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The results of magnetoconductivity measurements in GaxIn12xAs quantum wells are presented. The ob-
served magnetoconductivity appears due to the quantum interference, which lead to the weak localization
effect. It is established that the details of the weak localization are controlled by the spin splitting of electron
spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in
spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that
appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of
different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron
densities under investigation†(0.9821.85)31012 cm22

‡ all three contributions are comparable and have to
be taken into account to achieve a good agreement between the theory and experiment. The results obtained
from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate
the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters
in A3B5 crystals and two-dimensional structures.

I. INTRODUCTION

The effect of the weak localization in metals and semi-
conductors is caused by the interference of two electron
waves which are scattered by the same centers~defects or
impurities! but propagate in opposite directions along the
same closed trajectory, and, therefore, return to the origin
with equal phases. This effect increases the effective scatter-
ing cross section, and, therefore, leads to a suppression of
conductivity.1–3 In a magnetic field, the two waves propagat-
ing in the opposite directions acquire a phase difference
2eF/c, whereF is the magnetic flux through the area en-
closed by the electron trajectory. This phase difference
breaks the constructive interference and restores the conduc-
tivity to the value it would have without the quantum inter-
ference corrections. This is observed as anincreasein con-
ductivity with magnetic field, the effect known aspositive

magnetoconductivity ~PMC! or negative magnetoresis-
tance.4,5

When spin effects are taken into account, the interference
depends significantly on the total spin of the two electron
waves. The singlet state with the total spinJ50 gives a
negative contribution to the conductivity~antilocalization ef-
fect!. The triplet state withJ51 gives a positive contribution
to the conductivity. In the absence of spin relaxation the
contribution of the singlet state is canceled by one of triplet
states. As a result, the magnetic field dependence of the con-
ductivity is the same as for spinless particles. However,
strong spin relaxation can suppress the triplet state contribu-
tion without changing that of the singlet state; hence the total
quantum correction may become positive. The interplay be-
tween negative magnetoconductivity at low fields and posi-
tive magnetoconductivity at high fields can lead to the ap-
pearance of a minimum on the conductivity-magnetic field
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curve ~antilocalization minimum!.
It was shown in the early papers by Hikami, Larkin, and

Nagaoka5 and by Altshuleret al.6 that the behavior of the
conductivity in weak magnetic fields depends essentially on
the mechanism of the spin relaxation. Three mechanisms
were considered: Elliott-Yafet, otherwise known as skew
scattering mechanism, scattering on paramagnetic impurities,
and the Dyakonov-Perel mechanism, which arises from the
spin splitting of carrier spectra in noncentrosymmetric me-
dia.

The Dyakonov-Perel mechanism is dominant in most
A3B5 cubic semiconductors,7 with the exception of those
with narrow band gapEg and large spin-orbit splitting of the
valence bandD ~for example, InSb!. The same can be said
about the low-dimensional structures fabricated from these
materials. Presence of an antilocalization minimum on the
s(B) curves in quantum two-dimensional~2D! systems is a
definite sign that the dominant spin-relaxation mechanism is
the Dyakonov-Perel one. It is known5 that for the Elliott-
Yafet mechanism in 2D structures the contribution of the
singlet state withJ50 is exactly canceled by one of the
triplet states, the one withJ51 andJz50.

Unlike bulk crystals, where the spin splitting is propor-
tional to the cube of the wave vectork, in 2D structures the
splitting has also terms linear ink ~this is also true for
strainedA3B5 crystals and for hexagonalA2B6 compounds!.
Furthermore, there are two linear ink contributions of essen-
tially different nature. The first one, which arises from the
lack of inversion in the original crystal~like the cubic term!,
is known as the Dresselhaus term,8 while the second, the
Rashba term, is caused by the asymmetry of the quantum
well or heterojunction itself.9

The direct measurements of the spin splitting using the
Raman scattering in GaAs/AlxGa12xAs quantum wells10

have shown that, for electron densitiesNs;1012 cm22, both
linear contributions are comparable. All three terms give ad-
ditive contributions to the spin-relaxation rate. When only
the cubic ink term is present, its effect on the PMC is de-
termined only by the spin-relaxation rate, similarly to the
two other spin-relaxation mechanisms, and is described by
the theory of Refs. 5 and 6. In the presence of the linear ink
term in the spin Hamiltonian it is necessary to take into
account the correlations between the motion of electrons in
the coordinate and spin spaces.11 In the theory of coherent
phenomena these correlations were first taken into account
using the language of the spin-dependent vector potential in
Refs. 12–14, where this concept was applied to consider-
ation of spin-orbit conductance oscillations12,13 and of the
spin-orbit effects in the universal conductance fluctuation
and persistent current in rings.14 In the theory of the anoma-
lous magnetoconductivity the correlation between motion in
real and spin spaces was first taken into account in Ref. 15. It
was shown that when linear and cubic ink terms are present,
their contributions to spin-orbit phase breaking are not addi-
tive. Furthermore, as it was demonstrated in Ref. 16, the
contributions of the Rashba and Dresselhaus terms are also
nonadditive, and the magnetoconductivity is determined not
by their sum, but rather their difference. A similar effect,
when spin-orbit phase breaking may become negligible due
to the correlation of motion in real and spin spaces occurs in
the quasi-1D case and leads to two types of pronounced os-

cillations in the universal conductance fluctuations in rings.17

Experimental studies of the PMC in quantum 2D struc-
tures were done in Refs. 18–20. Recently, the experimental
observations of very pronounced effects of spin scattering on
weak localization conductivity corrections in GaAs~Refs. 21
and 22! and InAs ~Ref. 23! heterostructures have been re-
ported. Different spin-relaxation mechanisms are invoked to
explain the experimental data. In Ref. 21 the spin relaxation
is interpreted in the framework of the Dyakonov-Perel
mechanism based on the bulk GaAs Hamiltonian. According
to the authors, agreement with experimental data is achieved
if one neglects in the spin-orbit Hamiltonian the term linear
in the in-plane wave vector. This is in contradiction with the
theoretical predictions,16 which show that, at least for low
carrier concentrations, the linear term should be the domi-
nant one. In Ref. 23 the same Dyakonov-Perel mechanism is
used, but it is based on the Rashba term. In Ref. 22 it is
assumed that the dominant mechanism of spin relaxation is
the Elliott-Yafet scattering one. Recently, we have reported
the measurements of the magnetoconductivity of
GaxIn 12xAs quantum wells.24 We have used the Altshuler-
Aronov-Larkin-Khmelnitskii~AALKh ! calculation6 of quan-
tum corrections to conductivity to interpret the experimental
data. However, the spin-relaxation time, which enters the
AALK expressions, was calculated taking into account not
only linear but also cubic Dresselhaus terms of the spin split-
ting. We have demonstrated that, using this simplified theo-
retical approach, one can obtain the right order of magnitude
for the experimentally observed spin-relaxation rates.

In this work we present a detailed experimental study of
the negative magnetoconductivity in selectively doped
GaxIn 12xAs quantum wells with different 2D carrier densi-
ties. We interpret them in the framework of the recently de-
veloped theory of the anomalous magnetoconductivity in
quantum wells which corrects the AALKh approach.15,16

Comparison of experiment and theory allows us to determine
the importance of both Dresselhaus and Rashba terms for 2D
systems.

II. THEORY

A. Spin relaxation

The theory of the positive magnetoconductivity for struc-
tures with spin splitting linear in the wave vector was de-
scribed very briefly in Refs. 15 and 16. Below we present an
outline of this theory in more detail. The spin splitting of the
conduction band in cubic crystalsA3B5 is described by the
following Hamiltonian:8

Hs5g( s iki~ki11
2 2ki12

2 !, i5x,y,z, i13→ i ,

~1!

wheres i are the Pauli matrices. In@001# quantum wells the
size quantization gives rise to the terms in the Hamiltonian
Hs , which are linear in the in-plane wave vector
k5(kx ,ky), in addition to the cubic terms.6,25 The corre-
sponding Hamiltonian for the conduction band electrons can
be written as15,16
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H5
k2

2m
1~s–V!, ~2!

wheres5(sx ,sy), V5(Vx ,Vy) are two-dimensional vec-
tors with components in the plane of the quantum well. Vec-
tor 2V/\ has the physical meaning of the precession vector:
its length equals the frequency of the spin precession and its
direction defines the axis of the precession. The spin-splitting
energy is equal to 2V. To treat the spin-relaxation problem
in the case whenV is anisotropic in the 2D plane one has to
decompose it into orthogonal spherical harmonics:

V5V11V3 , V1x52V1
~1!cosw, V3x52V3cos3w,

V1y5V1
~1!sinw, V3y52V3sin3w,

V1
~1!5gkS ^kz

2&2
1

4
k2D , V35g

k3

4
, ~3!

where k25kx
21ky

2 , tanw5kx /ky , and ^kz
2& is the average

squared wave vector in the directionz, normal to the quan-
tum well ~in this paper we take\51 everywhere except in
the final formulas!.

The spin splitting given by Eq.~3! represents the Dressel-
haus term.8 In asymmetric quantum wells the Hamiltonian
H contain also terms of different symmetry, i.e. the Rashba
terms:9

H85a@sk#z . ~4!

This term can be included in the Hamiltonian~2! if one
includes additional terms intoV:

V1x5V1
~2!sinw, V1y52V1

~2!cosw, V1
~2!5ak. ~5!

In uniform electric fieldE , the constanta is proportional to
the field:

a5a0eE . ~6!

The expressions fora0 andg are given in the Appendix. The
barriers of the well give rise to another contribution, usually
also linear inE , which depends strongly on the details of the
boundary conditions at the heterointerface.26,27

Both terms~3! and ~5! give additive contributions to the
spin-relaxation rate 1/t i j , which is defined as

dsi
dt

52
sj
t i j

, ~7!

wheresi is an average projection of spin on the directioni .
These contributions are

1

tsxx
5

1

2tszz
52~V1

2t11V3
2t3!, ~8!

whereV1
25V1

(1)21V1
(2)2 and tn , n51,3, is the relaxation

time of the respective component of the distribution function
f n(k);cosn(wk1cn) (cn is an arbitrary phase!:

1

tn
5E W~w!~12cosnw!dw. ~9!

HereW(q) is the probability of scattering by an angleq. If
it does not depend onq, all scattering times are equal to the
elastic lifetime

1

t0
5E W~w!dw. ~10!

When small-angle scattering dominates, 12cosnw'(nw)2/2
and

t1
tn

5n2 ~n>1!. ~11!

Formula ~8! shows that the different harmonics of the
precession vector add up in the spin-relaxation rate with the
weight equal to the relaxation timestn . Unlike the spin re-
laxation, the contributions of the different terms in the spin
splitting into PMC are not additive. Furthermore, at
V1

(1)56V1
(2) andV350 the contributions of the two linear

terms~3! and ~5! exactly cancel each other, and the magne-
toconductivity looks as if there were no spin-orbit interaction
at all. Analogous effect occur in weak localization conduc-
tance in wires.14

B. Weak localization in two-dimensional structures

The weak localization contribution to the conductivity is
given by the expression:5,6

Ds52
e2D

p
2pn0t0

2(
ab

E
0

qmax
Cabba~q!

d2q

~2p!2
, ~12!

where a and b are spin indices, qmax
2 5(Dt1)

21,
D5v2t1/2 is the diffusion coefficient, andn05m/2p is the
density of states at the Fermi level at a given spin projection.
The matrixCabba(q) is called Cooperon and can be found
from the following integral equation:

Cabgd~k,k8,q!5uVk,k8u
2dagdbd

1E d2g

~2p!2(ll8
Vk ,gV2k,2gGal

1 ~v,g1q!

3Gbl8
2

~v,2g!Cll8gd~g,k8,q!. ~13!

HereVk,k8 is a scattering matrix element~including the con-
centration of scatterers!, which we assume here to be diago-
nal in spin indices. It is connected withW(w) in Eq. ~10! by
the expression

W~wk2wk8!5n0uVk,k8u
2, ~14!

G6(v,k) are the Green’s functions
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G6~v,k!5H v2E~k!2~sV!6
i

t f
J 21

, ~15!

1

t f
5

1

t0
1

1

tw
, E~k!5

k2

2m
, ~16!

tw is the inelastic scattering time. After the integration by
E(g) in the right-hand side of Eq.~13! the result is expanded
up to second order terms in series in small parameters
t0 /tw , vqt0 , andVt0 , wherev5]E/]k. In the end, the
following equation for the Cooperon is obtained:

Ck,k8~q!5uVk,k8u
212pn0t0E dwg

2p
uVk,gu2H 12 i ~vgq!t02 i ~s1r!Vt02~vgq!2t0

222~sV!~rV!t0
2

22~vgq!~s1r!Vt0
22

t0
tw

JCg,k8~q!. ~17!

Here the Pauli matricess act on the first pair of spin indices
a,l, while the matricesr act on the second pairbl8.

The equation

Ck,k85lt0E W~k8,g!Cg,k8dwg ~18!

has the following harmonics as its eigenfunctions:

Ck,k8
n

5Cncosn~wk2wk82cn!. ~19!

According to ~10! the eigenfunction C0 has the eigenvalue
l051, while other harmonics have eigenvalues

ln5S 12
t0
tn

D 21

. ~20!

Therefore, the solution of inhomogeneous equation~17! will
have large harmonic C0 , while the others will be small, be-
cause they appear due to presence of small terms inq and

V. Since the right-hand side of Eq.~17! contains linear and
cubic ing terms, it is necessary to take into account only first
and third harmonics. From Eqs.~17!–~20! it follows that

Cg,k8
~1!

52 i ~t12t0!@~ vgq!1~s1r!V1~g!#Cg,k8
0 ,

Cg,k8
~3!

52 i ~t32t0!~s1r!V3~g!Cg,k8
0 . ~21!

Here it is taken into account that there is a relation similar
to Eq. ~18! for harmonicsV1a , (vq);cos(wg2wq), and
V3a .

Then we substitute Cg,k85Cg,k8
0

1Cg,k8
(1)

1Cg,k8
(3) into Eq.

~17!, and, using Eq.~21! and retaining only the terms with
zero harmonic, we obtain the equation forC0(q):

HC05
1

2pn0t0
2 , ~22!

where

H5
1

tw
1
1

2
v2q2t11~V1

2t11V3
2t3!~21sxrx1syry!12~sxry1syrx!V1

~1!V1
~2!t1

1vt1@~sx1rx!~2V1
~1!qx1V1

~2!qy!1~sy1ry!~V1
~1!qy2V1

~2!qx!#. ~23!

In a magnetic fieldq become operators with the commutator

@q1q2#5
d

D
, ~24!

whereq65qx6 iqy and

d5
4eBD

\c
. ~25!

This allows us to introduce creation and annihilation opera-
torsa† anda, respectively, for which@aa†#51:

D1/2q15d1/2a, D1/2q25d1/2a†, Dq25d$aa†%. ~26!

In the basis of the eigenfunction of the operator

$aa†%5 1
2 (aa

†1a†a) these operators have the following
nonzero matrix elements

^n21uaun&5^nua†un21&5An, ^nu$aa†%un&5n1
1

2
.

~27!

In a magnetic field, the integration overq should be re-
placed by summation overn. Then,

Ds52
e2d

4p2\
S, ~28!
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where

S52pn0t0
2 (

a,b,n
Cabba~n!. ~29!

Since Eq.~22! is essentially the Green function equation
its solution can be written as

C~n!bd
ag5

1

2pn0t0
2(
r51

4
1

Er ,n
C r ,n~a,b!C r ,n* ~g,d!, ~30!

whereC r ,n andEr ,n are the eigenfunctions and eigenvalues
of H:

HC r ,n5Er ,nC r ,n . ~31!

We now choose the basis consisting of the function
C0(a,b), which is antisymmetric in spin indices and
corresponds to the total momentumJ50, and of symmetric
functions Cm which correspond to J51 and
Jz5m521,0,1. According to Eq.~30!, in this basis the sum
in Eq. ~28! is

S5 (
n50

nmax S 2
1

E0~n!
1 (

m521

1
1

Em~n!D , ~32!

where nmax51/dt1 . For the term withJ50 the operator
H is

H0n5d$aa†%1
1

tw
, ~33!

and, therefore,

E0~n!5dS n1
1

2D1
1

tw
. ~34!

For the term with J51 we can use the relation
Ji5(s i1r i)/2 to obtain

H̃5d$aa†%1
1

tw
12~V1

2t11V3
2t3!~22Jz

2!

24iV1
~1!V1

~2!t1~J1
2 2J2

2 !12~dt1!
1/2

3@2V1
~1!~J1a1J2a

†!1 iV1
~2!~J1a

†2J2a!#,

~35!

whereJ65(Jx6 iJy)/A2.
When V1

(2)50 ~or V1
(1)50), the operator~35! can be

reduced to a block-diagonal form with 333 blocks if one
uses the basis of functionsCn5„f 1(n)Fn21 , f 0(n)Fn ,
f21(n)Fn11…, whereFn are the eigenfunctions of the opera-
tor $aa†% and f m are the eigenfunctions ofJz @ for V1

(1)50
the basis isCn5„f 1(n)Fn11 , f 0(n)Fn , f21(n)Fn21…#.
Using the formula

(
m

1

Em
5(

m

uDmmu
uDu

, ~36!

whereuDu is the determinant ofH †Eq. ~35!‡ anduDmmu are
its minors of diagonal elementsDmm, the sum in Eq.~32!
can be immediately calculated.15 According to Eqs.~28!,
~35!, and~36!,

Ds~B!52
e2

4p2\ H 1

a0
1

2a0111
HSO

B

a1S a01 HSO

B D22
HSO8

B

2 (
n50

` S 3

n
2

3an
212an

HSO

B
2122~2n11!

HSO8

B

S an1 HSO

B Dan21an1122
HSO8

B
@~2n11!an21#

D
12 ln

H tr

B
1CS 121

Hw

B D13CJ , ~37!

whereC is the Euler’s constant,

an5n1
1

2
1
Hw

B
1
H SO

B
, Hw5

c

4e\Dtw
,

B

Hw
5dtw , H tr5

c

4e\Dt1
, HSO5

c

4\eD
~2V1

2t112V3
2t3!,

HSO8 5HSO
~1! or H SO

~2! , HSO
~1!5

c

4\eD
2V1

~1!2t1 , HSO
~2!5

c

4\eD
2V1

~2!2t1 , ~38!

andC is a digamma-function.
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If both V1
(1)5V1

(2)50 and only the cubic ink term with
V3 is present, the expression~37! can be further reduced to
the formula, which was obtained earlier in Ref. 6:

Ds~B!2Ds~0!5
e2

2p2\ H CS 121
Hw

B
1
HSO

B D
1
1

2
CS 121

Hw

B
12

HSO

B D
2
1

2
CS 121

Hw

B D2 ln
Hw1HSO

B

2
1

2
ln
Hw12HSO

B
1
1

2
ln
Hw

B J . ~39!

Note that, according to Ref. 15, the value ofHSO is twice
that used in Ref. 6.

The case whenV1
(1)56V1

(2) andV350 is a special one.
In this case the operator~23! is diagonal in the basis of
functions Cm if one uses coordinatesx8i(110) and
y8i(11̄0):

Hmm85H 1

tw
1D@qx8

2
1~qy81qy8m

0
!2#J dmm8, ~40!

whereqy8m
0

52V1At1 /Dm. Since the commutation relations
~24! do not change whenqy8 is shifted byqy8

0 , the spin
splitting does not manifest itself in the magnetoconductivity,
which is given by the simple formula5

Ds~B!2Ds~0!5
e2

2p2\ H CS 121
Hw

B D2 ln
Hw

B J . ~41!

It was demonstrated in Ref. 16 that this result appears be-
cause, whenV1

(1)56V1
(2) andV350, the total spin rotation

for the motion along any closed trajectory is exactly zero.
WhenV1

(1) andV1
(2) are not equal orV3Þ0, the only way

to find eigenvaluesEmn is to diagonalize numerically the
matrix H̃. The number of elements one has to take for a
given value of magnetic fieldB, or d, is at least
nmax51/dt1 and increases infinitely asB approaches 0. Note
that the size of the matrixH̃ is N53nmax. For the detail of
the numerical procedure, see Ref. 16.

C. Elliott-Yafet spin-relaxation mechanism

It follows from Ref. 5 that in order to take into account
the Elliott-Yafet spin-relaxation mechanism one has to add a
new term to the Hamiltonian~35!:

HEY5
1

tsEY
Jz
2 , ~42!

where, according to Ref. 7,

1

tsEY
5

1

t2
~k2b!2, ~43!

b5
\2

3m

DSEg2
D

2 D
Eg
2SEg2

D

3 D , ~44!

andt2 is defined by Eq.~9!.
As a result, in the first and fourth terms of the formula for

magnetoconductivity ~39! HSO should be replaced by
HSO1HEY , whereHEY is

HEY5
c

4\eDtsEY
. ~45!

It follows from Eq. ~43! that

HEY

H tr
5~2pNsb!2

t1
t2
. ~46!

III. EXPERIMENTAL PROCEDURES

A. Samples

Three AlxGa12xAs/InxGa12xAs/GaAs pseudomorphic
quantum wells were studied. They were grown by the mo-
lecular beam epitaxy technique. The layer sequence of the
structure was of the standard high-electron-mobility transis-
tor ~HEMT! type and is shown in Fig. 1. The two-
dimensional electron gas was formed in the 13 nm thick In
xGa12xAs layer. Samples wered doped with Si ~doping
densityNd52.531012 cm22). Samples of the typeA had a
spacer thickness of 6 nm, samples of the typeB had a 4 nm
spacer, and samples of the typeC had a 2 nmspacer. The

FIG. 1. Sample structure~a! and band diagram~b! for
GaxIn12xAs quantum well ~sampleB1! as obtained from self-
consistent calculations. The first two energy levels in the well are
shown by solid lines; Fermi energy is shown by a dotted line.
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samples had the Hall bar geometry with length of 1.0 mm
and the width of 0.1 mm with two current and four voltage
probes. The distance between voltage probes was 0.3 mm.
The samples were independently characterized by lumines-
cence, high field transport, and cyclotron emission
experiments.28 The parameters are listed in Table I. In order
to study the behavior of the structures as a function of elec-
tron densityNs , the metastable properties of theDX-Si cen-
ters present in the AlxGa12xAs layer were employed. Dif-
ferent concentrations were obtained by cooling the sample
slowly in dark and then by illuminating it gradually by a
light-emitting diode. This allowed us to tune carrier density
from 0.9831012 cm22 to 1.9531012 cm22. We have mea-
sured the Hall effect and Shubnikov–de Haas oscillations to
determineNs and to verify that in all samples only the lowest
subband is occupied. To calculate the energy levels in the
investigated quantum wells we first self-consistently calcu-
late the 2D wave functions, using the envelope function ap-
proach in the Hartree approximation.29,30The potential enter-
ing into the zero magnetic field Hamiltonian takes into
account the conduction band offset at each interface, and
includes, in a self-consistent way, the electrostatic potential
curvature due to the finite extent of the electron wave func-
tion. The boundary condition for the integration of the Pois-
son equation within the 2D channel is the value of the
built-in electric field in the buffer layer on the substrate side
of the 2D channel. It originates from the pinning of the
Fermi level near midgap in the semi-insulating GaAs sub-
strate. Any nonparabolicity effects on the effective masses
were neglected. The calculations were performed for the
temperature 4.2 K. Results of calculations are shown in Fig.
1. With increasing concentration both Fermi energy and ki-
netic energy of the motion in the growth direction increase.
Their exact concentration dependencies should be deter-
mined to calculate spin-splitting and spin-relaxation times.
For every carrier densityNs the expectation value of thez
component of the kinetic energy was calculated. Figure 2
shows the result of such calculations for the quantum wells
used in our experiments. We also show the Fermi energy as a
function of carrier densityNs .

B. Magnetic field generation and stability

We have used a system of two superconducting coils
~8 T/8 T! placed in the same cryostat. This system was ear-
lier used to study cyclotron emission from the same samples
A, B, andC and to determine their effective masses.31 The

sample was placed in the center of the first coil. To generate
the stable weak magnetic field, necessary for the antilocal-
ization measurements, we used a spread field of the second
coil to compensate the field in the first one. The magnetic
field scale was determined on the basis of measurements of
the Hall voltages induced on the sample by both coils. Typi-
cally the constant magnetic field in the sample coil was of
the order of 400 G and it was compensated by tuning the
second coil field in the range from 12 to 14 kG. This way,
both coils were operated in a stable and reproducible manner
giving in the sample space magnetic fields from230 G to
130 G. Small sample dimensions and the geometry of the
coils gave good magnetic field uniformity. We estimate that
the magnetic field varied by less than 0.1 G over the sample.

C. Conductivity measurements and temperature control

We have used the standard direct current~dc! method to
measure the conductivity with currents less than 20 mAs to
avoid sample heating. A high precision voltmeter capable of
measuring nV changes on mV signals was used to measure
the conductivity and Hall voltages. The whole system was
computer controlled. To avoid mechanical and temperature
instabilities, the sample was not directly immersed in the

TABLE I. Sample parameters: electron densityNs , mobility m, transport magnetic fieldH tr @Eq. ~38!#,
and momentum relaxation timet1 .

Ns (1012 cm22) m (m2/Vs) H tr ~G! t1 ~ps! Sample Spacer~nm!

0.98 2.96 14 1.2 A1 6
1.1 3.72 7.9 1.5 A2 6
1.15 4.11 6.2 1.7 A3 6
1.34 1.94 24 0.8 B1 4
1.61 1.85 22 0.8 C1 2
1.76 1.63 26 0.7 C2 2
1.79 1.57 27 0.7 C3 2
1.85 1.43 32 0.6 C4 2

FIG. 2. Energies determining the Dresselhaus spin splitting as a
function of electron densityNs . Fermi energyEF and quadrupled
mean kinetic energy 4EZ of the motion in the growth direction are
shown by solid lines. Dotted line shows the difference 4EZ2EF

that enters Eq.~38! for HSO
(1) .
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liquid helium but was enclosed in the vacuum tight sample
holder and cooled by helium exchange gas under 50 mbar
pressure. A calibrated Allan-Bradley resistor placed near the
sample was used to measure the temperature which was sta-
bilized between 4.2 and 4.3 K. The experimental arrange-
ment allowed simultaneous complementary Shubnikov–de
Haas and Hall effect measurements to determine carrier mo-
bility and concentration for different sample illumination in-
tensities.

IV. RESULTS AND DISCUSSION

A. General comments

For all samples and for all carrier densities, the magneto-
conductivity was a nonmonotonic function of the magnetic
field. As we have mentioned before, the presence of a mini-
mum on thes(B) curves is a definite sign that the dominant
spin-relaxation mechanism is the Dyakonov-Perel one. For
the Elliott-Yafet mechanism in 2D structures, the contribu-
tion of the singlet state withJ50 is exactly canceled by one
of the triplet states, namely, the one withJ51 andJz50,
which is immediately evident from Eq.~42!. Using Eq.~46!
one can show that even for the highest density
Ns5231012 cm22 and t1 /t254, the characteristic mag-
netic field H EY does not exceed 431024 H tr , which is
much smaller thanHSO. For the scattering on paramagnetic
impurities, the negative magnetoconductivity at lowest fields
does not exist both in 2D and 3D systems.

As we have already noted, the theory presented in this
paper uses the diffusion approximation, which is valid only
when all of the fieldsHw and HSO are smaller thanH tr .
Kinetic theory, which is free from this limitation, was devel-
oped in Refs. 32–35 for the case of isotropic scattering and
with spin relaxation considered in the framework of AALK
theory. The comparison with the diffusion theory shows that
in magnetic fieldB50.4H tr the latter has an error of 6%.35

For the purpose of comparison with theory, we have selected
only samples withB at the minimum ofs smaller than
0.4H tr .

B. Description of fitting procedure

The experimental data for each sample are fitted with the
results of three different theoretical models. First is the

AALKh theory,6 Eq. ~39!, and hasHSO and Hw as fitting
parameters. The second one corresponds to the physical situ-
ation where one of the linear termsH SO

(1) or HSO
(2) dominates,

and Eq.~37! can be used with the fitting parametersHSO,
HSO8 , andHw .

15 The last theory takes into account all the
termsHSO, HSO

(1) , andH SO
(2) exactly. The results of this theory

were obtained by numerical diagonalization of the matrix
~35!, as described in Sec. II B and Ref. 16. The fitting pa-
rameters in this case areHSO, HSO

(1) , H SO
(2) , and Hw ~see

Table II!.
The fitting of the experimental data by Eqs.~37! and~39!

was done by weighted explicit orthogonal distance regres-
sion using the software packageODRPACK.36 The weights
were selected to increase the importance of the low-field part
of the magnetoconductivity curve. The calculation of the
magnetoconductivity by numerical diagonalization of the
matrix ~35!, as described in Sec. II B, requires large amounts
of computer time, and we could not afford to use the auto-
mated fitting with these results. The fitting was done ‘‘by
hand,’’ using empirically gained knowledge on how chang-
ing different fitting parameters affect the magnetoconductiv-
ity curve.

C. Experimental results

In Figs. 3~a!–3~c! we show the results of the measure-
ments of the conductivitys as a function of magnetic field
for three different samples. To compare the results for differ-
ent carrier densities we plots(B)2s(0) in units of
e2/2p2\51.231025V21. The value ofs(B)2s(0) gives
the conductivity change induced by the applied magnetic
field and can be directly compared with theory. The circles
show the experimental data, the results of the theory pre-
sented in Sec. II are shown by solid lines. The values of
parametersH SO, HSO

(1) , andHSO
(2) , as well as values ofNs

andH tr , are given in Table II.
Before the quantitative analysis of the experimental data,

we would like to point out some of their general features.
The position of the characteristic conductivity minimum
which shifts from 2.5 G in Fig. 3~a! to 5 G in Fig. 3~c! is
largely determined by the value ofHSO, and, hence, by the
spin-relaxation rate. With increasing carrier densityNs this
minimum shifts towards higher magnetic fields. This indi-

TABLE II. Parameters of the best fits for three samplesA1, B1, andC4 @shown in Figs. 3~a!, 3~b!, and
3~c!, respectively# as obtained from the theory of Sec. II~rows I!, from the theory of Ref. 15 and Eq.~37!
~rows II!, and from the theory of Ref. 6 and Eq.~39! ~rows III!. All magnetic fields are in Gauss.

Sample Theory HSO
(1) HSO

(2) HSO Hw HSO
(3)5HSO2HSO

(1)2H SO
(2)

I 0.62 1.41 2.69 0.66 0.66
A1 II 0 0.03 0.85 0.66 0.82

III 0 0 0.77 0.59 0.77

I 0.66 1.91 3.52 0.60 0.96
B1 II 0 0.87 1.89 0.58 1.02

III 0 0 1.08 0.53 1.08

I 0.34 4.32 5.98 3.03 1.33
C4 II 0 3.97 5.30 3.03 1.51

III 0 0 2.18 2.38 2.18
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cates an increase in the efficiency of the spin relaxation. One
can also observe that the minimum becomes more pro-
nounced when the ratioHSO/Hw increases: the minimal
value ofs(B)2s(0) is about 0.04e2/2p2\ for the sample
A1, 0.01e2/2p2\ for the sampleC4, but increases to
0.11e2/2p2\ for B1. This shows that the magnitude of the
antilocalization effect depends strongly on the ratio of the
phase-breaking and spin-relaxation rates. Small phase-
breaking rate and fast spin relaxation increase the magnitude
of the antilocalization phenomenon. When the two rates are
comparable, the antilocalization minimum almost vanishes
@this can be seen in Fig. 3~c! for the sampleC4#.

In Fig. 3~a! for the sampleA1 the dashed line shows the
best fit obtained using Eq.~37!, i.e., withHSO

(2)50. The best

fit value ofHSO8 5HSO
(1)50.03 G is also close to 0. Hence, the

dashed curve almost coincides with the dashed-dotted line,
which shows the result of AALKh theory, Eq.~39!. Both
theories fit the experimental data seemingly quite well. How-
ever, the values of parameters required to achieve this agree-
ment (HSO'0.8 andHSO

(2)'0) are in a sharp contradiction
with theoretical calculations ofHSO and experimental mea-
surements ofg, while the theory presented in this paper fits
the experiment using the parametersa and g which agree
with other measurements and calculations~see Sec. IV D, the
Appendix, and Refs. 7, 37–40!.

The results for sampleB1 are shown in Fig. 3~b!. Again,
the dashed line shows the fit by Eq.~37! and the dashed-
dotted line by Eq.~39!. One can see that in this case the
theory with bothHSO

(1) and H SO
(2) , presented in this paper

~solid line!, gives somewhat better agreement with the ex-
periment in the vicinity of the conductivity minimum. The
general agreement of all curves with experiment is of similar
quality, but again in order to bring Eqs.~37! and ~39! in
agreement with experiment one has to use unrealistic values
of HSO andHSO8 .

Figure 3~c! shows the results for the sampleC4. The
dotted-dashed line in Fig. 3~c! shows the result of AALKh
theory, Eq.~39!. One can see that forB>10 G this curve
deviates from the experimental results quite significantly. For
this sample, as well as for two other samplesC2andC3with
large electron densities andHSO

(2)@H SO
(1) , we have taken

HSO
(1) to be equal to its theoretical value forg524 eV Å3.

One can see from Fig. 3~c! that the solid curve, computed for
HSO
(1)50.34 G andHSO

(2)54.32 G, practically coincides with
the curve, computed using Eq.~37! for H SO

(1)50 and
HSO
(2)53.97 Gs. This means that for largeNs the experiment

allows us to measure only the differenceH SO
(2)2HSO

(1) . The
discussion above shows that the theoretical approaches de-
veloped in this work allow us to improve the description of
the magnetoconductivity dependencies and to obtain mean-
ingful parameters from the fits. In the next section we show
that using the complete theoretical description withHSO

(1) ,
H SO
(2) , andHSO as the parameters one can get a consistent

description of experimental data for samples with different
carrier densities.

D. Carrier density dependencies

In Fig. 4 we show the values ofH SO
(1) andHSO

(2) as a func-
tion of Ns

2 for all samples we have studied, as obtained from
the fitting of the experimental results by our theory. We also
show the theoretical curves for these fields, calculated using
Eqs.~3!–~6! and ~38!:

HSO
~1!5h1g

2Ns
2S mm0

D 2S 4EZ

EF
21D 2,

HSO
~2!5h2a0

2Ns
2S mm0

D 2 1k2 S 2N0

Ns
11D 2, ~47!

where N0 is the charge density in the depletion layer,
Ez5\2^kz

2&/2m is the kinetic energy of motion in thez di-
rection, and

FIG. 3. Experimental results~circles! and theoretical fits for the
magnetoconductivitys(B)2s(0) for three different samples:~a!
A1, ~b! B1, and~c! C4. Solid lines show results of the theory out-
lined in Sec. II. Best fits obtained from Eqs.~37! and ~39! are
shown by dashed and dotted-dashed lines, respectively. Dotted ver-
tical lines show the valuesB50.5H tr , which limit the intervals of
applicability of all three theories. The fitting parametersHSO

(1) ,
HSO
(2) , HSO, andHw are given in Table II.
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h15
p2cm0

2

4e\3 , h25
4p2cm0

2e3

\3 . ~48!

Herem0 is a free electron mass. The calculations are done
for g524 eV Å3 anda057.2 Å2. These values allow a good
description of the experimental data and are close to those
obtained from k–p and tight-binding calculations for
Ga0.85In0.15As ~see the Appendix!. The ratioEZ /EF is cal-
culated using Fig. 2. When calculatingHSO

(2) , we have as-
sumed that the average field in the well is one-half of the
maximum fieldE54peNs /k. We have also taken into ac-
count the charge in the depletion layer
N050.5831011 cm22. The value ofa0 was calculated using
Eq. ~A1!. If one takes into account the barriers, using theory
of Refs. 26 and 27 and the self-consistently calculated wave
functions, the value ofa0 will increase by about 60% for the
electron densities in the intervalNs5(122)31012 cm22.
This would increase the value ofHSO

(2) approximately 2.5
times, but such large values ofHSO

(2) clearly do not agree with
the experiment. It is likely that the barrier contribution de-
pends very strongly on their microscopic structure, which
may be very different from the abrupt interface model, used
in the theory. It is also plausible that the different barrier

structure is responsible for the relatively large value of
HSO
(2) for the sampleC1, for which a058.8 Å.
It can be shown using Eq.~3! and data of Fig. 2 that for

Ns,Ns05731012 cm22 the Dresselhaus term decreases
with increasingNs , vanishes forNs5Ns0 , and then begins
to increase. One can see from Fig. 4 that for
Ns.131012 cm22 the Rashba term exceeds the Dresselhaus
term. Consequently, we denote the larger contribution in Fig.
4 asHSO

(2) .
One can see from Fig. 4 that the general character of the

density dependence ofHSO
(1) andH SO

(2) agrees with the theory,
and their values are close to those calculated using the above
values ofg anda0 .

In Fig. 4~b! we show a similar density dependence but for
the cubic ink Dresselhaus termHSO2H SO8 . The theoretical
formula for this field is

HSO2HSO8 5h1g
2S mm0

D 2Ns
2 t3
t1
. ~49!

The top curve corresponds tot1 /t351 and the bottom one
to t1 /t352.

In the case of isotropic scattering, which is the case of
short range potentials scattering, probabillityW(w) in for-
mula ~9! is angle independent andt1 /t351. If only small
angle scattering is important~that is the case of scattering by
the Coulomb potential! thent1 /t359 @see Eq.~11!#. In our
case we findt1 /t3 to be in the range from 1 to 2. It is
probably because scattering in our samples is the mixture of
short and long range scattering. The short range scattering is
probably due to alloy scattering that is known to be the mo-
bility limiting mechanism in GaxIn 12xAs quantum wells.
Long range scattering is most probably due to scattering on
the ionized impurities in thed-doped layer. Role of scatter-
ing by the charged impurities in thed-doped layer was con-
firmed by observations of charge correlation effects~see Ref.
28!.

V. CONCLUSION

In conclusion, we have presented experimental studies of
positive magnetoconductivity caused by the weak localiza-
tion in selectively doped GaxIn 12xAs quantum wells with
different carrier densities. The complete interpretation of the
observations is obtained in the framework of recently devel-
oped comprehensive theory of quantum corrections to con-
ductivity. In this theory, we correctly take into account both
linear and cubic in the wave vector terms of the spin-splitting
Hamiltonian. These terms arise due to the lack of the inver-
sion symmetry of the crystal. We also include the linear split-
ting terms which appear when the quantum well itself is not
symmetric.

It is shown that in the density range where all the above
terms are comparable, new theory allows us not only to
achieve good agreement with the experiment but, unlike ear-
lier theories, also gives the values for the parameters of the
spin splitting which are in agreement with previous optical
experiments7,10 and theoretical calculations. Therefore, our
research answers the question what spin-relaxation mecha-
nism dominates for different electron densities and how it

FIG. 4. Characteristic magnetic fields as a function of the elec-
tron densityNs . ~a! Density dependencies of the Dresselhaus
(H SO

(1) ) and Rashba (HSO
(2)) linear terms are shown by dotted and

solid lines, respectively. Calculations were done according to Eq.
~38! with g524 eV Å3 anda057.3 Å2. The values of these fields
as obtained from best fit with Sec. II theory are shown by squares
~Rashba term! and circles~Dresselhaus term!. ~b! The Dresselhaus
cubic termHSO2H SO

(1)2HSO
(2) as a function ofNs . The lines are

calculated using Eq.~38! for g524 eV Å3. Solid line shows results
for an isotropic scattering,t1 /t351, dotted line is fort1 /t352.
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should be taken into account to describe the weak localiza-
tion and antilocalization phenomena in quantum wells.
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APPENDIX A: SPIN SPLITTING IN GaAs, InAs,
AND Ga xIn 12xAs

Below we present results of the calculations ofa0 and
g for GaAs, InAs, and Ga0.85In0.15As in k–p and tight-
binding calculations. The tight-binding calculations were
done in the 20 band tight-binding model including the spin-
orbit coupling.37,38 Our calculations of electronic properties
usesp3s* tight-binding parameters especially chosen so as
to reproduce several features of the fundamental properties
of bulk constituents. We state some analytical relations con-
necting the effective masses and the deformation potentials
at theG point, and the 15 parameters of thesp3s* 20 band
tight-binding model.41 Using these relations, as well as other
relations between the 15 parameters andG and X energy
values,38 we get a set of parameters which accurately repro-
duces the effective masses at theG point, the@001# deforma-
tion potential and overall band structure in accordance with
reflectivity and photoemission measurements.42

Such a procedure has been already checked to give a good
description of reflectivity data in uniaxially stressed GaAs/
Ga0.89In0.11As superlattices.43 In this work we use it to ob-
tain InAs and Ga0.85In0.15As parameters. Using these param-
eters, we calculatea0 on the basis of Eq.~A1!. In order to
determine the value ofg we calculate the value of the spin
splitting as a function ofk along the~110! direction. It fol-
lows a cubic dependence ink from which we extract the
values ofg given in Table III. The parameters of thek–p
model were taken from Refs. 42 and 44. Thek–p parameters
for Ga0.85In0.15As were obtained by linear interpolation be-
tween GaAs and InAs.

In the three-bandk–p model one takes into account the
states of the conduction bandG1 (G6) with the Bloch func-
tion S, the valence bandG15v (G81G7) with functionsX,
Y, Z, and the higher bandG15c (G8c1G7c) with functions
X8, Y8, andZ8. The energies of these states atk50 are:
EG6

50, EG8
52Eg , EG7

52(Eg1D), EG7c
5Eg8 , and

EG8c
5Eg81D8. In this modelm0 /m, g, anda0 are given by

the following expressions:7,45–48,26,49

m0

m
511

2

3

m0

\2 H P2
3Eg12D

Eg~Eg1D!
1P8

2 3Eg81D8

Eg8~Eg81D8! J ,
g52

4

3

PP8Q

Eg~Eg81D8! S D

Eg1D
1

D8

Eg8
D ,

a05
1

3
$P2@Eg

222~Eg1D!22#

2P82@Eg8
222~Eg81D8!22#%, ~A1!

where P5 i\/m0^SupzuZ&, P85 i\/m0^SupzuZ8&, and
Q5 i\/m0^XupyuZ8& are the interband matrix elements,m0
is the free electron mass,p52 i\¹. Here we do not take
into account the contribution intog and a0 which arises
from spin-orbit mixing of the statesG15v andG15c .

TABLE III. Values of the parameters for GaAs and InAs calculated using thesp3s* model and the results
of the k–p model. The parameters of thek–p model were taken from Ref. 42, except those marked by an
asterisk, which were taken from Ref. 44. Parameters for Ga0.85In0.15As were obtained by linear interpolation
of the k–p model parameters between GaAs and InAs. The values ofg anda0 as obtained in these models
are also given. The sign ofQ in k–p model is not defined and can be chosen to be the same as in the
sp3s* model.

GaAs InAs Ga0.85In0.15As

k–p sp3s* k–p sp3s* k–p sp3s*

Eg ~eV! 1.519 1.5192 0.42 0.418 1.35 1.354
D ~eV! 0.341 0.341 0.38 0.38 0.347 0.347
Eg8 ~eV! 2.97 2.98 3.97 3.95 3.12 3.104
D8 ~eV! 0.171 0.159 0.24 0.26 0.181 0.20
P ~eV Å! 10.49* 10.23 9.2* 9.22 10.29 10.16
P8 ~eV Å! 4.78* 1.46 0.87* 1.06 4.20 1.03
Qa ~eV Å! -8.16* -7.0 -8.33* -7.27 -8.18 -7.03
m

m0

0.0665 0.066 0.023 0.023 0.06 0.06

g (eV Å3) 27.5 10 26.9 71 27.7 13
a0 (Å2) 5.33 5.15 116.74 118.5 7.2 7.05
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The values ofg obtained for GaAs from tight-binding
calculations are usually smaller then those given by thek–p
model ~see Table III!. For example, in Ref. 39 the tight-
binding calculations give the value 2g517.8 eV Å3. In the
later work Ref. 40 for the same parameter 2g ~this time

calledg) the authors obtain the value 17 eV Å3. Calculated
values ofg should be compared to the experimental values
24 eV Å3 for bulk GaAs~Ref. 7! and to the recently obtained
value for GaAs/GaxAl 12xAs quantum wells10

16.563 eV Å3.
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