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We study the relation between the barrier conductance and the Coulomb blockade peak splitting for two
electrostatically equivalent dots connected by tunneling channels with bandwidths much larger than the dot
charging energies. We find that this problem is equivalent to a well-known single-dot problem and present
solutions for the relation between peak splitting and barrier conductance in both the weak- and strong-coupling
limits. Results are in good qualitative agreement with the experimental findings of Waughet al.

I. INTRODUCTION

Turning on a tunnel junction to a quantum dot leads to
progressive destruction of the single-dot Coulomb blockade.1

Experiments by Waughet al.2 and by Molenkamp, Flens-
berg, and Kemerink3 chronicle this eradication for two
tunnel-coupled dots of equal and widely disparate charging
energies, respectively. Inspired by the experimental results of
Ref. 2, the present paper seeks to develop a simple model for
the coherent tunneling of electrons between a pair of electro-
statically identical quantum dots@see Fig. 1~a! for a sche-
matic view of the double-dot structure of Waughet al.#. The
goal is to describe the evolution of the Coulomb blockade
from that of two isolated dots to that of one composite dot in
terms of parameters that determine the states of the isolated
dots and the nature of the connection between them. In the
limits relevant to the experimental situation in Ref. 2, we
find that the most important dimensionless parameters are
the numberNch of conducting channels between the two dots
and the dimensionlessinterdot barrier conductance gof
each channel, which is measured when the Coulomb block-
ade has been removed.~The interdot barrier conductance was
measured in Ref. 2 by de-energizing the external barrier po-
tentialsVxi that separate the dots from the leads. This con-
ductance is to be distinguished from the conductance mea-
sured in the double-dot Coulomb blockade measurements,
which might be referred to as theCoulomb blockade conduc-
tanceor double-dot conductance.!

The problem of coupled quantum dots and, more gener-
ally, of the effect of tunnel couplings upon the Coulomb
blockade has received much attention. Ruzinet al.4 exam-
ined the Coulomb blockade structure of two nonidentical
dots in series via a standard activation-energy approach.
Stafford and Das Sarma5,6 as well as Klimeck, Chen, and
Datta7 have applied Hubbard-like models with and without
interdot capacitances to determine the many-body wave
functions for tunnel coupling between a small array of
single-dot eigenstates. Many investigators have studied the
effect of tunneling upon the Coulomb blockade for metallic
junctions, in which there are a large number of conducting
channels.8–13 Relatively few have considered junctions with
only one or two channels.14–17 Furthermore, the work on
one- or two-channel junctions has been restricted to consid-

eration of a single dot coupled to bulk leads rather than sys-
tems of coupled dots. A significant finding of this paper is
that by introducing a ‘‘fictional’’ difference between the gate
voltages on the individual dots, one can map the two-dot
problem onto the one-dot problem and adapt previously ob-
tained results for strong interdot coupling between a single
dot and a bulk lead.

In Sec. II of this paper, we present a brief review of the
experimental results that have motivated our investigation. In
Sec. III A, we define a tunneling model that is useful for
calculations in the limit of weak coupling between the two
dots. In Sec. III B, we show how a ‘‘center-of-mass transfor-
mation’’ allows one to map the two-dot problem onto the
one-dot problem. Section IV presents the weak-coupling re-
sults for our theory, and Sec. V gives the strong-coupling
results and offers plots of the data and theory for one- and
two-channel junctions. A summary of our findings is pro-
vided in Sec. VI.

II. MOTIVATION

The experiment of Waughet al.2 provides the primary
motivation for this paper. These authors study the effect that
varying the interdot potential barriers has upon the Coulomb
blockade conductance peak structure for arrays ofn dots,
wheren52 or 3. For their Coulomb blockade measurements,
they energize the confining gates@Vxi in Fig. 1~a!# so that the
conductance between the dots and the external leads is much
less than 2e2/h. Having tuned the dots to be electrostatically
identical—i.e., to have common gate and total dot capaci-
tancesCg andCS—they find that lowering the interdot bar-
riers results in interpolation between the peak structure char-
acteristic of the isolated individual dots and that
characteristic of a single composite dot having capacitance
nCS : the initial isolated-dot peaks split into bunches ofn
subpeaks, and the splitting within the bunched subpeaks in-
creases until they are essentially equally distributed withn
times the periodicity of the original peaks@see Figs. 2~b! and
2~c!#. For the double dot (n52), Waughet al. also measure
the conductanceGb of the barrier between the two dots after
the exterior walls of the double dot have been removed and
remark that plots of the subpeak splitting and barrier conduc-
tance as functions of the barrier gate voltage appear substan-
tially similar.
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Waughet al. use aT50 ‘‘capacitive charging model’’ to
interpret their data. In this model, electrons on the dots are
treated as charged particles with no kinetic energy that oc-
cupy each dot in integer amounts. In the absence of coupling,
the energy is given by the sum of the potential energies of
the individual dots. For two dots with common capacitances
CS andCg , the expression for the energy has an especially
simple form

E5
U

2(
i51

2

~ni2f i !
2, ~1!

where U is the charging energy for each individual dot,
U5e2/CS ; ni is the number of electrons on thei th dot; and

f i is the gate voltage parameter that determines the energy-
minimizing value ofni . For common gate voltages and gate-
to-dot capacitances, we have the relationsf i[CgiVgi /e
5CgVg /e[f. Figure 1~a! should help put these parameters
in context.

For each set of integer occupation numbers (n1 ,n2), the
capacitive charging model withf i5f gives an energy
E(n1 ,n2)

that is a parabolic function of the common gate volt-

age parameterf ~see Fig. 2!. All the parabolas are identical
in shape, their only distinguishing features being the loca-
tions of their minima. The lowest-energy parabolaENtot

(f)

for a given value ofNtot5( i51
2 ni has n15n25Ntot/2 for

Ntot even andn15n2615(Ntot61)/2 for Ntot odd. In the
formerevencase, the minima all lie on the lineE50. In the
latter odd case, the minima are displaced upward, sitting
along E5U/4. For all parabolas, thef coordinate of the
minimum isNtot/2.

A prominent peak in the double-dot conductance occurs at

FIG. 1. ~a! Schematic diagram for the double dot. Negative
potentials are applied to each of the gates to form the double-dot
structure. The gate potentialsVg1 andVg2 control the average num-
bers of electrons on the dots. These are the potentials that are varied
to see the Coulomb blockade.Vb controls the rate of tunneling
between the dots.Vx1 andVx2 control the rate of tunneling to the
adjacent bulk two-dimensional electron gas~2DEG! leads. For cal-
culations of the double-dot energy shifts, tunneling to the leads is
assumed negligible compared to tunneling between the two dots. In
measuring the barrier conductanceGb , however, the potentials
Vxi are turned off so that each dot is strongly connected to its lead.
The side-wall potentialsVs1 andVs2 are fixed.~b! Schematic dia-
gram for the single dot.Vb now controls tunneling between the dot
and the bulk 2DEG.Vg determines the average number of electrons
on the dot. For our purposes,Vs andVx are constant, and tunneling
to the bulk 2DEG through the barrier defined byVx is negligible
compared to tunneling through the barrier defined byVb .

FIG. 2. ~a! Energy curves in the capacitive charging model for
electrostatically identical dots withVg15Vg2 and zero interdot ca-
pacitance. Energies are given in units of the charging energyU; the
gate voltage is given in units ofe/Cg . Each zero-coupling eigen-
state with definite particle numberni on thei th dot gives rise to a
parabola, labeled (n1 ,n2), which shows the state’s energy as a
function of the gate voltage. The zero of energy is chosen to coin-
cide with the lowest energy possible for states with an even value
for the total number of particlesNtot . The solid odd-Ntot parabola
gives the lowest-energy curve only when there is no interdot cou-
pling. The dotted parabola is the shifted-down energy curve for odd
Ntot that results from finite coupling between the dots. The relevant
degeneracy points are indicated by a black dot for zero coupling
and white dots for finite coupling.~b! ‘‘Zero-coupling’’ conductance
through the double dot as a function of the gate voltage.~For ease
of viewing, peaks are depicted as symmetric with uniform finite
widths and heights.! Conductance peaks are aligned with the zero-
coupling degeneracy points such as the one shown in~a! and occur
regularly with unit period.~c! Conductance through the dot for
finite interdot coupling. Conductance peaks are aligned with the
perturbed degeneracy points. Each zero-coupling peak has split into
two separate peaks, equally distant from the zero-coupling peak
position. Increasing the interdot coupling increases the separation
between the paired peaks until the full set of peaks is again regu-
larly distributed, with half the original period.~This figure for the
capacitive charging model follows that of Ref. 2.!
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values off such that the lowest-energy parabolas corre-
sponding to consecutive values ofNtot cross—in other
words, at values off for which ENtot

(f)5ENtot11(f) for

some integerNtot . For the model of Eq.~1!, this occurs
wheneverf5m1 1

2, wherem is an integer.~One such cross-
ing point is marked by the black dot in Fig. 2.!

In a model in which coupling between the dots is in-
cluded, the lowest-energy parabolas for oddNtot are shifted
downward relative to the lowest-energy even-Ntot parabolas
by an ‘‘interaction energy’’Eint . This downward shift splits
each of the initial crossing points into a pair of crossing
points symmetric about the position of the initial degeneracy,
from which they are separated by a distance proportional to
Eint . As a result, each of the initial conductance peaks is
similarly split into two subpeaks with separation proportional
to Eint . The subpeak splitting reaches its saturation value
whenEint5U/4—i.e., when the lowest-energyevenandodd
parabolas have the same minimum energy. At this point, the
relevant crossing points occur forf5 1

2(m1 1
2). The corre-

sponding conductance peaks are once again equally spaced,
but their period is now that characteristic of a single dot with
capacitance 2CS .

Thus, in the capacitive charging model, the problem of
explaining the peak splitting reduces to the problem of de-
scribing the shift in the ground-state energy of a double dot
containing a fixed total number of particles. Waugh2 has
shown that introduction of a capacitive couplingCint be-
tween the two dots would allow one to obtain a picture in
qualitative agreement with the experimental results: as the
interdot capacitance goes to infinity,Eint converges toU/4.
However, the magnitude of the interdot coupling necessary
to fit the experimental data is much larger than what one
would expect from an electrostatic interaction between two
adjacent dots having a narrow tunneling channel between
them. Waughet al.2 found that in order to bring about the
saturation peak splitting, the interdot capacitance would have
to grow from its zero-tunneling value by approximately a
factor of 250, to a magnitude 10 times larger than the single-
dot capacitances at zero tunneling. If one were to model the
two dots as coplanar sheets of charge being moved closer
together as the interdot channel conductanceg is increased—
essentially a best case scenario for those wishing to induce
large interdot capacitances—the intercapacitance would de-
pend only logarithmically on the separation, and the distance
between the dots would have to be decreased to much less
than an interatomic length to effect the required growth.

Consequently, the use of a large interdot capacitance
Cint must be regarded as simply a reparametrization of the
problem that replaces one unknown,Eint , with another un-
known,Cint . What we really want is a theory that produces
agreement with experiment and expressesEint in terms of
simple measurable quantities. Waughet al. provide one can-
didate: the conductanceGb of the barrier between the two
dots. The remainder of this paper is devoted to developing a
theory of the relation betweenEint and the dimensionless
conductance per tunneling channelg5Gb /NchG0 , where
Nch is the number of independent interdot tunneling channels
~assumed to have identical conductances! andG0 is the con-
ductance quantume2/h. In the experiment of Ref. 2, there is
no applied magnetic field and the dots are connected by a

narrow constriction allowing only a single transverse orbital
mode with double spin degeneracy. As a result, in this ex-
perimental case,Nch52.

III. TUNNELING MODEL
FOR THE DOUBLE-DOT COUPLING

A. Definition of the model

Our goal can be stated a bit more precisely. For a general
tunnel coupling between two dots involving any number
Nch of identical, independent channels and dimensionless
channel conductanceg, our aim is to express the fractional
energy shiftf[Eint/(U/4) as a function ofg andNch plus
any other parameters that might be found to be important. In
order to derive an equation forf , we first choose a double-
dot Hamiltonian. We will ignore electrostatic coupling of the
dots for the moment: it will be noted at the beginning of Sec.
III B that the presence of an interdot capacitance makes no
substantive difference for our analysis. Interaction between
the dots will occur solely via tunneling through the barrier
between them. Such tunnel Hamiltonians have been found
useful from the beginnings of Coulomb blockade theory,18

and the model we will use is a double-dot version of the
Hamiltonian used, for example, by Averin and Likharev to
investigate the conductance oscillations of small metal-to-
metal tunnel junctions.19 In particular, we have the Hamil-
tonianH5H01HT , where

H05K1V,

K5(
i51

2

(
s

(
k

e iksn̂iks ,

V5
U

2(
i51

2

~ n̂i2f i !
2,

HT5(
s

(
k1k2

~ tk1k2c2k2s
† c1k1s1H.c.!. ~2!

In these equations,i is the dot index,s is the channel index
~which could signify different spin channels!, and k is the
index for all internal degrees of freedom not included in the
channel index. In addition,n̂i5(ksn̂iks is the number opera-
tor for the i th dot, andtk1k2 is the tunneling matrix element

between a dot 1 wave function indexed byk1 and the dot 2
wave function lying in the same channel and indexed by
k2 . The gate voltage parameterf i has the same meaning as
in Eq. ~1!. e iks is the kinetic energy of the single-particle
eigenstate of thei th dot having the indicated degrees of free-
dom. For simplicity, we will take these energies to be inde-
pendent of dot and channel:e iks5ek .

The next step in focusing upon a model Hamiltonian is to
choose a form fortk1k2 . Quite generally,tk1k2 will be non-

zero only when bothk1 andk2 lie within some wave-vector
shell that maximally spans the space between the theory’s
low- and high-momentum cutoffs. The size of the wave-
vector shell depends on details of the barrier—in particular,
the characteristic lengths of the channel both parallel and
perpendicular to the voltage wall between the dots. If the
barrier has an abruptd-function shape, the tunneling wave-
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vector shell will span all of reciprocal space. If, on the other
hand, the channel evolves adiabatically from the dots, the
shell width will be small on the scale of a Fermi wave-
vector. Important questions are how many states lie within
this shell—i.e., how large is the widthW of the correspond-
ing energy shell compared to the average level spacingd
between different states in the same channel~hereafter re-
ferred to as ‘‘the average level spacing’’ or just ‘‘the level
spacing’’!—and, for a givenk1 , for how manyk2 is tk1k2
nonzero. Thin-shell models with ‘‘one-to-one’’ hopping ele-
ments ~i.e., for which tk1k250 unlessk15k2) have been
applied to the coupled-dot problem with some success,5–7

especially for level spacingsd that are on the order of the
charging energyU. For the nearly micrometer-sized dots
used by Waughet al.,2 however, U is approximately
400 meV andd is on the order of 30meV, so we expect that
a tunnel coupling sufficient to destroy the isolated-dot Cou-
lomb blockade will involve a large number of single-dot
eigenstates. Indeed, as it does appear that the characteristic
size of the channel approximates a Fermi wavelength
(40 nm!,20 it is reasonable to suppose that the wave-vector
shell width is on the order of a Fermi wavevector and, there-
fore, that the energy shell widthW is comparable to the
Fermi energy (13 meV!, which is much larger thanU.

Consequently, assuming an abrupt tunnel barrier, we con-
sider a thick-shell model that is the antithesis of the injective
thin-shell model. Working in a regime whereW@U@d, we
use a tunneling matrix elementt that is independent ofk1
andk2 within the shell:

tk1k25t, ;k1 ,k2 such thate0,ek1,ek2,e01W.

As the quantities we calculate are independent of the phase
of t, we guiltlessly chooset to be real. This model is roughly
equivalent to one in which each dot is represented by a tight-
binding lattice with intersite hopping elements of order
W/d and where interdot tunneling occurs via a tunneling
Hamiltonian with a single site-to-site connection. Choosing
these tunneling sites to be at the origins01 and 02 of the
respective lattices, we may write

HT5(
s

~Tc202s
† c101s1H.c.!,

whereT[NWt andNW5W/d is the number of orbital states
per channel in each dot within the bandwidthW. ~The
equivalent lattice model should include second- and further
neighbor hopping so that the density of states is approxi-
mately constant betweene0 ande01W. The lattice constant
is chosen by requiring that the product ofNW and the area of
a unit cell equals the area of a single dot.!

As the Fermi energyeF must be somewhere betweene0
ande01W, the meaning ofe0 depends on the width of the
band. For a maximally thick shell,e0 lies at the bottom of the
conduction band, andW is an ultraviolet cutoff, which is
chosen to be of order twice the Fermi energy. Alternatively,
when the barrier between the dots has a broader spatial ex-
tent, the energy shell sits more narrowly about the Fermi
energy, and the widthW is on the order of the energy differ-
ence needed to produce a factor-of-2 change in the magni-

tude of the transmission amplitude for an incident particle.
We define a dimensionless filling parameter

F[
eF2e0
W

,

which gives the position of the Fermi level within the band-
width W. Provided that (12F)W and FW are both large
compared toU, our final results should be independent of
the precise values ofW or F.

B. Map between the double- and single-dot systems

The model we have constructed is basically the two-dot
version of that used by Glazman and Matveev14 and
Grabert13 to study the charge fluctuations of a single metal
particle connected via point-tunnel junctions to conducting
leads@see Fig. 1~b!#. Indeed, by using an analog of the stan-
dard center-of-mass transformation of classical mechanics
and fixing the total number of particles in the two-dot sys-
tem, we can create an exact mapping between the two-dot
and one-dot problems. Consider again the double-dot poten-
tial energyV. By transforming to the analog of center-of-
mass coordinates, one generates the following form:

V5
U1

4
~N̂tot2F tot!

21U2~ n̂2r/2!2, ~3!

where N̂tot5( i51
2 n̂i , F tot5( i51

2 f i , n̂5(n̂22n̂1)/2,
r5f22f1 , andU15U25U5e2/CS when the interdot ca-
pacitance is zero. The rationale for the normalizations forn̂
and r will soon be made apparent. In the meantime, note
that, for our Hamiltonian,Ntot is a constant of motion. Thus,
for givenNtot , F tot , andU1 , we can drop the first term and
insert in the Hamiltonian a reduced potential energy:

Vred5U2~ n̂2r/2!2. ~4!

The impact of a nonzero interdot capacitance can now be
trivially included: its only effect is to decrease the value of
U2 .

In particular, in unpublished work,21 Crouch and Golden
have found that ifCS is defined to be the total capacitance
for a single dot minus the interdot capacitance, introduction
of a constant interdot capacitanceCint decreasesU2 from
e2/CS to e2/(CS12Cint). The equalityU15U5e2/CS is
left unchanged. For a given value of the conductance param-
eterg, if f is the fractional peak splitting in the model with
zero capacitive coupling between the dots, then the fractional
splitting f 8 for a system with an interdot capacitance is sim-
ply related tof by the equation

~12 f 8!5
U2

U
~12 f !. ~5!

Capacitive coupling between the dots thus leads to a nonzero
splitting (f 8Þ0) even when there is no tunneling between
the dots (f5g50).

We can now return to Eqs.~3! and~4!. RestrictNtot to be
even. Then,n̂ has integer expectation values in all the unper-
turbed double-dot eigenstates. With the total number of par-
ticles in the two dots held constant and even, the Hamil-
tonian is exactly that of a single dot tunnel-coupled to an
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ideal lead. The dot has number operatorn̂, charging energy
2U2 , and gate voltage parameterr/2. In the absence of tun-
neling and with the level spacing in both dots much less than
U2 , the ground state is an eigenstate ofn̂ that minimizes the
reduced potential energy, which in the future we consider
equivalent to ‘‘the potential energy.’’ Forr50, the minimum
potential energy is zero and is achieved when the eigenvalue
n of n̂ is zero—i.e., when there are equal numbers of par-
ticles in the two dots. All other values ofn give higher po-
tential energies. Forr51, on the other hand, the minimum
potential energy isU2/4, andn50 andn51 give degenerate
minima.

These no-tunneling distinctions between zero andU2/4
and between nondegeneracy and double degeneracy are quite
familiar: they characterized theeven and odd double-dot
ground states (r50 for both! discussed in Sec. II. Indeed,
what we called the ‘‘evendouble-dot ground state’’ is pre-
cisely the ‘‘Ntot even,r50 ground state.’’ The ‘‘odddouble-
dot ground state’’ is not exactly the same as the ‘‘Ntot even,
r51 ground state’’; there is no getting around the fact that
one case has one more~or less! particle than the other. How-
ever, in terms of their ground-state energies, the difference
between the two will be down by a factor ofFNW or
(12F)NW . For a wide shell somewhere in the vicinity of
half-filling, bothFNW and (12F)NW are much greater than
1, and the above difference is negligible. Calculation of
Eint with f15f2 for the double dot is therefore equivalent to
calculating the relative shifts of ther50 andr51 ground
states of a single dot tunnel-coupled to a bulk two-
dimensional electron gas. Having arrived at this conclusion,
we will find that we have made much easier the job of solv-
ing Waugh’s two-dot problem in the strong coupling regime:
we can now redirect earlier work on the one-dot problem to
our purpose.

More generally, we observe that we have created a model
that extends beyond Waugh’s experiment to circumstances
where the two dots have different gate voltage parameters.
Such situations can also be mapped to the one-dot problem.
As the minimum potential energy is periodic inr with period
two and is also even inr, the general solution is given by
that for r in the interval@0,1#. For r in this interval, the
difference in the ground-state energies of the double-dot sys-
tem for evenNtot and oddNtot is related to the difference in
the ground-state energies of the single-dot system for gate
voltage parametersr and 12r. The theory developed in this
paper permits calculation of the relative downward shift of
therÞ0 ground state to ther50 ground state. Dividing by
the zero-tunneling energy difference of the two ground
states, we find that our emended aim is to calculate

f r[S Eint~r!

U2r
2/4D5Cr~g,Nch,u,NW ,F !, ~6!

where 0,r<1, u5U2 /W, NW5W/d, and Eint(r) is the
ground-state energy relative to the ground-state energy for
r50.

IV. RESULTS IN THE WEAK-COUPLING LIMIT

A. Barrier conductance in the weak-coupling limit

Before we can derive our equation forf r in terms ofg,
we must find a formula for the barrier conductance. Measure-

ment of the barrier conductanceGb with the exterior gates
turned off can be modeled by calculating the tunnel junction
conductance forU15U250. As mentioned before, we as-
sume the different conducting channels to be identical yet
independent—their individual conductances are the same
and they do not interfere with one another. These assump-
tions are certainly reasonable for the two spin channels in the
experiment of Ref. 2. Using the Lippmann-Schwinger equa-
tion with HT inserted for the scattering potential,22 one can
solve for the perturbed electron eigenfunctions. The Heisen-
berg equation of motion forn̂1 can then be used to solve for
the particle flow from dot 1 to dot 2 for a given voltage bias.
Solving the resulting expression for the linear conductance
gives the following equation for the dimensionless conduc-
tance per channel:

g5
Gb

NchG0
5

4a

u11xau2
, ~7!

wherea5(pT/W)25(pt/d)2 and

x5F11
i

p
lnS F

12F D G2.
This equation generalizes Frota and Flensberg’s result for
half-filling (F50.5,x51), derived via a Green’s-function–
Kubo-formula approach.15 It is reassuring to note that despite
x ’s imaginary part forFÞ0.5, the maximal dimensionless
conductance is one for all filling fractions.

The calculated conductanceGb exhibits rather curious be-
havior: it first rises to a maximum ofNchG0 corresponding to
Nch fully open channels and then falls asymptotically to zero
as (T/W5t/d)→`. As Frota and Flensberg note,15 the as-
ymptotic damping of the conductance results from the fact
that formation of bonding and antibonding states at the tun-
nel junction makes the cost of passing through prohibitively
high. The limit of (T/W5t/d)→` is in some sense unphysi-
cal: we do not expect a point-to-point hopping coefficientT
to significantly exceed the tunneling shell width; nor do we
expect the tunneling matrix elementt to be much greater
than the average level spacing. Nevertheless, the apparent
absence of any good reason to truncate the theory at a par-
ticular value oft indicates that the model is at best unwieldy
in the limit of strong coupling. To get the correct limiting
behavior for strong coupling, it is more convenient to use a
different approach, suitable for perturbation about theg51
limit. This will be described in Sec. V.

B. Relative energy shift ofevenand odd states
in the weak-coupling limit

In the meantime, the site-to-site tunneling model is still
useful in the weak-coupling regime. So we plod ahead, cal-
culating via standard Rayleigh-Schro¨dinger perturbation
theory the second-order shift in the ground-state energy for
rÞ0 minus that forr50. Ther51 shift will be taken to
equal the limit of the general 0<r,1 shift asr→1. It might
be objected—correctly—that this limit fails properly to ac-
count for the degeneracy of the ground state atr51. Such a
failing is pardonable, however, for the contributions that are
left out are all smaller by a factor ofFNW or (12F)NW
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from those that are retained. Since we assume thatt/d is
finite, F is of order 12, andNW is large, the omitted terms are
negligible.

ForNW@1, the perturbation-theory sums can be approxi-
mated as integrals. Observing thatu[U2 /W!1, we divide
the difference between the second-order shifts byU2r

2/4 to
get the leading approximation tof r :

f r
~1!54Nch

t2

d2
@~12r!ln~12r!1~11r!ln~11r!

1O~ur2!#/r2. ~8!

The second-order term indicates a significant feature off r : it

is even inr. This property has also been noted by Grabert13

and results from the fact that at any order of perturbation
theory, every tunneling process contributing to the energy
shift has a twin with the roles of dots 1 and 2 interchanged.
In any intermediate virtual state with eigenvaluen for n̂, the
potential energy is greater than that for the unperturbed
ground state bydV(r)5U2n(n2r). Therefore, when dots 1
and 2 are interchanged,dV(r)→dV(2r) for all the inter-
mediate states. If we represent one of the twin terms by
D(r), the other isD(2r), and we see thatf r is constructed
of sums that are even inr.

Using the second-order~in t/d) parts ofg and f r , we can
now write a first-order equation forf r in terms ofg:

f r
~1!5

Nchg

p2

@~12r!ln~12r!1~11r!ln~11r!1O~ur2!#

r2
, ~9!

a result consistent with the large-Nch calculation of the effec-
tive capacitance of a single dot atr50.8 Setting r51 to
calculate the relative shifts of the originaleven and odd
states, we find

f ~1!5
2ln2

p2 Nchg1O~ug,g2!, ~10!

where we have used the fact thatf as originally defined
without the subscript is equivalent in our limits tof r51 . The
above equation indicates that the plot off as a function of
gate voltage is not just a replica of the plot forg as a func-
tion of gate voltage—as aprima facie look at the data of
Waughet al. might lead one to suppose.2 In particular, for
g!1 andNch52, Eq. ~10! gives a slope of approximately
0.28 for f (g), rather than unity. Thus, in this regime, the
fractional splitting f of the double-dot conductance peaks
should lag g, the dimensionless barrier conductance per
channel.

V. CONNECTION TO THE STRONG-COUPLING LIMIT

If we blithely extended our perturbative equation forf to
the limit g→1, the large-Nch f would greatly overshoot its
mark and the one- or two-channelf would fall substantially
short. The real issue is not, however, how badly such a naive
extrapolation fails, but whether we can connect these weak-
tunneling results to those that can be calculated for the
strong-tunneling limit. Having discussed the equivalence of
the two-dot and one-dot problems at length in Sec. III B, we
can turn to see what the current literature on the one-dot
problem offers. For the large-Nch limit, a reasonable interpo-
lation between the solutions for weak and strong coupling
has already been found.8,9,11

The situation is less clear for the case with which we are
most concerned, in whichNch51 or 2. Flensberg and
Matveev16,17 have proposed a useful Luttinger-liquid ap-
proach in which the nearly transparent link between a single

dot and an electrode is modeled as a one-dimensional chan-
nel with a slightly reflective potential barrier. Convergence to
the single composite-dot limit is achieved naturally and
neatly, andEint is calculated perturbatively inr , wherer is
the reflection amplitude, andg512ur u2. Using the map be-
tween the two-dot and one-dot problems, we can translate
Matveev’s calculations of the leading term for (12g)!1 to
our language. We find that forNch51 ~i.e., assuming spin
polarization!, the fractional peak splitting in the two-dot
problem whenr50 is given by the following:

f512C1

8eg

p2 A12g1••• , ~11!

whereg.0.577 is the Euler-Mascheroni constant andC1 is
an error factor on the order of 1 that we have inserted to
guard against the possible imprecision of calculating in
Luttinger-liquid theory with a finite cutoff.23 For the case
relevant to the experiment of Ref. 2,Nch52, adaptation of
Matveev’s calculation gives

f511C2

16eg

p3 ~12g!ln~12g!1••• , ~12!

whereC2 is an error factor analogous toC1 . Except for the
logarithmic factor in the second formula, these equations are
of the form suggested by the scaling analysis of Flensberg,16

which predicts effective charging energies behaving as
(12g)Nch/2. Matveev’s initial two-channel solution is, in
fact, linear in (12g) but diverges logarithmically as
U2 /d→`. A higher-order analysis to eliminate the
divergence17 replaces the logarithm with argumentU2 /d by
one with argument (12g)21.

In Fig. 3, we show thef -versus-g plots given by the
weak- and strong-coupling formulas~10!, ~11!, and~12! for
Nch51 andNch52 withC15C251. In each case, a possible
interpolation between the weak- and strong-coupling limits is
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given by a dashed curve. ForNch52, the corresponding ex-
perimental data of Waughet al.2 are also plotted. Given the
experimental error implicit in the dispersion of the data
points themselves, the data are seen to be in reasonable
agreement with theory.

It is clear, however, that, unlike the calculations for
Nch@1, for Nch52 the order of calculation completed so far
does not really allow confident interpolation between the
weak- and strong-coupling limits. On the strong-tunneling
side,C2'1.5 would effect greater agreement with our sug-
gested interpolation: Luttinger-liquid theory’s prediction of
C15C251 must certainly be checked. With respect to the
weak-tunneling results, calculation of higher orders in per-
turbation theory should improve the matching, but such com-
putations are made difficult by the fact that the correlations
induced by the strong Coulomb interaction make normal
Green’s-functions methods inapplicable.12 Different time or-
ders must be treated separately, and as appears to occur quite
generally in Coulomb-blockade problems,24 the number of
diagrams grows pathologically with the order in perturbation
theory. Nevertheless, calculation of theg2 term in the weak-

tunneling limit is conceivable, and this term may permit a
more reliable interpolation between the weak- and strong-
coupling regimes.

Irrespective of the difficulty of connecting the strong- and
weak-coupling limits, it should be emphasized that despite
the uncertainty in the coefficientsC1 and C2 , the strong-
coupling results do give an important constraint on the form
of the theoreticalf -versus-g curves—viz., the value off
must reach 1 at the point whereg equals 1. Thus, a model
that treats the Coulomb blockade peak splitting as a function
of the interdot channel conductance produces the experimen-
tally observed saturation splitting for a reasonable physical
value of the parameterg that marks the strength of the inter-
dot coupling. This fact can be understood by noting that a
nonzero interdot conductance results in charge fluctuations
between the dots for which the natural energy scale isU2 ,
the energy scale that characterizes the difference between the
r50 and rÞ0 ground states. Asg increases, larger and
larger charge fluctuations, in which multiple electrons move
from one dot to the other, become increasingly significant,
and the initialg50 difference between ther50 andrÞ0
ground states becomes less relevant to the energy of the
gÞ0 ground states, which after all are superpositions of a
great number ofg50 eigenstates with a wide variety of
charge distributions.

The decrease in ther dependence of the ground-state en-
ergy forgÞ0 could be described, at least approximately, by
an ‘‘effective interdot capacitance.’’ However, the introduc-
tion of such a fictive and, as noted in Sec. II, unphysical
mediator merely begs the question of how such a large ef-
fective interaction is produced. Tunneling provides an an-
swer by allowing electrons to hop back and forth between
the dots, interacting directly with their ‘‘neighbors’’ through
the preexistingg50 two-dot capacitances.

VI. CONCLUSION

Following the work of Waughet al.,2 we have investi-
gated the relation between the barrier conductance and the
Coulomb blockade for two electrostatically equivalent dots
connected by one or more identical tunneling channels and
have found an explanation for the evolution of the double-
dot Coulomb blockade that does not rely upon unphysically
large values for the interdot capacitance, the intradot level
spacing, or the number of conducting channels. We propose
to write the fractional peak splittingf of the Coulomb block-
ade conductance peaks as a function of the number of chan-
nelsNch and the dimensionless barrier conductance per chan-
nel g, assuming that the energy level spacingd is small
compared to the interdot Coulomb blockade energyU2 and
thatU2 is small compared to the bandwidthW of states over
which the amplitudes for transmission through the barrier are
roughly constant. Using a ‘‘uniform thick-shell model’’ for
the tunneling term in the Hamiltonian, we solve for this func-
tion to leading order in the limit of weak interdot coupling.
We find that in this limit, the peak splitting should evolve
linearly with the total barrier conductance with a slope sub-
stantially less than 1.

In order to solve for the strong-coupling limit, we have
introduced a ‘‘fictional’’ difference between the gate voltages
on the individual dots. Such a generalization of the two-dot

FIG. 3. Graphs of the fractional Coulomb blockade conductance
peak splittingf as a function of the dimensionless conductance per
channel g in the weak- and strong-tunneling limits for~a!
Nch51and~b! Nch52 with coefficientsC15C251 in Eqs.~11! and
~12!. Possible interpolating functions are shown by dashed curves.
Data points from Ref. 2 are given as triangles or stars; the two
different symbols correspond to different data sets. The value off
for the experimental data has been extracted from the measured
splitting fraction f 8 as discussed in of Sec. III B withU2 /U'0.9.
This choice ofU2 /U corresponds to the constant interdot capaci-
tance of 20 aF and total single-dot capacitance of 0.4 fF estimated
for the experiment of Ref. 2.
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problem makes it relatively straightforward to adapt our
analysis to situations where there is a voltage bias between
the two dots.25 Its purpose here is to allow for a map between
the previously unsolved two-dot problem and a better-known
one-dot problem. The strong-coupling results that we obtain
via this mapping give an asymptotic form for the peak split-
ting that behaves as (12g)ln(12g).

In the case ofNch52, which is pertinent to the experimen-
tal results of Ref. 2, the present limiting forms for strong and
weak coupling do not match up well enough to allow a reli-
able quantitative interpolation between the two limits. Nev-
ertheless, a plausible interpolating curve is in qualitative
agreement with existing experimental data. More precise ex-
perimental results would allow for a test of the slope pre-
dicted for the weak-tunneling limit. An extension of current

theory is still necessary to permit a convincing connection
between the two asymptotic limits.
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