
Exchange-correlation energy of a quasi-two-dimensional electron gas:
A Hartree self-consistent approach

M. Combescot, O. Betbeder-Matibet, and C. Benoit a la Guillaume
Groupe de Physique des Solides, Universite´ Denis Diderot and Universite´ Pierre et Marie Curie, CNRS URA 17, Tour 23,

2 place Jussieu, 75251 Paris Cedex 05, France
~Received 14 July 1995!

We present an approach to the exchange-correlation energy of an electron gas confined in a finite-width
quantum well, which avoids the local-density approximation. We focus on densities large enough to have
electrons in more than one subband. This imposes a self-consistent treatment of the Hartree interaction~i.e.,
q50 excitation processes! while theqÞ0 interaction can be treated perturbatively. By writing the Hamiltonian
in terms of appropriate Hartree self-consistent creation operators, we can cancel most but not allq50 Cou-
lomb contributions; a few mixed (q50,qÞ0) terms do remain in the correlation energy. A numerical calcu-
lation of the exchange energy shows that the effect of the Hartree processes turns out to stay rather small in the
whole two-subband filling domain.

In recent publications,1,2 we have studied the Hartree, ex-
change, and correlation energies of a quasi-two-dimensional
electron gas localized in a quantum well. We have shown
that for a well width smaller than the Bohr radius and elec-
trons in the lowest subband only, it is unnecessary to calcu-
late the Hartree energy in a self-consistent way, its perturba-
tive expansion with one or possibly two terms already
providing a very accurate result.1 Within this simplification it
is possible to avoid the local density approximation3–6 for
the exchange-correlation energy and to treat this contribution
as well as the Hartree part through a perturbative treatment
of the Coulomb interaction, similar to the one used for three-
dimensional~3D! and exact 2D electron gases. This ap-
proach allows an easy derivation of the well width depen-
dence of all terms.2

In the present work, we turn to situations, such as elec-
trons in more than one subband, for which the Hartree en-
ergy has to be calculated in a self-consistent way. We again
avoid the usual treatment of exchange and correlation effects
through the local density approximation, and concentrate on
cases for which the well width and electron density are both
large enough to impose a self-consistent treatment of all Har-
tree processes, while the exchange and correlation processes
can still be treated perturbatively.7–9

It is important to stress that a many-subband filling gives
rise to an additional complexity since the fillings10 depend on
the Coulomb interaction: Indeed, the Hartree processes
modify the subband bottom energies and thus the number of
electrons in each subband at equilibrium. These fillings enter
the Hartree energy as well as the exchange-correlation con-
tributions, and thus modify their values accordingly.

In view of all these complexities, we found it interesting
and useful to first derive the Hartree energy from two differ-
ent approaches.

~i! In the first approach, we start as in Ref. 1: We write the
Hamiltonian in terms of creation operatorsank

† for freeelec-
trons in the well. The part of the Coulomb interaction with
zero momentum transfers~called Hartree processes! is ex-
panded perturbatively and summed up to all orders. This

infinite summation yields the Hartree energy. It can be per-
formed using standard technics for many-body problems.11

We however show that for electrons in more than one sub-
band, this summation cannot be done withT50 Green’s
functions but imposes the finiteT formalism.

~ii ! In the second approach, we start completely differ-
ently. We introduce a so-called Hartree basis composed of
the eigenstates of a Poisson-Schro¨dinger Hamiltonian. We
use this basis to define new creation operatorsAnk

† and we
write the total Hamiltonian in terms of these operators. We
then split this total Hamiltonian into a one-body diagonal
part and a two-body part composed of new zero momentum
(q50) and nonzero momentum (qÞ0) excitation processes.
We show that for the equilibrium fillings of the Hartree prob-
lem, the contributions of these new (q50) processes to the
Hartree energy cancel so that the exact Hartree energy is
simply given by the one-body diagonal part of the Hamil-
tonian.

This second approach turns out to be quite appropriate to
derive the exchange-correlation energy in an easy way. With
the Hamiltonian now written in terms ofAnk

† Hartree opera-
tors, we find that most of the usual mixed (q50,qÞ0) terms
cancel, so that the Coulomb expansion of the energy is
greatly simplified when compared to the standard approach
in terms ofank

† free-electron operators. In particular, all the
mixed (q50,qÞ0) processes of the exchange energy give
zero, while the first correlation term@i.e., the term quadratic
in (qÞ0) processes# contains one mixed Hartree-correlation
contribution only.

The paper is organized as follows.
In Sec. I, we recall the formalism of Refs. 1 and 2, and

give the range of parameters for which a self-consistent treat-
ment of the Hartree energy is necessary while the exchange-
correlation energy can be calculated perturbatively. We then
derive the Hartree energy from the first approach described
above, using free-electron operators.

In Sec. II, we rewrite the total Hamiltonian in terms of
Hartree creation operators defined on a Hartree basis and we
show how we can recover the Hartree energy obtained in
Sec. I.
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In Sec. III, we use the expression of the finite momentum
transfer Coulomb interaction obtained in Sec. II, to derive
the exchange energy, the mixed Hartree-exchange energy, the
second-order correlation energy, and the mixed Hartree–
second-order correlation energy.

In Sec. IV, we have gathered all numerical results. The
self-consistent treatment of the Hartree processes implies the
resolution of a Poisson-Schro¨dinger equation which cannot
be solved but numerically. Moreover, the solutions of this
equation depend on the ion distribution in a nontrivial way.
In order to illustrate the Hartree self-consistent approach ex-
posed in Secs. II and III, we have chosen a configuration
with ions on both sides of the electron layer and we have
considered two different well widths. In the first part, we
give the subband fillings, energies, and wave functions, tak-
ing into account Hartree processes only. We then calculate
the Hartree energy and exchange energy as functions of the
electron density and we discuss the effect of the well width
on these quantities. We also give the electron-hole chemical
potential of a doped quantum well as induced by this Hartree
self-consistent approach.

I. HARTREE ENERGY WITHIN THE FREE-ELECTRON
BASIS

A. Hamiltonians

The one-particle Hamiltonian for free electrons in a quan-
tum well of surfaceS and widtha reads

h5hxy1hz5
px
21py

2

2m
1F pz22m1u~z!G , ~1.1!

whereu(z) is the well potential. Letuk& be thehxy eigen-
states of energy«k ,

12

hxyuk&5«kuk&, «k5
k2

2m
,

^ruk&5eik•r/AS, r5~x,y!, ~1.2!

and uwn& thehz eigenstate of energy«n ,

hzuwn&5«nuwn&. ~1.3!

For infinite well barriers atz50 andz5a, we have

^zuwn&5wn~z!5~2/a!1/2sin~npz/a!,

«n5
p2n2

2ma2
. ~1.4!

The uwnk& eigenstates ofh are given by

uwnk&5uwn& ^ uk&,

huwnk&5~«n1«k!uwnk&. ~1.5!

Using theseuwnk& states as a basis for second quantiza-
tion, and callinganks

† the corresponding creation operators
(s being the spin index!, the free electron part of theN
electron Hamiltonian appears in a diagonal form and reads

H05(
nks

~«n1«k!anks
† anks . ~1.6!

We now consider thetotalCoulomb interaction12 between
N electrons atrn (n51,N) and N ions assumed to be
delocalized in a quasi-2D jellium with densityni(r )
5r i(z)N/S,

V coul5
1

2 (
nÞn8

e2

urn2rn8u
1
1

2E E d3r d3r 8
e2

ur2r 8u
ni~r !ni~r 8!

2(
n
E d3r

e2

ur2rnu
ni~r !. ~1.7!

When written in second quantization with theuwnk& basis,
this Hamiltonian can be split into two parts,

V coul5V ~q50!1V ~qÞ0!. ~1.8!

The zero momentum transfer part reads1

V ~q50!5
1

2

2pe2

Sa21 (
n1n18

n2n28

(
k1s1

k2s2

wn1n18 ;n2n28
an1k1s1

† an2k2s2

†

3an
28k2s2

an
18k1s1

, ~1.9!

wn1n18 ;n2n28
52E E dz1dz2

uz12z2u
a

3@wn1
* ~z1!wn

18
~z1!2r i~z1!dn1n18#

3@wn2
* ~z2!wn

28
~z2!2r i~z2!dn2n28#,

~1.10!

while the finite momentum transfer part reads2

V ~qÞ0!5
1

2(qÞ0

2pe2

Sq (
n1n18

n2n28

(
k1s1

k2s2

vn1n18 ;n2n28~q!

3an1k11qs1

† an2k22qs2

† an
28k2s2

an
18k1s1

, ~1.11!

vn1n18 ;n2n28~q!5E E dz1dz2e
2quz12z2uwn1

* ~z1!wn
18
~z1!

3wn2
* ~z2!wn

28
~z2!. ~1.12!

B. Range of parameters implying a self-consistent treatment
of the Hartree terms

The properties of a quasi-2D electron gas confined in a
quantum well depend on the well widtha, the ion configu-
ration r i(z), and the 2D electron density

ns5
N

S
5
K2

2p
. ~1.13!

From ns , we can construct the usual dimensionless param-
eter r s , which reads

nspr s
2a0

251⇒r s5A2/Ka0 , ~1.14!
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wherea051/me2 is the Bohr radius.12 By similarity with the
3D case, a perturbative expansion of the Coulomb energy in
V (qÞ0) is valid for dense systems only, i.e., forr s,1.

With respect to theV (q50) expansion of the Hartree en-
ergy, we have shown1 that it is controlled by a dimensionless
parameterlH , which is proportional toe2 and ns , and is
explicitly given by13

lH5
K2a3

p4a0
5

2

p4 S aa0D
3 1

r s
2 . ~1.15!

A perturbative expansion of the Hartree energy is thus valid
for

lH,1⇒ a

a0
,S p4

2
r s
2D 1/3. ~1.16!

Let us now consider the subband filling in the absence of
Coulomb interaction: The electrons occupyone subband
only if

«11«K,«2⇒
a

a0
,A 3

2pr s . ~1.17!

They occupytwo subbands, withN1
0 (N2

0) electrons in the
n51 (n52) subband, if

N1
05S~K1

0!2/2p, N2
05S~K2

0!2/2p5N2N1
0 ,

«11«K
1
05«21«K

2
0. ~1.18!

This implies

«22«1,«K,2«32«12«2⇒A 3
2pr s,

a

a0
,A 13

2 pr s .

~1.19!

In the same way, we find that the electrons occupythree
subbands if

A 13
2 pr s,

a

a0
,A17pr s ~1.20!

and so on.
The ranges of parametersa/a0 versusr s corresponding to

one-, two-, and three-subband fillings, are shown in Fig. 1. In
this figure we have also shown thelH51 curve. If we re-
strict ourselves to ther s,1 domain, in order to allow a
reliable calculation of the exchange-correlation energy, we
see that most of the one-subband domain and a small part of
the two-subband domains lie below thelH51 curve while
all other filling situations correspond tolH.1.

In our preceding works, we have considered electrons in
the lowest subband only, for which we essentially have
lH,1 if r s,1: a perturbative expansion of the Coulomb
energy inV (qÞ0) andV (q50) is thus expected to be valid in
this case. Indeed, we have checked that the perturbative ex-
pansion of the Hartree energy, with only one or possibly two
terms, gives a result very close to its exact value obtained by
solving self-consistently the usual Poisson-Schro¨dinger
equation.

In this paper we wish to turn to a more difficult problem:
Our goal is to calculate the exchange-correlation energy in a

3D-like way, i.e., as an expansion inV (qÞ0), whereas per-
forming a summation of all theq50 processes. As shown in
Fig. 1, this is necessary when electrons fill more than one
subband, since in this caselH.1 for r s,1. For simplicity
we will concentrate here on situations where electrons oc-
cupy the two lowest subbands only~the extension to elec-
trons filling more than two subbands being formally straight-
forward!. For a well widtha53a0 , the two-subband filling
corresponds to 0.37,r s,0.78 and 0.91,lH,3.95.

C. Calculation of the Hartree energy by summing
all q50 processes

The Hartree energy is the ground-state energy ofHH ,
defined as

HH5H01V ~q50!. ~1.21!

The perturbative expansion of this energy corresponds to all
possible diagrams withq50 transfers only. These are shown
in Fig. 2~a!, up to third order inV (q50). The first two terms
have been explicitly calculated in Ref. 1.

1. Method

If we want to sum up all these terms, the Green’s function
approach seems a well adapted procedure. However, in the
case of electrons in more than one subband, theT50
Green’s functions cannot be used for the following reason: it
is stated at a very early stage of the theory, that theT50
Green’s function formalism applies to problems in which the
perturbed ground state derives from the unperturbed one.
This is not the case if electrons are in two subbands. Indeed

FIG. 1. a/a0 versusr s domains for which electrons fill one~I!,
two ~II !, three~III !, etc. subbands. The dashed curve corresponds to
lH51.
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the subband filling in the absence of Coulomb interaction
corresponds toN1

0 andN2
0 given by Eq.~1.18!. In the pres-

ence ofV (q50), we expect the subband bottom energies to
be modified from«1 ,«2 to E1 ,E2 , so that the equilibrium
fillings N1 ,N2 should now verify

N15SK1
2/2p, N25SK2

2/2p5N2N1 ,

E11«K15E21«K2. ~1.22!

The T50 formalism would in fact give the properties of a
perturbed state withN1

0 andN2
0 electrons in the two lowest

subbands and not those of the true Hartree ground state.
If we use instead finite-T Green’s functions,11 and letT go

to zero at the end, we must clearly generate the correct ‘‘per-
turbed’’ ground state. The bare propagator then reads11

gn~k,vn!5
1

ivn1m2«k2«n
~1.23!

with vn5(2n11)pT, v being an integer. TheV (q50) inter-
action renormalizes this bare propagator. Using the standard
TÞ0 Green’s function procedure we find that the renormal-
ized propagator verifies the following Dyson equation@see
Fig. 2~b!#:

G nn8~k,vn!5gn~k,vn!dnn8

1gn~k,vn!(
n9

snn9G n9n8~k,vn!, ~1.24!

where the self-energysnn8 induced by the Hartree potential
is independent ofk andvn . It is precisely given by

snn85
2pe2

Sa21(
n1n2

wnn8;n1n2N n2n1
, ~1.25!

N n2n1
5 lim

t→01

T(
nks

eivntG n2n1
~k,vn!. ~1.26!

At fixed temperatureT and chemical potentialm, the av-
erage energyĒH(m,T), electron numberN̄(m,T), and elec-
tron density n̄(z,m,T) can be expressed in terms of the
renormalized Green’s functions:11

ĒH~m,T!5
1

2
lim

t→01

T (
nnks

eivnt

3~ ivn1m1«k1«n!G nn~k,vn!, ~1.27!

N̄~m,T!5(
n
N nn ~1.28!

n̄~z,m,T!5 lim
t→01

T(
nnn8

eivntwn~z!wn8
* ~z!G nn8~k,vn!.

~1.29!

Equation~1.28! will allow to determinem as a function ofN
andT by setting as usual

N̄~m,T!5N. ~1.30!

2. Resolution of the Dyson equation

We now turn to the resolution of Eq.~1.24!. We first note
that the bare Green’s function given by Eq.~1.23! can be
related to the following operatorg:

g5
1

ivn1m2«k2hz
, ~1.31!

wherehz is the Hamiltonian defined in Eq.~1.1!. From ~1.3!
and ~1.23! we obviously get

^wnuguwn8&5gn~k,vn!dnn8. ~1.32!

Let us introduce in the same way the operatorsG and sz
defined by

^wnuGuwn8&5G nn8~k,vn!, ~1.33!

^wnuszuwn8&5snn8. ~1.34!

Equation~1.24! then simply reads

G5g1gszG. ~1.35!

Inserting Eq.~1.31! into Eq. ~1.35!, we get

G215g212sz5~ ivn1m2«k2Hz!, ~1.36!

whereHz , defined by

Hz5hz1sz , ~1.37!

can be seen as az Hamiltonian in the presence of Hartree
interaction. The operatorG is thus formally similar tog and
reads

G5
1

ivn1m2«k2Hz
. ~1.38!

Let ufn& be the eigenstates ofHz ,

Hzufn&5Enufn&. ~1.39!

The ufn& form an orthonormal basis sinceHz , like hz , are
Hermitian. In thisufn& basis, the operatorG is diagonal and
its matrix elements simply read

FIG. 2. ~a! Hartree energy diagrams up to second order in
V (q50) interaction~dashed line!. ~b! Electron propagator renormal-
ized by the Hartree interaction.
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^fnuGufn8&5
dnn8

ivn1m2«k2En
5Gn~k,vn!dnn8. ~1.40!

From them, we easily deduce theG matrix elements in the
uwn& basis,

G nn8~k,vn!5(
n9

^wnufn9&^fn9uwn8&Gn9~k,vn!. ~1.41!

3. Link with the Poisson-Schro¨dinger equation

Before going further, let us study thisufn& basis. We ex-
pect it to be related to the eigenstates of the Poisson-
Schrödinger equation appearing in the standard derivation of
the Hartree energy.

From the definitions ofsnn8 @Eq. ~1.25!# and n̄(z,m,T)
@Eq. ~1.29!#, we can show~see Appendix A! thatsz is given
by

sz5Vz2E dzVzr i~z!, ~1.42!

whereVz is the electrostatic energy of an electron in the
presence of a charge distributionens@r i(z)2re(z)#

Vz522pe2nsE dz8uz2z8u@re~z8!2r i~z8!# ~1.43!

provided thatre(z) is defined as

re~z!5
1

N
n̄~z,m,T!5(

n

Nn

N
ufn~z!u2, ~1.44!

where theNn are given in terms of theGn by

Nn5 lim
t→01

T(
nks

eivvtGn~k,vn!. ~1.45!

We see, from Eq.~1.42!, thatsz andVz differ by a constant
independent ofz.

Using Eqs.~1.37!, ~1.39!, and~1.42!, we deduce that the
ufn& also verify

Ĥzufn&5Ênufn&,

Ĥz5hz1Vz , ~1.46!

where the new eigenvaluesÊn differ from En by a constant
term, independent ofn,

Ên5En1E dz Vzr i~z!. ~1.47!

Equation~1.46! is nothing but the usual Poisson-Schro¨dinger
equation of the Hartree problem.

In order to make the complete identification with the
Poisson-Schro¨dinger approach, we must relate theNn ap-
pearing inre(z) and defined by Eq.~1.45! to the number of
electrons in the renormalized subbands. Let us recall that, up
to now, theseNn depend onm andT. Inserting Eq.~1.40!
into Eq. ~1.45! and using the relation11

lim
T→0

lim
t→01

T(
n

eivnt

ivn1x
5 limT→0

1

11e2x/T 5u~x!,

~1.48!

whereu(x) is the Heaviside function, we find

Nn~m,T50!5(
ks

u~m2«k2En!, ~1.49!

so that, in theT50 limit, Nn is indeed the number of elec-
trons in the renormalizedn subband with energies
(En1«k), up to a chemical potentialm.

In order to determine this chemical potential for a givenN
in the T50 limit, we use Eq.~1.30!. Since the trace of a
matrix does not depend on the basis, Eq.~1.28! also reads

N̄~m,T!5(
n

Nn~m,T! ~1.50!

so thatm(N,T50) is such that

N5(
nks

u„m~N,0!2«k2En…. ~1.51!

In the case of a two-subband filling, we can verify, using
Eqs. ~1.49! and ~1.51! thatN1 andN2 are indeed given by
Eq. ~1.22!. From Eq.~1.51! we also deduce the condition for
a two- ~renormalized! subband occupation which now reads

E22E1,«K,2E32E12E2 . ~1.52!

It is somewhat different from Eq.~1.19! due to the introduc-
tion of renormalized subband energiesEn instead of«n .

We can note that the condition for equilibrium filling@Eq.
~1.22!#, as well as the condition for two-subband occupation
@Eq. ~1.52!# could as well be written with theEn replaced by
the Poisson-Schro¨dinger eigenvaluesÊn , since these quanti-
ties differ by a constant independent ofn. We must however
stress that, due to Eq.~1.51!, it is En and notÊn which is the
energy directly related to the chemical potentialm, this m
being the energy necessary to add one electron and one ion
to theN electron-ion system.

Equation~1.46! is a self-consistent equation for thefn ,
sinceVz depends on thefn(z) and on theEn through the
Nn , so that its solution can only be obtained numerically.
The corresponding results will be given in Sec. IV.

4. Hartree energy

Let us end this section by calculating the average energy
in the T50 limit. From Eqs.~1.27!, ~1.40!, and ~1.41!, we
get

ĒH~m,T!5 lim
t→01

T(
n

eivnt(
nks

1

2

3F ^fnu2«k1hz1Hzufn&
ivn1m2«k2En

11G . ~1.53!

Using Eq.~1.48! and the following relation:11

lim
t→01

(
n

eivnt50, ~1.54!
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we find

ĒH~m,0!5(
nks

^fnu«k1Hz2
1
2szufn&u~m2«k2En!.

~1.55!

With Eqs. ~1.39!, ~1.42!, and ~1.49! we can rewrite this en-
ergy in terms ofEn , Nn , andfn(z) as

EH5
p

2mS(n Nn
21(

n
NnEn1NE, ~1.56!

E5pe2nsE E dz dz8uz2z8u@re~z!2r i~z!#

3@re~z8!2r i~z8!#. ~1.57!

The first term of Eq.~1.56! is the kinetic energy of the elec-
trons sinceNn5SKn

2/2p. The second term is the localization
energy in the presence of the Hartree interaction, while the
third term takes into account the double counting of the Cou-
lomb interaction between the average charge densities in-
cluded inEn .

If we rewrite this Hartree energy in terms of the Poisson-
Schrödinger eigenvaluesÊn , we find as in Ref. 1:

EH5
p

2mS(n Nn
21(

n
NnÊn1NÊ, ~1.58!

Ê5pe2nsE E dz dz8uz2z8u@re~z!re~z8!2r i~z!r i~z8!#.

~1.59!

II. HARTREE ENERGY USING HARTREE CREATION
OPERATORS

A. Hartree creation operators

We may hope to avoid the summation of allV (q50) terms
by using for second quantization an appropriate basis in
which the Hartree processes are somewhat included. It can
thus appear as natural to introduce a set of orthonormal one-
particle states

ufnk&5ufn& ^ uk&, ~2.1!

in which uk& is still anhxy eigenstate of energy«k while the
ufn& are the eigenstates of a Poisson-Schro¨dinger Hamil-
tonian,

Ĥz5hz1Vz, ~2.2!

Ĥzufn&5Ênufn&, ~2.3!

hz being given by Eq.~1.1! andVz by Eq.~1.43!. Vz depends
on an electronic densityre(z). We choose it to be the elec-
tronic density ofN electrons inufnk& states, withN n elec-
trons in then subband: More precisely, we choose

Nre~z!5(
n
N nufn~z!u2 ~2.4!

with fn(z)5^zufn&, and

(
n
N n5N. ~2.5!

At this stage, theN n are just parameters, without any other
constraint than Eq.~2.5!. Their appropriate values will be
determined later. Theufn& depend, of course, on these
N n .

We introduce a set of creation operatorsAnks
† associated

to the ufnk& states, and we rewrite the total Hamiltonian
H in terms of theseAnks

† . Using the standard second-
quantization procedure, we now have

H05(
nn8

(
ks

~«kdnn81Enn8!Anks
† An8ks , ~2.6!

Enn85E dz fn* ~z!hzfn8~z! ~2.7!

so thatH0 is still diagonal ink but no more inn.
Turning to the Coulomb potential, we can split it, as in

Sec. I, intoq50 andqÞ0 interactions, which formally read
as Eqs.~1.9! and~1.11! with a† replaced byA†, w byW, and
v by V. Namely, we have

V ~q50!5
1

2

2pe2

Sa21(
n1n18

n2n28

(
k1s1

k2s2

Wn1n18 ;n2n28
An1k1s1

† An2k2s2

†

3An
28k2s2

An
18k1s1

, ~2.8!

whereW is formally identical tow @Eq. ~1.10!# with wn(z)
replaced by fn(z), and similarly14 for V (qÞ0) and
Vn1n18 ;n2n28

(q).

We now perform a set of algebraic manipulations, the
purpose of which is to rewrite the Hartree Hamiltonian
HH @Eq. ~1.21!# as

HH5H̃01Ṽ ~q50!, ~2.9!

whereH̃0 is a one-bodydiagonalHamiltonian,

H̃05(
nks

~«k1Ẽn!Anks
† Anks , ~2.10!

and Ṽ (q50) a two-body interaction,

Ṽ ~q50!5
1

2

2pe2

Sa21(
n1n18

n2n28

(
k1s1

k2s2

W̃n1n18 ;n2n28
An1k1s1

† An2k2s2

†

3An
28k2s2

An
18k1s1

, ~2.11!

the coefficients of which verify the ‘‘magic’’ relation

(
p
N pW̃pp;nn850 ;n,n8. ~2.12!

We will see later that this relation between theW̃ is indeed
quite useful since it induces the cancellation of most contri-
butions fromq50 excitations.
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The first step of these manipulations is to expressEnn8 in
terms of the eigenvaluesÊn of the Poisson-Schro¨dinger
equation. We find

Enn85Endnn82
2pe2

Sa21(
p
N pWpp;nn8, ~2.13!

En being related toÊn as in Sec. I@Eq. ~1.47!#.
Next we rewrite the part ofH0 which depends onW as a

two-body operator by using the fact that, in the large-N limit,
we have

NAnks
† An8ks5 (

n1k1s1

Anks
† An8ksAn1k1s1

† An1k1s1

> (
n1k1s1

Anks
† An1k1s1

† An1k1s1
An8ks

~2.14!

when this operator acts on anyN particle state. This allows
us to rewrite the Hartree Hamiltonian as

HH5(
nks

~«k1En!Anks
† Anks

1
1

2

2pe2

Sa21(
n1n18

n2n28

(
k1s1

k2s2

Wn1n18 ;n2n28
8 An1k1s1

† An2k2s2

†

3An
28k2s2

An
18k1s1

, ~2.15!

where theW8 are given by

Wn1n18 ;n2n28
8 5Wn1n18 ;n2n28

2(
p

N p

N
@Wpp;n2n28

dn1n18

1Wn1n18 ;pp
dn2n28#. ~2.16!

It is easy to check that theseW8 verify

(
p
N pWpp;nn8

8 50 if nÞn8. ~2.17!

The last step is to force such a relation forn5n8 as well.
For that we add and subtract a constant termNE toHH and
we write this constant term in two ways:

NE5E(
nks

Anks
† Anks

>
E

N(
nks

(
n8k8s8

Anks
† An8k8s8

† An8k8s8Anks ~2.18!

according to Eq.~2.14!. By choosing

E52 1
2 E dz Vz@re~z!2r i~z!#

5pe2nsE E dz dz8uz2z8u@re~z!2r i~z!#

3@re~z8!2r i~z8!# ~2.19!

@as in Eq.~1.57!#, we transform Eq.~2.15! into Eq.~2.9! and
we find that the eigenvaluesẼn associated to the diagonal
part H̃0 are given by

Ẽn5En1E5Ên1Ê ~2.20!

with Ê given by Eq. ~1.59!, while the matrix elements
W̃n1n18 ;n2n28

associated to the interactionṼ (q50) are now

given by

W̃n1n18 ;n2n28
5Wn1n18 ;n2n28

8 1dn1n18dn2n28(
pp8

N pN p8
N2 Wpp;p8p8.

~2.21!

It is possible to rewrite theseW̃ as

W̃n1n18 ;n2n28
52E E dz1 dz2

uz12z2u
a

@fn1
* ~z1!fn

18
~z1!

2re~z1!dn1n18#@fn2
* ~z2!fn

28
~z2!2re~z2!dn2n28#.

~2.22!

From the above equation, it is straightforward to check that
theseW̃ do verify the ‘‘magic’’ equation~2.12!. We can also
note thatW̃n1n18 ;n2n28

looks very much likeWn1n18 ;n2n28
except

that the ion densityr i(z) is replaced by the electronic den-
sity re(z).

Up to now, the set of parametersN n which enterre(z)
and determine theufnk& basis are undefined. The last prob-
lem is to determine them. Let us do it now.

B. Determination of the N n parameters

We consider the stateuN 1•••N n•••& with N n electrons
in the lowest ufnk& states of the n subband.
uN 1•••N n•••& is an eigenstate ofH0 with the energy

E~N 1•••N n••• !5(
n
N nF p

2mS
N n1ẼnG , ~2.23!

Ẽn depending onN n throughre . If we now consider the
HamiltonianHH and introduce theṼ (q50) interaction as a
perturbation, we find that the first-order term of the energy
change@corresponding to processes shown in Fig. 3~a!#,

^N 1•••N n•••uṼ ~q50!uN 1•••N n•••&

5
pe2

Sa21(
pp8

N pN p8W̃pp;p8p8 ~2.24!

gives zero due to Eq.~2.12!. Turning to the second-order
term
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^N 1•••N n•••uṼ ~q50!P'

1

E2H̃0
P'Ṽ

~q50!uN 1•••N n•••&, ~2.25!

we find that its extensive contribution also gives zero: The
extensive contribution comes from a summation over three
arbitrary variables, in order to have a term proportional to the
well surfaceS. It corresponds to the processes shown in Fig.
3~b!. Each Coulomb interaction leads to a factor

(
p
N pW̃pp;nn8, ~2.26!

which is zero due to Eq.~2.12!. Similarly, all the higher-
order terms also give zero due to the presence of the same
factor @Eq. ~2.26!#. The apparition of such factors is clearer
in the diagrammatic expansion of the energy in powers of
Ṽ (q50), since all terms contain ‘‘tadpoles’’ like the one
drawn in Fig. 4.

We thus conclude that the energy of the perturbed state
derived fromuN 1•••N n•••& by applying theṼ (q50) per-
turbation is simplyE(N 1•••N n•••). Consequently, this
energy is nothing but the Hartree energy of the
(N 1•••N n•••) filling.

If we now want to determine the set ofN n which corre-
sponds to the lowest Hartree energy, we have to minimize
E(N 1•••N n•••) with respect to theN n . As theseN n are
linked by Eq. ~2.5!, this minimum corresponds to
N n5Nn , with Nn given by

a5U]E~N 1•••N n••• !

]N n
U
N n5Nn

, ~2.27!

a being a constant~Lagrange! multiplier. SinceẼn5En1E
and

N
]E

]N n
1(

p
N p

]Ep

]N n
50, ~2.28!

as shown in Appendix B, Eq.~2.27! reduces to

a5
p

mS
Nn1Ẽn ~2.29!

in which Ẽn depends onN1•••Nn••• throughre .
Equation~2.5! ~with N n replaced byNn) and Eq.~2.29!

are exactly equivalent to Eqs.~1.49! and ~1.51!, with
a5m1E: The set of N n which minimizes the
E(N 1•••N n•••) corresponds to the equilibrium filling of
the renormalized subbands with localization energiesEn @cf.
Fig. 3~c!#. In the particular case of a two-subband filling, we
do recover the equilibrium condition@Eq. ~1.22!#.

We thus conclude that theNn determined self-consistently
from theTÞ0 Green’s function formalism of Sec. I are the
same as the ones we obtain here using a minimization pro-
cedure. Moreover, as can be seen from Eqs.~1.56! and
~2.23!, E(N 1•••N n•••) is exactly equal to the Hartree en-
ergy EH calculated in Sec. I. This means that, as we could
expect, theuN1•••Nn•••& eigenstate ofH̃0 is the unper-
turbed state we have to start from, in order to get the true
ground-state energy of the Hartree Hamiltonian.

We wish to end this section with the following remark.
Although the introduction of there electron density@Eq.
~1.4!# would have no physical meaning if not associated to a
state withN n electrons in then subband,re(z) could be
considered as a formal parameter which defines theufnk&.
We can thus imagine to considerH̃0 eigenstates
uN 18•••N n8•••& with N n8ÞN n . We do show in Appendix
C that theN n8 andN n which give the lowestH̃0 eigenen-
ergy are indeed such thatN n85N n5Nn whereNn still veri-
fies Eq.~2.29!.

III. EXCHANGE AND CORRELATION ENERGIES

A. Summary of the basic equations

In the preceding section, we have introduced a Hartree
basisufnk&5ufn& ^ uk& in which ufn& is solution of a self-
consistent Poisson-Schro¨dinger equation:

FIG. 3. First-order~a! and second-order~b! excitation processes
corresponding to zero momentum transfers~i.e., Hartree interac-
tion!. ~c! Equilibrium filling for Hartree renormalized subbands. FIG. 4. ‘‘Tadpole’’ diagram appearing in the Hartree expansion.
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Ĥzufn&5Ênufn&, ~3.1!

Ĥz5
pz
2

2m
1u~z!22pe2nsE dz8uz2z8u@re~z8!2r i~z8!#,

~3.2!

re(z) being the Hartree electron density given by

Nre~z!5(
n

Nnufn~z!u2 ~3.3!

and Nn the number of electrons in then subband. These
Nn verify

Ê11«K15Ê21«K25••• with Kn
252pNn /S. ~3.4!

We have used these Hartree functions as a basis for sec-
ond quantization, and we have shown that, in terms of the
corresponding Hartree creation operatorsAnks

† , the total
Hamiltonian can be written as

H5H̃01Ṽ ~q50!1V ~qÞ0!. ~3.5!

The one-body partH̃0 is diagonal and reads

H̃05(
nks

~«k1Ẽn!Anks
† Anks . ~3.6!

These Ẽn differ from the eigenvaluesÊn of the Poisson-
Schrödinger equation by a constant termÊ, as given in Eq.
~1.59!.

The two-body part Ṽ (q50) corresponds to zero-
momentum transfer excitations and reads

Ṽ ~q50!5
1

2

2pe2

Sa21(
n1n18

n2n28

(
k1s1

k2s2

W̃n1n18 ;n2n28
An1k1s1

† An2k2s2

†

3An
28k2s2

An
18k1s1

. ~3.7!

The main property of theW̃ matrix elements is to verify

(
p
NpW̃pp;nn850 ;n,n8. ~3.8!

They are precisely given by

W̃n1n18 ;n2n28
52E E dz1 dz2

uz12z2u
a

@fn1
* ~z1!fn

18
~z1!

2re~z1!dn1n18#@fn2
* ~z2!fn

28
~z2!2re~z2!dn2n28#.

~3.9!

The last part,V (qÞ0), corresponds to Coulomb excitations
with nonzero momentum transfer and reads

V ~qÞ0!5
1

2(qÞ0

2pe2

Sq (
n1n18

n2n28

(
k1s1

k2s2

Vn1n18 ;n2n28
~q!

3An1k11qs1

† An2k22qs2

† An
28k2s2

An
18k1s1

,

~3.10!

Vn1n18 ;n2n28
~q!5E E dz1 dz2e

2quz12z2ufn1
* ~z1!fn

18
~z1!

3fn2
* ~z2!fn

28
~z2!. ~3.11!

The Hartree energyEH , i.e., the ground-state energy of
the Hartree HamiltonianHH5H̃01Ṽ (q50), is given by Eq.
~1.58!. We derived it from two different approaches and
showed that it is equal to the unperturbed energy of the
H̃0 eigenstateuN1 ,N2 ,...Nn ,...&.

In this section we will for simplicity restrict our study to a
two-subband filling and look for the total Coulomb energy of
the perturbed state obtained from theH̃0 eigenstate
uN1N2& when applying the@ Ṽ (q50)1V (qÞ0)# perturbation.
Since Ṽ (q50) alone gives a zero contribution, as shown in
Sec. II, we only have to consider terms with oneV (qÞ0) at
least.

B. Exchange energy

The exchange energy contains all terms with one
V (qÞ0), i.e., all terms inV (qÞ0) @ Ṽ (q50)#p with p>0. Some
of the corresponding diagrams are shown in Fig. 5.

~i! The ‘‘bare’’ exchange energy, i.e., the term without any
Ṽ (q50) Hartree interaction, simply reads

Ex5N«x5^N1N2uV ~qÞ0!uN1N2&

52 (
qÞ0

2pe2

Sq (
n51,2

m51,2

Vnm;mn~q!Jnm~q!, ~3.12!

Jnm~q!5(
k

u~Kn2k!u~Km2uk1qu!. ~3.13!

It corresponds to the diagram of Fig. 5~a! or to the physical
processes shown in Fig. 6.

FIG. 5. Exchange energy diagrams~the wavy line corresponds
to the V (qÞ0) interaction!: ~a! ‘‘bare’’ term, i.e., without Hartree
processes;~b! mixed Hartree-exchange terms with one or two
Ṽ (q50) interactions~dashed lines!: All these terms give a zero con-
tribution.
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Explicit expressions ofJnm(q) are given in Appendix D.
From them we can numerically compute the values of«x for
different values ofr s anda/a0 . They will be given in Sec.
IV.

~ii ! Turning to the mixed Hartree-exchange energy, i.e., to
terms with one or moreṼ (q50) interactions@cf. Fig. 5~b!#,
we find that they all give zero since they all correspond to
‘‘tadpole’’ diagrams @cf. Fig. 4# and thus contain a factor
(p51,2NpW̃pp;nn8 which is zero due to Eq.~3.8!.

Within our renormalized Hartree approach, we thus con-
clude that the exchange energy reduces to its ‘‘bare’’ value
Ex only, as given in Eq.~3.12!. Let us stress that this ‘‘bare’’
value is not really a bare value since it contains some Hartree
effects through the Hartree wave functionsfn(z) entering
the Coulomb matrix elementVnm;mn(q).

C. Correlation energy

The correlation energy contains all terms in
(V (qÞ0)) l(Ṽ (q50))p with l>2 andp>0. We will only dis-
cuss here the second-order terms, i.e., the terms withl52.

~i! The ‘‘bare’’ second-order correlation term has no
Ṽ (q50) interaction. It is given by

Ecorr
~2! 5 (

un&ÞuN1 ,N2&

z^nuV ~qÞ0!uN1N2& z2

E~N1 ,N2!2E~n!
. ~3.14!

Ecorr
(2) contains the usual direct and exchange terms as well as

an ‘‘anomalous’’ term. These contributions correspond to the
diagrams of Fig. 7~a!. The direct and exchange terms read

Ecorr
d1e5S 2pe2

S
D(
n151,2

n251,2

(
qÞ0

(
n18n28

k1k2

f n1k1~12 f n
18,k11q! f n2k2~12 f n

28,k22q!

Ên1
1Ên2

2Ên
18
2Ên

28
1«k11«k22«k11q2«k22q

3F2uVn1n18 ;n2n28
~q!u2

q2
2
Vn1n18 ;n2n28

~q!Vn
18n1 ;n28n2

~ uq1k12k2u!

quq1k12k2u
G ~3.15!

@wheref nk is the Fermi functionf nk5u(Kn2uku)#, while the
anomalous term is given by

E corr
a 52S 2pe2

S D 2(
n151,2

n251,2

n351,2

(
n38Þn3

k1k2k3

f n1k1f n2k2f n3k3~12 f n
38k3

!

Ên3
2Ên

38

3
Vn1n3 ;n38n1

~ uk32k1u!Vn3n2 ;n2n38
~ uk32k2u!

uk32k1uuk32k2u
.

~3.16!

Equations~3.15! and ~3.16! are formally similar to Eqs.~7!
and ~8! of Ref. 2 except that the subband indicesn1 ,n2 ,n3
can here be equal to 1 or 2~and not to 1 only! due to the fact
that electrons now occupy two subbands.

Let us stress that, here again, this ‘‘bare’’ second-order
energy is not really bare since the Hartree effects are present

FIG. 6. Exchange processes of the ‘‘bare’’ term inside then51
subband, inside then52 subband, and between then51 andn52
subbands.

FIG. 7. ~a! ‘‘Bare’’ second-order correlation diagrams. The third
diagram, called the ‘‘anomalous’’ diagram, does not exist in the 3D
and exact 2D expansions atT50: It comes from possible intersub-
band excitations only.~b! One possible mixed Hartree-second-order
correlation diagram; such diagrams are generated by adding a ‘‘tad-
pole’’ to the ‘‘bare’’ diagrams of~a!: All these terms give a zero
contribution.~c! Other mixed Hartree-second-order correlation dia-
grams, which are not obtained by simply adding a ‘‘tadpole’’ to the
‘‘bare’’ correlation diagrams.~d! Summation of all the diagrams of
the type shown in~c!.
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through theÊn and theVn1n18 ;n2n28
(q), which depend on the

fn . This makes the numerical calculation of the correlation
energy rather heavy when compared to the one of Ref. 2:
Indeed, in the perturbative treatment of the Hartree pro-
cesses, we used the free-electron basiswnk which is known
analytically for infinite well barriers. This allowed an ana-
lytical calculation of allVn1n18 ;n2n28

matrix elements, so that

only the last sums entering the correlation energy had to be
calculated numerically. On the contrary, for these correlation
terms, we have here to numerically computeall thefn func-
tions in a self-consistent way, using Eqs.~3.1! and~3.2!, then
calculate allVn1n18 ;n2n28

(q) matrix elements with one or two

subbands indices equal to any integer value~the other indices
being equal to 1 or 2!, and eventually compute the sums
entering the correlation energy. As thefn wave functions
depend on the precise ion configuration, such heavy numeri-
cal work appears to us useless unless we can compare the
results with experimental ones.@Let us note that the ex-

change energy is much easier to get since it contains the
Vn1n18 ;n2n28

(q) matrix elements with subband indices equal to

1 or 2 only, so that onlyf1 andf2 have to be determined
self-consistently.#

~ii ! If we now turn to the mixed Hartree-correlation en-
ergy, we can first think of addingṼ (q50) processes to the
three diagrams corresponding toEcorr

(2) . We get diagrams like
the one of Fig. 7~b!. In all of themṼ (q50) Hartree processes
are associated to ‘‘tadpoles,’’ so that their contributions give
zero due again to Eq.~3.8!.

~iii ! However, we should not hastily conclude that no
Ṽ (q50) contribution enters the second-order correlation en-
ergy. Indeed, there are other diagrams withṼ (q50) processes
which differ from ‘‘tadpoles,’’ as can be seen from Fig. 7~c!.
The sum of such diagrams can be formally written in terms
of a renormalized interactionŴn1n18 ;n2n28

shown in Fig. 7~d!

and given by

Ŵn1n18 ;n2n28
5W̃n1n18 ;n2n28

1 (
n3Þn38

W̃n1n18 ;n3n38
Pn3n38

W̃n
38n3 ;n2n28

1(
n3Þn38

n4Þn48

W̃n1n18 ;n3n38
Pn3n38

W̃n
38n3 ;n4n48

Pn4n48
W̃n

48n4 ;n2n28
1•••

5W̃n1n18 ;n2n28
1 (

n3Þn38
W̃n1n18 ;n3n38

Pn3n38
Ŵn

38n3 ;n2n28
, ~3.17!

with

Pnn85
2pe2

Sa21

Nn2Nn8

Ên2Ên8

, ~3.18!

the filling Nn of the n subband being the equilibrium filling
~in particularNn50 for nÞ1,2). Unfortunately it is not pos-
sible to find an analytical solution to this implicit equation
for the renormalized interactionŴn1n18 ;n2n28

.

We could at first find it useful to note that the set of
diagrams shown in Fig. 7~d! correspond to processes in-
cluded in the self-consistent Hartree-Fock equations. Conse-
quently they can be summed up when added to other mixed
V (qÞ0)Ṽ (q50) processes. Besides the numerical complexity
of solving these Hartree-Fock equations, we must stress the
inconsistency of such a procedure, since it includes addi-
tional crossed processes on the behalf that they help for a
summation, while it discards other correlation terms of the
same order inr s .

IV. NUMERICAL RESULTS

We now report some numerical results obtained from the
self-consistent treatment of Hartree processes in quantum
wells which has been developed above. Since these Hartree
processes are physically related to the charge separation,
they depend on the precise ion configuration. As previously
shown within a perturbative treatment of the Hartree

interaction,2 the effect of Hartree processes is larger for ions
outside the well than for ions inside. We will concentrate
here on this ‘‘outside’’ situation and consider a quantum well
with electrons located at 0,z,a and ions located symmetri-
cally on both sides of the well, with

r i~z!5
1

a
for 2

a

2
,z,0 and a,z,

3a

2
. ~4.1!

We must stress that the results given below are valid for this
choice ofr i(z) only: for another ion configuration, all nu-
merical calculations should be performed again.

As discussed in Sec. I, a self-consistent treatment of the
Hartree processes is necessary forlH.1 only, while a reli-
able treatment of the exchange-correlation effects imposes
r s,1. As shown in Fig. 1, this corresponds to electrons in
more than one subband. For the sake of simplicity, we will
illustrate our self-consistent approach in the case of a two-
subband filling only. The corresponding results will be given
for two different values of the well width (a/a051 and
a/a053). The larger the width, the larger thelH parameter
and thus the larger the Hartree effects.

A. Subband fillings

Let us first introduce as a particle number unit, the par-
ticle numberN0 associated to the lowest binding energy~in
the absence of Coulomb interaction!, «1 , through the rela-
tion
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«15
1

2m

p2

a2
5

1

2m

2pN0

S
. ~4.2!

The ratioN/N0 is proportional to the 2D electron density
ns and to the square of the well widtha:

N

N0
5
2

p
nsa

2. ~4.3!

In the absence of a Coulomb interaction, the two-subband
filling condition given by Eq.~1.19! reads

3,N/N0,13. ~4.4!

Hartree processes modify this condition, according to Eq.
~1.52!. As can be seen from Fig. 8, which gives the number
N2 of electrons in then52 subband as a function of the total
particle numberN, the electrons begin to fill then52 sub-
band forN/N0,3: The two-subband filling occurs as soon
asN/N052.68 for a/a051, andN/N052.25 for a/a053.
As expected, the effect is stronger fora/a053 than for
a/a051.

In the absence of Hartree interaction, theN2 versusN
curve is exactly linear with a slope equal to 0.5~the average
kinetic energy of electrons in a given subband being in 2D
proportional to the number of electrons in this subband!. We
see that Hartree processes do not modify very much this
behavior: theN2 versusN curve is almost linear with a slope
slightly larger than 0.5. This occurs from the fact that the
(E22E1) energy difference between the bottoms of then51
andn52 subbands decreases slightly withN, as shown be-
low.

Hartree processes also modify the value ofN/N0 for
which then53 subband begins to be filled. This threshold
reduces from 13 to 11.88 fora/a051 and 11.62 for
a/a053.

Let us stress that, althoughN0 may appear as an appro-
priate particle number unit, it depends on the well width@see
Eqs. ~4.2! and ~4.3!#. Consequently, plots inN0 units can
only give a partial view of the well-width effect on the sub-

band filling. This is why we have also plotted in Fig. 9 the
fractionN2 /N of electrons in then52 subband as a function
of r s

21 ~which is proportional toAnsa0), the dotted curves
corresponding to the results in the absence of Hartree effects.
As expected, we find that the smaller the well width, the
larger the density necessary to have electrons in then52
subband~the subband separation being infinite for zero well
width!. Here again we note that the Hartree processes give a
larger effect for largera.

B. Hartree renormalized subband energies

In Fig. 10 we report the energy differences between the
n51,2,3 subband bottoms, in the presence of Hartree inter-
action, as a function ofN/N0 for two different well widths.
Due to Eq.~2.20!, these differences are also the differences
between the Poisson-Schro¨dinger eigenenergiesÊ1 ,Ê2 ,Ê3 .

In the absence of Coulomb interaction, these differences
are simplyE22E153«1 andE32E255«1 . Hartree effects
induce a density dependence which increases with the well
width. We see a break point at the two-subband filling thresh-
old ~as indicated by arrows!. The difference (E22E1) mo-
notonously decreases withN/N0 , in agreement with the in-
crease of the slope of theN2 versusN curve shown in Fig. 8.
The difference (E32E2) is much less modified than
(E22E1); it slightly decreases fora/a051 while it shows a
minimum in the vicinity of the two-subband filling threshold
for a/a053.

FIG. 8. NumberN2 of electrons in then52 subband as a func-
tion of the total numberN of electrons, inN0 units @defined in Eq.
~4.2!#. The threshold for a two-subband filling is pushed from
N/N053 towards a lower value by the Hartree interaction. This
effect increases with the well widtha. The open dots correspond to
the threshold for a three-subband filling.

FIG. 9. Fraction of electrons in then52 subband as a function
of (r s)

21, for two well widths:a/a051 ~a! anda/a053 ~b!. The
dotted curves correspond to the results in the absence of Hartree
effects and the open dots correspond to the threshold for a three-
subband filling.
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C. Hartree wave functions

Other interesting ‘‘one-particle’’ quantities are the elec-
tron wave functions: Fig. 11 shows the square of the Hartree

wave functionsufn(z)u2 for n51, 2, and 3 in the case of the
larger well width a/a053, and for an electron number
N/N058. In this case the fillings areN1 /N0>4.7,
N2 /N0>3.3. The free-electron square wave functions
uwn(z)u2 are drawn as dotted curves for comparison. From
them we can appreciate the effect of the Hartree interaction.

Figure 11 also shows the electronic charge densityre(z)
as given by Eq.~3.3!. To that density corresponds an elec-
trostatic potentialV with a maximum at the well center. This
maximum affects strongly then51 wave function which is
depressed at the center. Modifications of then52 andn53
wave functions are smaller becauseE2 and E3 are larger
with respect toV. The fact that the central part of then53
wave function increases when compared with the free elec-
tron one may be understood by the requirement of orthogo-
nality with then51 wave function.

D. Electron-hole Hartree chemical potential

The Hartree chemical potentialm introduced in the finite-
temperature approach of Sec. I is the energy necessary to add
one electron and one ion to theN electron-ion system in the
presence of the Hartree interaction. As this quantity is not
easy to measure experimentally, it appears interesting to cal-
culate another chemical potential, namely, the electron-hole
chemical potential which is the energy necessary to add one
electron and one hole to the sameN electron-ion system.
This last potential is directly linked to the photon energy
threshold of a doped quantum well.

In order to obtain this electron-hole chemical potential,
we first have to find the binding energy of the hole in the
presence of the Hartree potential ofN electrons and ions, i.e.,
to solve the Poisson-Schro¨dinger equation for the hole,
namely,

Ĥz
hufn

h&5Ên
hufn

h&,

Ĥz
h5

pz
2

2mh
1u~z!12pe2nsE dz8uz2z8u@re~z8!2r i~z8!#.

~4.5!

Equation~4.5! is the analogous to Eq.~1.46! with the elec-
tron massm replaced by the hole massmh ande

2 changed
into 2e2.

Figure 12 shows the hole Hartree wave function of the

FIG. 10. Energy differences between then51 andn52 sub-
bands ~a! and between then52 and n53 subbands~b!, when
renormalized by the Hartree interaction, for two well widths, as a
function of the electron numberN. In the absence of Hartree ef-
fects, these differences are 3«1 and 5«1 («1 being the lowest bind-
ing energy of the well!. The arrows indicate the threshold for a
two-subband filling.

FIG. 11. Squares of the Hartree renormalized wave functions of
the n51, n52, n53 subbands fora/a053 andN/N058 ~in this
caseN2 /N053.3 andN350). The corresponding electronic charge
densityre(z) is also shown. The dotted curves correspond to the
same wave functions in the absence of Hartree effects.

FIG. 12. Square of the Hartree renormalized wave function of
the n51 hole subband fora/a053 andN/N0511.6. The squares
of the corresponding electronn51 andn52 wave functions are
also shown.

53 3873EXCHANGE-CORRELATION ENERGY OF A QUASI-TWO- . . .



n51 subband forN/N0511.6, a/a053, andmh /m55. We
have also shown the electron Hartree wave functions of the
filled subbands,n51 andn52.

In Fig. 13, we have plotted the sums (Ê11Ê1
h) and

(Ê21Ê1
h) in «1 unit as functions ofN/N0 ~the last sum is

reported in the two-subband filling range only, i.e., for
N/N0>2.2 if a/a053). The electron-hole potentialmeh is
given by

meh
~1!5Ê11Ê1

h1
K2

2m
, K25

2p

S
N ~4.6!

in the one-subband filling region, and by

meh
~2!5Ê21Ê1

h1
K1
2

2m
1

K2
2

2m
, Ki

25
2p

S
Ni ~4.7!

in the two-subband filling region. It is plotted in the same
figure.

Of course, in order to obtain the true threshold for photon
absorption, we should add tomeh the band gap and possibly
the hole kinetic energy necessary to insure the momentum
conservation of a direct absorption. Let us note that the
Ê11Ê1

h curve also gives theT50 low-level luminescence, if
we assume momentum conservation in the luminescence
process.

E. Average Hartree energy

Let us now turn to the Hartree energyEH of theN elec-
trons and ions, as given by Eqs.~1.56! or ~1.58!. In order to
have an idea of the energy change induced by the Hartree
processes we must subtract from it the energy ofN free
electrons in the well, namely,

E ~0!5
p

2mS(n ~Nn
0!21(

n
Nn
0«n , ~4.8!

Nn
0 being given by Eq.~1.18!. The difference (EH2E (0)) is

expected to be dominated by a trivial electrostatic term
N«S coming from the energy necessary to separate the elec-
trons from the ions. Following Ref. 1 we define it as

«S5pnse
2av,

v52E E dz1dz2
uz12z2u

a
@ r̄e~z1!2r i~z1!#

3@ r̄e~z2!2r i~z2!#, ~4.9!

r̄e(z) being the density of electrons delocalized in a negative
jellium inside the well@ r̄e(z)51/a for 0,z,a]. N«S is just
the energy necessary to create the charge distribution
nse@r i(z)2 r̄e(z)#. The remaining energy

EH2E ~0!2N«s5N«H ~4.10!

comes from the subtle changes of the electron wave func-
tions due to the Hartree processes, these changes inducing
both a change in the well binding energies and a change in
the subband fillings.

In Fig. 14, we have plotted«H in «1 unit, as a function of
N/N0 for a/a053. The arrow indicates the two-subband fill-
ing threshold. Here again we see a break point at this thresh-
old. We can also note that in the whole density range corre-
sponding to a two-subband filling,«H is of the order of«1 .

In Fig. 15, we show the same energy«H , expressed in
Rydberg unit, as a function ofr s

21;Ansa02, for a further
comparison with the average exchange energy.

F. Exchange energy

We know that in the exact 2D limit, i.e., fora50, the
average exchange energy inR0 unit is simply given by

Ex
~00!

NR0
5

«x
~00!

R0
52

1,20

r s
. ~4.11!

~a! If we include the finite well widthwithout taking into
account Hartree processes, we have shown2 that the average
exchange energy depends on the well width through a unique
parameterl defined as

FIG. 13. The lowest solid curve givesÊ11Ê1
h , i.e., the sum of

the Hartree renormalized energies of then51 electron andn51
hole subbands, fora/a053. The dashed curve givesÊ21Ê1

h , where
Ê2 is the Hartree renormalized energy of then52 electron sub-
band. The upper solid curve gives the electron-hole chemical poten-
tial meh as a function ofN; the slope change occurs at the electron
two-subband filling threshold, i.e., forN/N0>2.25. The zero of
energy is taken at the band gap.

FIG. 14. Average Hartree energy«H as a function of the electron
numberN, for a/a053. The arrow indicates the two-subband fill-
ing threshold. The units«1 andN0 both depend on the well width.
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l5
Ka

2p
5
1

2 S NN0
D 1/2 ~4.12!

and can be written in the form

«x
~0!

R0
52

Ax~l!

r s
~4.13!

@see Eq.~4! of Ref. 2#. Figure 16 showsAx(l) in the one-
subband filling range (0,l,A3/2), as already given in Ref.
2. We also show it in the two-subband filling range, this
Ax(l) being simply obtained from Eq.~3.12! with Kn re-
placed byKn

0 defined by Eq.~1.18! andVnm;mn(q) replaced
by vnm;mn(q) defined by Eq.~1.12!. We see that this ex-
change energy decreases with the well width, with again a
break point at the two-subband filling threshold~indicated by
an arrow!.

~b! If we now include the Hartree processes in a self-
consistent way, as done in Sec. III, all mixed Hartree-
exchange terms give zero and only the ‘‘bare’’ exchange term
given by Eq.~3.12! remains. We can plot this exchange en-
ergy in various ways.

In Fig. 17 we show the average exchange energy«x in
R0 unit as a function ofr s

21 , for a/a051 anda.a053. We
have also plotted the exact 2D limit@Eq. ~4.11!# for compari-
son. The arrow indicates the two-subband filling threshold.
~Note that the validity of our exchange-correlation energy
calculation impliesr s,1 so that the results for 0,r s

21,1
are meaningless and are just indicated to guide the eyes.!

The same«x /R0 versusr s
21 curve for a/a053 is also

plotted in Fig. 15, in order to allow a direct comparison of
the exchange energy with the nontrivial part of the average
Hartree energy«H given by Eq.~4.10!. We see that, with our
choice of«s for the electrostatic part, the average exchange
energy«s just compensates«H at the two-subband filling
threshold, but this is accidental.

In order to measure the effect of the self-consistent treat-
ment of the Hartree processes on the exchange energy, we
can rewrite«x as

«x
R0

52
Ax~l,a/a0!

r s
~4.14!

and compareAx(l,a/a0) with Ax(l), defined by Eq.~4.13!.
As Ax(l) gives the exchange energy in the absence of Har-
tree processes, we do haveAx(l)[Ax(l,0). In Fig. 18, we
show Ax(l,a/a0) for a/a051 and a/a053 as well as
Ax(l). We see that all the curves are very close to each
other, which means that Hartree effects on the exchange en-
ergy are rather small. The larger effect appears in the vicinity
of the two-subband filling threshold and even in this case, it
is not larger than 10%. We thus conclude that in most cases
we could avoid the self-consistent treatment of the Hartree
processes contributing to the exchange energy and simply
replaceAx(l,a/a0) by Ax(l) shown in Fig. 16.

In Fig. 18, we have also plotted the 3D limit of the ex-
change energy

«x
~3D!

R0
52

0.916

r s
~3D! 52

0.613

r s
l21/3. ~4.15!

It is interesting to note that, in the two-subband filling
region, the exchange energy is closer to the 3D limit value
~roughly 10% above this 3D value! than to the 2D limit value
~roughly one-half of this 2D value!, even though the 3D limit
should correspond to an infinite number of filled subbands.

FIG. 15. Average Hartree energy«H , in R0 unit, as a function of
(r s)

21, i.e., the same result as the one shown in Fig. 14, using units
independent of the well width. The dotted curve, which corresponds
to the exchange energy, is given for comparison.

FIG. 16. Average exchange energy@multiplied by (2r s)#, in the
absence of Hartree processes, as a function ofl5Ka/2p. The ar-
row indicates the two-subband filling threshold.

FIG. 17. Average exchange energy in the presence of Hartree
processes as a function of (r s)

21, for two well widths. The dashed
line corresponds to the exact 2D limit.
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V. CONCLUSION

In this paper, we consider an electron gas confined in a
finite-width quantum well, dense enough to have electrons in
more than one subband. This situation is particularly com-
plex for two reasons:~i! the Hartree processes cannot be
treated in a perturbative way as in our previous works;~ii !
the Coulomb interaction affects the number of electrons in
each subband.

We have developed an approach based on the introduction
of Hartree creation operators associated to the self-consistent
solutions of the usual Poisson-Schro¨dinger equation. This al-
lows us to rewrite the total Hamiltonian of the system as a
one-body partH̃0 plus two two-body partsṼ (q50) and
V (qÞ0) in such a way that most of theṼ (q50) contributions

to the energy cancel. It is indeed impossible to find a trans-
formation which makes allq50 processes disappear: A few
mixed (q50,qÞ0) contributions do remain in the correla-
tion energy which have to be added to the usual terms.

We give numerical results for the exchange energy~i.e.,
the first-order term inV (qÞ0)) in the case of ions on both
sides of the well, for which the Hartree processes could be
expected to give a rather large effect. It turns out that, in the
whole two-subband-filling domain, the exchange energy
stays quite close to its bare value, as calculated without any
Hartree effect. This result is of practical interest since it al-
lows us to obtain a fairly good value of the exchange energy
from a universal one-parameter curve for all ion configura-
tions and well widths.

APPENDIX A: EXPRESSION OF THE HARTREE
SELF-ENERGY IN TERMS

OF THE HARTREE POTENTIAL:

Inserting Eq.~1.41! into Eqs.~1.25! and ~1.26! we get

snn85
2pe2

Sa21(
n1n2

n9

wnn8;n1n2^wn2
ufn9&^fn9uwn1

&Nn9,

~A1!

where we have set

Nn5 lim
t→01

T(
nks

eivvtGn~k,vn!. ~A2!

Since the trace of a matrix does not depend on the basis, we
have

(
n

Nn5(
n
N nn5N̄~m,T!5N. ~A3!

Inserting thew definition @Eq. ~1.10!# into Eq. ~A1! we get

snn852
2pe2

S E E dz1 dz2uz12z2u@wn* ~z1!wn8~z1!2r i~z1!dnn8# (
n1n2n9

[ ^wn1
uz2&^z2uwn2

&^wn2
ufn9&

3^fn9uwn1
&Nn92dn1n2r i~z2!^wn2

ufn9&^fn9uwn1
&Nn9]

52
2pe2

S E E dz1 dz2uz12z2u@wn* ~z1!wn8~z1!2r i~z1!dnn8#F(
n9

Nn9ufn9~z2!u
22Nr i~z2!G . ~A4!

From the expression of the average electron density
n̄(z,m,T) @Eq. ~1.29!#, we find, using Eqs.~1.41! and ~A2!,

n̄~z,m,T!5(
n

Nnufn~z!u2.

By setting

re~z!5
1

N
n̄~z,m,T!, ~A5!

Vz522pe2nsE dz8uz2z8u@re~z8!2r i~z8!#, ~A6!

we see thatsnn8 reads

snn85E dz1 wn* ~z1!wn8~z1!Vz1
2dnn8E dz1r i~z1!Vz1

.

~A7!

Thesz self-energy is thus related to theVz Hartree potential
through

FIG. 18. Same results as those shown in Fig. 17, with
«x /R052(r s)

21Ax (l,a/a0), plotted as functions ofl. The solid
curve corresponds to the exchange energy in the absence of Hartree
effects~cf. Fig. 16!. We see that all these curves are rather close to
each other. The dashed curve which corresponds to the 3D limit is
also surprisingly close to the other ones, in the two-subband filling
region.
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sz5Vz2E dz Vzr i~z!. ~A8!

APPENDIX B: DERIVATION OF EQ. „2.28…

From Eqs.~2.3! and ~1.47! we obtain

]Ep

]N n
5

]

]N n
H E dz fp* ~z!@hz1Vz#fp~z!

2E dz Vzr i~z!J
5EpE dzF]fp* ~z!

]N n
fp~z!1fp* ~z!

]fp~z!

]N n
G

1E dz@ ufp~z!u22r i~z!#
]Vz

]N n

5E dz@ ufp~z!u22r i~z!#
]Vz

]N n
~B1!

@since*dzufp(z)u251#, so that

(
p
N p

]Ep

]N n
5NE dz@re~z!2r i~z!#

]Vz

]N n
. ~B2!

From Eq.~1.43! we get

]Vz

]N n
522pe2nsE dz8uz2z8u

]re~z8!

]N n
. ~B3!

Inserting Eq.~B3! into Eq. ~B2! yields

1

N(
p
N p

]Ep

]N n
522pe2nsE E dz dz8uz2z8u

3@re~z!2r i~z!#
]re~z8!

]N n
. ~B4!

By looking at Eq.~2.19!, we see that the right-hand side
of Eq. ~B4! is equal to (2]E/]N n) so that we have

N
]E

]N n
1(

p
N p

]Ep

]N n
50. ~B5!

APPENDIX C: HH GROUND-STATE ENERGY STARTING
FROM AN ARBITRARY zN 18–––N n8–––‹ STATE

The H̃0 Hamiltonian defined in Eq.~2.10! depends on a
set of parametersN n through the definition ofre(z). Let us
consider anN-particle stateuN 18•••N n8•••& with N n8 elec-
trons in the lowest state of then subband andN n8ÞN n .
This state is eigenstate ofH̃0 with energy

E~N 18•••N n8••• !5(
n
N n8F p

2mS
N n81ẼnG . ~C1!

If we look for the H̃0 ground state, i.e., for the lowest
E(N 18•••N n8•••) at constantN n ~which entersẼn), we
find that it corresponds toN n85Nn8 with

g5
p

mS
Nn81Ẽn , ~C2!

where g is a constant~Lagrange! multiplier. We see that
Nn8 is different fromN n except whenN n equals the ‘‘equi-
librium’’ filling Nn given by Eq.~2.29!. We could be dis-
turbed at first by the fact that theuN 1•••N n•••& state we
choose to start with~for physical reasons!, in Sec. II, is not
theH̃0 ground state. However we are going to show that, if
we start with theH̃0 ground stateuN18•••Nn8•••&, we do find
the same Hartree ground-state energy.

Equation~C2! gives theH̃0 ground-state fillingsNn8 as
functions of theN n . If we now look for the set ofN n

which minimizes theH̃0 ground-state energy, we find that it
must verify

g85
]E~N18•••Nn8••• !

]N n
. ~C3!

Using Eqs.~C1! and ~2.28! and remembering that

(
p
Np85(

p
Np5(

p
N p5N, ~C4!

we can rewrite Eq.~C3! as

g85(
p
Np8

]Ẽp

]N n
5(

p
~Np82N p!

]Ep

]N n
. ~C5!

This shows thatNp85N p5Np @with Np the self-consistent
solution of Eq.~2.29!# is indeed solution of Eqs.~C2! and
~C5!. In other words, theN n8 andN n which give the lowest
H̃0 eigenenergy are such thatN n85N n5Nn .

If we then introduce theṼ (q50) interaction on this lowest
H̃0 ground state, we find again that the energy is not modi-
fied, due to the ‘‘magic’’ relation@Eq. ~2.12!#, so that
E(N1•••Nn•••) is indeed the exact ground-state energy of
the Hartree Hamiltonian.

APPENDIX D: SUMS APPEARING
IN THE EXCHANGE ENERGY

Let us considerJnm(q) as defined by Eq.~3.13!. For
n5m, Jnn is proportional to the intersection area of two
circles with same radius. We find

Jnn~q!5H SKn24p2 F2 cos21S q

2Kn
D 2

q

Kn
F12

q2

4Kn
2G1/2G for 0<q<2Kn

0 for q>2Kn .
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For nÞm the two circles have different radius, and we find

J12~q!55
SK2

2

4p
for 0<q<K12K2

SK1
2

4p2 Fu1
K2
2

K1
2 u82

q

K1
sinuG for K12K2<q<K11K2

0 for q>K11K2

with

u5cos21Fq21K1
22K2

2

2qK1
G , u85cos21Fq21K2

22K1
2

2qK2
G .
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