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Relation between barrier conductance and Coulomb blockade peak splitting
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We study the relation between the barrier conductance and the Coulomb blockade peak splitting for two
electrostatically equivalent dots connected by tunneling channels with bandwidths much larger than the dot
charging energies. We find that this problem is equivalent to a well-known single-dot problem and present
solutions for the relation between peak splitting and barrier conductance in both the weak- and strong-coupling
limits. Results are in good qualitative agreement with the experimental findings of Véawdh

[. INTRODUCTION eration of a single dot coupled to bulk leads rather than sys-

tems of coupled dots. A significant finding of this paper is

Turning on a tunnel junction to a quantum dot leads tothat by introducing a “fictional” difference between the gate
progressive destruction of the single-dot Coulomb blocKade voltages on the individual dots, one can map the two-dot
Experiments by Wauglet al?> and by Molenkamp, Flens- Problem onto the one-dot problem and adapt previously ob-
berg, and Kemeririk chronicle this eradication for two tained results for strong interdot coupling between a single

tunnel-coupled dots of equal and widely disparate chargingot and a bulk lead. . _

energies, respectively. Inspired by the experimental results of "N Sec. Il of this paper, we present a brief review of the

Ref. 2, the present paper seeks to develop a simple model sgxperimental results that have motivated our investigation. In

the coherent tunneling of electrons between a pair of electro2€C- Ill A, we define a tunneling model that is useful for

statically identical quantum dofsee Fig. 1a) for a sche- calculations in the limit of weak coupling between the two

matic view of the double-dot structure of Waughal]. The dots. In Sec. Il B, we show how a “center-of-mass transfor-

goal is to describe the evolution of the Coulomb blockadem&m(()jn allot\)nlls onse to map the two—do; problim ontlo the
; ) . “one-dot problem. Section IV presents the weak-coupling re-

from that of two isolated dots to that of one composite dot in P P ping

. . sults for our theory, and Sec. V gives the strong-coupling
terms of parameters that determine the states of the isolatgedg ,its and offers plots of the data and theory for one- and

dots and the nature of the connection between them. In thg, 5 _channel junctions. A summary of our findings is pro-
limits relevant to the experimental situation in Ref. 2, we,;iqed in Sec. VI.

find that the most important dimensionless parameters are
the numbelN, of conducting channels between the two dots
and the dimensionlesmterdot barrier conductance gof
each channel, which is measured when the Coulomb block- The experiment of Waugtet al? provides the primary
ade has been removgd@he interdot barrier conductance was motivation for this paper. These authors study the effect that
measured in Ref. 2 by de-energizing the external barrier povarying the interdot potential barriers has upon the Coulomb
tentials V,; that separate the dots from the leads. This conblockade conductance peak structure for arrays afots,
ductance is to be distinguished from the conductance meavheren=2 or 3. For their Coulomb blockade measurements,
sured in the double-dot Coulomb blockade measurement#)ey energize the confining gateé,; in Fig. 1(a)] so that the
which might be referred to as ti@oulomb blockade conduc- conductance between the dots and the external leads is much
tanceor double-dot conductance less than 2%/h. Having tuned the dots to be electrostatically
The problem of coupled quantum dots and, more generidentical—i.e., to have common gate and total dot capaci-
ally, of the effect of tunnel couplings upon the CoulombtancesCy andCs—they find that lowering the interdot bar-
blockade has received much attention. Ruetral* exam-  riers results in interpolation between the peak structure char-
ined the Coulomb blockade structure of two nonidenticalacteristic of the isolated individual dots and that
dots in series via a standard activation-energy approacleharacteristic of a single composite dot having capacitance
Stafford and Das Sarmi as well as Klimeck, Chen, and nCs: the initial isolated-dot peaks split into bunches rof
Dattd have applied Hubbard-like models with and without subpeaks, and the splitting within the bunched subpeaks in-
interdot capacitances to determine the many-body wavereases until they are essentially equally distributed with
functions for tunnel coupling between a small array oftimes the periodicity of the original peaksee Figs. &) and
single-dot eigenstates. Many investigators have studied th&(c)]. For the double dotr(=2), Waughet al. also measure
effect of tunneling upon the Coulomb blockade for metallicthe conductanc&,, of the barrier between the two dots after
junctions, in which there are a large number of conductinghe exterior walls of the double dot have been removed and
channel€~* Relatively few have considered junctions with remark that plots of the subpeak splitting and barrier conduc-
only one or two channef¥.~" Furthermore, the work on tance as functions of the barrier gate voltage appear substan-
one- or two-channel junctions has been restricted to considtally similar.

II. MOTIVATION
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FIG. 2. (a) Energy curves in the capacitive charging model for
electrostatically identical dots witWig; =V, and zero interdot ca-
pacitance. Energies are given in units of the charging endrghe
gate voltage is given in units @/Cgy. Each zero-coupling eigen-
state with definite particle numbex on theith dot gives rise to a
parabola, labeledn(,n,), which shows the state’s energy as a
function of the gate voltage. The zero of energy is chosen to coin-
cide with the lowest energy possible for states with an even value
for the total number of particleN,;. The solid oddN,, parabola
gives the lowest-energy curve only when there is no interdot cou-
pling. The dotted parabola is the shifted-down energy curve for odd
Nt that results from finite coupling between the dots. The relevant
degeneracy points are indicated by a black dot for zero coupling
and white dots for finite couplingb) “Zero-coupling” conductance
o ~ through the double dot as a function of the gate voltder ease
FIG. 1. (&) Schematic diagram for the double dot. Negative ot jewing, peaks are depicted as symmetric with uniform finite
potentials are applied to each of the gates to form the double-dQiqths and heights.Conductance peaks are aligned with the zero-
structure. The gate potentialg, andVy, control the average num- o nling degeneracy points such as the one showa)iand occur
bers of electrons on the dots. These are the potentials that are Val’lﬁggma”y with unit period.(c) Conductance through the dot for
to see the Coulomb blockad®’, controls the rate of tunneling  finite interdot coupling. Conductance peaks are aligned with the
between the dots/,, andV,, control the rate of tunneling to the  hertyrhed degeneracy points. Each zero-coupling peak has split into
adjacent bulk two-dimensional electron d@DEG) leads. For cal- 4 separate peaks, equally distant from the zero-coupling peak
culations of the double-dot energy shifts, tunneling to the leads i$yqsition, Increasing the interdot coupling increases the separation
assumed negligible compared to tunneling between the two dots. Igeyeen the paired peaks until the full set of peaks is again regu-
measuring the barrier conductanG,, however, the potentials 4y gistributed, with half the original periodThis figure for the
V,; are turned off so that each dot is strongly connected to its 'eadcapacitive charging model follows that of Ref) 2.
The side-wall potential¥s; andV,, are fixed.(b) Schematic dia-
gram for the single dotv,, now controls tunneling between the dot
and the bulk 2DEGV determines the average number of electrons
on the dot. For our purposeg, andV, are constant, and tunneling
to the bulk 2DEG through the barrier defined Wy is negligible
compared to tunneling through the barrier definedvy

¢; is the gate voltage parameter that determines the energy-
minimizing value ofn; . For common gate voltages and gate-
to-dot capacitances, we have the relatiops=C;Vg;/e
_=Cgvg/equ. Figure 1a) should help put these parameters
in context.

Waughet al. use aT=0 “capacitive charging model” to For each set of integer occupation numbers,(,), the
interpret their data. In this model, electrons on the dots areapacitive charging model withp;=¢ gives an energy
treated as charged particles with no kinetic energy that ocE, , , that is a parabolic function of the common gate volt-

cupy each d_ot in integer amounts. In the absence of cogplingige parametes (see Fig. 2 All the parabolas are identical
the energy is given by the sum of the potential energies of, shape, their only distinguishing features being the loca-
the |nd|V|duthdots. For two Sotshwnh comrrr]]on capamtancTﬁions of their minima. The lowest-energy parab&a ()

i i tot
Cy andCy, the expression for the energy has an especia ¥0r a given value ofNy=S2 ,n; hasn,=n,=Ny/2 for

simple form Niot €ven andn;=n,+1=(N;,*+1)/2 for Ni,; 0dd. In the
Ul formerevencase, the minima all lie on the life=0. In the
E=§z (ni— )%, (1)  latter odd case, the minima are displaced upward, sitting
=1 along E=U/4. For all parabolas, theb coordinate of the
where U is the charging energy for each individual dot, minimum isN/2.
U=e?%Cy; n; is the number of electrons on tih dot; and A prominent peak in the double-dot conductance occurs at
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values of ¢ such that the lowest-energy parabolas corre-harrow constriction allowing only a single transverse orbital
sponding to consecutive values ®f,, cross—in other mode with double spin degeneracy. As a result, in this ex-
words, at values of for which Ey_($)=Ey,_1(¢) for ~ perimental caselcn=2.

some integeM,,. For the model of Eq(1), this occurs

wheneverg=m-+ 3, wherem is an integer(One such cross- IIl. TUNNELING MODEL

ing point is marked by the black dot in Fig.)2. FOR THE DOUBLE-DOT COUPLING
In a model in which coupling between the dots is in- A. Definition of the model

cluded, the lowest-energy parabolas for ddg, are shifted Our goal can be stated a bit more precisely. For a general

downward relative 10 the lowest-energy evify parabolas tunnel coupling between two dots involving any number

by an “|ntera(_:t|.o_n energy’Eim. Th's QOwnwarq shift spllts_ N¢, of identical, independent channels and dimensionless
each of the initial crossing points into a pair of crossinggnanne| conductancg, our aim is to express the fractional
points symmetrlc about the position of.the initial degeperacyenergy shiftf=E,/(U/4) as a function ofy and N, plus
from which they are separated by a distance proportional tgny other parameters that might be found to be important. In
Eine- As a result, each of the initial conductance peaks isrder to derive an equation fd we first choose a double-
similarly split into two subpeaks with separation proportionaldot Hamiltonian. We will ignore electrostatic coupling of the
to Ejy. The subpeak splitting reaches its saturation valugjots for the moment: it will be noted at the beginning of Sec.
whenE;=U/4—i.e., when the lowest-energgwvenandodd |1l B that the presence of an interdot capacitance makes no
parabolas have the same minimum energy. At this point, theubstantive difference for our analysis. Interaction between
relevant crossing points occur fak=3(m+3). The corre- the dots will occur solely via tunneling through the barrier
sponding conductance peaks are once again equally spacdégtween them. Such tunnel Hamiltonians have been found
but their period is now that characteristic of a single dot withuseful from the beginnings of Coulomb blockade thefry,
capacitance @y . and the model we will use is a double-dot version of the
Thus, in the capacitive charging model, the problem ofHamiltonian used, for example, by Averin and Likharev to
explaining the peak splitting reduces to the problem of deinvestigate the conductance oscillations of small metal-to-
scribing the shift in the ground-state energy of a double dotmetal tunnel junction$? In particular, we have the Hamil-
containing a fixed total number of particles. Wafigies  tonianH=Hy+H+, where
shown that introduction of a capacitive couplit@),; be-

tween the two dots would allow one to obtain a picture in Ho=K+V,
gualitative agreement with the experimental results: as the 5

interdot capacitance goes to infinifi;,; converges tdJ/4. K= E E E A
However, the magnitude of the interdot coupling necessary = =T €ikoMliko

to fit the experimental data is much larger than what one

would expect from an electrostatic interaction between two ul

adjacent dots having a narrow tunneling channel between V== (Ai— )2,

them. Waughet al? found that in order to bring about the 251

saturation peak splitting, the interdot capacitance would have

to grow from its zero-tL_Jnnellng yalue by approxmate_ly a HT:E > (te.k C;k +Cik, o1 H.C). 2
factor of 250, to a magnitude 10 times larger than the single- o Kk, 12 720 T

these equations,is the dot indexg is the channel index

two dots as coplanar sheets of charge being moved clos rllhich could signify different spin channajsandk is the

together as the interdot channel conductageeincreased— . . ) .
essentially a best case scenario for those wishing to indud dex for_ all internal d_egrges of f[ee(j_om not included in the
large interdot capacitances—the intercapacitance would dé- annel index. In additiom; =y, Nk is the number opera-
pend only logarithmically on the separation, and the distanc&" for theith dot, andty , is the tunneling matrix element
between the dots would have to be decreased to much le§gtween a dot 1 wave function indexed kyand the dot 2
than an interatomic length to effect the required growth. ~ wave function lying in the same channel and indexed by
Consequently, the use of a large interdot capacitanckz. The gate voltage parametér has the same meaning as
Cix Must be regarded as simply a reparametrization of thé" Ed. (1). €, is the kinetic energy of the single-particle
prob|em that rep|aces one unkno\/\E‘m7 with another un- eigenstate of theth dot having the indicated degrees of free-
known, C;;. What we really want is a theory that produces dom. For simplicity, we will take these energies to be inde-
agreement with experiment and expresgeg in terms of ~ pendent of dot and channed,= e .
simple measurable quantities. Waugfhel. provide one can- The next step in focusing upon a model Hamiltonian is to
didate: the conductand®, of the barrier between the two choose a form fot, . Quite generallyt, \, will be non-
dots. The remainder of this paper is devoted to developing aero only when botlk,; andk, lie within some wave-vector
theory of the relation betweek;, and the dimensionless shell that maximally spans the space between the theory’s
conductance per tunneling chanmpEG, /NGy, where  low- and high-momentum cutoffs. The size of the wave-
N¢p, is the number of independent interdot tunneling channelsector shell depends on details of the barrier—in particular,
(assumed to have identical conductan@sl G, is the con- the characteristic lengths of the channel both parallel and
ductance quanture?/h. In the experiment of Ref. 2, there is perpendicular to the voltage wall between the dots. If the
no applied magnetic field and the dots are connected by harrier has an abrupi-function shape, the tunneling wave-

dot capacitances at zero tunneling. If one were to model th;
w
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vector shell will span all of reciprocal space. If, on the othertude of the transmission amplitude for an incident particle.
hand, the channel evolves adiabatically from the dots, th&Ve define a dimensionless filling parameter

shell width will be small on the scale of a Fermi wave-

vector. Important questions are how many states lie within Fe €r— €p

this shell—i.e., how large is the widW¥V of the correspond- W
ing energy shell compared to the average level spaéing
between different states in the same charhereafter re-
ferred to as “the average level spacing” or just “the level
spacing’)—and, for a givenk,, for how manyk; is Tk,
nonzero. Thin-shell models with “one-to-one” hopping ele-
ments (i.e., for whicht, , =0 unlessk;=k;) have been

applied to the coupled-dot problem with some success, ] .
especially for level spacings that are on the order of the ~ The model we have constructed is basically the two-dot
charging energyJ. For the nearly micrometer-sized dots Version of that used by Glazman and Matveand
used by Waughetal,> however, U is approximately Grabert® to study the charge fluctuations of a single metal
400 peV ands is on the order of 30ueV, so we expect that particle connected via point-tunnel junctions to conducting
a tunnel coupling sufficient to destroy the isolated-dot Couleéads[see Fig. 1b)]. Indeed, by using an analog of the stan-
lomb blockade will involve a large number of single-dot dard center-of-mass transformation of classical mechanics
eigenstates. Indeed, as it does appear that the characterisiied fixing the total number of particles in the two-dot sys-
size of the channel approximates a Fermi wavelengti€M, we can create an exact mapping between the two-dot
(40 nm),? it is reasonable to suppose that the Wave-vectof"_md one-dot problems. Con_5|der again the double-dot poten-
shell width is on the order of a Fermi wavevector and, therelial energyV. By transforming to the analog of center-of-
fore, that the energy shell widtkV is comparable to the Mass coordinates, one generates the following form:

Fermi energy (13 me)/ which is much larger thakl. U

~ Consequently, assuming an abrupt tunnel barrier, we con- V= —2 (Nio— Pron) >+ Uo(A— pl2)2, 3
sider a thick-shell model that is the antithesis of the injective 4
thin-shell model. Working in a regime whew>U> 6, we where No.=S2 A =32 b A= (R,— )2

i i S tot— <i=1"""» tot— <i=1%i> - 2 1 ’
use a tunneling matrix elementthat is independent of, p=d,— by, andU,=U,=U=e?/Cs when the interdot ca-

andk; within the shell pacitance is zero. The rationale for the normalizationsnfor
and p will soon be made apparent. In the meantime, note
that, for our HamiltonianN,y, is a constant of motion. Thus,

" ) for given Ny, o, @andU 4, we can drop the first term and
As the quantities we calculate are independent of the phasgsert in the Hamiltonian a reduced potential energy:
of t, we guiltlessly chooseto be real. This model is roughly

equivalent to one in which each dot is represented by a tight- Vo= U,(N—p/2)2. (4)
binding lattice with intersite hopping elements of order ) _ _

W/ and where interdot tunneling occurs via a tunnelingN€ impact of a nonzero interdot capacitance can now be
Hamiltonian with a single site-to-site connection. Choosingtfvially included: its only effect is to decrease the value of

these tunneling sites to be at the origibisand 0, of the ~ Ya- ) _ _
respective lattices, we may write In particular, in unpublished work Crouch and Golden

have found that ifCy is defined to be the total capacitance
for a single dot minus the interdot capacitance, introduction
HT:E (Tcgo +C10.0+H.C), of a constant interdot capacitan€y,, decreased), from
G S e?/Cs to €?/(Cs+2Ciy). The equalityU;=U=e?Cs is
) _ left unchanged. For a given value of the conductance param-
whereT=Nyt andNy=W/§ is the number of orbital states gterg, if f is the fractional peak splitting in the model with

per channel in each dot within the bandwidi. (The  ;erg capacitive coupling between the dots, then the fractional
equivalent lattice model should include second- and furthe&plitting f' for a system with an interdot capacitance is sim-
neighbor hopping so that the density of states is approxip|y related tof by the equation
mately constant betweesy and e+ W. The lattice constant
is chosen by requiring that the productMf, and the area of U,
a unit cell equals the area of a single dot. (1-f)=75@1-1. ()

As the Fermi energyr must be somewhere betweep
and eo+ W, the meaning ok, depends on the width of the Capacitive coupling between the dots thus leads to a nonzero
band. For a maximally thick shek, lies at the bottom of the splitting (f'#0) even when there is no tunneling between
conduction band, andlV is an ultraviolet cutoff, which is the dots {=g=0).
chosen to be of order twice the Fermi energy. Alternatively, We can now return to Egq$3) and(4). RestrictN; to be
when the barrier between the dots has a broader spatial egven. Thenn has integer expectation values in all the unper-
tent, the energy shell sits more narrowly about the Fermturbed double-dot eigenstates. With the total number of par-
energy, and the widtkV is on the order of the energy differ- ticles in the two dots held constant and even, the Hamil-
ence needed to produce a factor-of-2 change in the magnienian is exactly that of a single dot tunnel-coupled to an

which gives the position of the Fermi level within the band-
width W. Provided that (+F)W and FW are both large
compared toJ, our final results should be independent of
the precise values alV or F.

B. Map between the double- and single-dot systems

ek, =t Vk;,k, such thatey< €k €k, < €0+ W.
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ideal lead. The dot has number operatorcharging energy ment of the barrier conductané®, with the exterior gates

2U,, and gate voltage parameje®2. In the absence of tun- turned off can be modeled by calculating the tunnel junction

neling and with the level spacing in both dots much less thamonductance fold,=U,=0. As mentioned before, we as-

U,, the ground state is an eigenstatehdhat minimizes the sume the different conducting channels to be identical yet

reduced potential energy, which in the future we consideindependent—their individual conductances are the same

equivalent to “the potential energy.” Fgr=_0, the minimum and they do not interfere with one another. These assump-

potential energy is zero and is achieved when the eigenvalu#ons are certainly reasonable for the two spin channels in the

n of n is zero—i.e., when there are equal numbers of parexperiment of Ref. 2. Using the Lippmann-Schwinger equa-

ticles in the two dots. All other values of give higher po-  tion with Hy inserted for the scattering potentfdlone can

tential energies. Fop=1, on the other hand, the minimum solve for the perturbed electron eigenfunctions. The Heisen-

potential energy i$),/4, andn=0 andn=1 give degenerate berg equation of motion fon, can then be used to solve for

minima. the particle flow from dot 1 to dot 2 for a given voltage bias.
These no-tunneling distinctions between zero ahg4  Solving the resulting expression for the linear conductance

and between nondegeneracy and double degeneracy are quiiges the following equation for the dimensionless conduc-

familiar: they characterized theven and odd double-dot tance per channel:

ground statesd=0 for both discussed in Sec. Il. Indeed,

what we called the évendouble-dot ground state” is pre- Gy 4o

cisely the “N,; even,p=0 ground state.” The 6dddouble- 9= Ny Go = A @)

dot ground state” is not exactly the same as tig,; even,

p=1 ground state”; there is no getting around the fact thatwhereaz(ﬂ/\/\/)2=(77t/5)2 and

one case has one ma@ less particle than the other. How-

ever, in terms of their ground-state energies, the difference

between the two will be down by a factor d¥fN,y, or X=

(1-F)Ny. For a wide shell somewhere in the vicinity of

half-filling, both FN\y and (1-F)N,y are much greater than Tpjs equation generalizes Frota and Flensberg's result for

1, anq the above difference is rjegllg|ble. Calcplatlon thalf—filling (F=0.5,y=1), derived via a Green’s-function—

Ein With ¢1 = ¢, for the double dot is therefore equivalent to c,hq-formula approack It is reassuring to note that despite

calculating the relative shifts of the=0 andp=1 ground 5 imaginary part forF#0.5, the maximal dimensionless

states of a single dot tunnel-coupled to a bulk two- ~ondquctance is one for all filling fractions.

dimensional electron gas. Having arrived at this conclusion, The calculated conductan@, exhibits rather curious be-
we will find that we have made much easier the job of SolV-pavior: it first rises to a maximum ® G, corresponding to

ing Waugh's two-dot problem in the strong coupling regime:; iy open channels and then falls asymptotically to zero
we can now redirect earlier work on the one-dot problem to o (T/W=1/8)—. As Frota and Flensberg notethe as-

ou:vlpurpose. i o o o g 4ymptotic damping of the conductance results from the fact
ore generally, we observe that we have created a modg{, . tormation of bonding and antibonding states at the tun-

that extends beyond Waug_h’s experiment {0 Circumstanceg, junction makes the cost of passing through prohibitively
where the two dots have different gate voltage parameter%gh' The limit of (T/W=1/8)— is in some sense unphysi-

Such sitqa_tions can aIsp be mapped to th_e .On?'dOt PrOblerEaI: we do not expect a point-to-point hopping coeffici&nt

As the minimum poten_tlal energy 1S perlodlc_pan_th p_erlod to significantly exceed the tunneling shell width; nor do we
two and is also even ip, the general solution is given by gy nect the tunneling matrix elementto be much greater
that for p in the interval[0,1]. For p in this interval, the  {han the average level spacing. Nevertheless, the apparent
difference in the ground-state energies of the double-dot sySspsence of any good reason to truncate the theory at a par-

tem for evenNi,; and oddNy is related to the difference in icar value oft indicates that the model is at best unwieldy
the ground-state energies of the single-dot system for gaig the |imit of strong coupling. To get the correct limiting

voltage parameters and 1 p. The theory developed in this  hepavior for strong coupling, it is more convenient to use a

paper permits calculation of the relative downward shift of yiterent approach, suitable for perturbation about givel
the p#0 ground state to the=0 ground state. Dividing by |imit. This will be described in Sec. V.

the zero-tunneling energy difference of the two ground
states, we find that our emended aim is to calculate

Eint(P))

:‘lf IN lu!N lF)l (6)

(U2P2/4 p(@:Nen N In the meantime, the site-to-site tunneling model is still
where 0<p<1, u=U,/W, Ny=WI/38, andE,(p) is the useful in the weak-coupling regime. So we plod ahead, cal-

ground-state energy relative to the ground-state energy fdyulating via standard Rayleigh-Schifoger perturbation
p=0. theory the second-order shift in the ground-state energy for

p#0 minus that forp=0. Thep=1 shift will be taken to
IV. RESULTS IN THE WEAK-COUPLING LIMIT equal the limit of the general®p<1 shift asp— 1. It might
be objected—correctly—that this limit fails properly to ac-
count for the degeneracy of the ground statpatl. Such a
Before we can derive our equation foy in terms ofg, failing is pardonable, however, for the contributions that are
we must find a formula for the barrier conductance. Measureleft out are all smaller by a factor dfFNyy or (1—-F)Ny

2

i
1+ ;In 1-F

B. Relative energy shift ofevenand odd states
in the weak-coupling limit

f

p

A. Barrier conductance in the weak-coupling limit
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from those that are retained. Since we assume tihdiis  is even inp. This property has also been noted by Grafert

finite, F is of order3, andN,, is large, the omitted terms are and results from the fact that at any order of perturbation

negligible. theory, every tunneling process contributing to the energy
For Nyw> 1, the perturbation-theory sums can be approxi-shift has a twin with the roles of dots 1 and 2 interchanged.

mated as integrals. Observing thatU,/W<1, we divide |n any intermediate virtual state with eigenvaluéor n, the

the difference between the second-order shiftdJoy?/4 to  potential energy is greater than that for the unperturbed

get the leading approximation g : ground state byV(p)=U,n(n—p). Therefore, when dots 1
2 and 2 are interchangedV(p)— 6V(—p) for all the inter-
f;l):4Nch_2[(l_p)|n(l_p)+(1+p)|n(l+p) mediate states. If we represent one of the twin terms by

A(p), the other isA(—p), and we see thdt, is constructed
5 2 of sums that are even ip.
+O(up?)/p” ®) Using the second-ord¢in t/ ) parts ofg andf,, we can
The second-order term indicates a significant featuffe, oft now write a first-order equation fd, in terms ofg:

(1)_ Nerd [(1=p)In(1—p)+(1+p)In(1+p)+O(up?)]
f,’= -2 P , 9

a result consistent with the lardéy, calculation of the effec- dot and an electrode is modeled as a one-dimensional chan-
tive capacitance of a single dot a=028 Settingp=1 to  nel with a slightly reflective potential barrier. Convergence to
calculate the relative shifts of the originavenand odd the single composite-dot limit is achieved naturally and
states, we find neatly, andg;, is calculated perturbatively in, wherer is
the reflection amplitude, ang=1—|r|2. Using the map be-
21n2 tween the two-dot and one-dot problems, we can translate
fU=—Ngg+0(ug,g?), (100  Matveev's calculations of the leading term for{j)<1 to
™ our language. We find that fad,,=1 (i.e., assuming spin
polarization, the fractional peak splitting in the two-dot

where we have used the fact thitas originally defined problem wherp=0 is given by the following:

without the subscript is equivalent in our limitstg_,. The

above equation indicates that the plotfoas a function of

gate voltage is not just a replica of the plot fpras a func- 8e?

tion of gate voltage—as prima facielook at the data of le_Cl?ﬂ_gJ“ o (12)

Waughet al. might lead one to suppogen particular, for

g<1 andNg=2, Eq.(10) gives a slope of approximately wherey=0.577 is the Euler-Mascheroni constant abdis

0.28 for f(g), rather than unity. Thus, in this regime, the an error factor on the order of 1 that we have inserted to

fractional splittingf of the double-dot conductance peaksguard against the possible imprecision of calculating in

should lagg, the dimensionless barrier conductance pern_uttinger-liquid theory with a finite cutoff® For the case

channel. relevant to the experiment of Ref. R,,=2, adaptation of
Matveev's calculation gives

V. CONNECTION TO THE STRONG-COUPLING LIMIT

If we blithely extended our perturbative equation foto Ge”

the limit g—1, the largeN., f would greatly overshoot its
mark and the one- or two-channiewould fall substantially
short. The real issue is not, however, how badly such a naivethereC, is an error factor analogous ©, . Except for the
extrapolation fails, but whether we can connect these weaKogarithmic factor in the second formula, these equations are
tunneling results to those that can be calculated for thef the form suggested by the scaling analysis of Flensterg,
strong-tunneling limit. Having discussed the equivalence ofvhich predicts effective charging energies behaving as
the two-dot and one-dot problems at length in Sec. Il B, we(1—g)Net?, Matveev’s initial two-channel solution is, in
can turn to see what the current literature on the one-ddiact, linear in (1-g) but diverges logarithmically as
problem offers. For the largh, limit, a reasonable interpo- U,/d—. A higher-order analysis to eliminate the
lation between the solutions for weak and strong couplinglivergencé’ replaces the logarithm with argumeldt /8 by

has already been fourfd:'! one with argument (+g) ™.

The situation is less clear for the case with which we are In Fig. 3, we show thef-versusg plots given by the
most concerned, in whictN,,=1 or 2. Flensberg and weak- and strong-coupling formul&0), (11), and(12) for
Matveev®!’ have proposed a useful Luttinger-liquid ap- Ng=1 andN,=2 with C,=C,=1. In each case, a possible
proach in which the nearly transparent link between a singlénterpolation between the weak- and strong-coupling limits is

1
f:1+C2

77'3

(1-g)In(1—g)+---, (12
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tunneling limit is conceivable, and this term may permit a
more reliable interpolation between the weak- and strong-
coupling regimes.

Irrespective of the difficulty of connecting the strong- and
weak-coupling limits, it should be emphasized that despite
the uncertainty in the coefficients; and C,, the strong-
coupling results do give an important constraint on the form
of the theoreticalf-versusg curves—viz., the value of
must reach 1 at the point whegeequals 1. Thus, a model
that treats the Coulomb blockade peak splitting as a function
of the interdot channel conductance produces the experimen-
tally observed saturation splitting for a reasonable physical
value of the parametey that marks the strength of the inter-
dot coupling. This fact can be understood by noting that a

(b) ' ' ' ' N nonzero interdot conducFance results in charge fluctgations
08 F " ,,A_ between the dots for which the natural energy scaldds
* n the energy scale that characterizes the difference between the
06 ,," 1 p=0 and p#0 ground states. Ag increases, larger and
f o4l A /ﬁ,/ ] larger charge fluctuations, in which multiple_electrc_)ns. move
' 4 *  _.e” from one dot to the other, become increasingly significant,
o2t A ¥ g » J and the initialg=0 difference between the=0 andp#0
NI ground states becomes less relevant to the energy of the
0.0 : g#0 ground states, which after all are superpositions of a
02 * , \ . , great number ofg=0 eigenstates with a wide variety of
0.0 0.2 0.4 0.6 0.8 1.0 charge distributions.
g The decrease in the dependence of the ground-state en-

. ergy forg#0 could be described, at least approximately, by

FIG. 3. Graphs of the fractional Coulomb blockade conductancean “effective interdot capacitance.” However, the introduc-
peak splittingf as a function of the dimensionless conductance Pekion of such a fictive and. as noted in Sec.' II, unphysical
,C\lhafqel % t')nNthS zwg?rlf- a?rq . St:;r:'g;t%nn_ell'n.g E"m'tilfo'fazi mediator merely begs the question of how such a large ef-
en=1and(b) Ney=2 with coefficientsC, =C,=1 in Egs.(11) an fective interaction is produced. Tunneling provides an an-
(12). Possible interpolating functions are shown by dashed curvess.Wer by allowing electrons to hop back and forth between

Data points from Ref. 2 are given as triangles or stars; the tw . . . . o N
different symbols correspond to different data sets. The value of %Eg g?ézyx:gttﬁ gcilggt\zlcl;egg%/C"::)gé::ggcenselghbors through

for the experimental data has been extracted from the measuré
splitting fractionf’ as discussed in of Sec. Il B with,/U~0.9.

This choice ofU,/U corresponds to the constant interdot capaci- VI. CONCLUSION
tance of 20 aF and total single-dot capacitance of 0.4 fF estimated '
for the experiment of Ref. 2. Following the work of Waughet al,?> we have investi-

gated the relation between the barrier conductance and the
Coulomb blockade for two electrostatically equivalent dots

. X connected by one or more identical tunneling channels and
penmgntal data of Waug.m a.|'2 are aIsp plot.ted. Given the have found an explanation for the evolution of the double-
expenmental error implicit in the dispersion Qf the datadot Coulomb blockade that does not rely upon unphysically
points themselves, the data are seen to be in reasonahlgqe yajues for the interdot capacitance, the intradot level
agreement with theory. _ _ spacing, or the number of conducting channels. We propose

It is clear, however, that, unlike the calculations for tg write the fractional peak splitting of the Coulomb block-
Ncp>1, for Ney=2 the order of calculation completed so far ade conductance peaks as a function of the number of chan-
does not really allow confident interpolation between thenelsN, and the dimensionless barrier conductance per chan-
weak- and strong-coupling limits. On the strong-tunnelingnel g, assuming that the energy level spacifigs small
side, C,~1.5 would effect greater agreement with our sug-compared to the interdot Coulomb blockade enddgyand
gested interpolation: Luttinger-liquid theory’s prediction of thatU, is small compared to the bandwidi of states over
C,;=C,=1 must certainly be checked. With respect to thewhich the amplitudes for transmission through the barrier are
weak-tunneling results, calculation of higher orders in per+oughly constant. Using a “uniform thick-shell model” for
turbation theory should improve the matching, but such comthe tunneling term in the Hamiltonian, we solve for this func-
putations are made difficult by the fact that the correlationgion to leading order in the limit of weak interdot coupling.
induced by the strong Coulomb interaction make normalMe find that in this limit, the peak splitting should evolve

given by a dashed curve. Fbdl,,= 2, the corresponding ex-

Green's-functions methods inapplicabfeDifferent time or-  linearly with the total barrier conductance with a slope sub-
ders must be treated separately, and as appears to occur qustantially less than 1.
generally in Coulomb-blockade probleffsthe number of In order to solve for the strong-coupling limit, we have

diagrams grows pathologically with the order in perturbationintroduced a “fictional” difference between the gate voltages
theory. Nevertheless, calculation of th&term in the weak- on the individual dots. Such a generalization of the two-dot
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problem makes it relatively straightforward to adapt ourtheory is still necessary to permit a convincing connection
analysis to situations where there is a voltage bias betwedmetween the two asymptotic limits.

the two dots® Its purpose here is to allow for a map between
the previously unsolved two-dot problem and a better-known
one-dot problem. The strong-coupling results that we obtain
via this mapping give an asymptotic form for the peak split- The authors are grateful for very helpful discussions with
ting that behaves as (1g)In(1—g). F. R. Waugh, R. M. Westervelt, Gergely T. Zimanyi, C. A.

In the case oNg,= 2, which is pertinent to the experimen- Stafford, C. Crouch, C. Livermore, and Steven H. Simon.
tal results of Ref. 2, the present limiting forms for strong andJ.M.G. thanks the United States Air Force for financial sup-
weak coupling do not match up well enough to allow a reli-port. This work was also supported by the NSF through the
able quantitative interpolation between the two limits. Nev-Harvard Materials Research Science and Engineering Center,
ertheless, a plausible interpolating curve is in qualitativeGrant No. DMR94-00396. After this manuscript was essen-
agreement with existing experimental data. More precise extially complete, the authors received a copy of a paper by
perimental results would allow for a test of the slope pre-Matveev, Glazman, and Baranger prior to publicatfoim
dicted for the weak-tunneling limit. An extension of current which similar ideas were independently developed.
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