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The results of magnetoconductivity measurements igliga ,As quantum wells are presented. The ob-
served magnetoconductivity appears due to the quantum interference, which lead to the weak localization
effect. It is established that the details of the weak localization are controlled by the spin splitting of electron
spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in
spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that
appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of
different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron
densities under investigatidig0.98— 1.85)x 10'2 cm 2 ] all three contributions are comparable and have to
be taken into account to achieve a good agreement between the theory and experiment. The results obtained
from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate
the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters
in A;B5 crystals and two-dimensional structures.

[. INTRODUCTION magnetoconductivity (PMC) or negative magnetoresis-
tance*®

The effect of the weak localization in metals and semi- When spin effects are taken into account, the interference
conductors is caused by the interference of two electromlepends significantly on the total spin of the two electron
waves which are scattered by the same cen(@egects or waves. The singlet state with the total spla-0 gives a
impurities but propagate in opposite directions along thenegative contribution to the conductivit@ntilocalization ef-
same closed trajectory, and, therefore, return to the origifiect). The triplet state withl=1 gives a positive contribution
with equal phases. This effect increases the effective scatteto the conductivity. In the absence of spin relaxation the
ing cross section, and, therefore, leads to a suppression obntribution of the singlet state is canceled by one of triplet
conductivity’~3In a magnetic field, the two waves propagat- states. As a result, the magnetic field dependence of the con-
ing in the opposite directions acquire a phase differencauctivity is the same as for spinless particles. However,
2ed/c, where® is the magnetic flux through the area en- strong spin relaxation can suppress the triplet state contribu-
closed by the electron trajectory. This phase differencdion without changing that of the singlet state; hence the total
breaks the constructive interference and restores the conduguantum correction may become positive. The interplay be-
tivity to the value it would have without the quantum inter- tween negative magnetoconductivity at low fields and posi-
ference corrections. This is observed asirmreasein con-  tive magnetoconductivity at high fields can lead to the ap-
ductivity with magnetic field, the effect known gmsitive  pearance of a minimum on the conductivity-magnetic field
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curve (antilocalization minimum cillations in the universal conductance fluctuations in rngs.

It was shown in the early papers by Hikami, Larkin, and Experimental studies of the PMC in quantum 2D struc-
Nagaoka and by Altshuleret al® that the behavior of the tures were done in Refs. 18—20. Recently, the experimental
conductivity in weak magnetic fields depends essentially orPbservations of very pronounced effects of spin scattering on
the mechanism of the spin relaxation. Three mechanism@eak localization conductivity corrections in GafRefs. 21
were considered: Elliott-Yafet, otherwise known as skewand 22 and InAs(Ref. 23 heterostructures have been re-
scattering mechanism, scattering on paramagnetic impuritiegorted. Different spin-relaxation mechanisms are invoked to
and the Dyakonov-Perel mechanism, which arises from th_gxplam the experimental data. In Ref. 21 the spin relaxation

spin spliting of carrier spectra in noncentrosymmetric melS interpreted in the framework of the Dyakonov-Perel
dia. mechanism based on the bulk GaAs Hamiltonian. According

The Dyakonov-Perel mechanism is dominant in mostlO the authors, agreement with experimental data is achieved
A;Bs cubic semiconductorswith the exception of those if one neglects in the spin-orbit Hamiltonian the term linear
with narrow band gafg, and I,arge spin-orbit splitting of the in the ir_1-p|ane wave vector. This is in contradiction with the
valence bana\ (for exgmple InSh The same can be said theoretical prediction& which show that, at least for low
about the low-dimensional structures fabricated from thes&&(Mer concentrations, the linear term should be the domi-
materials. Presence of an antilocalization minimum on théant one. In Ref. 23 the same Dyakonov-Perel mechanism is
o(B) curves in quantum two-dimensionéD) systems is a used, but it is based on the Rashba term. In Ref. 22 it is

definite sign that the dominant spin-relaxation mechanism i&ssumed that the dominant mechanism of spin relaxation is
the Dyakonov-Perel one. It is knofrhat for the Elliott- the Elliott-Yafet scattering one. Recently, we have reported
the measurements of the magnetoconductivity of

Yafet mechanism in 2D structures the contribution of the 4
singlet state withJ=0 is exactly canceled by one of the C&IN1-xAS quantum well$* We have used the Altshuler-
triplet states, the one with=1 andJ,=0. Aronov-Larkin-Khmelnitskii(AALKh ) calculatiof of quan-
Unlike buik crystals, where the %spin splitting is propor- tum corrections to conductivity to interpret the experimental
tional to the cube of the wave vectlr in 2D structures the data. However, the spin-relaxation time, which enters the
splitting has also terms linear ik (this is also true for AALK expressions, was calculated taking into account not
strainedA,Bs crystals and for hexagona,B; compounds only linear but also cubic Dresselhaus terms of the spin split-
Furthermore, there are two linearkrcontributions of essen- ting. We have demonstrated that, using this simplified t_heo-
tially different nature. The first one, which arises from therGtICaI appro:_ach, one can obtain th? right orQer of magnitude
lack of inversion in the original crystdlike the cubic term for the gxperlmentally observed spln-relaxayon rates.
is known as the Dresselhaus tefrwhile the second, the In this V\(ork we present a det'a!led _expenmental study of
Rashba term, is caused by the asymmetry of the quantuﬁl?e negative magnetoconductivity in selectively doped
well or heterojunction itself. Ga,ln;_,As quantum wells with different 2D carrier densi-
The direct measurements of the spin splitting using thdies. We interpret them in the framework of the recently d(_a—
Raman scattering in GaAs/fGa, ,As quantum well¥ veloped theory of the anomalous magnetoconductivity in
x .
have shown that, for electron densitdg~102 cm~2, both ~ duantum wells which corrects the AALKh approactt?
d_Comparlson of experiment and theory allows us to determine

linear contributions are comparable. All three terms give a .
ditive contributions to the spin-relaxation rate. When only € importance of both Dresselhaus and Rashba terms for 2D

the cubic ink term is present, its effect on the PMC is de- systems.
termined only by the spin-relaxation rate, similarly to the

two other spin-relaxation mechanisms, and is described by

the theory of Refs. 5 and 6. In the presence of the line&r in

term in the spin Hamiltonian it is necessary to take into A. Spin relaxation
account the correlations between the motion of electrons in

the coordinate and spin spacédn the theory of coherent

Il. THEORY

The theory of the positive magnetoconductivity for struc-
ILIltlres with spin splitting linear in the wave vector was de-

phenomena these correlations were first taken into accou ﬁcribed very briefly in Refs. 15 and 16. Below we present an
using the language of the spin-dependent vector potential 'Butline of this theory in more detail. The spin splitting of the

Refs. 12-14, where this concept was applied to consider- . X . . .
ation of spin-orbit conductance oscillatidA$® and of the cenduction band in cubic crystalBs is described by the

spin-orbit effects in the universal conductance fluctuationfO"OWIng Hamiltonian.

and persistent current in ring$In the theory of the anoma-

lous magnetoconductivity the correlation between motion in

real and spin spaces was first taken into account in Ref. 15. It . 7,= yE O ki(ki2+1—ki2+2), i=x,y,z, i+3—i,

was shown that when linear and cubidkiterms are present, 1)
their contributions to spin-orbit phase breaking are not addi-

tive. Furthermore, as it was demonstrated in Ref. 16, the

contributions of the Rashba and Dresselhaus terms are algdhereo; are the Pauli matrices. [rf001] quantum wells the
nonadditive, and the magnetoconductivity is determined nosize quantization gives rise to the terms in the Hamiltonian
by their sum, but rather their difference. A similar effect, 775, which are linear in the in-plane wave vector
when spin-orbit phase breaking may become negligible du&= (k,,k,), in addition to the cubic ternf&?® The corre-

to the correlation of motion in real and spin spaces occurs isponding Hamiltonian for the conduction band electrons can
the quasi-1D case and leads to two types of pronounced obe written a&>!®
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k2 HereW() is the probability of scattering by an angle If
H=5 +(0-Q), (2) it does not depend oft, all scattering times are equal to the
elastic lifetime
whereo=(oy,0y), 2=({y,(y) are two-dimensional vec-
tors with components in the plane of the quantum well. Vec-
tor 2Q/% has the physical meaning of the precession vector:
its length equals the frequency of the spin precession and its
direction defines the axis of the precession. The spin-splitting
energy is equal to Q. To treat the spin-relaxation problem
in the case whef is anisotropic in the 2D plane one has to

=J W(p)de. (10

When small-angle scattering dominates; dosg~(ng)%/2

decompose it into orthogonal spherical harmonics: and
Q=0,+Q;, Q,=-0%cosp, Qg=—0Q5c083,
1183 1x 1 COsp 3x 3C0S3p %=n2 (n=1). (11)
Q3,=Qsing, Qz,=—Qssin3gp, "
" 5 5 k3 Formula (8) shows that the different harmonics of the
Q' =ok| (k)= ZK° |, Qs=v, (3  precession vector add up in the spin-relaxation rate with the

weight equal to the relaxation times . Unlike the spin re-
where k?=kZ+k7, tanp=k,/ky, and (k%) is the average laxation, the contributions of the different terms in the spin
squared wave vector in the directian normal to the quan- splitting into PMC are not additive Furthermore, at
tum well (in this paper we také =1 everywhere except in Q{Y=+0{? andQ;=0 the contributions of the two linear
the final formulas terms(3) and(5) exactly cancel each other, and the magne-

The spin splitting given by Ed3) represents the Dressel- toconductivity looks as if there were no spin-orbit interaction
haus ternf In asymmetric quantum wells the Hamiltonian at all. Analogous effect occur in weak localization conduc-
77 contain also terms of different symmetry, i.e. the Rashbaance in wires?

terms?
H' = af ok],. (4) B. Weak localization in two-dimensional structures
This term can be included in the Hamiltonig8) if one The weak localization contribution to the conductivity is
: " : ; ;86
includes additional terms int€: given by the expressioh’
Qp=0Psing, Q;,=—0Pcosp, QP=ak. (5) D .
max

In uniform electric field#, the constantr is proportional to Ao=— 2777’0702 f aB,Ba(q)( )2’ (12)
the field:

a=wper. (6)  where « and B are spin indices, g3,=(D7) %,

D=v27,/2 is the diffusion coefficient, and,=m/27r is the
density of states at the Fermi level at a given spin projection.
The matrixC,z4,(0) is called Cooperon and can be found
from the following integral equation:

The expressions faty andy are given in the Appendix. The
barriers of the well give rise to another contribution, usually
also linear inZ, which depends strongly on the details of the
boundary conditions at the heterointerf4&é’

Both terms(3) and (5) give additive contributions to the

spin-relaxation rate %(;, which is defined as wpyo (KK 0 = Vi o] 280,850
%?f—;' ™ + (22 )ZE Vi gV -k -G (@,9+0)
\_/rvatea;zsé(i)?]terligLjat\i/()er:29a<areprojection of spin on the direction XG;}\,((» ~9)Crrr,s(0K',0). (13)
i: 1 =2(Q§7-1+Q§7-3), ®) HereVK,k, is a scattering matrix elemefincluding the con-
Ty 2Ts centration of scatterexswhich we assume here to be diago-

XX y4

nal in spin indices. It is connected with(¢) in Eq. (10) by
where 02=0{"2+0{?? and r,,, n=1,3, is the relaxation the expression
time of the respective component of the distribution function

f(K)~con(e+ ) (¥, is an arbitrary phage
" o W( k= @kr) = vol Vi %, (14

—=] W 1—coe)de. 9
n f (@) e)de ® G*(w,k) are the Green’s functions
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. it 7, IS the inelastic scattering time. After the integration by
CHwk=10o— E(k)_(‘fﬂ)i; ’ (15 E(g) in the right-hand side of Eq13) the result is expanded
up to second order terms in series in small parameters
1 1 1 k? 70/ 7,, VQrg, and Q7,, wherev=gE/dk. In the end, the
Zf: T_o+ T_<P E(k)= m (16) following equation for the Cooperon is obtained:

de
Ck,k’(q):|Vk,k’|2+27TVOTOf 2_:|Vk.g|2[ —i(vgQ) To— i (o+ p) Q7 — (Vy) 2 75— 2( Q) (p) 75

_2(ng)(0'+p)ﬂ7'0 :] gk(q) (17)

Here the Pauli matrices act on the first pair of spin indices (). Since the right-hand side of E(L7) contains linear and

a,\, while the matricep act on the second pag\’. cubic ing terms, it is necessary to take into account only first
The equation and third harmonics. From Eq&l7)—(20) it follows that
ct = —i(r— +(o+p)Qy(g1C°,.,
Ck,k’:)\TOJA W(k,,g)cg’k!dﬁog (18) g,k I(Tl TO)[( vgq) (0- P) 1(9)] g,k
B _ i 0
has the following harmonics as its eigenfunctions: Cokr = ~1(m3=70)(0+ p)R3(9)Cy - (22)
N _n o Here it is taken into account that there is a relation similar

Ce = CrCON(P1™ @10 = Yn). 19 4 Eqg. (18) for harmonicsQ,,, (v0)~cosfpy—¢,), and
According to(10) the eigenfunction g has the eigenvalue 3,.
A o=1, while other harmonics have eigenvalues Then we substitute £, =C k,+Céllz,+C(3), into Eq.

1 (17), and, using Eq(21) and retalnlng only the terms with
_[1_To zero harmonic, we obtain the equation f©g(q):
=1 " . (20
n

Therefore, the solution of inhomogeneous equation will ]/C0=2—, (22
have large harmonic  while the others will be small, be- TVoTo

cause they appear due to presence of small terntsand  where

11 202 (12
_7J=T—+§v q 7+ Q171+ Q373)(2+ oypyt+ oypy) + 2(owpy+ oyp) Q17O T

12

+oni[ (o4t p) (— QP+ QPq,) + (o +p,) (g, — QP q,)]. (23)

In a magnetic fieldy become operators with the commutator In the basis of the eigenfunction of the operator
{aa"}= % (aa'+a'a) these operators have the following

é .
[g:q9-]= D (24) nonzero matrix elements
' 1
_ 4eBD - 27)
~ hc (25

In a magnetic field, the integration ovgrshould be re-

This allows us to introduce creation and annihilation operaP!2ced by summation over. Then,
torsa’ anda, respectively, for whiciaa']=1: 25
e
Ao=

DY, =", D¥q_=s"a", Dg?=d{aa’}. (26 2% @8
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where 1
Eo(n)=6| n+ = +T—. (39
_ 2 ¢
S_ZWVOTOC%n Cappa(N). @9 Eor the term with J=1 we can use the relation
Ji=(o;+p;)/2 to obtain
Since Eq.(22) is essentially the Green function equation
its solution can be written as ~ 1
7= slaa’t+ —+2(Qfn+05r3)(2-3))
4 ¢
ay__ *
C(n) —Tzr . Er . r,n(a-ﬁ)q,r,n(% 6), (30 —4ng_l)Q(12)T1(J2+—Jg)+2(571)1/2
vx;h/e;e\[fr,n andE, ,, are the eigenfunctions and eigenvalues x[_Q<11>(J+a+J_aT)+iQ(12>(J+aT_J_a)],
of 7
(35

T =B gV (31)

We now choose the basis consisting of the functionVhereJ-=

Vo(a,B), which is antisymmetric in spin indices and
corresponds to the total momentuhs 0, and of symmetric
functions W¥,, which correspond to J=1 and
J,=m=—1,0,1. According to Eq(30), in this basis the sum
in Eqg. (28) is

Nmax 1

+id,)/\2.

When Q(Z)—O (or 0{MY=0), the operator(35) can be
reduced to a block-diagonal form withXx3 blocks if one
uses the basis of function®,=(f;(n)F,_1, fo(n)F,,
f_1(n)F,.1), whereF, are the eigenfunctions of the opera-
tor {aa'} andf,, are the eigenfunctions o, [for Q{"=0
the basis isW,=(f;(N)F, 1, fo(N)F,, f_1(N)F,_1)]
Using the formula

S= _—, 32
2| B T B (32
. 1
where n,,=1/87,. For the term withJ=0 the operator > —=> LY (36)
H s m Em ‘W [Dl
1 where|D| is the determinant of” [Eq. (35)] and|D,,| are
Ton=6laa} + o (33 its minors of diagonal elemenB,,,, the sum in Eq(32)
¢ can be immediately calculatéd.According to Eqgs.(28),
and, therefore, (35), and(36),
H H:
2 |1 2ag+ 1+ —2 2 3a§+2an%’—1—2(2n+1)%’
Ag(B)=——5—4 —+ - =
o® Amh | ag Hso| _Hso =0 | n Hso Hso
ai a0+? —2? an+? an,lan+1—2T[(2n+l)an—l]
+2 Inﬁ—i-‘lf +3C (37
B B '
whereC is the Euler’s constant
_+1+H¢ H so c 8—5 H, = ¢ H 20%71,+202
@=NT2T B T B ¢ 4ehDr,’ H, °7¢ " aeiDr,’ 'O 4he D( 171+ 200579),
c
HgomHsd or H&,  HEd=7—m20i2r;,  HE=7--02017%r (38)

and¥ is a digamma-function.
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If both Q{M=0Q(?=0 and only the cubic irk term with s Traeel om
Q5 is present, the expressig87) can be further reduced to (X) content | 5-doping
the formula, which was obtained earlier in Ref. 6: Gas undoped 100 o N, (Si)=
[ y[1, M oo e maaa
AU(B)—AU(O):—(‘I’(—-F—-F—) ans undope -
27°h 2 B B InGaAs undoped | 130 | 0.1
GaAs undoped
+ E ¥ E + E +2HSO Superiattice buffer 8000 0
2 2 B B GaAs
S.i. substrate
Lyt He) | HetHso
2712 B B
1 H,+2Hgso 1 H, 400
—Eln B E HF . (39)
< 300
[
Note that, according to Ref. 15, the value 8§, is twice £ 200
that used in Ref. 6. =
The case whef){"=+Q{» andQ;=0 is a special one. = oo
In this case the operatq23) is diagonal in the basis of
functions ¥, if one uses coordinates<’|(110) and
y’||(1f))' O AGaAs’  InGaAs GaAs  P)
-100 o 100 200 300
z (A)

%m m=

1 2 0 2
T_+D[qxr+(Qy’+qyrm) ]]5mm’a (40)
® FIG. 1. Sample structurga) and band diagram(b) for
Ga,In;_,As quantum well(sample B1) as obtained from self-
consistent calculations. The first two energy levels in the well are

shown by solid lines; Fermi energy is shown by a dotted line.

wherqu,m=291 V71/Dm. Since the commutation relations
(24) do not change whem,, is shifted bng,, the spin
splitting does not manifest itself in the magnetoconductivity,

which is given by the simple formula A
hz A Eg_ E
e2 H‘P H(P ,[)’Z A T T A (44)
_ - DR ) B R 3m A
Ao(B)—Ao(0) 277271[‘1’ 5t &g ] (41) é(Eg— §)

It was demonstrated in Ref. 16 that this result appears beand r, is defined by Eq(9).

cause, whe){V=+0(? and;=0, the total spin rotation ~ As a result, in the first and fourth terms of the formula for

for the motion along any closed trajectory is exactly zero. magnetoconductivity (39) Hgo should be replaced by
WhenQ () andQ{? are not equal of2;#0, the only way ~ Hsot+Hey, whereHey is

to find eigenvalues,, is to diagonalize numerically the c

matrix .7Z. The number of elements one has to take for a Hey=—7——. (45)
given value of magnetic fieldB, or &, is at least 4ﬁeDTSEY
Nmax= 1/67, and increases infinitely & approaches 0. Note
. o~ . It foll f Eg.(43) th
that the size of the matrix” is N=3n,. For the detail of t follows from Eq. (43) that
the numerical procedure, see Ref. 16. Hey T
=(2WNS,3)ZT—. (46)
tr 2

C. Elliott-Yafet spin-relaxation mechanism

It follows from Ref. 5 that in order to take into account Ill. EXPERIMENTAL PROCEDURES
the Elliott-Yafet spin-relaxation mechanism one has to add a A. Samples

new term to the HamiltoniafB5): :
©5) Three Al,Ga;_,As/In,Ga; _,As/GaAs pseudomorphic

quantum wells were studied. They were grown by the mo-

Hey= Jg, (42) lecular beam epitaxy technique_. The layer sequence of _the
Tsey structure was of the standard high-electron-mobility transis-
tor (HEMT) type and is shown in Fig. 1. The two-
where, according to Ref. 7, dimensional electron gas was formed in the 13 nm thick In

«Ga;_As layer. Samples weré doped with Si(doping

1 densityN4=2.5x10'? cm™2). Samples of the typ& had a

= —(k2B)?, (43)  spacer thickness of 6 nm, samples of the t@oead a 4 nm
2 spacer, and samples of the tyfehad a 2 nmspacer. The

Tsey
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TABLE |. Sample parameters: electron dendity, mobility w, transport magnetic fielti,, [Eg. (38)],
and momentum relaxation tims .

Ng (102 cm™?) w (M2IVs) Hy (G) 71 (P9 Sample Spaceinm)
0.98 2.96 14 1.2 Al 6
1.1 3.72 7.9 1.5 A2 6
1.15 4.11 6.2 1.7 A3 6
1.34 1.94 24 0.8 B1 4
1.61 1.85 22 0.8 Cl 2
1.76 1.63 26 0.7 C2 2
1.79 1.57 27 0.7 C3 2
1.85 1.43 32 0.6 C4 2

samples had the Hall bar geometry with length of 1.0 mmsample was placed in the center of the first coil. To generate
and the width of 0.1 mm with two current and four voltage the stable weak magnetic field, necessary for the antilocal-
probes. The distance between voltage probes was 0.3 mnzation measurements, we used a spread field of the second
The samples were independently characterized by luminegoil to compensate the field in the first one. The magnetic
cence, high field transport, and cyclotron emissionfield scale was determined on the basis of measurements of
experiment$® The parameters are listed in Table I. In orderthe Hall voltages induced on the sample by both coils. Typi-
to study the behavior of the structures as a function of eleceally the constant magnetic field in the sample coil was of
tron densityNg, the metastable properties of tbeX-Si cen-  the order of 400 G and it was compensated by tuning the
ters present in the AGa; _,As layer were employed. Dif- second coil field in the range from 12 to 14 kG. This way,
ferent concentrations were obtained by cooling the samplboth coils were operated in a stable and reproducible manner
slowly in dark and then by illuminating it gradually by a giving in the sample space magnetic fields froen30 G to
light-emitting diode. This allowed us to tune carrier density +30 G. Small sample dimensions and the geometry of the
from 0.98<10%cm 2 to 1.95< 102 cm 2. We have mea- coils gave good magnetic field uniformity. We estimate that
sured the Hall effect and Shubnikov—de Haas oscillations téhe magnetic field varied by less than 0.1 G over the sample.
determine\ and to verify that in all samples only the lowest

_subba_nd is occupied. To calcula_te the energy levels in the C. Conductivity measurements and temperature control
investigated quantum wells we first self-consistently calcu-

late the D wave functions, using the envelope function ap- We have used the standard direct curre@t) method to
proach in the Hartree approximati&?ﬁoThe potentia| enter- Measure the Conductivity with currents less than 20 mAs to
ing into the zero magnetic field Hamiltonian takes into@void sample heating. A high precision voltmeter capable of
account the conduction band offset at each interface, an@easuring nV changes on mV signals was used to measure
includes, in a self-consistent way, the electrostatic potentidihe conductivity and Hall voltages. The whole system was
curvature due to the finite extent of the electron wave funccomputer controlled. To avoid mechanical and temperature
tion. The boundary condition for the integration of the Pois-instabilities, the sample was not directly immersed in the
son equation within the 2D channel is the value of the
built-in electric field in the buffer layer on the substrate side
of the 2D channel. It originates from the pinning of the
Fermi level near midgap in the semi-insulating GaAs sub-
strate. Any nonparabolicity effects on the effective masses
were neglected. The calculations were performed for the
temperature 4.2 K. Results of calculations are shown in Fig.
1. With increasing concentration both Fermi energy and ki-
netic energy of the motion in the growth direction increase.
Their exact concentration dependencies should be deter-
mined to calculate spin-splitting and spin-relaxation times.
For every carrier densitiNg the expectation value of the
component of the kinetic energy was calculated. Figure 2
shows the result of such calculations for the quantum wells

2] o]
o o

Energy (meV)
B
o

N
(=]

. . . 0 M 1 L "
used in our experiments. We also show the Fermi energy as a 0 05 1 15 >

function of carrier density;. N (1012 cm_z)

g
B. Magnetic field generation and stability . . . -
FIG. 2. Energies determining the Dresselhaus spin splitting as a
We have used a system of two superconducting coilgunction of electron densitiN,. Fermi energyEr and quadrupled
(8 T/8 T) placed in the same cryostat. This system was earmean kinetic energy B, of the motion in the growth direction are
lier used to study cyclotron emission from the same sampleshown by solid lines. Dotted line shows the differendg, 4 E
A, B, andC and to determine their effective mas$édhe  that enters Eq(38) for H.
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TABLE Il. Parameters of the best fits for three sampds B1, and C4 [shown in Figs. &), 3(b), and
3(c), respectively as obtained from the theory of Sec.(tbws ), from the theory of Ref. 15 and E¢37)
(rows 1), and from the theory of Ref. 6 and E@9) (rows Ill). All magnetic fields are in Gauss.

Sample Theory HE) HE Hso H, HE=Hso~HE3-HE,
| 0.62 1.41 2.69 0.66 0.66
Al 1l 0 0.03 0.85 0.66 0.82
11 0 0 0.77 0.59 0.77
I 0.66 1.91 3.52 0.60 0.96
Bl 1] 0 0.87 1.89 0.58 1.02
1 0 0 1.08 0.53 1.08
| 0.34 4.32 5.98 3.03 1.33
C4 1l 0 3.97 5.30 3.03 1.51
11 0 0 2.18 2.38 2.18

liquid helium but was enclosed in the vacuum tight sampleaALKh theory,® Eg. (39), and hasHgo and H,, as fitting
holder and cooled by helium exchange gas under 50 mbasarameters. The second one corresponds to the physical situ-
pressure. A calibrated Allan-Bradley resistor place_d near th@tion where one of the linear termis(;jg or H(S2O) dominates,
sa_mple was used to measure the temperature which was stgyq Eq.(37) can be used with the fitting parametéis,
bilized between 4.2 and 4.3 K. The experimental arangepy; andH,.’® The last theory takes into account all the
ment allowed simultaneous complementary ShUbn'kov_d?ermsHso, H(Sl(%’ andH(é())exactly. The results of this theory

Ha_tas and Hall effect_ measurements to deter_mlng carmer MQtere obtained by numerical diagonalization of the matrix
bility and concentration for different sample illumination in- (35), as described in Sec. Il B and Ref. 16. The fitiing pa-

t ities. . .
enstiies rameters in this case atdso, HSS, HG), andH, (see
Table II).
IV. RESULTS AND DISCUSSION - .
The fitting of the experimental data by Eq87) and(39)
A. General comments was done by weighted explicit orthogonal distance regres-

osion using the software packageprrack® The weights

For all samples and for all carrier densities, the magnet _ ¢ :
conductivity was a nonmonotonic function of the magneticVere selected to mcreas.e.the importance of the Iqw-ﬂeld part
:of the magnetoconductivity curve. The calculation of the

field. As we have mentioned before, the presence of a mini* -~ . ) O
mum on theo(B) curves is a definite sign that the dominant magnetoconductivity by numerical diagonalization of the

spin-relaxation mechanism is the Dyakonov-Perel one. Fof1alrix (35), as described in Sec. Il B, requires large amounts

the Elliott-Yafet mechanism in 2D structures, the contribu-Of cOmputer time, and we could not afford to use the auto-
tion of the singlet state wit=0 is exactly canceled by one mated fitting with these results. The fitting was done “by

of the triplet states, namely, the one wilh=1 andJ,=0, _hand_,“ using .er.npirically gained knowledge on how chang—
which is immediately evident from Eq42). Using Eq.(46) ing different fitting parameters affect the magnetoconductiv-

one can show that even for the highest densityly CUTVe.
Ng=2x10" cm 2 and 7,/7,=4, the characteristic mag- _
netic field H gy does not exceed X104 H,, which is C. Experimental results

much smaller thatiso. For the scattering on paramagnetic |5 Figs. 3a)—-3(c) we show the results of the measure-
impurities, the negative magnetoconductivity at lowest fieldsyents of the conductivityr as a function of magnetic field
does not exist both in 2D and 3D systems. ~ for three different samples. To compare the results for differ-
As we have already noted, the theory presented in thignt carrier densities we plot-(B)— o(0) in units of
paper uses the diffusion approximation, which is valid onlyg2/5.-24 —1 231050 -L. The value ofo(B)— o(0) gives
when all of the fieldsH, and Hso are smaller tharHy.  the conductivity change induced by the applied magnetic
Kinetic theory, which is free from this limitation, was devel- fie|d and can be directly compared with theory. The circles

oped in Refs. 3235 for the case of isotropic scattering andpoy the experimental data, the results of the theory pre-
with spin relaxation considered in the framework of AALK ganted in Sec. Il are shown by solid lines. The values of
fcheory. Th_e cpmpa_nson with the diffusion theory shovv@s thatparametersH <o H(Slcg, and H(Szcg, as well as values o
in magnetic fieldB=0.4H,, the latter has an error of 698.

h f : ith th h | 3nd H,, are given in Table II.
For the purpose of comparison with theory, we have selected pefore the guantitative analysis of the experimental data,
only samples withB at the minimum ofos smaller than

we would like to point out some of their general features.
0.4Hy. The position of the characteristic conductivity minimum
which shifts from 2.5 G in Fig. @) to 5 G inFig. 3(c) is
largely determined by the value &fsg, and, hence, by the
The experimental data for each sample are fitted with thepin-relaxation rate. With increasing carrier dengity this
results of three different theoretical models. First is theminimum shifts towards higher magnetic fields. This indi-

B. Description of fitting procedure
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fit value ofHo=H{3=0.03 G is also close to 0. Hence, the

- 02 dashed curve aImost coincides with the dashed-dotted line,
- 015 which shows the result of AALKh theory, Eq39). Both

& theories fit the experimental data seemingly quite well. How-
Q 01 ever, the values of parameters required to achieve this agree-
= ment Hso~0.8 andH{Z~0) are in a sharp contradiction

2 005 with theoretical calculations dfiso and experimental mea-

? surements ofy, while the theory presented in this paper fits
m 0 the experiment using the parametersand y which agree

Y : : with other measurements and calculati¢see Sec. IV D, the

-0.05k_._- . : Appendix, and Refs. 7, 37-40

-10 0 10 The results for samplB1 are shown in Fig. ®). Again,

the dashed line shows the fit by E@7) and the dashed-
dotted line by Eq.(39). One can see that in this case the
theory with bothH{ and H'Z), presented in this paper
(solid line), gives somewhat better agreement with the ex-
periment in the vicinity of the conductivity minimum. The
general agreement of all curves with experiment is of similar
quality, but again in order to bring Eq$37) and (39) in
agreement with experiment one has to use unrealistic values
of Hgp andHggq.

Figure 3c) shows the results for the samp{&. The
dotted-dashed line in Fig.(® shows the result of AALKh
theory, Eq.(39). One can see that fd8=10 G this curve
deviates from the experimental results quite significantly. For
this sample, as well as for two other sampisandC3 with
large electron densities and@s>HE), we have taken
H) to be equal to its theoretical value for=24 eV A%,
One can see from Fig(® that the solid curve, computed for

HH=0.34 G andH&)=4.32 G, practically coincides with
the curve, computed using Eq37) for HE)=0 and
H&)=3.97 Gs. This means that for laré the experiment

: allows us to measure only the differeneé?—HSJ. The
Y . . discussion above shows that the theoretical approaches de-
20 -10 0 10 20 veloped in this work allow us to improve the description of
B (Gs) the magnetoconductivity dependencies and to obtain mean-

ingful parameters from the fits. In the next section we show

FIG. 3. Experimental resultircles and theoretical fits for the that using the complete theoretical description Wit
magnetoconductivityr(B) — o-(0) for three different samplesa) ~ H'Z), andHgg as the parameters one can get a consistent
Al, (b) B1, and(c) C4. Solid lines show results of the theory out- description of experimental data for samples with different
lined in Sec. Il. Best fits obtained from Eq&7) and (39) are  carrier densities.
shown by dashed and dotted-dashed lines, respectively. Dotted ver-
tical lines show the valueB=0.5H,,, which limit the intervals of
applicability of all three theories. The fitting paramete 10)

HE. Hso, andH, are given in Table II. In Flg 4 we show the values ¢1%) andH{) as a func-
tion of N for all samples we have studied, as obtained from
cates an increase in the efflClency of the Spln relaxation. Onﬂ]e f|tt|ng of the exper|menta| results by our theory We also

can also observe that the mininum becomes more proshow the theoretical curves for these fields, calculated using
nounced when the ratibiso/He increases: the minimal Egs.(3)—(6) and (398):

value of o(B)— o(0) is about 0.04%/27%% for the sample

D. Carrier density dependencies

Al, 0.0%%27* for the sampleC4, but increases to m\ 2 2

0.11e?/27%% for B1. This shows that the magnitude of the HY= nlyzNz( ) (4E——1> ,
antilocalization effect depends strongly on the ratio of the m F

phase-breaking and spin-relaxation rates. Small phase- 5 5

breaking rate and fast spin relaxation increase the magnitude H@ 272 n i 2&4‘1 47
of the antilocalization phenomenon. When the two rates are SO~ M2%0Ns mo/ 2| “Ng '

comparable, the antilocalization minimum almost vanishes

[this can be seen in Fig(® for the sampleC4]. where Ny is the charge density in the depletion layer,
In Fig. 3@ for the sampleAl the dashed line shows the E,=#%2(k2)/2m is the kinetic energy of motion in the di-

best fit obtained using Eq37), i.e., with H<2>—o The best rection, and
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structure is responsible for the relatively large value of

4+ Experiment ¥ ' H2) for the sampleC1, for which ay=8.8 A.
4 Hso Theory } SO : 0 :
@ «  Experiment t. It can be shown using E¢3) and data of Fig. 2 that for
[ Hgy Thgory P N<Ng=7%X10"2cm 2 the Dresselhaus term decreases

with increasingNg, vanishes foNs=N,, and then begins

to increase. One can see from Fig. 4 that for

N> 1% 10'2 cm™2 the Rashba term exceeds the Dresselhaus
term. Consequently, we denote the larger contribution in Fig.
4 asHE.

okl . LTI MY One can see from Fig. 4 that the general character of the
0 05 1 15 2 25 3 35 density dependence 6fS3 andHZ), agrees with the theory,
10 em ) ; ;
Ny ( and their values are close to those calculated using the above
- values ofy and .
1 In Fig. 4(b) we show a similar density dependence but for
— oL = Experiment the cubic ink Dresselhaus terril so— H'sq. The theoretical
S I T4=T, formula for this field is
88 15L 7,=0.57,
o] i ] 2
=l Sy C_ ol M 273
":Fm 1__ LR Hso~Hso= 717 mg NsT_l- (49)
2 osf R
=0 Pt - * b) The top curve corresponds tq/73=1 and the bottom one
o -7 . ) \ . to 7 /13=2.
0 05 1 15 2 25 3 35

In the case of isotropic scattering, which is the case of
short range potentials scattering, probability(p) in for-

mula (9) is angle independent antl /73=1. If only small
FIG. 4. Characteristic magnetic fields as a function of the elecangle scattering is importafthat is the case of scattering by
tron density Ng. (a) Density dependencies of the Dresselhausthe Coulomb potentialthen r, / 73=9 [see Eq(11)]. In our
(HY and RashbaH)) linear terms are shown by dotted and case we findr, /75 to be in the range from 1 to 2. It is
solid lines, respectively. Calculations were done according to Edgrobably because scattering in our samples is the mixture of
(38) with y=24 eV A’ and a;=7.3 A% The values of these fields ghort and long range scattering. The short range scattering is
as obtained from best fit with Sec. Il theory are shown by squaredropably due to alloy scattering that is known to be the mo-
(Rashba termand circles(Dresselhaus term(b) The Dresselhaus bility limiting mechanism in Galn, ,As quantum wells.
cubic termHso—H'sh—HE3 as a function ofN;. The lines are Long range scattering is most proba)l()ly due to scattering on
calculated using Eq38) for y=24 eV A%. Solid line shows results the ionized impurities in theé-doped layer. Role of scatter-
for an isotropic scatterings; / 73=1, dotted line is forry /73=2. ing by the charged impurities in thédopea layer was con-
firmed by observations of charge correlation effdste Ref.
wlemg Am’cmie’ 28)
M= 4eh3 ’ 2= ﬁ3 . (48)
V. CONCLUSION
Herem, is a free electron mass. The calculations are done
for y=24 eV A’ anda,=7.2 A2. These values allow a good
description of the experimental data and are close to tho
obtained from k-p and tight-binding calculations for

In conclusion, we have presented experimental studies of
positive magnetoconductivity caused by the weak localiza-
Sfon in selectively doped Gdn,_,As quantum wells with

. ; different carrier densities. The complete interpretation of the
Ga gdnosAs (see the Appendix The ra(té()) Ez/Er is cal-  ,pservations is obtained in the framework of recently devel-
culated using Fig. 2. When calculatingss, we have as-  gneq comprehensive theory of quantum corrections to con-
sumed that the average field in the well is one-half of theyyctivity. In this theory, we correctly take into account both
maximum fieldZ=4meNs/«. We have also taken into ac- |inear and cubic in the wave vector terms of the spin-splitting
count the ~ charge in the depletion layer yamiltonian. These terms arise due to the lack of the inver-
No=0.58< 10" cm™2. The value ofwg was calculated using - sjon symmetry of the crystal. We also include the linear split-

Eqg. (A1). If one takes into account the barriers, using theorying terms which appear when the quantum well itself is not
of Refs. 26 and 27 and the self-consistently calculated waveymmetric.

functions, the value of will increase by about 60% for the |t js shown that in the density range where all the above

electron densities in the intervally=(1-2)x10cm™?  terms are comparable, new theory allows us not only to
This would increase the value ¢} approximately 2.5 achieve good agreement with the experiment but, unlike ear-
times, but such large values Hﬁ% clearly do not agree with lier theories, also gives the values for the parameters of the
the experiment. It is likely that the barrier contribution de- spin splitting which are in agreement with previous optical
pends very strongly on their microscopic structure, whichexperiment5!° and theoretical calculations. Therefore, our
may be very different from the abrupt interface model, usedesearch answers the question what spin-relaxation mecha-

in the theory. It is also plausible that the different barriernism dominates for different electron densities and how it
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TABLE lIl. Values of the parameters for GaAs and InAs calculated usingths* model and the results
of the k-p model. The parameters of tliep model were taken from Ref. 42, except those marked by an
asterisk, which were taken from Ref. 44. Parameters forg@® ;5As were obtained by linear interpolation
of the k-p model parameters between GaAs and InAs. The valuesard «( as obtained in these models
are also given. The sign d@ in k-p model is not defined and can be chosen to be the same as in the

spss* model.
GaAs InAs GagdNg.1AS

k-p Spgs* k-p Spss* k-p Spgs*
Eq (eV) 1.519 1.5192 0.42 0.418 1.35 1.354
A (eV) 0.341 0.341 0.38 0.38 0.347 0.347
Eq (eV) 2.97 2.98 3.97 3.95 3.12 3.104
A’ (eV) 0.171 0.159 0.24 0.26 0.181 0.20
P (eV A) 10.49* 10.23 9.% 9.22 10.29 10.16
P’ (eV A) 4.78* 1.46 0.87 1.06 4.20 1.03
Q2 (eV A) -8.16* -7.0 -8.33 -7.27 -8.18 -7.03
m 0.0665 0.066 0.023 0.023 0.06 0.06
My
v (eV A3 27.5 10 26.9 71 27.7 13
ay (A? 5.33 5.15 116.74 118.5 7.2 7.05

should be taken into account to describe the weak localiza- Such a procedure has been already checked to give a good

tion and antilocalization phenomena in quantum wells. description of reflectivity data in uniaxially stressed GaAs/
Gay gdno 1:As superlatticed® In this work we use it to ob-
ACKNOWLEDGMENTS tain InAs and Gggdng 15AS parameters. Using these param-

eters, we calculate; on the basis of Eq(Al). In order to
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. m, 2
Below we present results of the calculations @f and 014 3
m

v for GaAs, InAs, and Ggdng15As in k-p and tight-
binding calculations. The tight-binding calculations were

mo| , 3E4+2A Lp? 3Eg+A’
h? | Eg(Egt+A) Eg(Eg+A")

done in the 20 band tight-binding model including the spin- 4 PPQ A A’

orbit coupling®’*® Our calculations of electronic properties L) Eg(Eq+A") | Eg+A * E_é :

usespgs* tight-binding parameters especially chosen so as

to reproduce several features of the fundamental properties 1

of bulk constituents. We state some analytical relations con- aO=§{P2[E§2— (Eg+A)*2]

necting the effective masses and the deformation potentials

at thel” point, and the 15 parameters of thpss* 20 band - P’Z[Eé‘z—(Eé+A’)‘2]}, (A1)

tight-binding modef! Using these relations, as well as other

relations between the 15 parameters dhdind X energy Where P=ifi/my(S|p,|Z), P’'=if/my(S|p,/Z’), and
values®® we get a set of parameters which accurately reproQ=i%/mo(X|p,|Z’) are the interband matrix elements,
duces the effective masses at theoint, the[001] deforma- is the free electron masp=—i%V. Here we do not take
tion potential and overall band structure in accordance withinto account the contribution intey and «y which arises
reflectivity and photoemission measureméfts. from spin-orbit mixing of the stateB,5, andI';5..
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The values ofy obtained for GaAs from tight-binding called y) the authors obtain the value 17 eV!.ACalculated
calculations are usually smaller then those given byktiee  values ofy should be compared to the experimental values
model (see Table Ill. For example, in Ref. 39 the tight- 24 eV A for bulk GaAs(Ref. 7) and to the recently obtained
binding calculations give the valuey2=17.8eV B. Inthe value for GaAs/GgAl,_,As quantum  wel¥
later work Ref. 40 for the same parametey 2this time  16.5+3 eV A3,
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