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Many-body effects in transport through a quantum dot
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Exact many-body eigenstates in a quantum dot formed in double-barrier heterostructures are calculated in
the limit of strong confinement, and the nonlinear coherent transport through the states is studied for tempera-
tures larger than their level broadenings. Energy splittings between many-body states due to exchange and
correlation effects manifest themselves as small steps which decorate the Coulomb staircase in the current-
voltage characteristics, which strongly depends on the number of electrons in the dot. Clear many-body effects
are also found in peak heights and peak separations in the Coulomb oscillation of the linear conductance.

[. INTRODUCTION in the dot by the leads and the gate contact. Such a calcula-
tion of the charging energy has been made within the Hartree

Quantum dots, artificial atoms fabricated in semiconduc-approximation for a quantum dot defined in a two-
tor heterostructuresShave given a new opportunity to study dimensional system by split gates, and the obtained result is
many-body effects in solid state physics. Different fromclose to that of the constant-capacitance model because of
natural atoms, such artificial atoms can be connected to leadBe large numbetfrom 40 to 70 of electrons in the dot’
and the obtained current signal is expected to reveal the nd-he same calculation in small dots is desirable.
ture of electron interactions in this system. In this paper The second point is to go beyond the Hartree approxima-
many-body effects in such a quantum dot on the transport aréon. It is necessary to include the electron correlation when
studied theoretically. single-electron energy levels are degenerate, because many-

Transport through a small metallic grain has been invesbody eigenstates are determined by electron interactions.
tigated extensively and most of the observed phenomena af@ich correlation effects are known to be essential in the frac-
now well understood in terms of a capacitance associateional quantum Hall effect that occurs in discrete, degenerate
with a grain? Because of the small size, the charging energyLandau levels. Recently studies have been extended to a
of a grain associated with the addition of one electron can bguantum dot in strong magnetic fields, and calculations have
much larger than the temperature and produces new featurbgéen made of its additon spectta® and of its
in transport through the grain, such as the Coulomb oscillaconductance!
tion, which appears in the conductance as a function of the The electron correlation plays an important role also in
gate voltage to the grain, and the Coulomb staircase, whicthe absence of magnetic fieldijn particular, in the circular
is observed in the current-voltage characteristics. In a metafot in double-barrier heterostructufe¥The in-plane confin-
lic grain that is much larger than the Fermi wavelength, theng potential of the circular dot is well modeled by a two-
charging energy is well described by the capacitance bedimensional parabolic potentigin® w3(x?>+y?) with m* the
tween the grain and leads. effective mass. This potential produces energy levels with

Recently many experiments have been made on the tranenergyf wg(n+1) wheren=0,1,2, ... and theegeneracy
port through a semiconductor dobut many phenomena re- of each level isn+1 excluding the spin degeneracy. The
main unsolved, in particular, those in a very small dot with aelectron correlation is expected to be importantrier1.
few electrons that are fabricated from double-barrier The purpose of this paper is to clarify how the current-
heterostructure$:® A dot made of a semiconductor has voltage characteristics is modified in such a system when the
larger level separations due to smaller effective mass and ixchange and correlation effects are taken into account. To
therefore called a quantum dot. Calculations taking into acmaximize effects of the electron correlation, a quantum limit
count such quantized energy levels have been made withiis considered, in which the level separatibm, is much
an approximation, which assumes a constant capacitance barger than Coulomb matrix elements and low-energy many-
tween the dot and lead$!'Although such calculations give body states are restricted within the subspace of the Hilbert
a useful guide to analyze many experiments, it is necessaigpace spanned in the level at the Fermi endibg levels
to improve the theory in the following two points to explain below the Fermi energy are fully occupied by electrons and
experiments on very small dots. inert).

The first point is to go beyond the constant-capacitance To concentrate on many-body effects within the dot, many
model by incorporating the state dependence of the chargingopmplicated aspects in actual systems are simplified. Leads
energy. Each state has a wave-function profile that is differare assumed to be electron reservoirs with a constant density
ent from state to state and therefore it is necessary to takef states and to be connected to the dot by a phenomenologi-
into account the difference in the charging energy betweeral tunneling Hamiltonian. The screening of a charge in the
states when the level quantization is importatftin quanti-  dot by the leads and the gate contact in connection with the
tative calculations of the charging energy, it is also importanfirst point mentioned abové and the correlation between
in many cases to take into account the screening of a chargdectrons in the dot and those in the leads such as in the
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(a) H:H0+Ht, (1)
r——————— with
emitter
SELTLTITLIP =Hg+H+H,.
_._.barrier_._. Ho=HatHetHe. 2
@ _quantum dot_ (V The potential in the dot formed in double-barrier heterostruc-

----barrier-.._ tures is well approximated by the sum of the barrier potential
(the z axis is along the growth directiorand the parabolic
_____ in-plane potential by the electrostatic confinement, the latter
Q_‘i;r; being given bym* w3r?/2 with m* the effective mass and
r=(x?+y?)Y2 We consider only the lowest level associated
with the motion along the axis and measure energies from
this level. Single-particle states are then represented by three
quantum numbers: the principal quantum number
iy IN*1) (n=0,1,2,...), the orbital angular momentumm
(m=0,+1,£2,...), and thespino (0==*1). The eigen-
function of the in-plane part is

collector

(b) emitter quantum collector
dot

r
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FIG. 1. (a) Schematic of a cylindrical double-barrier structure with

with a quantum dot formed between barrievsis the bias voltage

andV, is the gate voltage to control the potential at the db}. \/E ji! 1/2 pz

Parameters to be used in the calculation. The potential at the dotis  xjm(p)=-— —l) ex;{ - —)mejml(pz), 4

fixed and the chemical potential at the emitter and at the collector ol(] +|m|). 2

are varied.ﬂﬁa(NJrl):EB(N+1)7EQ(N) with Ea(N) the en- and the Corresponding eigenenergy is

ergy of N-electron statex.

en=hwg(n+1). 5)

0,21
Kondo effect”*" are neglected. Here lo= (i/m* wo) 2 and L'(x) is the Laguerre polyno-

Thg de(;npe,thv_vhlch was useﬁl n ?n I?xp”erlrfeetmg S Fi mial. Sincej=(n—|m|)/2 takes non-negative integers, the
considered in this paper, 1S schematically riustrated N Fig, .,y eq value ofn at eacn is m=0 forn=0, m=*1 for

L, The barters e mocalon dopeq Ableclons 16 r—L m-0,52 forn-2, and s0on. The degeneray f e
P q ’ ’ §th level isn+ 1. The extent of the wave function in tlze

current. The ga’ge_ contact is at'tached to 'control the potenti irection is assumed to be negligible compared with that of
at the dot. By raising the chemical potential of the emitter, e in plane wave functiorl
- 0.

electron in the emitter tunnels through one of states with The Hamiltonian of the isolated dot in the second-
N+1 electrons in the ddisee Fig. 1b)]. It is assumed here uantization form is then exoressed b

that only one channel through one state is open for a giveﬁ P y
spin at a given energy and possible interference

phenomend? which will occur when there are more than Hg= >, £nCl . Cnmo

one many-body states within the width of the level broaden- nme

ing, are neglected.

This paper is organized as follows. In Sec. Il a model of l
. . e . +2 Unlm1n2m2n3m3n4m4
the dot and the leads is given. The quantum limit is intro- Ny MyNoMoNnaMangmyoo”
duced in calculating many-body states in the dot and shown R R
to be applicable in some examples. In Sec. Il a current for- XCnlmlocn2m20'0n3m30’Cn4m4o’ (6)

mula is derived on the basis of the coherent tunneling

through many-body states. In Sec. IV calculated results ofvith

the current-voltage characteristics and the conductance, as

well as many-body energy spectra in the quantum limit, arg) :f drf dr’¢* (1) . (r')

given. A comparison with the Hartree-Fock approximation '+ 1'2"2"smsMMs MM s

and the Hartree approximation is made to clarify effects of e?

the exchange and correlation. In addition, a comparison of X =7 Pnm. (I ) Pn m. (1), (7)
. . - glr—r'| ""sMs 4My

our results with recent experiments is made. In Sec. V the

conclusion is given. r=(x,y), ande the dielectric constant. Two characteristic
energy scales, the level spacifig)g, and the typical Cou-
Il HAMILTONIAN lomb energye?/¢l, are plotteq as a functiqn of, ir_1 Fig. 2.
For I, smaller than the effective Bohr radiusw, is larger
Our model Hamiltonian consists of the unperturbedthane?/elq. In this paper we consider the quantum limit of
Hamiltonian of the dot, the emitter, and the collectdy, hwy>e?l el and level mixings due to off-diagonal Coulomb
and the tunneling Hamiltoniar; : matrix elements are neglected. The applicability of the quan-
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10 HIZKE 8|ka|Tka'a|ka'1 (10)
81 wherek represents a continuous quantum number character-
" izing a state in a lead.
« 6r Finally the tunneling Hamiltonian is
>
o 4l
g Hi= 2, 1i(Ch moicot H-C)- (1)
2}
Here we have assumed that matrix elements are independent
ol of states involved. In particular this Hamiltonian does not
0

conserve the orbital angular momentum, which might be the
case when impurities are present in barriers and leads.

FIG. 2. Level separatiomiwy, and typical Coulomb energy

e’lsl, as a function ofly in units of Ry*=m*e*24%?2, lll. CURRENT FORMULA

ag=h’e/m*e” is the effective Bohr radiusay =104 A in GaAs, Instead of using the general current formula in terms of
296 Ain InAs, 631 Ain InSb and Ry="5.29 meV in GaAs, 1.67  the Keldysh-Green functiof?,in this paper we take a simpler
meV in InAs, 0.638 meV in InSb. approach, which is valid except in the regime of the Kondo

effect at very low temperatures. We assume that the thermal
tum limit, or the approximation to neglect level mixings, is energy kg T is much larger than the level broadening of
examined in detail in the Appendix. It is shown there that inmany-body states in the dot and obtain the same current
dots in the GaAs well, which have been reported so farformula as that derived from the master equatidt. This
hwo ande?/el g are comparable and the quantum limit is not agreement was previously proved in the linear transport
applicable. However, it is also shown there that the quantunfegime?® but not in the nonlinear regime we consider in this
limit may be applicable in a dot formed in other materials paper, although it might be expected in the view of the ther-
with smaller effective mass, such as InSb. Label the level afally broadened resonant-tunneling current p&dik.We
the Fermi level air. In the quantum limit the levels below emphasize here that our theory assumes no inelastic pro-
ng are fully occupied by electrons and those aboyeare  cesses in the dot.
empty and the Hamiltonian in this limit is express@mit- We calculate the current through the dot by treatihicas
ting the subscriphe when possibleby a perturbation and assume that the two leads stay in the equi-
librium. In this paper we only consider the tunneling of a
1 single electron at a time and therefore the transition is exclu-
Hd(nF)zE (8“F+ unFm)cL(,cm(,JrE 2 sively between states witR electrons in thength level and
mo my MMMy oo’ those withN+1 electrons. This is the case when the bias
< U ot of e e ) v_oltage is not very high or when the barrie_zr in the c_ollect(_)r
My MpMgMy =My o myo ' Mg My o side is much more transparent than that in the emitter side
and the probability of havingN+2 electrons and more is
with negligible.
As an illustration, we first consider the case where the
transition is possible only between a singleelectron state,
Un.m= 2 (2Unan’m/n’m/nFm_Unan/m/nan'm’)- a, and a single l+ 1)-electron stateB. Consider the fol-
n'<ng,m’ lowing transition. The initial state i$a)|i) in which the
€) eko state is occupied and thegjo state is vacantj) repre-
senting the occupation of levels in the two leads. The inter-
Hereu,_n takes into account the interaction between an elecmediate state i§8)|m) with [m)=ae,|i}. The conservation
tron in then,:th level with those in the lower filled levels in of the total spin reqUIres that=2(Sz—S,). The final state
the Hartree-Fock approximations. Since the system we coris |a)|f) with |f)= acqgaekg||> The transition rate is given
sider has the rotational symmetry around ztexis and in the by
spin space, many-body eigenstates are labeled by the total
orbital angular momentum, the total spin, andatsompo-
nent.

The wave function and the energy in the Hartree-Fock
approximation is given by |HF)=1I; Cnpmi0i|0> and  With
(HF|H4(ng)|HF) with |0) representing the filled levels up to
the (ng—1)th level. Exchange terms itHF|Hy(ng)|HF)
and inup_n are dropped in the evaluation of the energy inThe unperturbed Green's function is given by
the Hartree approximation. g=1/(E—Hy+in) with n the positive infinitesimal and

The Hamiltonian of lead (I=e for the emitter and=c ~ E=E,;=E,¢. In the evaluation of the matrix element of
for the collectoy is T, we take into account only terms corresponding to pro-

2 “
W(af|ai)=7|<af|T|ai>|25(Eai—Eaf), (12

T=H+H,gH+HgHgH+ - - -. (13
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cesses passing throudi)|m) as frequently as possible,
which are the most important whe#f,;~E . The transi-
tion matrix element is then calculated to be

(af[HBm){(Bm|H|ai)
E_Eﬁm_zlgm '

<af|:|'|ai>= (14
with
25m=§ [(BmIH | aj) X ajlg|aj) (15)

and |j)=afrp,,aek(,|i>. The real part of the self-energyn,
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m=1,
m=0 . m=3,-3
———— 400000
m=1,-1 m=2,-2
—_— —o0o— —oo—
—e—— *—o *—o
ne=1 ng=2 n=3

FIG. 3. One-electron energy level when the Fermi level is at the
neth level. m is the angular-momentum quantum number. The en-
ergy due to the Coulomb interaction with electrons in the lower
|eVe|, iS ul,l:1'567’ U212:3.936, U2107U2’2:O.176,

Unzms

gives unimportant energy shift and is neglected here. Itslss=6.936, U31—U33=0.282 in units ofe’/sl, in the Hartree-

imaginary part aE=Egy, is given by —T'(«a|B)/2 with?*
[(alp)=27Mg. 2 FDI[1-fi(ppa)), (16

whereM g, = { a|cy,| 8)|* with m the difference of the total
angular momentunM ;—M,,, wuz,=Eg—E,, andD; and

Fock approximation andu;;=1.880, u,,=4.504, u,o—U;,
=0.118,u33=7.718,u3,=0.201 in the Hartree approximation.

€ YeYc

|:_gMaﬁm[fe(Mﬂa)_fc(MBa)]i (23)

with ’)/|:27Tt|2D| .

f, are the density of states per spin and the Fermi distribution Tpe generalization of this current formula to cases with

function, respectively, of lead

many « states and many states is straightforward, if tun-

The current associated with the tunneling of electronsne”ngs through differenB states do not interfere quantum

from the emitter to the collector is

leme=~€Pu 2 Pi 2 Moy (1)1~ Nego(i) IW(af|ai),
17

where ng,(i) is 1 if the eko state is occupied, and O if
vacant, andP; is the statistical probability of finding state.
P, is the probability of findingx state and®,+Pz=1. Due
to the equilibrium in each of the leadss;Pingy(i)
X[l_ncqo(i)]:fe(sek)[l_fc(ecq)]- Because F(alﬁ)
<kgT, we obtain the total current

I=le c—lce

— —(elf)[T(al BT o(Bla)

—To(a|B)To(Bla)IP, /T (a|B), (18

with
Ty(a|B)=27M g t?Di[1—f((1p.)], (19)
T'(Bla)=27M g, t7D\fi( npa)- (20)

To obtainP, we consider an eigenstate of the total HamiI—T
tonianH. Suppose the system is initially in an eigenstate of

Ho with energyE, |a)|i), in which a statdko is occupied.
The eigenstate dfl is then

|y =|ai)+gH )= (1+gH+gHgH+ - - )| i).
(2D

The probability of finding the system ing)|m) with
Imy=ay,li) is [(Bm|y;)|?, andPz=1~P,, is given by

Pp=Pa2 Pi2 My ()(mly)|*=T(Bla)Po/T(al B),
(22

with T'(B8|a)==T'|(B|a). ThenP, is obtained and the cur-
rent is given by

mechanically, that is, wheju g, — u 4, is much larger than

the level broadening. The current given by
IZEaa’(IeaHCa’_Icaﬂea’) is
|=—(e/h) 2 {2 Te(e’|8) 2 Te(Bla)Ps
=2 Te(e'|B) 2 Te(Bl)Py /E T(elB) (24
e
=~ 72 [Te(Bla)P,~Te(al H)Py]. (25
In the last equality we have used,I'(a|B)Pg

=3, I'(Bla)P,, which is the generalization of Eq22).
Ratios betweerP,'s are obtained from transition rates be-
tweena's, which are given by

1
W(a'|a)= 52, T(a'|AT(Bl@) /E T(alp).
(26)

he detailed balance gives

2 W(a'|a)P,=2, W(ala')Pq:. (27)

The obtained formula coincides exactly with that from the
master equation.

IV. RESULTS
A. Many-body eigenstates

Single-particle energy levels are shown in Fig. 3 when
ng, the level index at the Fermi energy, is 1, 2, and 3. The
degeneracy present in the parabolic potential is lifted due to
Unem in Eq. (8), interactions with electrons in the lower lev-
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due to the difference in the Coulomb interaction between

(a) 1F . * Exact Diagonalization different electron configurations. In the other two calcula-
- §=0(B) ¥ ﬂamee-FOCk Approximation tions, exchange and correlation effects are important in in-
« 09F artree Approximation . . . )
N smo creasing the spI.|tt_|ngs. A remarkable correlation effect ap
> o8k . pears in the splitting between tw&=0 states at the total
2 ek§0l 01 o $=0 angular momentum zero in the exact diagonalization. When
S o7p FEozhEh ik)(m’m)(zfyo(f)lﬁf) Un.m is consideredFig. 4(b)], however, the difference be-
g 06k Si%?% a2z tween the exact diagonalization and the Hartree-Fock ap-
w =1 +(21,01)(24,04) proximation is reduced considerably because the degeneracy
0sp . §=1 . . of single-particle levels is lifted.
0 1 2 3 4
Total Angular Momentum B. Nonlinear transport
(b)m F x(04,01) In this section calculated current-voltage characteristics
are presented in the three approximations to clarify the im-
991 portance of exchange and correlation effects. In most cases
9gf x g# '81; results are given with and without;,Fm taken into account to
E % (21.21) (21,04) x clarify effects of degeneracy. The thermal enelgyT is
9.7 (2“21; @504 2y2n much lower than the charging energy, &7zl, and much
96F 2211:21) higher than the level broadening due to the tunneling.
In the experimen{see Fig. 1, the bias voltag&/ and the
9.5 ¢ gate voltageV are controlled and the potential, say, at the
~ g4 collector V. is set to zero by connecting it to the grouhd.
= Theoretically, however, it is more convenient to choose an-
® 93¢ other set of parameters, the chemical potentigl at the
‘jai b emitter, u. at the collector, and the potentig}y at the dot,
N 9.2 S=0(B) and to s_,et\/d grounded. In a_lll the figures_ in this paper, the
O 91 current is plotted as a function @f,, at a fixedu, .
2 Several experiments have been made on asymmetric
9F +u0n double-barrier structurés;® which have two barriers with
8.9F S=0 different thicknesses, and most calculations in this paper are
¢ made on devices in which the barrier in the collector side is
8.8} thinner than that in the emitter side so that>y,.. In such
a7k +§§{:8#)) a_device geometry the dot is approximately in equilibrium
S=0(A) o1 S=0 v_wth the co_llc_ector, and the number of electrons changes very
8.6f %Eg*g{; 21,01) + little in raising wue. This enables us to study transport
8.5 [s=1 , zi04) (2u.21) through excited many-body states as well as the ground state.
: _+§§*§H If y¢=7v., on the other hand, the dot is approximately in
8af ’ equilibrium with the emitter and only transport through the
o 1 > 3 4 ground state appears in the current-voltage characteristics as

a function of .
The saturation current in the limit of large., which is
FIG. 4. Two-electron eigenenergies i=2 (a) without up_n, obtained from Eq(25), is
and (b) with u,_r, considered, measured fronz¢.. S is the total
spin in the exact-diagonalization result. T#e-0 states with the
total angular momentum zero are labelkdand B. Electron con-
figuration is designated for the Hartree-Fock redalso for the
Hartree result in(b)]. Eigenenergies at negative total angular mo-With Ny=2(ng+1)—N the number of holes, since
mentum—M are the same as those Mt fe(mge) =1 atlargeu and= sM g, =Ny . If uc andkgT are
low enough to make (ugz,) negligible,

Total Angular Momentum

e
lo= =7 7eNn2 Pa. (28)

els, whenng is larger than 1. The dominant electrostatic

PR ; ; ; e Npye(N+1)7yc
contribution iNUp_m produces a potential that is the highest lo=— 7 2 (29)
at the center, that is ah=0. h Npyet(N+1)ve

Two-electron energy levels at=2 are shown in Fig. 4. |n the following the current is plotted in units .

In Fig. 4(@) it is assumed thati,_, is absent hypothetically ~ The current at zero temperature in the exact diagonaliza-
to compare with results in Fig.() in which u,_r, is consid- tion is plotted as a function ok, in Fig. 5& whenu,_p, is
ered. In each case, results are compared between the exaeglected and in Fig. (6) when Un.m is considered at
diagonalization, the Hartree-Fock approximation, and they_/y,=100. At low u, the second levelnz=2) is occu-
Hartree approximation. Wheu,_, is neglectedFig. 4@],  pied by one electron. Above a threshold value.qf, the
energy splittings present in the Hartree approximation areurrent starts to flow because a channel through a two-
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0.5 1 1.5
[ -1 (IN=D1/(e%e &)

1/,

T R SO TP WS NI AU SV SISO BV RPRN B W1

0.5 1 1.5
(1t (N=1)1/ (e%/e 2 )

FIG. 5. Current as a function @i, in the exact diagonalization
at zero temperaturey./ye=100, andng=2 (a) without u_, and
(b) with Uncm - The current is due to the transition betwegr 1
and N+1 electrons in the dot.ly=—(e/A)Npye(N+1)y./
[Nhyet (N+1)y.] with Ny=2ng+2—N and uoo(N) is ug, in
which @ and B8 are the ground states with andN+1 electrons,
respectivelyu, is fixed atug(N=1)+0.1e%/¢l,.

electron state in tharth level is open. There is clear corre-

spondence between current steps here and two-electron lev-

els in Fig. 4. WherunFm is considered, tunnelings from the
excited single-particle levelnf=0 atng=2 in Fig. 3 ap-

pear at different chemical potentials, which are marked by

arrows in Fig. Bb). At the step onset marked by a thick

arrow, the excited single-particle level starts to be populated

due to the transition through the two-electron state \Bithl

at the total angular momentum two, and two channels from

the excited single-particle level become open at this chemi
cal potential. Heights of steps in Fig(ah have simple ratios
of 6:3:1:2:2:1, reflecting the degeneracy of two-electron
levelsZ® but there is no such simple relation in Figbbdue
to the splitting in single-particle levels.

An example of the dependence g/, is presented in
Fig. 6 forng=1 at nonzero temperature. This clearly shows

that tunnelings through excited states are more clearly seen

at larger y./v.. All of the results shown below are at
el v.=100.

There are only small dependencesonat low tempera-
tures in the region ofugy(N) <u.<ug(N+1). At large
M Within this region, some of high-energy excited states
with N electrons in the dot are never populaté?],&0 for
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0.5 1 1.5
i - (N=1)]/(ee 2 )

FIG. 6. y. /v dependence asT=0.01e?/¢l, andng=1. The
current is due to the transition betwelir=1 andN+ 1. Note that
Iy depends ony./vye.

tion current at largeu, is independent of the number of
N-electron states participating the transport, sibg® =1
in Eqg. (28) in the limit of large y./ ve.

A comparison between the exact diagonalization, the
Hartree-Fock approximation, and the Hartree approximation
is given in Fig. 7a) whenu,_r, is neglected and in Fig.(B)
when Uncm is considered. The temperature ikgT

=0.02%/¢l,. In Fig. 7(a), compared with the Hartree result,
the Hartree-Fock result has current signal at lower chemical
potentials due to the exchange effect and has a less steep
increase of the current. The exact-diagonalization result has

(a) 41
0.8
006
~
— 0.4
Exact Diagonalization
0.2 | Bl Hartree-Fock
' Approximation
/ — = -Hartree Approximation
0] -
0 0.5 1 1.5
(U -1 (N=D]/ (e’ e £ )
- (b) ¢
0.8
06
04
Exact Diagonalization
0.2 " ----- Hartree-Fock
Approximation
0 ! — --Hartree Approximation

0.5 1.5
(1 1o (N=DI/ (e £,)

FIG. 7. Comparison with approximate calculationat=2 (a)

such states Nevertheless the current-voltage characteristicsvithout Up.m and (b) with u, . Same as in Fig. 5 except

do not change much at large /v, . In particular the satura-

ksT=0.02%/¢l,. Note thatuq(N) depends on the approximation.
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(a) 4 (a) 1t
0.8 0.8}
_o 0.6 C""o_e [
~ :o
— 0.4} - 0.4¢
’ Exact Diagonalization —_
0.2 i ----- Hamee}iggtoximation 0.2¢
’ — = -Hartree Approximation
O} 0l
0 0.5 1 1.5
= 2
[u -1 (N=1)]1/(ee £ )
(b) +f
0.8}
006}
~
— 04}
Exact Diagonalization
6z T Hamee;i%%toximation
— = -Hartree Approximation
01
0 0.5 1 1.5 OI 0.5 1 1.5
(-1 (N=1T/ (e%e £ ) (u,-u (N=D1/(e¥e £,)
FIG. 8. Comparison with approximate calculationsngt=3. FIG. 9. np dependence of the current due to the transition be-
Same as in Fig. 7. tweenN=1 andN+1 electrons in the dd@) withoutu,,_, and(b)

" with U,_m . ksT=0.02/¢lg andy. /.= 100. Note that, depends
the same position of the current onset as the Hartree-Foc N In (b) g is the average ofi, , over one-electron states.

result, but has a steeper rise due to larger degeneracy of
two-electron levels. There is a discrepancy also at higher
chemical potentials between the exact diagonalization and ” remarkable dependence dw of the current-voltage

the Hartree-Fock approximation. Although the same trengharacteristics is seen in Fig. @for ng=2: the width of
remain€® in Fig. 7(b), the difference between the exact di- the slope region between plateaus is reduced considerably in

agonalization and the Hartree-Fock approximation is relargerN. This feature is present also im:=3. This is seen

duced. Similar results are obtainedrip=3 as shown in Fig. &S0 In the result in the Hartree-Fock approximation and

8. thereforg has n.othlng to do with the correlation effect. This
The ne dependence of the current-voltage characteristic€€ature is explained below by the number b 1)-electron

in the exact diagonalization is summarized in Fig)@vith-  States participating in the transport.

out up_n, considered and in Fig.(B) with u,_n, considered. In the limit of large y./ e,

In Fig. Ab) the chemical potentiglk, is measured from an
averaged onset of current stepsTat 0 due to the transition _
fom N=0 to N=1, which is defined by I= —<e/ﬁ>§ Pa% Le(Bla) (30)

,ua\,=2munFm/(n,:+ 1) (note thatu. should be lower than

May 1O have current steps cprresponding\leo-to-l transi- - qom Eq. (25). The current increases with the numbergf
tions). The chemical-potential difference between the center§tates participating in the transport and is saturated to be

of N=0-tp-_1 slope_ and 1-to-2 slope in the current-voltage_(e/ﬁ)ye“\lh at large 1, where all 8 states participate in
characteristics, which corresponds to the Coulomb blockadﬁ,]e transport. As shown in Fig. 5, the current in the case of
threshold, decreases with the increasengf because the . .iN incre;ases ag crossesﬁﬁ, and in most cases is

e a

wave-function extent increases with and the typical intra- the ground state. In the case of larje however, many

level Coulomb interaction_decreases. There is a difference i@xciteda states are populated through the first févstates

the width of the slope region between F|g§a)9_and _S(b). In_ in the vicinity of the current onset, because there are many
the absence ofi,., [Fig. 9@)], the slope width is again  cnoices in producingi-electron states fromN+ 1)-electron
determined by the typical intralevel Coulomb interaction andstates by taking one electron away. Singg, for high-
decreases with the increasergf, whereas in Fig. @) the  energy excitedr states and for many g8 states is already
slope region is widened by the splitting of one-electron ensmaller thanu,, transport channels from the excitedstates
ergy levels due ta,_p, and its width is roughly independent through manyg states are immediately open, giving a nar-
of ng. row slope region.



3908 YUKIHIRO TANAKA AND HIROSHI AKERA 53

(a)osl
0.5F

0.4t

© 03t

(G}
0.2}

0.1¢f

Q =z

(INT]

-0
QZ
(]
B

QzZ
i
W

Z 03¢

-1.5 -1 -0.5 0 0 1
(b - (N1 /(e e ) u l(e’le )

FIG. 10. (a) N dependence of the current due to the transiton FIG. 11. Linear-response conductan@ as a function of
between N and N+1 electrons in the dot atng=2.  Me= MK in the exact diagonalization ag=2 (a) without u,,_n, and
ksT=0.02%¢ly and y./ye=100. Note that, depends omN. p,  (b) With Uy . kgT=0.016%/slq. Go=(€%/7ksT) Yeye/(Vet ¥c)-
is fixed atuo(N)+0.1e%/elq. (b) N, dependence of the current u, is measured from the position of the first pegkis the degen-
due to the transition betweeN, and N,+1 holes in the dot. eracy of the ground states.

N=2ng+2-N,. pu. is fixed at ue(N+1)—0.1e%/¢l,.

lon=—(e/A)Nvyo(N,+ 1)y /[Nyet (Ny+1)vc]. . )
on= = (RN elNn 1)y [INyet (Not D for n=2 and Fig. 12 fom:=3. In both figures results are

presented with and withouunFm considered.

An approximate electron-hole symmetry exists in the The peak separations are not constant, in contrast with the

many-body eigenenergy distribution betwebh electrons usual Coulomb oscillgtion. This clgarly shows thqt the
andN holes in thength level, although the exact electron- SIMPIe constant capacitance model is no longer valid and
hole symmetry is absent because of the finite extent of thg'any-body effects play an important role. In the absence of
dot. This approximate electron-hole symmetry is seen in th&in.m the Hund rule in the atomic physics is applicable and
current-voltage characteristics when the transport of a holéhe ground state has sp/2 below half filling due to ex-
through the dot witlN holes is compared with the transport change interactions. Above half filling, states with the oppo-
of an electron through the dot witk electrons. An example Site spin start to be occupied with no exchange repayment
is given in Fig. 10 whemg=2. Note that in Fig. 1() the  and therefore a larger peak separation is produced at half
dependence on the hole numbéy is presented of the cur- filling. This feature is retained in the presencewfr, in
rent due to the flow of a hole from the emitter to the collectorn.=2 because of small splitting in one-electron energy lev-
as a function of decreasing, with u. fixed at higher energy els. Inng=3, however, the splitting is larger and the intra-
to keepNy, holes in the dot. level Coulomb interaction is smaller thanrip=2. There are
two groups of one-electron levels m-=3 (see Fig. 3 and
the Hund rule is applicable only within each group. The third
electron enters a state with the opposite spin in the lower
The formula of the conductance is obtained by linearizinggroup. In this case there are larger peak separations in
Eqg. (25) with respect to the bias voltage, which coincidesN=2, 4, and 6.
with the formula already given by several authtt$’23An The peak height also varies from peak to peak and cannot
important difference between the linear and nonlinear transbe explained only by the degeneracy of many-body ground
port is that only the ground states for eddtare involved in  states. Here the many-body matrix eleme,
the linear transport. Examples of the conductance as a fune=|(«|cn,|8)|? plays an important role and the correlation
tion of u, are presented in the linear transport. Examples o&ffect appears as in the previous study in the fractional-
the conductance as a function gf are presented in Fig. 11 quantum-Hall regimé’ In particular, inne=3 and in the

C. Linear transport
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of the electron number in the dot is withdd and N+ 1 at

low temperatures, and therefore our theory is applicable to
their devices. Unfortunately, however, it is shown in the Ap-

pendix that the level separation is comparable to the Cou-
lomb interaction energy in their dots and the quantum limit

assumed in our theory is not applicable in their devices, ex-
ceptng<1.

Although their experimental resuttare not in the quan-
tum limit in the whole range of the gate voltage, we here
attempt to compare their experiments and our theory. Both in
their results and in ours, the interval of peaks in the current
as a function of the gate voltage has a tendency to decrease
as the number of electrons in the dot increasee Figs. 11
and 12 and there are considerable variations around this

(b)ost tendency. In the experiments, however, effects of possible
: bound states at impuritigsnay be important in considering
0:5 N=0 = b=aN=8 the variations in the peak spacings. Because of this and the
0.af [o=t hNZ2 N=5 o' quantum limit assumed in our theory, it is not possible in the
o r 0=8 present stage to compare the interesting features in peak in-
o 03¢ tervals between their experiments and our theory.

Since it is assumed that the thermal enekgy¥ is much
larger than the level broadening due to tunneling in our
theory, peak widths are proportional Toand peak heights
are proportional to IV. Experimental results also show such
a tendency at high temperatures, whereas the peak width is
independent of the temperature at low temperatures and var-
ies from peak to peaklt was found in another experimént
) ~that the height of a peak is very small at low temperatures
_FIG. 12. Linear-response conductar@eat ng=3. Same as in and increases remarkably with the temperature. The mecha-
Fig. 11. nism due to the spin-selection rule was proposed to explain
this phenomenon on the basis of numerical calculations of a

square dot® As mentioned in the previous subsection, such a

presence oll,_n, the ground states havé=1/2 atN=3 suppression of a peak at low temperatures is also found in

andS=2 atN=4 and the transition by adding one electron OUr calculation for a circular dot.
is forbidden between these states because of the spin selec-

0.2}
0.1F

tion rule, leading to the disappearance of the _corrgspond_ing V. CONCLUSION
conductance peak dt=0. The same was studied in detalil
for a square quantum dot in the recent theoretical Wdtk. We have made a theoretical study of the coherent tunnel-

Fig. 12b) a small peak appears betwebi=3 andN=4, ing through the quantum dot fabricated recently in semicon-
which is due to the transition frold= 3 excited states popu- ductor double-barrier structures, based on calculated many-
lated at nonzero temperatures. body eigenstates in the dot. We have derived a current
formula in the nonlinear regime in the limit of small level
broadening, which coincides with the formula derived from
the master equation. We have chosen the quantum limit of
Many experiments® have been reported on the vertical large separations between degenerate levels in order to get
transport through a quantum dot formed in etched doublerid of complicated effects of the mixings between different
barrier resonant-tunneling structures. In most of them, howlevels. The quantum limit was shown to be useful in clarify-
ever, there are no electrons in the quantum dot when the bidsg features such as the electron-hole symmetry and the
voltage is below the threshold. And above the threshold biastrong dependence on the electron number. In most of our
voltage, electrons begin to tunnel through the dot and thealculations we have assumed an asymmetric device geom-
distribution of the electron number in the dot ranges frometry such that the dot is approximately in equilibrium with
zero to the maximum value, which depends on the bias voltthe collector, which is appropriate in extracting the whole
age. Our theory is not applicable to these cases becausenitany-body energy spectrum from the current-voltage char-
assumes that the distribution of the electron number in thacteristics.
dot is within N andN+ 1, in whichN depends on the gate Effects of the exchange and correlation appear in the
voltage. current-voltage characteristics in the form of divided steps in
In recent experiments by Austingetal® the the Coulomb staircase. Since the correlation effect is reduced
Al,Ga;_,As barriers are doped selectively and there areby the nonuniform potential produced by filled and inert lev-
electrons in the dot even in the absence of the bias voltagels below the chemical potential, most of the features are
The gate contact is attached to modify the number of elecwell described by the Hartree-Fock approximation contrary
trons in the dot. Except at large bias voltages, the distributioio our expectation. This means that the features clarified in

D. Comparison with experiments
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this paper are approximately the case even when the quamixing for each fixechg . Its maximum value for each fixed

tum limit is not applicable. The linear conductance is showmn; and any possible andm is written as

to exhibit clearer correlation effects than the nonlinear cur-

rent profile, such as the Hund rule and the spin selection rule. >{
ma

Observed current-voltage characteristics exhibit much
richer structures. To clarify such discrepancies between the
experiment and the theory, it is necessary to perform a mi- _ _ _ _ _
croscopic calculation of electron states that takes account gfneré«=0.19 for.npl— 1, @=0.51 forng=2, anda=0.85
the detailed device structure, such as the barrier shape in th@ NF=3, respectively.

presence of the bias and the subband structure in leads. The quantum limit also fails if theth level crosses the
lower level or the higher level due i@, (ng). The condi-

tion for no level crossing is that the highest one-electron

level with ng is lower than the lowest one with+1 and
The authors would like to thank T. Ando, S. Tarucha, andthe lowest one-electron level witly: is higher than the high-

N. Tokuda for valuable discussions. This work was sup-est one with ne.—1. This condition is written as

ported in part by the Grant-in-Aid for Scientific Research onB(€?/el)/fiwy<1. The value of 3 is calculated to be

Priority Area “computational Physics as a New Frontier in 8=0.20 for n=1, 8=0.54 for ne.=2 and $=0.81 for

Condensed Matter Research” from the Ministry of Educa-ng=3, respectively. Therefore no level crossing takes place

tion, Science and Culture, Japan and in part of the Visitingf the level mixing is negligible.

Researcher’s Program of the Institute for Solid State Physics, In the recent experimertthe Coulomb energy between

the University of Tokyo. Numerical calculations were per-two electrons is estimated to be 9 meV when the number of
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unnF,m(nF)‘) (62/8|0)
=a
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formed at Hokkaido University Computing Center. electrons in the dot is two from the zero-current plateau in
the current-voltage characteristics in the Coulomb-blockade
APPENDIX: APPLICABILITY OF THE QUANTUM LIMIT regime. If the level mixing is neglected in this case, the cor-

_ o o responding energy is calculated to be ®%5l,. From
Here we discuss the applicability of the approximation tothese estimations it is deduced the&tel,=7.2 meV, from
neglect the level mixing due to off-diagonal Coulomb matrix which # wy=4.9 meV and €%/¢l )/ wy=1.45. This means
elements, by considering the contribution to the level mixingthat the experimental result is not in the quantum limit, ex-
of the Hartree-Fock potential due to the electrons below thgeptng<1.

neth level, which is the most dominant effect to mix  From this, however, we can derive a semiempirical for-
harmonic-oscillator states with different We also discuss a mula for (€%/¢l)/%wg to know in which devices the quan-
possibility of the level crossing and show that it is less probtum limit is applicable. First we assume a homogeneous
able. We write the condition in terms of the impurity density jonized-impurity densityN, over the whole device. Then
and the effective mass as well as in termsedfel, and hwo and e?/el, are given byhwy=(2we’*4°Np/m* £)?
fiwg, and show that the quantum limit may be applicable ifand e?/¢l,=(m* wy/%)Y%?/ ¢, respectively. Therefore the
the semiconductor with smaller effective mass is used in theatio of the two is given by
guantum well and the impurity density is the same as in the
recent experiment on the GaAs dot. e?/el,
The one-electron part of the Hamiltonian including effects o
of the Hartree-Fock potential due to the electrons below the 0
neth level, is expressed by

]

1 1/4 m*/mo
Zﬂag

3/4
) Np M, (A4)

with ag the Bohr radius andh, the free-electron mass. Next
we consider effects of the inhomogeneous distribution of
ionized impurities in the experimentsin the experiments

Hq(le)= 2 sncgmocnmoju E Unn',m(nF)CﬁmoCn'ma: the confinement potential parallel to the interface is formed
nmo nn'me by §-doped ionized impurities with the sheet dendity in

(Al)  Al,Ga;_,As barriers. Here, for simplicity, we assume that

with the ratio ofe?/sl, to iw, has the same dependence on the

impurity density as the ratio in the homogeneous case has.
Then the prefactor is found from the experimental valuss
Ne=2.0<10" cm~2 and e’el,=7.2 meV and from

Unn m(ME) = > , Unmetrmvrnrmvmem m* =0.066n, ande =13.13 for GaAs. Finally the condition
n<ng.m for the quantum limit to be applicable is written as
_Unmrf’m”n’mn”m”)- (AZ) e2/8| %\ 3/4
. . 0 _ — /
The measure of the level mixing jsinn_,m(NE)/ (20— &n)| ¥ w0 =91.16w ?) Ng H<1, (A5)

for the electron in thength level and its square is the first-

order probability of finding the electron in the statelf this ~ where Ng is in units of 16 cm~2. This shows that it is

is much smaller than unity, the level mixing can be ne-easier to satisfy the quantum limit in semiconductors with
glected. Note that is an integer to satisfy tha—ng is even  smaller effective mass. For example?(el,)/% wg is 0.3 in
from the conservation af in the circular dot. Since it de- InSb well and 0.7 in InAs well in the same impurity density
pends strongly omg, we estimate the measure of the level of Ny=2.0x 10'* cm ™2,
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