.810 -4.117
0.50 -2.964 -2.706 -2.699 -3.569
2.00 0.574 0.208 0.328 -1.725 G
15.0 18.068 16.615 16.383 13.496
p3
pB

mum is always located &t=(47/3,0) which transforms into
k=(0,0) using Eq(17). The total spin of the ground state is
=1/2. Here also a good agreement concerning the iy o
%i);nma of E(k) between thge two agproaches is obtainec?. For "G 6. The positions of the valleys and their dipolar momenta
J=0, the fact that the ground state is not ferromagnetic con?i ¢ presented on the Brillouin zone for 1, i=2, andi=3.

firms that the Nagaoka theorem does not applytfeD.

which transforms into

B .
VII. MOTION OF A FINITE DENSITY OF HOLES —it m;{; ‘/’Lq‘ﬁkhk[_'SZ(Q)]

We assume that the holes exist around the minima calcu-
lated in the case of one hole. They form small pockets or NE) N )
valleys, whose area is proportional to their density. We shall +tmk2 gt P liag(a) ]} (28)
use the slave fermion picture from now on. There is only one 4
valley around the center of the Brillouin zone for0 but  where
three of them on the edges of the Brillouin zonetfer0. We
are interested in the long range interaction between holes, as Sz(q)=i(bq—b1q)/2 (29

mediated by low energy spin waves. . . N
The expression of the coupling of holes to the spin Waveés(;[_he s!owly \ﬁrylng component of the magnetization in the
z direction, while

is
$(q)=(bg+b" )12 (30)
—it Ez T Ui (Ughk—vghis g aq parametrizes the slow distortion of the ordered 120° sructure
N % a within its plane. The vectorial quantity

+(0ghk— Ughis ) e’ gl (26) D= Viehy (31)

Among the three Goldstone mode§q=0 and appears like the effective dipolar momentum carried by the

q= =+ (4m/3,0)], only q=0 is relevant since it is easily seen hole. It can be shown that the couplingS#q), which semi-

that two valleys cannot be coupled by a momentum transfeglassically behaves a&#/dt, does not lead to long range
q==*(4m/3,0), Fig. 6, in the case<0. This isa fortiori  interaction between holes. On the other hand, the second

true in the casé>0 where there is only one valley left. For term, once written in real space, becomes
g~0, (26) becomes

3
‘%2 2 (D (D V(1] (32)

K]
_'tﬁkz 'ﬂl-%—qlpk[hk(uq_vq)(aq_aiq)] where thei indicates the different valleygsee Fig. 6. The
4 effective dipolar momentum can safely be taken equal to its
J3 value at the center of each valley for small hole density. Two

- ith Uiy il (UgT o) (—a-Vh)(ag+a' )] (27  cases are to be considered.
k. (i) t>0: the minimum of the dispersion relation is located
atk=0. There is only one valley and the dipolar momentum
TABLE VI. The total spin as a function dt andJ for positive  p=0, So no dipolar interaction between the holes and the
t(=+1) is reported. spin waves can be generated. The interaction is at least qua-
drupolar and decays as *.

Tk ©.0 (m,7/\3) (2/3,0) (4m/3,0) (i) t<0: the minima of the dispersion relation are located
0.0 312 1/2 312 1/2 atk=(,//3) and equivalent momenta, Fig. 6. The dipo-
0.10 3/2 1/2 1/2 1/2 lar momenta in this case do not vanish. They take the fol-

lowing values:




P1=2X,p2=— X+ /3y,p3= —x— \/3y. (33
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r a .
a(n§+ n3+n3)= 3ml(ntna+ Ng)2+2|n;+nye 273

+ n3e2i77/3|2] (38)

According to the results of the previous sections and fol-sg that the normal phase becomes unstable when

lowing the idea of Shraiman and Siggdiaye introduce a

phenomenological Hamiltonian for the motion of a finite
density of holes. The spatial density of this Hamiltonian is

given by

>

=
i=1,2,3

1
f—§¢?V2¢i+ga¢?¢i<pV)¢]

2

M
PV )2+~ (34

+ —
2

whereM is the z component of the magnetizatioM(~0).
The coupling constang is of the order oft for t<J
(g=ta\/§/4). WhenJ<t, the vertex corrections become im-
portant and are expected to renormaligéo an order ofl.
Using the expressions fq@r;, p,, andp; given above, it can
be seen thatd,¢ and dy¢ are respectively coupled to
2n;—n,—n3 and /3(n,—n3) wheren;= (4 ;) is the hole
density in the valley. At the mean-field level, we can write

Hi=gaRe{(ny+nye” 2734 ne? ™) (9, +i dyp)}

+|oxp+idy|?. (35
The minimization with respect tgh yields
P ga —2i7l/3 2im/3
0x¢+|ay¢=—7(nl+n2e ™+ ngze” ™). (36)
Equation (35) becomes
1 g%a?® . .
'%int: _ E gp |n1+ n2e72|ﬂ-/3+ n3e2|17/3|2 (37)

and the kinetic energy can be written as follows:

1 g%a?
Zn 1gw

that is, when §2a?m/pw. Once this condition is satisfied,
the system maximizes

_ . 1
Ing+nye 234 ne2im32==

2[(”1‘”2)2"‘(”2_ ns)?

+(ng—ny)?.
This is realized fon;=n>0 andn,=n;=0 or all the solu-
tion obtained by cyclic permutation of the indices 1, 2, and 3.
This implies that only one valley is occupied and the two
others are empty in the spiral phase. A simple interpretation
of this phase in the real space is obtained using(86). For
the phasen;=n andn,=n3;=0 one has

ga
<‘9x¢>: - ?n and <ay¢>:0,

which means that the spins rotate around their position in the
normal phase uniformly when moving along thkeaxis. In

the other solutions fon; , the rotation occurs along the axes
e, and e; for n;=n3=0 andn,=n, andn;=n,=0 and
n;=n, respectively.
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