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Exact many-body eigenstates in a quantum dot formed in double-barrier heterostructures are calculated in
the limit of strong confinement, and the nonlinear coherent transport through the states is studied for tempera-
tures larger than their level broadenings. Energy splittings between many-body states due to exchange and
correlation effects manifest themselves as small steps which decorate the Coulomb staircase in the current-
voltage characteristics, which strongly depends on the number of electrons in the dot. Clear many-body effects
are also found in peak heights and peak separations in the Coulomb oscillation of the linear conductance.

I. INTRODUCTION

Quantum dots, artificial atoms fabricated in semiconduc-
tor heterostructures,1 have given a new opportunity to study
many-body effects in solid state physics. Different from
natural atoms, such artificial atoms can be connected to leads
and the obtained current signal is expected to reveal the na-
ture of electron interactions in this system. In this paper
many-body effects in such a quantum dot on the transport are
studied theoretically.

Transport through a small metallic grain has been inves-
tigated extensively and most of the observed phenomena are
now well understood in terms of a capacitance associated
with a grain.2 Because of the small size, the charging energy
of a grain associated with the addition of one electron can be
much larger than the temperature and produces new features
in transport through the grain, such as the Coulomb oscilla-
tion, which appears in the conductance as a function of the
gate voltage to the grain, and the Coulomb staircase, which
is observed in the current-voltage characteristics. In a metal-
lic grain that is much larger than the Fermi wavelength, the
charging energy is well described by the capacitance be-
tween the grain and leads.

Recently many experiments have been made on the trans-
port through a semiconductor dot,1 but many phenomena re-
main unsolved, in particular, those in a very small dot with a
few electrons that are fabricated from double-barrier
heterostructures.3–9 A dot made of a semiconductor has
larger level separations due to smaller effective mass and is
therefore called a quantum dot. Calculations taking into ac-
count such quantized energy levels have been made within
an approximation, which assumes a constant capacitance be-
tween the dot and leads.10,11Although such calculations give
a useful guide to analyze many experiments, it is necessary
to improve the theory in the following two points to explain
experiments on very small dots.

The first point is to go beyond the constant-capacitance
model by incorporating the state dependence of the charging
energy. Each state has a wave-function profile that is differ-
ent from state to state and therefore it is necessary to take
into account the difference in the charging energy between
states when the level quantization is important.4,12 In quanti-
tative calculations of the charging energy, it is also important
in many cases to take into account the screening of a charge

in the dot by the leads and the gate contact. Such a calcula-
tion of the charging energy has been made within the Hartree
approximation for a quantum dot defined in a two-
dimensional system by split gates, and the obtained result is
close to that of the constant-capacitance model because of
the large number~from 40 to 70! of electrons in the dot.13

The same calculation in small dots is desirable.
The second point is to go beyond the Hartree approxima-

tion. It is necessary to include the electron correlation when
single-electron energy levels are degenerate, because many-
body eigenstates are determined by electron interactions.
Such correlation effects are known to be essential in the frac-
tional quantum Hall effect that occurs in discrete, degenerate
Landau levels. Recently studies have been extended to a
quantum dot in strong magnetic fields, and calculations have
been made of its addition spectra14–16 and of its
conductance.17

The electron correlation plays an important role also in
the absence of magnetic field,18 in particular, in the circular
dot in double-barrier heterostructures.4,8 The in-plane confin-
ing potential of the circular dot is well modeled by a two-
dimensional parabolic potential12m*v0

2(x21y2) withm* the
effective mass. This potential produces energy levels with
energy\v0(n11) wheren50,1,2, . . . and thedegeneracy
of each level isn11 excluding the spin degeneracy. The
electron correlation is expected to be important forn>1.

The purpose of this paper is to clarify how the current-
voltage characteristics is modified in such a system when the
exchange and correlation effects are taken into account. To
maximize effects of the electron correlation, a quantum limit
is considered, in which the level separation\v0 is much
larger than Coulomb matrix elements and low-energy many-
body states are restricted within the subspace of the Hilbert
space spanned in the level at the Fermi energy~the levels
below the Fermi energy are fully occupied by electrons and
inert!.

To concentrate on many-body effects within the dot, many
complicated aspects in actual systems are simplified. Leads
are assumed to be electron reservoirs with a constant density
of states and to be connected to the dot by a phenomenologi-
cal tunneling Hamiltonian. The screening of a charge in the
dot by the leads and the gate contact in connection with the
first point mentioned above13 and the correlation between
electrons in the dot and those in the leads such as in the
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Kondo effect20,21 are neglected.
The device, which was used in an experiment9 and is

considered in this paper, is schematically illustrated in Fig
1~a!. The barriers are modulation doped andN electrons are
present in the dot in the equilibrium, that is, in the absence of
current. The gate contact is attached to control the potential
at the dot. By raising the chemical potential of the emitter, an
electron in the emitter tunnels through one of states with
N11 electrons in the dot@see Fig. 1~b!#. It is assumed here
that only one channel through one state is open for a given
spin at a given energy and possible interference
phenomena,22 which will occur when there are more than
one many-body states within the width of the level broaden-
ing, are neglected.

This paper is organized as follows. In Sec. II a model of
the dot and the leads is given. The quantum limit is intro-
duced in calculating many-body states in the dot and shown
to be applicable in some examples. In Sec. III a current for-
mula is derived on the basis of the coherent tunneling
through many-body states. In Sec. IV calculated results of
the current-voltage characteristics and the conductance, as
well as many-body energy spectra in the quantum limit, are
given. A comparison with the Hartree-Fock approximation
and the Hartree approximation is made to clarify effects of
the exchange and correlation. In addition, a comparison of
our results with recent experiments is made. In Sec. V the
conclusion is given.

II. HAMILTONIAN

Our model Hamiltonian consists of the unperturbed
Hamiltonian of the dot, the emitter, and the collector,H0 ,
and the tunneling Hamiltonian,Ht :

H5H01Ht , ~1!

with

H05Hd1He1Hc . ~2!

The potential in the dot formed in double-barrier heterostruc-
tures is well approximated by the sum of the barrier potential
~the z axis is along the growth direction! and the parabolic
in-plane potential by the electrostatic confinement, the latter
being given bym*v0

2r 2/2 with m* the effective mass and
r5(x21y2)1/2. We consider only the lowest level associated
with the motion along thez axis and measure energies from
this level. Single-particle states are then represented by three
quantum numbers: the principal quantum numbern
(n50,1,2,. . . ), the orbital angular momentumm
(m50,61,62, . . . ), and thespins (s561). The eigen-
function of the in-plane part is

fnm~r ,u!5~2p!21/2exp~2 imu!x jmS rl 0D , ~3!

with

x jm~r!5
A2
l 0

S j !

~ j1umu!! D
1/2

expS 2
r2

2 D r umuL j
umu~r2!, ~4!

and the corresponding eigenenergy is

«n5\v0~n11!. ~5!

Here l 05(\/m*v0)
1/2 and L j

m(x) is the Laguerre polyno-
mial. Since j5(n2umu)/2 takes non-negative integers, the
allowed value ofm at eachn ism50 for n50, m561 for
n51, m50,62 for n52, and so on. The degeneracy of the
nth level isn11. The extent of the wave function in thez
direction is assumed to be negligible compared with that of
the in-plane wave function,l 0 .

The Hamiltonian of the isolated dot in the second-
quantization form is then expressed by

Hd5 (
nms

«ncnms
† cnms

1
1

2 (
n1m1n2m2n3m3n4m4ss8

Un1m1n2m2n3m3n4m4

3cn1m1s
† cn2m2s8

† cn3m3s8cn4m4s , ~6!

with

Un1m1n2m2n3m3n4m4
5E drE dr 8fn1m1

* ~r !fn2m2
* ~r 8!

3
e2

«ur2r 8u
fn3m3

~r 8!fn4m4
~r !, ~7!

r5(x,y), and « the dielectric constant. Two characteristic
energy scales, the level spacing\v0 , and the typical Cou-
lomb energye2/« l 0 are plotted as a function ofl 0 in Fig. 2.
For l 0 smaller than the effective Bohr radius,\v0 is larger
thane2/« l 0 . In this paper we consider the quantum limit of
\v0@e2/« l 0 and level mixings due to off-diagonal Coulomb
matrix elements are neglected. The applicability of the quan-

FIG. 1. ~a! Schematic of a cylindrical double-barrier structure
with a quantum dot formed between barriers.V is the bias voltage
andVg is the gate voltage to control the potential at the dot.~b!
Parameters to be used in the calculation. The potential at the dot is
fixed and the chemical potential at the emitter and at the collector
are varied.mba(N11)5Eb(N11)2Ea(N) with Ea(N) the en-
ergy ofN-electron statea.
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tum limit, or the approximation to neglect level mixings, is
examined in detail in the Appendix. It is shown there that in
dots in the GaAs well, which have been reported so far,
\v0 ande

2/« l 0 are comparable and the quantum limit is not
applicable. However, it is also shown there that the quantum
limit may be applicable in a dot formed in other materials
with smaller effective mass, such as InSb. Label the level at
the Fermi level asnF . In the quantum limit the levels below
nF are fully occupied by electrons and those abovenF are
empty and the Hamiltonian in this limit is expressed~omit-
ting the subscriptnF when possible! by

Hd~nF!5(
ms

~«nF1unFm!cms
† cms1

1

2 (
m1m2m3m4ss8

3Um1m2m3m4
cm1s
† cm2s8

† cm3s8cm4s , ~8!

with

unFm5 (
n8,nF ,m8

~2UnFmn8m8n8m8nFm2UnFmn8m8nFmn8m8!.

~9!

HereunFm takes into account the interaction between an elec-

tron in thenFth level with those in the lower filled levels in
the Hartree-Fock approximations. Since the system we con-
sider has the rotational symmetry around thez axis and in the
spin space, many-body eigenstates are labeled by the total
orbital angular momentum, the total spin, and itsz compo-
nent.

The wave function and the energy in the Hartree-Fock
approximation is given by uHF&5P icnFmis i

† u0& and

^HFuHd(nF)uHF& with u0& representing the filled levels up to
the (nF21)th level. Exchange terms in̂HFuHd(nF)uHF&
and inunFm are dropped in the evaluation of the energy in
the Hartree approximation.

The Hamiltonian of leadl ( l5e for the emitter andl5c
for the collector! is

Hl5(
ks

« lkalks
† alks , ~10!

wherek represents a continuous quantum number character-
izing a state in a lead.

Finally the tunneling Hamiltonian is

Ht5 (
lkms

t l~cnFms
† alks1H.c.!. ~11!

Here we have assumed that matrix elements are independent
of states involved. In particular this Hamiltonian does not
conserve the orbital angular momentum, which might be the
case when impurities are present in barriers and leads.

III. CURRENT FORMULA

Instead of using the general current formula in terms of
the Keldysh-Green function,23 in this paper we take a simpler
approach, which is valid except in the regime of the Kondo
effect at very low temperatures. We assume that the thermal
energy kBT is much larger than the level broadening of
many-body states in the dot and obtain the same current
formula as that derived from the master equation.10,11 This
agreement was previously proved in the linear transport
regime,23 but not in the nonlinear regime we consider in this
paper, although it might be expected in the view of the ther-
mally broadened resonant-tunneling current peak.10,11 We
emphasize here that our theory assumes no inelastic pro-
cesses in the dot.

We calculate the current through the dot by treatingHt as
a perturbation and assume that the two leads stay in the equi-
librium. In this paper we only consider the tunneling of a
single electron at a time and therefore the transition is exclu-
sively between states withN electrons in thenFth level and
those withN11 electrons. This is the case when the bias
voltage is not very high or when the barrier in the collector
side is much more transparent than that in the emitter side
and the probability of havingN12 electrons and more is
negligible.

As an illustration, we first consider the case where the
transition is possible only between a singleN-electron state,
a, and a single (N11)-electron state,b. Consider the fol-
lowing transition. The initial state isua&u i & in which the
eks state is occupied and thecqs state is vacant,u i & repre-
senting the occupation of levels in the two leads. The inter-
mediate state isub&um& with um&5aeksu i &. The conservation
of the total spin requires thats52(Sb2Sa). The final state
is ua&u f & with u f &5acqs

† aeksu i &. The transition rate is given
by

W~a f ua i !5
2p

\
u^a f uT̂ua i &u2d~Ea i2Ea f !, ~12!

with

T̂5Ht1HtgHt1HtgHtgHt1•••. ~13!

The unperturbed Green’s function is given by
g51/(E2H01 ih) with h the positive infinitesimal and
E5Ea i5Ea f . In the evaluation of the matrix element of
T̂, we take into account only terms corresponding to pro-

FIG. 2. Level separation\v0 and typical Coulomb energy
e2/« l 0 as a function of l 0 in units of Ry*5m* e4/2\2«2.
aB*5\2«/m* e2 is the effective Bohr radius.aB*5104 Å in GaAs,
296 Å in InAs, 631 Å in InSb and Ry*55.29 meV in GaAs, 1.67
meV in InAs, 0.638 meV in InSb.
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cesses passing throughub&um& as frequently as possible,
which are the most important whenEa i;Ebm . The transi-
tion matrix element is then calculated to be

^a f uT̂ua i &5
^a f uHtubm&^bmuHtua i &

E2Ebm2Sbm
, ~14!

with

Sbm5(
j

u^bmuHtua j &u2^a j ugua j & ~15!

and u j &5alps
† aeksu i &. The real part of the self-energySbm

gives unimportant energy shift and is neglected here. Its
imaginary part atE5Ebm is given by2G(aub)/2 with24

G~aub!52pMba(
l
t l
2Dl@12 f l~mba!#, ~16!

whereMba5u^aucmsub&u2 with m the difference of the total
angular momentumMb2Ma , mba5Eb2Ea , andDl and
f l are the density of states per spin and the Fermi distribution
function, respectively, of leadl .

The current associated with the tunneling of electrons
from the emitter to the collector is

I e→c52ePa(
i
Pi(

f
neks~ i !@12ncqs~ i !#W~a f ua i !,

~17!

where neks( i ) is 1 if the eks state is occupied, and 0 if
vacant, andPi is the statistical probability of findingi state.
Pa is the probability of findinga state andPa1Pb51. Due
to the equilibrium in each of the leads,( iPineks( i )
3@12ncqs( i )#5 f e(«ek)@12 f c(«cq)#. Because G(aub)
!kBT, we obtain the total current

I5I e→c2I c→e

52~e/\!@Gc~aub!Ge~bua!

2Ge~aub!Gc~bua!#Pa /G~aub!, ~18!

with

G l~aub!52pMbat l
2Dl@12 f l~mba!#, ~19!

G l~bua!52pMbat l
2Dl f l~mba!. ~20!

To obtainPa we consider an eigenstate of the total Hamil-
tonianH. Suppose the system is initially in an eigenstate of
H0 with energyE, ua&u i &, in which a statelks is occupied.
The eigenstate ofH is then

uc i&5ua i &1gHtuc i&5~11gHt1gHtgHt1••• !ua i &.
~21!

The probability of finding the system inub&um& with
um&5alksu i & is u^bmuc i&u2, andPb512Pa is given by

Pb5Pa(
i
Pi(

lk
nlks~ i !u^bmuc i&u25G~bua!Pa /G~aub!,

~22!

with G(bua)5( lG l(bua). ThenPa is obtained and the cur-
rent is given by

I52
e

\
Mab

gegc

ge1gc
@ f e~mba!2 f c~mba!#, ~23!

with g l52pt l
2Dl .

The generalization of this current formula to cases with
manya states and manyb states is straightforward, if tun-
nelings through differentb states do not interfere quantum
mechanically, that is, whenumba2mb8au is much larger than
the level broadening. The current given by
I5(aa8(I ea→ca82I ca→ea8) is

I52~e/\!(
b F(

a8
Gc~a8ub!(

a
Ge~bua!Pa

2(
a8

Ge~a8ub!(
a

Gc~bua!PaG Y(
a

G~aub! ~24!

52
e

\(
ab

@Ge~bua!Pa2Ge~aub!Pb#. ~25!

In the last equality we have used(aG(aub)Pb
5(aG(bua)Pa , which is the generalization of Eq.~22!.
Ratios betweenPa’s are obtained from transition rates be-
tweena ’s, which are given by

W~a8ua!5
1

\(
b

G~a8ub!G~bua! Y(
a

G~aub!.

~26!

The detailed balance gives

(
a8

W~a8ua!Pa5(
a8

W~aua8!Pa8. ~27!

The obtained formula coincides exactly with that from the
master equation.

IV. RESULTS

A. Many-body eigenstates

Single-particle energy levels are shown in Fig. 3 when
nF , the level index at the Fermi energy, is 1, 2, and 3. The
degeneracy present in the parabolic potential is lifted due to
unFm in Eq. ~8!, interactions with electrons in the lower lev-

FIG. 3. One-electron energy level when the Fermi level is at the
nFth level.m is the angular-momentum quantum number. The en-
ergy due to the Coulomb interaction with electrons in the lower
level, unFm, is u1,151.567, u2,253.936, u2,02u2,250.176,
u3,356.936, u3,12u3,350.282 in units ofe2/« l 0 in the Hartree-
Fock approximation andu1,151.880, u2,254.504, u2,02u2,2
50.118,u3,357.718,u3,150.201 in the Hartree approximation.
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els, whennF is larger than 1. The dominant electrostatic
contribution inunFm produces a potential that is the highest

at the center, that is atm50.
Two-electron energy levels atnF52 are shown in Fig. 4.

In Fig. 4~a! it is assumed thatunFm is absent hypothetically

to compare with results in Fig. 4~b! in which unFm is consid-
ered. In each case, results are compared between the exact
diagonalization, the Hartree-Fock approximation, and the
Hartree approximation. WhenunFm is neglected@Fig. 4~a!#,
energy splittings present in the Hartree approximation are

due to the difference in the Coulomb interaction between
different electron configurations. In the other two calcula-
tions, exchange and correlation effects are important in in-
creasing the splittings. A remarkable correlation effect ap-
pears in the splitting between twoS50 states at the total
angular momentum zero in the exact diagonalization. When
unFm is considered@Fig. 4~b!#, however, the difference be-
tween the exact diagonalization and the Hartree-Fock ap-
proximation is reduced considerably because the degeneracy
of single-particle levels is lifted.

B. Nonlinear transport

In this section calculated current-voltage characteristics
are presented in the three approximations to clarify the im-
portance of exchange and correlation effects. In most cases
results are given with and withoutunFm taken into account to

clarify effects of degeneracy. The thermal energykBT is
much lower than the charging energy, ore2/« l 0 and much
higher than the level broadening due to the tunneling.

In the experiment~see Fig. 1!, the bias voltageV and the
gate voltageVg are controlled and the potential, say, at the
collectorVc is set to zero by connecting it to the ground.9

Theoretically, however, it is more convenient to choose an-
other set of parameters, the chemical potentialme at the
emitter,mc at the collector, and the potentialVd at the dot,
and to setVd grounded. In all the figures in this paper, the
current is plotted as a function ofme at a fixedmc .

Several experiments have been made on asymmetric
double-barrier structures,4,7,8 which have two barriers with
different thicknesses, and most calculations in this paper are
made on devices in which the barrier in the collector side is
thinner than that in the emitter side so thatgc@ge . In such
a device geometry the dot is approximately in equilibrium
with the collector, and the number of electrons changes very
little in raising me . This enables us to study transport
through excited many-body states as well as the ground state.
If ge@gc , on the other hand, the dot is approximately in
equilibrium with the emitter and only transport through the
ground state appears in the current-voltage characteristics as
a function ofme .

The saturation current in the limit of largeme , which is
obtained from Eq.~25!, is

I 052
e

\
geNh(

a
Pa , ~28!

with Nh52(nF11)2N the number of holes, since
f e(mba)51 at largeme and(bMba5Nh . If mc andkBT are
low enough to makef c(mba) negligible,

I 052
e

\

Nhge~N11!gc

Nhge1~N11!gc
. ~29!

In the following the current is plotted in units ofI 0 .
The current at zero temperature in the exact diagonaliza-

tion is plotted as a function ofme in Fig. 5~a! whenunFm is

neglected and in Fig. 5~b! when unFm is considered at

gc /ge5100. At low me the second level (nF52) is occu-
pied by one electron. Above a threshold value ofme , the
current starts to flow because a channel through a two-

FIG. 4. Two-electron eigenenergies atnF52 ~a! without unFm
and ~b! with unFm considered, measured from 2«nF

. S is the total
spin in the exact-diagonalization result. TwoS50 states with the
total angular momentum zero are labeledA andB. Electron con-
figuration is designated for the Hartree-Fock result@also for the
Hartree result in~b!#. Eigenenergies at negative total angular mo-
mentum2M are the same as those atM .
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electron state in thenFth level is open. There is clear corre-
spondence between current steps here and two-electron lev-
els in Fig. 4. WhenunFm is considered, tunnelings from the

excited single-particle level (m50 at nF52 in Fig. 3! ap-
pear at different chemical potentials, which are marked by
arrows in Fig. 5~b!. At the step onset marked by a thick
arrow, the excited single-particle level starts to be populated
due to the transition through the two-electron state withS51
at the total angular momentum two, and two channels from
the excited single-particle level become open at this chemi-
cal potential. Heights of steps in Fig. 5~a! have simple ratios
of 6:3:1:2:2:1, reflecting the degeneracy of two-electron
levels,25 but there is no such simple relation in Fig. 5~b! due
to the splitting in single-particle levels.

An example of the dependence ongc /ge is presented in
Fig. 6 for nF51 at nonzero temperature. This clearly shows
that tunnelings through excited states are more clearly seen
at larger gc /ge . All of the results shown below are at
gc /ge5100.

There are only small dependences onmc at low tempera-
tures in the region ofm00(N),mc,m00(N11). At large
mc within this region, some of high-energy excited states
with N electrons in the dot are never populated (Pa50 for
such states!. Nevertheless the current-voltage characteristics
do not change much at largegc /ge . In particular the satura-

tion current at largeme is independent of the number of
N-electron states participating the transport, since(aPa51
in Eq. ~28! in the limit of largegc /ge .

A comparison between the exact diagonalization, the
Hartree-Fock approximation, and the Hartree approximation
is given in Fig. 7~a! whenunFm is neglected and in Fig. 7~b!

when unFm is considered. The temperature iskBT

50.02e2/« l 0 . In Fig. 7~a!, compared with the Hartree result,
the Hartree-Fock result has current signal at lower chemical
potentials due to the exchange effect and has a less steep
increase of the current. The exact-diagonalization result has

FIG. 5. Current as a function ofme in the exact diagonalization
at zero temperature,gc /ge5100, andnF52 ~a! without unFm and
~b! with unFm . The current is due to the transition betweenN51
and N11 electrons in the dot.I 052(e/\)Nhge(N11)gc /
@Nhge1(N11)gc# with Nh52nF122N and m00(N) is mba in
which a andb are the ground states withN andN11 electrons,
respectively.mc is fixed atm00(N51)10.1e2/« l 0 .

FIG. 6. gc /ge dependence atkBT50.01e2/« l 0 andnF51. The
current is due to the transition betweenN51 andN11. Note that
I 0 depends ongc /ge .

FIG. 7. Comparison with approximate calculations atnF52 ~a!
without unFm and ~b! with unFm . Same as in Fig. 5 except
kBT50.02e2/« l 0 . Note thatm00(N) depends on the approximation.
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the same position of the current onset as the Hartree-Fock
result, but has a steeper rise due to larger degeneracy of
two-electron levels. There is a discrepancy also at higher
chemical potentials between the exact diagonalization and
the Hartree-Fock approximation. Although the same trend
remains26 in Fig. 7~b!, the difference between the exact di-
agonalization and the Hartree-Fock approximation is re-
duced. Similar results are obtained innF53 as shown in Fig.
8.

The nF dependence of the current-voltage characteristics
in the exact diagonalization is summarized in Fig. 9~a! with-
out unFm considered and in Fig. 9~b! with unFm considered.

In Fig. 9~b! the chemical potentialme is measured from an
averaged onset of current steps atT50 due to the transition
from N50 to N51, which is defined by
mav5(munFm /(nF11) ~note thatmc should be lower than

mav to have current steps corresponding toN50-to-1 transi-
tions!. The chemical-potential difference between the centers
of N50-to-1 slope and 1-to-2 slope in the current-voltage
characteristics, which corresponds to the Coulomb blockade
threshold, decreases with the increase ofnF because the
wave-function extent increases withnF and the typical intra-
level Coulomb interaction decreases. There is a difference in
the width of the slope region between Figs. 9~a! and 9~b!. In
the absence ofunFm @Fig. 9~a!#, the slope width is again
determined by the typical intralevel Coulomb interaction and
decreases with the increase ofnF , whereas in Fig. 9~b! the
slope region is widened by the splitting of one-electron en-
ergy levels due tounFm and its width is roughly independent

of nF .

A remarkable dependence onN of the current-voltage
characteristics is seen in Fig. 10~a! for nF52: the width of
the slope region between plateaus is reduced considerably in
largerN. This feature is present also innF53. This is seen
also in the result in the Hartree-Fock approximation and
therefore has nothing to do with the correlation effect. This
feature is explained below by the number of (N11)-electron
states participating in the transport.

In the limit of largegc /ge ,

I52~e/\!(
a

Pa(
b

Ge~bua! ~30!

from Eq. ~25!. The current increases with the number ofb
states participating in the transport and is saturated to be
2(e/\)ge /Nh at largeme where allb states participate in
the transport. As shown in Fig. 5, the current in the case of
smallN increases asme crossesmba and in most casesa is
the ground state. In the case of largeN, however, many
exciteda states are populated through the first fewb states
in the vicinity of the current onset, because there are many
choices in producingN-electron states from (N11)-electron
states by taking one electron away. Sincemba for high-
energy exciteda states and for many ofb states is already
smaller thanme , transport channels from the exciteda states
through manyb states are immediately open, giving a nar-
row slope region.

FIG. 8. Comparison with approximate calculations atnF53.
Same as in Fig. 7.

FIG. 9. nF dependence of the current due to the transition be-
tweenN51 andN11 electrons in the dot~a! without unFm and~b!

with unFm . kBT50.02e2/« l 0 andgc /ge5100. Note thatI 0 depends
on nF . In ~b! mav is the average ofunFm over one-electron states.
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An approximate electron-hole symmetry exists in the
many-body eigenenergy distribution betweenN electrons
andN holes in thenFth level, although the exact electron-
hole symmetry is absent because of the finite extent of the
dot. This approximate electron-hole symmetry is seen in the
current-voltage characteristics when the transport of a hole
through the dot withN holes is compared with the transport
of an electron through the dot withN electrons. An example
is given in Fig. 10 whennF52. Note that in Fig. 10~b! the
dependence on the hole numberNh is presented of the cur-
rent due to the flow of a hole from the emitter to the collector
as a function of decreasingme with mc fixed at higher energy
to keepNh holes in the dot.

C. Linear transport

The formula of the conductance is obtained by linearizing
Eq. ~25! with respect to the bias voltage, which coincides
with the formula already given by several authors.10,17,23An
important difference between the linear and nonlinear trans-
port is that only the ground states for eachN are involved in
the linear transport. Examples of the conductance as a func-
tion of me are presented in the linear transport. Examples of
the conductance as a function ofme are presented in Fig. 11

for nF52 and Fig. 12 fornF53. In both figures results are
presented with and withoutunFm considered.

The peak separations are not constant, in contrast with the
usual Coulomb oscillation. This clearly shows that the
simple constant capacitance model is no longer valid and
many-body effects play an important role. In the absence of
unFm the Hund rule in the atomic physics is applicable and

the ground state has spinN/2 below half filling due to ex-
change interactions. Above half filling, states with the oppo-
site spin start to be occupied with no exchange repayment
and therefore a larger peak separation is produced at half
filling. This feature is retained in the presence ofunFm in

nF52 because of small splitting in one-electron energy lev-
els. In nF53, however, the splitting is larger and the intra-
level Coulomb interaction is smaller than innF52. There are
two groups of one-electron levels innF53 ~see Fig. 3! and
the Hund rule is applicable only within each group. The third
electron enters a state with the opposite spin in the lower
group. In this case there are larger peak separations in
N52, 4, and 6.

The peak height also varies from peak to peak and cannot
be explained only by the degeneracy of many-body ground
states. Here the many-body matrix elementMba
5u^aucmsub&u2 plays an important role and the correlation
effect appears as in the previous study in the fractional-
quantum-Hall regime.17 In particular, innF53 and in the

FIG. 10. ~a! N dependence of the current due to the transition
between N and N11 electrons in the dot atnF52.
kBT50.02e2/« l 0 andgc /ge5100. Note thatI 0 depends onN. mc

is fixed atm00(N)10.1e2/« l 0 . ~b! Nh dependence of the current
due to the transition betweenNh and Nh11 holes in the dot.
N52nF122Nh . mc is fixed at m00(N11)20.1e2/« l 0 .
I 0h52(e/\)Nge(Nh11)gc /@Nge1(Nh11)gc#.

FIG. 11. Linear-response conductanceG as a function of
me5mc in the exact diagonalization atnF52 ~a! without unFm and
~b! with unFm . kBT50.01e2/« l 0 . G05(e2/\kBT)gegc /(ge1gc).
me is measured from the position of the first peak.g is the degen-
eracy of the ground states.
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presence ofunFm , the ground states haveS51/2 atN53

andS52 atN54 and the transition by adding one electron
is forbidden between these states because of the spin selec-
tion rule, leading to the disappearance of the corresponding
conductance peak atT50. The same was studied in detail
for a square quantum dot in the recent theoretical work.18 In
Fig. 12~b! a small peak appears betweenN53 andN54,
which is due to the transition fromN53 excited states popu-
lated at nonzero temperatures.

D. Comparison with experiments

Many experiments3–9 have been reported on the vertical
transport through a quantum dot formed in etched double-
barrier resonant-tunneling structures. In most of them, how-
ever, there are no electrons in the quantum dot when the bias
voltage is below the threshold. And above the threshold bias
voltage, electrons begin to tunnel through the dot and the
distribution of the electron number in the dot ranges from
zero to the maximum value, which depends on the bias volt-
age. Our theory is not applicable to these cases because it
assumes that the distribution of the electron number in the
dot is withinN andN11, in whichN depends on the gate
voltage.

In recent experiments by Austinget al.9 the
Al xGa12xAs barriers are doped selectively and there are
electrons in the dot even in the absence of the bias voltage.
The gate contact is attached to modify the number of elec-
trons in the dot. Except at large bias voltages, the distribution

of the electron number in the dot is withinN andN11 at
low temperatures, and therefore our theory is applicable to
their devices. Unfortunately, however, it is shown in the Ap-
pendix that the level separation is comparable to the Cou-
lomb interaction energy in their dots and the quantum limit
assumed in our theory is not applicable in their devices, ex-
ceptnF<1.

Although their experimental results9 are not in the quan-
tum limit in the whole range of the gate voltage, we here
attempt to compare their experiments and our theory. Both in
their results and in ours, the interval of peaks in the current
as a function of the gate voltage has a tendency to decrease
as the number of electrons in the dot increases~see Figs. 11
and 12! and there are considerable variations around this
tendency. In the experiments, however, effects of possible
bound states at impurities5 may be important in considering
the variations in the peak spacings. Because of this and the
quantum limit assumed in our theory, it is not possible in the
present stage to compare the interesting features in peak in-
tervals between their experiments and our theory.

Since it is assumed that the thermal energykBT is much
larger than the level broadening due to tunneling in our
theory, peak widths are proportional toT and peak heights
are proportional to 1/T. Experimental results also show such
a tendency at high temperatures, whereas the peak width is
independent of the temperature at low temperatures and var-
ies from peak to peak.9 It was found in another experiment19

that the height of a peak is very small at low temperatures
and increases remarkably with the temperature. The mecha-
nism due to the spin-selection rule was proposed to explain
this phenomenon on the basis of numerical calculations of a
square dot.18As mentioned in the previous subsection, such a
suppression of a peak at low temperatures is also found in
our calculation for a circular dot.

V. CONCLUSION

We have made a theoretical study of the coherent tunnel-
ing through the quantum dot fabricated recently in semicon-
ductor double-barrier structures, based on calculated many-
body eigenstates in the dot. We have derived a current
formula in the nonlinear regime in the limit of small level
broadening, which coincides with the formula derived from
the master equation. We have chosen the quantum limit of
large separations between degenerate levels in order to get
rid of complicated effects of the mixings between different
levels. The quantum limit was shown to be useful in clarify-
ing features such as the electron-hole symmetry and the
strong dependence on the electron number. In most of our
calculations we have assumed an asymmetric device geom-
etry such that the dot is approximately in equilibrium with
the collector, which is appropriate in extracting the whole
many-body energy spectrum from the current-voltage char-
acteristics.

Effects of the exchange and correlation appear in the
current-voltage characteristics in the form of divided steps in
the Coulomb staircase. Since the correlation effect is reduced
by the nonuniform potential produced by filled and inert lev-
els below the chemical potential, most of the features are
well described by the Hartree-Fock approximation contrary
to our expectation. This means that the features clarified in

FIG. 12. Linear-response conductanceG at nF53. Same as in
Fig. 11.
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this paper are approximately the case even when the quan-
tum limit is not applicable. The linear conductance is shown
to exhibit clearer correlation effects than the nonlinear cur-
rent profile, such as the Hund rule and the spin selection rule.

Observed current-voltage characteristics exhibit much
richer structures. To clarify such discrepancies between the
experiment and the theory, it is necessary to perform a mi-
croscopic calculation of electron states that takes account of
the detailed device structure, such as the barrier shape in the
presence of the bias and the subband structure in leads.
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APPENDIX: APPLICABILITY OF THE QUANTUM LIMIT

Here we discuss the applicability of the approximation to
neglect the level mixing due to off-diagonal Coulomb matrix
elements, by considering the contribution to the level mixing
of the Hartree-Fock potential due to the electrons below the
nFth level, which is the most dominant effect to mix
harmonic-oscillator states with differentn. We also discuss a
possibility of the level crossing and show that it is less prob-
able. We write the condition in terms of the impurity density
and the effective mass as well as in terms ofe2/« l 0 and
\v0 , and show that the quantum limit may be applicable if
the semiconductor with smaller effective mass is used in the
quantum well and the impurity density is the same as in the
recent experiment on the GaAs dot.9

The one-electron part of the Hamiltonian including effects
of the Hartree-Fock potential due to the electrons below the
nFth level, is expressed by

Hd~1e!5 (
nms

«ncnms
† cnms1 (

nn8ms

unn8,m~nF!cnms
† cn8ms ,

~A1!

with

unn8,m~nF!5 (
n9,nF ,m9

~2Unmn9m9n9m9n8m

2Unmn9m9n8mn9m9!. ~A2!

The measure of the level mixing isuunnF ,m(nF)/(«n2«nF)u
for the electron in thenFth level and its square is the first-
order probability of finding the electron in the staten. If this
is much smaller than unity, the level mixing can be ne-
glected. Note thatn is an integer to satisfy thatn2nF is even
from the conservation ofm in the circular dot. Since it de-
pends strongly onnF , we estimate the measure of the level

mixing for each fixednF . Its maximum value for each fixed
nF and any possiblen andm is written as

maxS UunnF ,m~nF!

«n2«nF
U D 5a

~e2/« l 0!

\v0
, ~A3!

wherea50.19 fornF51, a50.51 fornF52, anda50.85
for nF53, respectively.

The quantum limit also fails if thenFth level crosses the
lower level or the higher level due tounn,m(nF). The condi-
tion for no level crossing is that the highest one-electron
level with nF is lower than the lowest one withnF11 and
the lowest one-electron level withnF is higher than the high-
est one with nF21. This condition is written as
b(e2/« l 0)/\v0,1. The value ofb is calculated to be
b50.20 for nF51, b50.54 for nF52 and b50.81 for
nF53, respectively. Therefore no level crossing takes place
if the level mixing is negligible.

In the recent experiment,9 the Coulomb energy between
two electrons is estimated to be 9 meV when the number of
electrons in the dot is two from the zero-current plateau in
the current-voltage characteristics in the Coulomb-blockade
regime. If the level mixing is neglected in this case, the cor-
responding energy is calculated to be 1.25e2/« l 0 . From
these estimations it is deduced thate2/« l 057.2 meV, from
which \v054.9 meV and (e2/« l 0)/\v051.45. This means
that the experimental result is not in the quantum limit, ex-
ceptnF<1.

From this, however, we can derive a semiempirical for-
mula for (e2/« l 0)/\v0 to know in which devices the quan-
tum limit is applicable. First we assume a homogeneous
ionized-impurity densityND over the whole device. Then
\v0 and e2/« l 0 are given by\v05(2pe2\2ND /m* «)1/2

and e2/« l 05(m*v0 /\)
1/2e2/«, respectively. Therefore the

ratio of the two is given by

e2/« l 0
\v0

5S 1

2paB
3 D 1/4Sm* /m0

« D 3/4ND
21/4, ~A4!

with aB the Bohr radius andm0 the free-electron mass. Next
we consider effects of the inhomogeneous distribution of
ionized impurities in the experiments.9 In the experiments
the confinement potential parallel to the interface is formed
by d-doped ionized impurities with the sheet densityNs in
Al xGa12xAs barriers. Here, for simplicity, we assume that
the ratio ofe2/« l 0 to \v0 has the same dependence on the
impurity density as the ratio in the homogeneous case has.
Then the prefactor is found from the experimental values9 of
Ns52.031011 cm22 and e2/« l 057.2 meV and from
m*50.066m0 and«513.13 for GaAs. Finally the condition
for the quantum limit to be applicable is written as

a
e2/« l 0
\v0

591.16aSm*« D 3/4Ns
21/4!1, ~A5!

whereNs is in units of 1011 cm22. This shows that it is
easier to satisfy the quantum limit in semiconductors with
smaller effective mass. For example, (e2/« l 0)/\v0 is 0.3 in
InSb well and 0.7 in InAs well in the same impurity density
of Ns52.031011 cm22.
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