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We present an approach to the exchange-correlation energy of an electron gas confined in a finite-width
quantum well, which avoids the local-density approximation. We focus on densities large enough to have
electrons in more than one subband. This imposes a self-consistent treatment of the Hartree inteeaction
g=0 excitation processgwhile theq+ 0 interaction can be treated perturbatively. By writing the Hamiltonian
in terms of appropriate Hartree self-consistent creation operators, we can cancel most bugrd &bu-
lomb contributions; a few mixedg=0,q#0) terms do remain in the correlation energy. A numerical calcu-
lation of the exchange energy shows that the effect of the Hartree processes turns out to stay rather small in the
whole two-subband filling domain.

In recent publication$? we have studied the Hartree, ex- infinite summation yields the Hartree energy. It can be per-
change, and correlation energies of a quasi-two-dimension#®rmed using standard technics for many-body probl&ms.
electron gas localized in a quantum well. We have showr¥Ve however show that for electrons in more than one sub-

that for a well width smaller than the Bohr radius and elec-band, this summation cannot be done with-0 Green's

trons in the lowest subband only, it is unnecessary to calcfUnctions but imposes the finite formalism. .
(i) In the second approach, we start completely differ-

Igte the Hart.ree energy in a self—consstent way, its perturbaéntly. We introduce a so-called Hartree basis composed of
tive expansion with one or possibly two terms alreadyt

o oy T T he eigenstates of a Poisson-Salinger Hamiltonian. We
providing a very accurate resdiithin this simplification it g "

: . : . s use this basis to define new creation operafgs and we
is possible to avoid the local density approximatidhfor write the total Hamiltonian in terms of these operators. We

the exchange-correlation energy and to treat this contributio;Ehen split this total Hamiltonian into a one-body diagonal

as well as the Hartree part through a perturbative treatmea i and a two-body part composed of new zero momentum
of the Coulomb interaction, similar to the one used for three-(qzo) and nonzero momentung ¢ 0) excitation processes.
dimensional(3D) and exact 2D electron gases. This ap-we show that for the equilibrium fillings of the Hartree prob-
proach allows an easy derivation of the well width depenqem, the contributions of these new+0) processes to the
dence of all terms. Hartree energy cancel so that the exact Hartree energy is
In the present work, we turn to situations, such as elecsimply given by the one-body diagonal part of the Hamil-
trons in more than one subband, for which the Hartree entonian.
ergy has to be calculated in a self-consistent way. We again This second approach turns out to be quite appropriate to
avoid the usual treatment of exchange and correlation effectderive the exchange-correlation energy in an easy way. With
through the local density approximation, and concentrate othe Hamiltonian now written in terms dilk Hartree opera-
cases for which the well width and electron density are bottors, we find that most of the usual mixegl< 0,g+#0) terms
large enough to impose a self-consistent treatment of all Haeancel, so that the Coulomb expansion of the energy is
tree processes, while the exchange and correlation processgreatly simplified when compared to the standard approach
can still be treated perturbatively? in terms ofa;k free-electron operators. In particular, all the
It is important to stress that a many-subband filling givesmixed (q=0,0#0) processes of the exchange energy give
rise to an additional complexity since the fillif§slepend on  zero, while the first correlation terfie., the term quadratic
the Coulomb interaction: Indeed, the Hartree processef (q+0) processdscontains one mixed Hartree-correlation
modify the subband bottom energies and thus the number @ontribution only.
electrons in each subband at equilibrium. These fillings enter The paper is organized as follows.
the Hartree energy as well as the exchange-correlation con- In Sec. I, we recall the formalism of Refs. 1 and 2, and
tributions, and thus modify their values accordingly. give the range of parameters for which a self-consistent treat-
In view of all these complexities, we found it interesting ment of the Hartree energy is necessary while the exchange-
and useful to first derive the Hartree energy from two differ-correlation energy can be calculated perturbatively. We then

ent approaches. derive the Hartree energy from the first approach described
(i) Inthe first approach, we start as in Ref. 1. We write theabove, using free-electron operators.
Hamiltonian in terms of creation operatar$, for free elec- In Sec. Il, we rewrite the total Hamiltonian in terms of

trons in the well. The part of the Coulomb interaction with Hartree creation operators defined on a Hartree basis and we
zero momentum transfergalled Hartree processes ex-  show how we can recover the Hartree energy obtained in
panded perturbatively and summed up to all orders. ThiSec. I.
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In Sec. lll, we use the expression of the finite momentum "
transfer Coulomb interaction obtained in Sec. Il, to derive L%OZ%: (ent &) ankenko - (1.6
the exchange energy, the mixed Hartree-exchange energy, the 7

second-order correlation energy, and the mixed Hartree— We now consider theotal Coulomb interactiotf between
second-order correlation energy. N electrons atr, (n=1,N) and N ions assumed to be

In Sec. IV, we have gathered all numerical res_ults._ Thegelocalized in a quasi-2D jellium with density(r)
self-consistent treatment of the Hartree processes implies the , (z)N/S,

resolution of a Poisson-Schtimger equation which cannot

be solved but numerically. Moreover, the solutions of this 1 e’ 1 e
) e WTEEVEL > 7 oi= = Dy = d®r d3r’ ni(rn(r’)
equation depend on the ion distribution in a nontrivial way.” coul 2, [rh—ro| 2 [r—r’]"" '
In order to illustrate the Hartree self-consistent approach ex-
posed in Secs. Il and Ill, we have chosen a configuration 3 3 e?
with ions on both sides of the electron layer and we have < d r|r—rn| ni(r). 1.7

considered two different well widths. In the first part, we
give the subband fillings, energies, and wave functions, takWhen written in second quantization with the,) basis,
ing into account Hartree processes only. We then calculatfhis Hamiltonian can be split into two parts,

the Hartree energy and exchange energy as functions of the 7~ 7(a=0) | 7(a#0) 1.9
electron density and we discuss the effect of the well width ~cour™” ' ' ’
on these quantities. We also give the electron-hole chemicalhe zero momentum transfer part rehds
potential of a doped quantum well as induced by this Hartree

. 1 2me?
self-consistent approach. g(q=0)__ cal T
7 2531 E/ kzlzrlwnlnl;nZn2"31nlklzrl"’ln2k2a2
nlnl
I. HARTREE ENERGY WITHIN THE FREE-ELECTRON , koo
BASIS 2
A. Hamiltonians X 8n/kyo,nky oy 1.9
The one-particle Hamiltonian for free electrons in a quan- 2, 2,|
tum well of surfaceS and widtha reads Wy 0/ ! = —J f dz;dz, L 2
177272 a
2 2 2
pPxt+ P p * 1(Z4) — pi ,
. ﬁﬂ(z)}, @D X[, (20) @n(22) = pi(21) By ]
X[k (22) e (2Z2) = pi(Z2) Sn.nr 1,
whereu(z) is the well potential. Letk) be theh,, eigen- Len,(22) €ny(22) = pi(22) O
states of energy, ,*? (1.10
2 while the finite momentum transfer part reads
hxy|k>:8k|k> =5 2
’ 2m’ 1 2me
u/(q#o):_ [ ’. ’
. 7 2(;0 Sq E[ kzlulvnlnl,nznz(Q)
(plk)=€*#1\S,  p=(xy), (1.2 e

. n2n2
and|¢,) the h, eigenstate of energy,, ; ;
Xan1k1+q(rlanzszq(rzanékzrrzaniklrrla (1.11

hz|‘Pn>:8n|‘Pn>- (1.3
For infinite well barriers az=0 andz=a, we have Unlni:nzné(q)zj J ledzzefqlerZ‘cpﬁl(zl)goni(zl)
(Zlen) = en(2) = (2/a)'%sin(nwz/a), X ¢n (22) @ny(Z2). (1.12
m*n? f implyi If-consi
e = ) 1.4 B. Range of parameters implying a self-consistent treatment
" 2ma 19 of the Hartree terms
The | ¢, ) eigenstates ofi are given by The properties of a quasi-2D electron gas confined in a
quantum well depend on the well width the ion configu-
|on) =] eny ®]K), ration p;(z), and the 2D electron density
N K2
h|§9nk>:(8n+8k)|§0nk>- (1.9 Ng===5—. (1.13
S 27

Using these ¢p,) states as a basis for second quantizatrom ng, we can construct the usual dimensionless param-
tion, and calllnga;k(, the corresponding creation operators eterr ¢, which reads

(o being the spin index the free electron part of thal » 5
electron Hamiltonian appears in a diagonal form and reads nemr2ag=1=r,=1/2/Kay, (1.14
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wherea,=1/mé is the Bohr radiug? By similarity with the a/a
3D case, a perturbative expansion of the Coulomb energy in \ 0
71970) s valid for dense systems only, i.e., foy<1. ﬂ

With respect to the”{9=% expansion of the Hartree en- 10
ergy, we have showhrthat it is controlled by a dimensionless
parametern, which is proportional tee? and ng, and is
explicitly given by

N K2a® 2 /a\%1 11
H_,n_4a0_ﬂ_4 a, rg- (1.19

A perturbative expansion of the Hartree energy is thus valid
for

a 774 5 1/3

Let us now consider the subband filling in the absence of
Coulomb interaction: The electrons occupye subband
only if

a
81+8K<82:>a—<\/§77|’5. (1.17 !
0
They occupytwo subbands, witiNS (N9) electrons in the 0 05 1
n=1 (n=2) subband, if
0 02 0 02 0 FIG. 1. a/a, versusrg domains for which electrons fill on@),
Ni=S(K])2m, Ny=3S(K3)2m=N—-Nj, two (Il), three(lll), etc. subbands. The dashed curve corresponds to
)\H:]_.
81+8K2:82+8Kg' (118)

3D-like way, i.e., as an expansion #1979, whereas per-
forming a summation of all thg=0 processes. As shown in
a Fig. 1, this is necessary when electrons fill more than one
g e1<ex<2e3—g1—&,= \/§ms<—< \/17—3771‘5. subband, since in this casg,>1 for r,<1. For simplicity

%o (119 we will concentrate here on situations where electrons oc-

' cupy the two lowest subbands onfthe extension to elec-

In the same way, we find that the electrons occtipee  trons filling more than two subbands being formally straight-
subbands if forward). For a well widtha=3a,, the two-subband filling
corresponds to 0.37r,<<0.78 and 0.9% A\ ;<3.95.

This implies

\/Ewr <2 J177r (1.20
20 3o s C. Calculation of the Hartree energy by summing
and so on. all =0 processes
The ranges of parameteasga, versusr ¢ corresponding to The Hartree energy is the ground-state energy74f ,

one-, two-, and three-subband fillings, are shown in Fig. 1. Irdefined as
this figure we have also shown thg;=1 curve. If we re- ’ -
strict ourselves to the,<1 domain, in order to allow a =T+ 71970, (1.21

reliable calculation of the exchange-correlation energy, we

see that most of the one-subband domain and a small part &he pertur_bative expansion of this energy corresponds to all
the two-subband domains lie below thg=1 curve while possible diagrams witf=0 transfers only. These are shown

all other filling situations correspond > 1. in Fig. 2(@), up to third order in7{9=9)_ The first two terms

In our preceding works, we have considered electrons if#@ve been explicitly calculated in Ref. 1.
the lowest subband only, for which we essentially have
A<l if rg<l: a perturbative expansion of the Coulomb
energy in7(9%9 and 7(9=9 is thus expected to be valid in  If we want to sum up all these terms, the Green’s function
this case. Indeed, we have checked that the perturbative eapproach seems a well adapted procedure. However, in the
pansion of the Hartree energy, with only one or possibly twocase of electrons in more than one subband, The0
terms, gives a result very close to its exact value obtained bgreen’s functions cannot be used for the following reason: it
solving self-consistently the usual Poisson-Sdimger s stated at a very early stage of the theory, thatThe0
equation. Green’s function formalism applies to problems in which the

In this paper we wish to turn to a more difficult problem: perturbed ground state derives from the unperturbed one.
Our goal is to calculate the exchange-correlation energy in &his is not the case if electrons are in two subbands. Indeed

1. Method
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O-O-0-O L im TS der
o0 OO0 o WuD=3lIm TS

OO X(w,tu+ete,) Snnkw,), (1.27
ond

(a) _
N(w,T)=2> S an (1.28
n
nﬁo’@nzr'o’
— = T e N(zu,T)=lm T2 €70 (2)on (2) Znm (K 0,).
nko n'k'o’ nkao nkg nko ko .0+ wnn'
(b) (1.29

Equation(1.28 will allow to determineu as a function oN
FIG. 2. (a) Hartree energy diagrams up to second order inandT by setting as usual
7(9=09) interaction(dashed ling (b) Electron propagator renormal-
ized by the Hartree interaction. N(M,T) =N. (1.30

the subband filling in the absence of Coulomb interaction

corresponds tiN and NS given by Eq.(1.18. In the pres- _ ,
ence of79=9), we expect the subband bottom energies to We now turn to the resolution of E@L.24). We first note

be modified frome,,e, to E{,E5, so that the equilibrium that the bare Greer_rs function 9“’3” by EG-23 can be
fillings Ny,N, should now verify related to the following operatary:

2. Resolution of the Dyson equation

1

N;=SK2m, N,=SK32m=N-Nj, I —
iw,+u—gec—h,’

g (1.31

Eitex,=Eatex, 1.22 whereh, is the Hamiltonian defined in E¢1.1). From (1.3

The T=0 formalism \(/)vould in fact give the properties of a @nd(1.23 we obviously get
perturbed state wittN; and N? electrons in the two lowest _
subbands and not thcl)se of t?]e true Hartree ground state. (enlglen) =an(k.w,) o (1.32
If we use instead finitd- Green’s functiond! and letT go et us introduce in the same way the operatérand o,
to zero at the end, we must clearly generate the correct “perdefined by
turbed” ground state. The bare propagator then rads
<€Dn|G|QDn’>:g/nn’(k:wv)i (1.33

<QDn|Uz|QDn’>:O'nn’- (1.34

with w,=(2v+1)7T, v being an integer. The'(9=9 inter-  Equation(1.24) then simply reads
action renormalizes this bare propagator. Using the standard

1
gn(kiwv)_— (123)

Cw,tu—s—e,

T+0 Green’s function procedure we find that the renormal- G=g+9go,G. (1.39
ized propagator verifies the following Dyson equaticee . )

Fig. 2b)]: Inserting Eq.(1.31) into Eq.(1.35, we get
'g]nn'(kiwv):gn(k,wV)énn’ Gilzgil_azz(iwv—’_ﬂ_sk_ HZ): (136)
‘ whereH,, defined by

+0n(k,®,) D) Tam G (K, @,), (1.24
o H,=h,+ o, (1.37)
where the self-energy,, induced by the Hartree potential .4 pe seen as aHamiltonian in the presence of Hartree
is independent ok andw, . It is precisely given by interaction. The operatd® is thus formally similar tog and
2 reads
2me .
Onn' = @%2 Wnn’;nlnz'/l/ nonys (1.29 - 1 s
o, ta-eH, (139
A apn, = ”Tj% e n (K o,). (126 Let|¢,) be the eigenstates of,,
Hz|¢n>: En| ¢n> (1.39

At fixed temperaturd and chemical potentigk, the av-
erage energy’ y(u,T), electron numbeN(u,T), and elec- The|¢,) form an orthonormal basis sind¢,, like h,, are
tron densityn(z,u,T) can be expressed in terms of the Hermitian. In this| ¢,) basis, the operatds is diagonal and
renormalized Green’s functiorts: its matrix elements simply read
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S o gl 1
(¢nlGldn) = m—Gn(k,%) Sov- (1,40 T“Lno T“fLLTEV o X =limy_o 75wt = 0(%),
From them, we easily deduce ti& matrix elements in the (148
|en) basis, where 6(x) is the Heaviside function, we find
59‘}mf(k,wy)=2 <€Dn|¢n”><¢n”|§Dn’>Gn”(kawy)- (1.41 N“(M'T:O):% 0= En), (149
nl!

) so that, in thelT=0 limit, N, is indeed the number of elec-
3. Link with the Poisson-Schrdinger equation trons in the renormalizedn subband with energies

Before going further, let us study thig,) basis. We ex- (Entéx), up to a chemical potential. _ _
pect it to be related to the eigenstates of the Poisson- In order to determine this chemical potential for a given

Schralinger equation appearing in the standard derivation of? the T=0 limit, we use Eq.(1.30. Since the trace of a
the Hartree energy. matrix does not depend on the basis, Eiq28 also reads
From the definitions ofr,, [Eq. (1.25] andn(z,u,T) _
LEq. (1.29], we can showsee Appendix Athat o, is given N(u,T)= zn‘, N,(u,T) (1.50
y
so thatu(N,T=0) is such that

Uz:Vz_J dzV,pi(2), (1.42

N=2 0(u(N,0)—&—Ep). (150

where V, is the electrostatic energy of an electron in the nke

presence of a charge distributiemy[ p;(z) — pe(2)] In the case of a two-subband filling, we can verify, using
Egs.(1.49 and (1.5) thatN; and N, are indeed given by

, , , , Eqg. (1.22. From Eq.(1.51) we also deduce the condition for

V2= —2we2nsf dZ|z2=2'|[pe(2') —pi(2')] (143 a?vv(o— (rzt)enormalizgcg sul?band occupation which now reads

provided thatp.(z) is defined as E,—E <ex<2Ez;—E;—E,. (1.52

1_ N It is somewhat different from Ed1.19 due to the introduc-
pe(2)= Nn(z,,u,T)zE W"| dn(2)|?, (1.44  tion of renormalized subband energiegs instead ofe,, .
n We can note that the condition for equilibrium fillingq.
(1.22], as well as the condition for two-subband occupation
[Eq. (1.52] could as well be written with th&, replaced by
the Poisson-Schainger eigenvalueg,,, since these quanti-
N,= lim TE G, (k,w,). (1.495 ties differ by a constant independentraf We must however
7ot ke stress that, due to E¢L.5J), it is E,, and notE,, which is the
energy directly related to the chemical potentigl this u
being the energy necessary to add one electron and one ion
to theN electron-ion system.
Equation(1.46 is a self-consistent equation for thf,,
sinceV, depends on the,(z) and on theE, through the
i P ):E b2 N,, so that its §0Iution can_only b'e objtained numerically.
zZl%n nl%n/s The corresponding results will be given in Sec. IV.

where theN,, are given in terms of th&,, by

We see, from Eq(1.42, thato, andV, differ by a constant
independent of.
Using Egs.(1.37), (1.39, and(1.42), we deduce that the

| ) also verify

I:|Z= h,+V,, (1.46 4. Hartree energy

Let us end this section by calculating the average energy

where the new eigenvaluds, differ from E,, by a constant in the T=0 limit. From Eqs.(1.27, (140, and (1.41), we

term, independent af,

get
o0+ v nko
Equation(1.46 is nothing but the usual Poisson-Sattirmger
equation of the Hartree problem. « (@nl 22+ hz+Hy| ) +1 (153
In order to make the complete identification with the iw,+u—e—E, ' '

Poisson-Schidinger approach, we must relate thg ap-
pearing inp.(z) and defined by Eq1.45 to the number of
electrons in the renormalized subbands. Let us recall that, up _

to now, theseN,, depend onu andT. Inserting Eq.(1.40 lim 2 e'®r =0, (1.59
into Eq. (1.45 and using the relatidh 70t 7

Using Eq.(1.48 and the following relatiort
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we find

> 0 =N. (2.5

(0 tH 3 e En. | L |
On(p.0) r%r (Snlert Ham 20 $n) 0(n =2~ E) At this stage, the/ ', are just parameters, without any other
(1.55  constraint than Eq(2.5). Their appropriate values will be

With Egs.(1.39, (1.42), and(1.49 we can rewrite this en- de/)termmed later. The¢n) depend, of course, on these

. My
ergy in terms of, , Ny, and ¢n(2) as We introduce a set of creation operatdt}, , associated

to the |¢,,) states, and we rewrite the total Hamiltonian

o
ZHZHSE N2+ > N.E,+NE, (156 .7 in terms of theseAl,,. Using the standard second-
. " quantization procedure, we now have
E=weznsf fdz dZ|z—2'|[pe(2) — pi(2)] To=, kE (e + Zan ) AN GAnke s (2.6)
nn’ Ko
X[pe(Z") = pi(Z')]. (1.57)
The first term of Eq(1.56) is the kinetic energy of the elec- 5'nnr=f dz ¢} (2)h,¢,/(2) 2.7

trons sinceN,,=SK%/27. The second term is the localization
energy in the presence of the Hartree interaction, while th&0 that 7 is still diagonal ink but no more inn.
third term takes into account the double counting of the Cou- Turning to the Coulomb potential, we can split it, as in
lomb interaction between the average charge densities irSec. |, intoq=0 andg+ 0 interactions, which formally read
cluded inE,. as Eqgs(1.9) and(1.12) with a' replaced byA", w by W, and

If we rewrite this Hartree energy in terms of the Poisson-v by V. Namely, we have

Schralinger eigenvalueg,,, we find as in Ref. 1: )
12xe

19=0) , AT T
® T E N2 2 NE 4 NE 1 7 2 Sa_lz, glwnlnl3”2“2A”1k1‘71A”2k2‘72
go=— + + . nyny k1o
“Hoomsy 4 , (1.5 l? kaoa
nan,
E:”eZ”SJ f dz d2|z-2' [ pe(2)pe(2')— pi(2)pi(2)]. " Ao PAnijyoy 28

(1.59  whereW is formally identical tow [Eq. (1.10] with ¢,(2)
replaced by ¢,(z), and similarly* for 71979 and

Il. HARTREE ENERGY USING HARTREE CREATION Vinginyni(Q)-
OPERATORS We now perform a set of algebraic manipulations, the
A. Hartree creation operators purpose of which is to rewrite the Hartree Hamiltonian
%y [Eq.(1.2D)] as
We may hope to avoid the summation of @f9=% terms o
by using for second quantization an appropriate basis in o= o+ 71970 2.9
which the Hartree processes are somewhat included. It can ~ ) o
thus appear as natural to introduce a set of orthonormal ondthere.7; is a one-bodydiagonal Hamiltonian,
particle states
5 — £ At
|¢nk>:|¢n>®|k>, (21) '%0 nzka (8k+ En)Anka'Aﬂka" (21Q
in which |k) is still anh,, eigenstate of energy, while the  and 799 3 two-body interaction,
|$,) are the eigenstates of a Poisson-Sdhrger Hamil-
tonian, 1 2me?

5/(q=0)__" ‘A , AT t
- 7 2 Saflz, kz Wnlnl;”anAnlkl"lAnzkz‘Tz
H,=h,+V,, (2.2 ngng 191
, kaop
~ ~ n2n2
Hal¢n)=En| én), 23
o men XAnékza'zAnikl(rl! (211)

h, being given by Eq(1.1) andV, by Eq.(1.43. V, depends
on an electronic density.(z). We choose it to be the elec- the coefficients of which verify the “magic” relation
tronic density ofN electrons in ¢,,) states, with./"}, elec-

trons in then subband: More precisely, we choose 2 W -0 VYnn' 2.12
S pYWppinn' = , . .
P

_ 2 ~
Npe(z)_; Al ()] (24 we will see later that this relation between teis indeed
quite useful since it induces the cancellation of most contri-
with ¢.(2) =(z| ¢,), and butions fromg=0 excitations.
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The first step of these manipulations is to exprégs in
terms of the eigenvalueg, of the Poisson-Schdinger
equation. We find

2me? .
Zon =EnSnn — a—% A W (2,13

E, being related td&,, as in Sec. [Eq. (1.47)].

Next we rewrite the part afZ; which depends olV as a
two-body operator by using the fact that, in the lahgdimit,
we have

> Al AVKAD A

nikyog

-3

nikyoy

NAnko-A "ko = nikyoMngkyog

+
AnkUA 1k1”1An1k1‘71A“ "ko

(2.19

when this operator acts on am particle state. This allows
us to rewrite the Hartree Hamiltonian as

Toy= r%: (ekt En)AloAnko

1 2me?
T T
2 Sa 12 kz Wnln in n’AnlklalAnzkzoz
nlni 101
, koo
n2n2
XAn'kza'zAnikl(rl! (215

where theW'’ are given by

' = p
nlni;nzné_wnlni:nzné_% W[pr?“znéér‘l”i
+Wh,ng:ppSngny - (2.16
It is easy to check that thes&’ verify
2 S Wi =0 if n#0. (217

The last step is to force such a relation foen’ as well.
For that we add and subtract a constant t&rEito .7, and
we write this constant term in two ways:

NE=E, AlAnke

nko

E
=N2 z Anka n’k' 'An’k’(r'Ank(r (218)

nko 'k’ o'

according to Eq(2.14). By choosing

3867
E=—%f dz V,[pe(2) = pi(2)]
:Weznsf sz dZ|z—2'[[pe(2) — pi(2)]
X[pe(Z') = pi(Z')] (2.19

[asin Eq.(1.57)], we transform Eq(2.15 into Eq.(2.9) and
we find that the eigenvalue, associated to the diagonal
part.7, are given by

E,—E,+E=E,+E (2.20

with E given by Eg.(1.59, while the matrix elements
Wnlnl nn, associated to the interaction (9=9) are now

given by

N oV

~ !
Wnln’ ;nzn'_Wnlni;nZné_’_ 5“1“15n2né2, N2 pr;p’p"
pp

(2.21

1 2

It is possible to rewrite thes®/ as

nln n2n

Zz| *
-] a2, d2, 22 [t () (20

—pe(Z7) 5n1ni][¢:2(22) d’né(ZZ) —pe(22) 5n2né] -
(2.22

From the above equation, it is straightforward to check that
theseW do verify the “magic” equation(2.12. We can also
note that\anni;nzné looks very much Iikaanni;nzné except
that the ion density;(z) is replaced by the electronic den-
sity pe(2).

Up to now, the set of parameters’, which enterp(z)
and determine thep,,,) basis are undefined. The last prob-
lem is to determine them. Let us do it now.

B. Determination of the /1*',1 parameters

We consider the state/; - -} with /", electrons

in the Iowest | i) states of the n subband.
|77 -+) is an eigenstate of7, with the energy
ANy S)= 2 N ol 5o S/l WHEn|, (2.23

E, depending on/", throughp. If we now consider the
Hamiltonian.7,; and introduce the”{9=9 interaction as a
perturbation, we find that the first-order term of the energy
change corresponding to processes shown in Fi@) B

(N1, N e )

_12 Ny (2.24

pppp

gives zero due to Eq2.12. Turning to the second-order
term
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-~ |51a=0) 1 5=0) p ...
Iyl e [T OTOPL POy ), (2.29
& 70

we find that its extensive contribution also gives zero: The JE . IE,
extensive contribution comes from a summation over three NF+E =/]’/pW:0r (2.28
arbitrary variables, in order to have a term proportional to the _ - _“ P on
well surfaceS. It corresponds to the processes shown in Figas shown in Appendix B, Eq2.27) reduces to
3(b). Each Coulomb interaction leads to a factor o
a= m—SNn+ En (2.29)

in which En depends oM - -N,- - - throughp.

Equation(2.5) (with /", replaced byN,,) and Eq.(2.29
which is zero due to Eq(2.12. Similarly, all the higher- &ré exactly equivalent to Eqs(.l.49) and (1.51), with
order terms also give zero due to the presence of the sanfe( '“+E The set of /7, which minimizes the

ds to the equilibrium filling of
factor [Eq. (2.26)]. The apparition of such factors is clearer ) correspon
he renormalrzed subbands with localization energig$cf.
m/(the))dragrammatrc expansion of the energy in powers o ig. 3(c)]. In the particular case of a two-subband filling, we
74979 since all terms contain “tadpoles” like the one do recover the equilibrium conditigiEg. (1.22)].
drawn in Fig. 4. We thus conclude that the,, determined self-consistently
We thus conclude that the energy of the perturbed statgq the T+0 Green's function formalism of Sec. | are the

% A Wopans (2.26

derived from|./"} - > by applyrng the7{9=% per-  same as the ones we obtain here using a minimization pro-
turbation is simplyf’( ] 1 --). Consequently, this cedure. Moreover as can be seen from E@s56 and
energy |s nothmg but the Hartree energy of the(2.23, #(./ - --) is exactly equal to the Hartree en-
Iy - +) filling. ergy £y calculated in Sec. I. This means that, as we could

If we now want to determine the set .of ;, which corre-  expect, the|N;---N,- - -) eigenstate of 7, is the unper-
sponds to the lowest Hartree energy, we have to minimizgeurbed state we have to start from, in order to get the true

ANy --) with respect to the/",,. Asthese/, are  ground-state energy of the Hartree Hamiltonian.
linked by Eq (2.5, this minimum corresponds to We wish to end this section with the following remark.
=N, , with N, given by Although the introduction of thep, electron density Eq.

(1.4)] would have no physical meaning if not associated to a
. . state with./",, electrons in then subband,p.(z) could be
_ OE(AN 1o N ')| (2.27 considered as a formal parameter which defines|#g).
N, ' ' We can thus imagine to consider”Z, eigenstates
|77 A7) with /7 #.77, . We do show in Appendix
. - L C that the /], and./",, which give the lowest’”, eigenen-
o being a constaniLagrangg multiplier. SinceE,=E,+E ergy are indeed such that;=./",=N, whereN, still veri-

and fies EQ.(2.29.

lll. EXCHANGE AND CORRELATION ENERGIES
A. Summary of the basic equations
In the preceding section, we have introduced a Hartree
basis|dni) =|pn)® k) in which [¢,) is solution of a self-

consistent Poisson-Schiimger equation:

FIG. 3. First-ordea) and second-orddb) excitation processes
corresponding to zero momentum transféirs., Hartree interac-
tion). (c) Equilibrium filling for Hartree renormalized subbands. FIG. 4. “Tadpole” diagram appearing in the Hartree expansion.
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|:|z| d’n): IAEn| ¢n>a (3.0
n=1,2 m=1,2
|:|Z=2p—l;+u(2)—27762n5f dZ'|Z—Z’|[pe(2’)—pi(2’)],
(3.2 (a)

pe(2) being the Hartree electron density given by

Npe(z):; Nn|¢n(z)|2 (3.3 —Q-—O

and N,, the number of electrons in the subband. These O Q
N, verify O
Eit+ex,=Epteq,= - with K3=2aN,/S. (3.9 Q O
We have used these Hartree functions as a basis for sec- (b)
ond quantization, and we have shown that, in terms of the
corresponding Hartree creation operatdy,,, the total FIG. 5. Exchange energy diagrarthe wavy line corresponds
Hamiltonian can be written as to the 71979 interaction: (a) “bare” term, i.e., without Hartree
. ~ processesib) mixed Hartree-exchange terms with one or two
H= g+ 71970 4 gAa#0), (3.5 71979 interactionsdashed lines All these terms give a zero con-
The one-body parr%/o is diagonal and reads tribution.
7/0:% (ext En) Al Anke - (3.6) Vin!inpng (A) = f f dzy dze %2} (29) i (20)
TheseE, differ from the eigenvalue&, of the Poisson- X bn,(22) fny(22). (3.11
Schralinger equation by a constant teiff as given in Eq.

(1.59. The Hartree energy’y, i.e., the ground-state energy of
The two-body part 7(9=% corresponds to zero- the Hartree Hamiltonia#,=.7,+ 79=9, is given by Eq.
momentum transfer excitations and reads (1.58. We derived it from two d|fferent approaches and

showed that it is equal to the unperturbed energy of the
Fa= 0)_l 277?12 > w, " ingn Al AL T, eigenstatdN,,N,,...N,,,...).
nn] k11 112Ny ek 0y ka2 In this section we will for simplicity restrict our study to a
| kpop two-subband filling and look for the total Coulomb energy of
NNz the perturbed state obtained from the/, eigenstate
XA ko Ak o (3.7 INiN,) when applying thg 7(9=9) 1 7(a#0)] perturbation.
22z 1~1 ! Since 7(9=9 alone gives a zero contribution, as shown in
The main property of th&/ matrix elements is to verify Sec. Il, we only have to consider terms with ofié9*?) at
least.
% NoWppnn =0 ¥n,n’. (3.9

B. Exchange energy

They are precisely given by The exchange energy contains all terms with one

i 2, 2,| 71979 j.e., all terms in7 (9% [ 7(3=0)1P with p=0. Some
Wh.nin,n = f f dz dz, [&5,(210) bn:(20) of the corresponding diagrams are shown in Fig. 5.
_ (i) The "bare” exchange energy, i.e., the term without any
= pe(21) 80, 1 H4,(22) by (22) = Pl Z2) oy - 719=% Hartree interaction, simply reads
(3.9 “x=Ney= 1N2)

The last part,7{9%9), corresponds to Coulomb excitations

with nonzero momentum transfer and reads — > 27872 s D) (). (3.12
“’7/(‘4*0)_12 2me’ TS Sy s ’ m= 1,2
2370 Sq o K NNy ing
oy 7 Il = 0Ky~ 0(Kp—|ktq)).  (3.13
XAn1k1+qalAT ko=, ko0, Anlk oy

It corresponds to the diagram of Figabor to the physical
(3.10  processes shown in Fig. 6.
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Explicit expressions 0d,,(q) are given in Appendix D. C. Correlation energy
From them we can numerically compute the values ofor
different values of ¢ anda/a,. They will be given in Sec.

IV.

The correlation energy contains all terms in
(71970 (77(a=0)yp With | =2 andp=0. We will only dis-

i) Turning to the mixed Hart h . tcuss here the second-order terms, i.e., the termslwith
(ii) Turning to the mixed Hartree-exchange energy, i.e., t0 (i) The “bare” second-order correlation term has no

Knl 79 IN;N) [
E(N1,N2)—E(n)

terms with one or mor'ez/(qzo) interactions[cf. Fig. 5b)],  5a=0) jnteraction. It is given by
we find that they all give zero since they all correspond to
“tadpole” diagrams(cf. Fig. 4] and thus contain a factor
Epzl_,zN_prp;nn, which .is zero due to E(3.8). 2) _ 31

Within our renormalized Hartree approach, we thus con- > corr ‘n#% Ny} (3.19
clude that the exchange energy reduces to its “bare” value 12
#y only, as given in Eq(3.12. Let us stress that this “bare”
value is not really a bare value since it contains some Hartre&'2), contains the usual direct and exchange terms as well as
effects through the Hartree wave functiog(z) entering an “anomalous” term. These contributions correspond to the
the Coulomb matrix element,,mn(d). diagrams of Fig. {®&). The direct and exchange terms read

;(d-%—e_ 27Te2 fnlkl(l_fni,kl-%—q)fnzkz(l_fné,kz—q)
“corr T S 2 2 2 ~ = = =

“1:1~2q¢0niné En1+Enz_Eni_Ené+8kl+8k2_8k1+q_8k27q
n2:1,2

kikp

X

q° alg+k;—ky|

=

2|Vn1ni;n2né(Q)|2 anni;nzné(q)vninl;nén2(|q+kl_k2|)} (3 13

)

[wheref,, is the Fermi functiorf .= 6(K,,—|k|) ], while the

anomalous term is given by (a)
_a 27762 2 fnlklfnzszn3k3(1_fnék3) (b)
‘fcorr: 2 S Z Z
np=12 ni#ng Eng_ Ené H
M2=1.2 y koks O
n3=12
Vn1n3;nén1( | k3_ k1| )Vn3n2;n2né( | k3_ k2|) @-@ @O@ @OO@
|kz—kallks— k|
Equations(3.15 and(3.16 are formally similar to Eqs(7) A
and (8) of Ref. 2 except that the subband indigesn,,n;

can here be equal to 1 or(@nd not to 1 onlydue to the fact

that electrons now occupy two subbands. Yo = Yol 2Ol A+ OO+
Let us stress that, here again, this “bare” second-order

energy is not really bare since the Hartree effects are present (d)

\\ /]
N

<>

FIG. 7. (a) “Bare” second-order correlation diagrams. The third
diagram, called the “anomalous” diagram, does not exist in the 3D
and exact 2D expansions &t 0: It comes from possible intersub-
band excitations onlyb) One possible mixed Hartree-second-order
correlation diagram; such diagrams are generated by adding a “tad-
pole” to the “bare” diagrams of(a): All these terms give a zero
contribution.(c) Other mixed Hartree-second-order correlation dia-

N\ /Y
< /

\\__ /]
=/

FIG. 6. Exchange processes of the “bare” term insiderkel
subband, inside the=2 subband, and between the=1 andn=2
subbands.

grams, which are not obtained by simply adding a “tadpole” to the
“bare” correlation diagrams(d) Summation of all the diagrams of
the type shown ir(c).
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through theEn and theanni;nzng(Q)v which depend on the change energy is much easier to get since it contains the

¢y This makes the numerical calculation of the correlationYnynjinn;(d) Matrix elements with subband indices equal to
energy rather heavy when compared to the one of Ref. 2t or 2 only, so that only; and ¢, have to be determined
Indeed, in the perturbative treatment of the Hartree proself-consistently.

cesses, we used the free-electron bagiswhich is known (i) If we now turn to the mixed Hartree-correlation en-

analytically for infinite well barriers. This allowed an ana- ergy, we can first think of adding”(9=? processes to the

lytical calculation of aIIanni;nzné matrix elements, so that ihree diagrams correspondingifé%ﬁr. We get diagrams like

only the last sums entering the correlation energy had to bgye gne of Fig. ™). In all of them7(9=9 Hartree processes
calculated numerically. On the contrary, for these correlatiory e gssociated to “tadpoles,” so that their contributions give
terms, we have hefe to numerically compalethe ¢, func- ;60 due again to Ed3.9).

tions in a self-consistent way, using E¢8.1) and(3.2), then (i) However, we should not hastily conclude that no
calculate allVy, n;;n,n;(d) matrix elements with one or tWo - 5.(a=0) conrribution enters the second-order correlation en-

supbands indices equal to any integer vdthe other indices ergy. Indeed, there are other diagrams Withi=0) processes
being equal to 1 or 2 and eventually compute the sums which differ from “tadpoles,” as can be seen from Figcy

entering the correla}tlon energy. AS th(q] wave functions The sum of such diagrams can be formally written in terms
depend on the precise ion configuration, such heavy numeri-

cal work appears to us useless unless we can compare L2 r(.anormallzed Interactiown, n; :n,n; shown in Fig. Td)
results with experimental one§lLet us note that the ex- and given by

Wi o =Wa o + 2 Wan o D non Wi s non? + 20 Wan non Don W s o o Winrn - cpon - - -
ninyingn, nyn;ingn, , ningingngtingngY¥nang inon, nyngingngtingngY¥nangingn, tingn, Y¥n;n,inon,

n3z#ng ng#ng
ng#ny
:Wnlni;nzné+ 2, Wnlni;nsnéHnanéWnéns;nznéy (3.1
nz#ng
|
with interaction? the effect of Hartree processes is larger for ions
outside the well than for ions inside. We will concentrate
2me? N,— Ny here on this “outside” situation and consider a quantum well

TS TE _E (3.18  with electrons located at9z<a and ions located symmetri-
n.omn cally on both sides of the well, with

the filling N, of then subband being the equilibrium filling

(in particularN,= 0 for n#1,2). Unfortunately it is not pos-

sible to find an analytical solution to this implicit equation

for the renormalized interactioWnlni;nzné.

—1f a< <0 and <<3a 4.1
pi(Z)—a or EZ anaz?. 4.

] S We must stress that the results given below are valid for this

We could at first find it useful to note that the set of choice OfPi(Z) On|y: for another ion Configuration, all nu-
diagrams shown in Fig. (@) correspond to processes in- merical calculations should be performed again.
cluded in the self-consistent Hartree-Fock equations. Conse- as discussed in Sec. |, a self-consistent treatment of the
quently they can be summed up when added to other mixeflartree processes is necessaryXqr>1 only, while a reli-
71470974429 processes. Besides the numerical complexityable treatment of the exchange-correlation effects imposes
of solving these Hartree-Fock equations, we must stress the<1. As shown in Fig. 1, this corresponds to electrons in
inconsistency of such a procedure, since it includes addimore than one subband. For the sake of simplicity, we will
tional crossed processes on the behalf that they help for @ustrate our self-consistent approach in the case of a two-
summation, while it discards other correlation terms of thesubband filling only. The corresponding results will be given
same order in. for two different values of the well widthafa,=1 and

alag=3). The larger the width, the larger thg, parameter
IV. NUMERICAL RESULTS and thus the larger the Hartree effects.

We now report some numerical results obtained from the
self-consistent treatment of Hartree processes in quantum
wells which has been developed above. Since these Hartree Let us first introduce as a particle number unit, the par-
processes are physically related to the charge separatioticle numberN, associated to the lowest binding enefgy
they depend on the precise ion configuration. As previouslyhe absence of Coulomb interactjpr,, through the rela-
shown within a perturbative treatment of the Hartreetion

A. Subband fillings
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N[ ] N/NT
5.00 - 0.2 0.40 |
: ala=3 —>»,
4.00 | >/ S a
1 7 0.30 |
/e
3.00 /i o 1 0.20 |
; /<— no Coulomb |
2.00 = 0.10 [
7
/o
1.00 o 0.00
4 3
0.00 —T T T T T
0 2 4 6 8§ 10 12NN,
N,/N
FIG. 8. Numbem, of electrons in then=2 subband as a func- 0.40 I
tion of the total numbeN of electrons, inN, units[defined in Eq. i
(4.2)]. The threshold for a two-subband filling is pushed from 030 b
N/No=3 towards a lower value by the Hartree interaction. This
effect increases with the well widé. The open dots correspond to 0.20 L
the threshold for a three-subband filling. ’
1 72 1 27N, s 0101
E1=™ A - o~ A~ .
1"2ma® 2m S 0.00

The ratio N/Ng is proportional to the 2D electron density
ng and to the square of the well widdx
FIG. 9. Fraction of electrons in the=2 subband as a function
N 2 ) of (r¢) %, for two well widths:a/a,=1 (a) anda/ay,=3 (b). The
N_o: ;nsa : (4.3 dotted curves correspond to the results in the absence of Hartree
effects and the open dots correspond to the threshold for a three-
In the absence of a Coulomb interaction, the two-subbangubband filling.
filling condition given by Eq(1.19 reads
band filling. This is why we have also plotted in Fig. 9 the
3<N/Ny<13. (44 fractionN,/N of electrons in the/=2 subband as a function

Hartree processes modify this condition, according to EqOf s - (which is proportional toyngao), the dotted curves
(1.52. As can be seen from Fig. 8, which gives the numbercorresponding to the results in the absence of Hartree effects.
N, of electrons in they= 2 subband as a function of the total As expected, we find that the smaller the well width, the
particle numbeiN, the electrons begin to fill the=2 sub-  larger the density necessary to have electrons innthe
band forN/Ny<3: The two-subband filling occurs as soon subbandthe subband separation being infinite for zero well
as N/Ny=2.68 fora/ag=1, andN/Ny=2.25 for a/a,= 3. width). Here again we note that the Hartree processes give a
As expected, the effect is stronger fara,=3 than for larger effect for largea.

alag=1.

In the absence of Hartree interaction, tNg versusN
curve is exactly linear with a slope equal to Qthe average
kinetic energy of electrons in a given subband being in 2D In Fig. 10 we report the energy differences between the
proportional to the number of electrons in this subbaie  n=1,2,3 subband bottoms, in the presence of Hartree inter-
see that Hartree processes do not modify very much thigction, as a function oR/N, for two different well widths.
behavior: theN, versusN curve is almost linear with a slope Due to Eq.(2.20), these differences are also the differences
slightly larger than 0.5. This occurs from the fact that thebetween the Poisson-Schlinger eigenenergies, ,E,,E;.

B. Hartree renormalized subband energies

(E,—E;) energy difference between the bottoms ofthel In the absence of Coulomb interaction, these differences
andn=2 subbands decreases slightly with as shown be- are simplyE,—E,;=3¢, andE;—E,=5¢,. Hartree effects
low. induce a density dependence which increases with the well

Hartree processes also modify the value MfN, for  width. We see a break point at the two-subband filling thresh-
which then=3 subband begins to be filled. This thresholdold (as indicated by arrowsThe difference E,—E;) mo-
reduces from 13 to 11.88 fom/ag=1 and 11.62 for notonously decreases witl/ Ny, in agreement with the in-
alag=3. crease of the slope of th¢, versusN curve shown in Fig. 8.

Let us stress that, althoud¥, may appear as an appro- The difference Ez;—E,) is much less modified than
priate particle number unit, it depends on the well widtbe  (E,—E,); it slightly decreases foa/ay,=1 while it shows a
Egs. (4.2 and (4.3)]. Consequently, plots ifNy units can  minimum in the vicinity of the two-subband filling threshold
only give a partial view of the well-width effect on the sub- for a/ay=3.
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3.00.-..xl‘..1.<.1\.4l‘«.|\
Koy ¥ h, n=1
Y (E,-E,) &,
............... (a)]
2.00 | ] ala=1
0 a
3 |
1 FIG. 12. Square of the Hartree renormalized wave function of
0 2 4 6 8 10 N/N then=1 hole subband foa/a,=3 andN/No=11.6. The squares
0 of the corresponding electram=1 andn=2 wave functions are
B0 bl il also shown.

wave functiong ¢,,(z)|? for n=1, 2, and 3 in the case of the
larger well width a/ag=3, and for an electron number
N/No=8. In this case the filings areN;/Ny=4.7,
N,/Ny=3.3. The free-electron square wave functions
|on(2)|? are drawn as dotted curves for comparison. From
them we can appreciate the effect of the Hartree interaction.
Figure 11 also shows the electronic charge densify)
as given by Eq(3.3). To that density corresponds an elec-
trostatic potentiaV with a maximum at the well center. This
maximum affects strongly the=1 wave function which is
depressed at the center. Modifications of the2 andn=3
. _ wave functions are smaller becauBg and E; are larger
FIG. 10. Energy differences between the:1 andn=2 sub- with respect tov. The fact that the central part of time=3

bands(a) and between then=2 and n=3 subbandgb), when function i h d with the f |
renormalized by the Hartree interaction, for two well widths, as awave unction Iincreases when compared wi € Iree elec-

function of the electron numbeX. In the absence of Hartree ef- tron one may be understood by the requirement of orthogo-

fects, these differences are Band 5, (¢, being the lowest bind-  nality with then=1 wave function.
ing energy of the well The arrows indicate the threshold for a
two-subband filling. D. Electron-hole Hartree chemical potential

5.20 |
5.10 |

5.00 k

4.90 |

_ The Hartree chemical potential introduced in the finite-
C. Hartree wave functions temperature approach of Sec. | is the energy necessary to add

Other interesting “one-particle” quantities are the elec-One electron and one ion to tifeelectron-ion system in the

tron wave functions: Fig. 11 shows the square of the Hartre@resence of the Hartree interaction. As this quantity is not
easy to measure experimentally, it appears interesting to cal-

culate another chemical potential, namely, the electron-hole
chemical potential which is the energy necessary to add one
electron and one hole to the sarkeelectron-ion system.
This last potential is directly linked to the photon energy
threshold of a doped quantum well.

In order to obtain this electron-hole chemical potential,
we first have to find the binding energy of the hole in the
presence of the Hartree potentialdfelectrons and ions, i.e.,
to solve the Poisson-Schdimger equation for the hole,

namely,
HY| $h) =Exl én).
Pe 02
- T ~
0 z a HQZZrTZ]h 2 sf dz'[z—2'|[pe(2) = pi(2")].

(4.9
FIG. 11. Squares of the Hartree renormalized wave functions of
then=1, n=2, n=3 subbands foa/a,=3 andN/N,=8 (in this  Equation(4.5) is the analogous to Eq1.46 with the elec-
caseN,/Ny=3.3 andN;=0). The corresponding electronic charge tron massm replaced by the hole mass, ande® changed
density pe(z) is also shown. The dotted curves correspond to thento e
same wave functions in the absence of Hartree effects. Figure 12 shows the hole Hartree wave function of the
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——r
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FIG. 14. Average Hartree energy, as a function of the electron
numberN, for a/ag=3. The arrow indicates the two-subband fill-
ing threshold. The units; andN, both depend on the well width.

FIG. 13. The lowest solid curve givés,+E", i.e., the sum of
the Hartree renormalized energies of the 1 eIegtronA anth=1
hole subbands, fa/a,= 3. The dashed curve givés + El, where
E2 is the Hartree renormalized energy of the=2 electron sub- SO
band. The upper solid curve gives the electron-hole chemical potean eing given by Eq(1.18. The difference £, —2%") is
tial uen as a function oN; the slope change occurs at the electron€Xpected to be dominated by a trivial electrostatic term
two-subband filling threshold, i.e., fal/N,=2.25. The zero of Negcoming from the energy necessary to separate the elec-

energy is taken at the band gap. trons from the ions. Following Ref. 1 we define it as
n=1 subband foN/Ny=11.6, a/ag=3, andm,/m=5. We es=mN€%av,
have also shown the electron Hartree wave functions of the
filed subbandsn=1 andn=2. o f f dp.dz A2 I[ (20— pi(20)]
_In Fig. 13, we have plotted the sum&(+E]) and 122 Peler) ™ Pite

(Ep+ Erl‘) in £, unit as functions ofN/N, (the last sum is — o
reported in the two-subband filling range only, i.e., for XLpelz2) = pi(22)], (4.9
N/No=2.2 if a/ag=3). The electron-hole potentiglen is  p,(z) being the density of electrons delocalized in a negative
given by jellium inside the well pe(z) = 1/a for 0<z<a]. Negis just

, the energy necessary to create the charge distribution

.. K 2 Nl pi(2) — pe(2)]. The remaining ener
M&):El_}_ET_I_%’ K2="" S N (4.6) €l pi(2) —pe(2)] g aqy
Zu— &9 —Neg=Ney (4.10

in the one-subband filling region, and by comes from the subtle changes of the electron wave func-

K tions due to the Hartree processes, these changes inducing
) _ cho ~1 0 ™2 2_4T both a change in the well binding energies and a change in
HA=E B oo K= N @D o hand fillings.
In Fig. 14, we have plotted,, in £, unit, as a function of

in the two-subband filling region. It is plotted in the same N/N,, for a/a,=3. The arrow indicates the two-subband fill-
figure. ing threshold. Here again we see a break point at this thresh-

Of course, in order to obtain the true threshold for photoro|d. We can also note that in the whole density range corre-
absorption, we should add jo., the band gap and possibly sponding to a two-subband filling,, is of the order ofe; .
the hole kinetic energy necessary to insure the momentum |n Fig. 15, we show the same energy;, expressed in
conservation of a direct absorption. Let us note that thERydberg unit, as a function af \/EZ, for a further

E.+ E1 curve also gives th&=0 low-level luminescence, if comparison with the average exchange energy.
we assume momentum conservation in the luminescence

Process. F. Exchange energy
We know that in the exact 2D limit, i.e., foa=0, the

E. A Hart . .
Verage nartree energy average exchange energyHg unit is simply given by

Let us now turn to the Hartree energy, of the N elec-
trons and ions, as given by Eq4.56) or (1.58. In order to #0000 1,20
have an idea of the energy change induced by the Hartree m= T
processes we must subtract from it the energyNofree 0 s
(@) If we include the finite well widthwithout taking into

electrons in the well, namely,
account Hartree processese have showhthat the average
A 2.3 N 48 exchange energy depends on the well width through a unique
2mSE 2 nen “9 parametei defined as

4.1)
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FIG. 15. Average Hartree energy, , in Ry unit, as a function of
(ro %, i.e., the same result as the one shown in Fig. 14, using unit

FIG. 17. Average exchange energy in the presence of Hartree
processes as a function af "1, for two well widths. The dashed

independent of the well width. The dotted curve, which correspond&n€ €Orresponds to the exact 2D limit.
to the exchange energy, is given for comparison.

In Fig. 17 we show the average exchange energyn
Ry unit as a function ofs’l, for a/ag=1 anda.ay;=3. We

= @ = E(ﬁ) v have also plotted the exact 2D linjEq. (4.11] for compari-
2w 2\Ng son. The arrow indicates the two-subband filling threshold.
, . (Note that the validity of our exchange-correlation energy
and can be written in the form calculation impliesr¢<1 so that the results for9r <1
© are meaningless and are just indicated to guide the )eyes.
gx  AN) The sames, /R, versusr,* curve fora/a,=3 is also
Ry  fg plotted in Fig. 15, in order to allow a direct comparison of

[see Eq.(4) of Ref. 2. Figure 16 show#\,(\) in the one-

the exchange energy with the nontrivial part of the average
Hartree energy given by Eq.(4.10. We see that, with our

subband filling range (& <+/3/2), as already given in Ref. choice ofe, for the electrostatic part, the average exchange
2. We also show it in the two-subband filling range, thisenergy e just compensatesy, at the two-subband filling

A (N\) being simply obtained from Eq3.12 with K, re-
placed byKﬂ defined by Eq(1.18 andV,,mn(q) replaced

threshold, but this is accidental.
In order to measure the effect of the self-consistent treat-

by vnmmn(0) defined by Eq.(1.12. We see that this ex- ment of the Hartree processes on the exchange energy, we
change energy decreases with the well width, with again &an rewrites, as

break point at the two-subband filling threshélddicated by

an arrow.

(b) If we now include the Hartree processes in a self-
consistent way, as done in Sec. lll, all mixed Hartree-
exchange terms give zero and only the “bare” exchange ter
given by Eq.(3.12 remains. We can plot this exchange en-

ergy in various ways.

ex  AdNalag)

R n 19

and compard\,(\,a/ag) with A,()\), defined by Eq(4.13).

MAs A,(\) gives the exchange energy in the absence of Har-

tree processes, we do hafe(N\)=A,(\,0). In Fig. 18, we
show A,(\,alay) for a/lag=1 and a/ap=3 as well as
A(N). We see that all the curves are very close to each

A (M) . . L other, which means that Hartree effects on the exchange en-
ergy are rather small. The larger effect appears in the vicinity
1.10 1 of the two-subband filling threshold and even in this case, it
100 is not larger than 10%. We thus conclude that in most cases
) we could avoid the self-consistent treatment of the Hartree
0.90 F processes contributing to the exchange energy and simply
- replaceA,(\,a/ag) by A (\) shown in Fig. 16.
0.80 - ' In Fig. 18, we have also plotted the 3D limit of the ex-
change energy
0.70 |
weo l e 0916 0.613
. Ry (D) = . AR (4.19
0.50 F———T—— ]

0 0.5

It is interesting to note that, in the two-subband filling
region, the exchange energy is closer to the 3D limit value

(roughly 10% above this 3D valu¢han to the 2D limit value
(roughly one-half of this 2D valyeeven though the 3D limit
should correspond to an infinite number of filled subbands.

FIG. 16. Average exchange eneffggultiplied by (—rg)], in the
absence of Hartree processes, as a function-eKa/2w. The ar-
row indicates the two-subband filling threshold.
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0.90 I
A (Aala) [

to the energy cancel. It is indeed impossible to find a trans-
formation which makes alj=0 processes disappear: A few
mixed (@=0,9#0) contributions do remain in the correla-
tion energy which have to be added to the usual terms.

We give numerical results for the exchange endligg,
the first-order term in7{9%9) in the case of ions on both
sides of the well, for which the Hartree processes could be
expected to give a rather large effect. It turns out that, in the
whole two-subband-filing domain, the exchange energy
stays quite close to its bare value, as calculated without any
Hartree effect. This result is of practical interest since it al-
lows us to obtain a fairly good value of the exchange energy
0.50 & : from a universal one-parameter curve for all ion configura-

L R T T T . .
04 06 08 1 1.2 1.4 16 A tions and well widths.

0.80
0.70 T

0.60 |

FIG. 18. Same results as those shown in Fig. 17, with APPENDIX A: EXPRESSION OF THE HARTREE
ex/Ry=—(rs) 1A, (\,alap), plotted as functions of. The solid SELF-ENERGY IN TERMS
curve corresponds to the exchange energy in the absence of Hartree OF THE HARTREE POTENTIAL:
effects(cf. Fig. 16. We see that all these curves are rather close to
each other. The dashed curve which corresponds to the 3D limitis Inserting Eq.(1.41) into Egs.(1.25 and(1.26) we get
also surprisingly close to the other ones, in the two-subband filling

2
region. 2me

Onn' = ﬁ% Wnn’;nln2<(Pn2| ¢n”><¢n”|‘Pn1>Nn"i
V. CONCLUSION 112

n”

In this paper, we consider an electron gas confined in a (A1)
finite-width quantum well, dense enough to have electrons in
more than one subband. This situation is particularly Comyvhere we have set
plex for two reasons(i) the Hartree processes cannot be
treated in a perturbative way as in our previous woKks; N,= lim TE e G (K,w,). (A2)
the Coulomb interaction affects the number of electrons in 7ot ko
each subband. . . Since the trace of a matrix does not depend on the basis, we

We have developed an approach based on the mtroductlorp%1
of Hartree creation operators associated to the self-consisten
solutions of the usual Poisson-Sctimger equation. This al- _
lows us to rewrite the total Hamiltonian of the system as a E Nn=2 A an=N(x,T)=N. (A3)
one-body part 7, plus two two-body parts”(9=% and " A

719#0) in such a way that most of the(9=9) contributions Inserting thew definition[Eqg. (1.10] into Eg. (A1) we get

27e? .
I’ TS dezl 2|2, = 2|[ 071 (21) ¢n'(21) = pi(22) S ] Z [(‘Pn1|22><22|‘Pn2><‘Pn2|¢n”>
nqynyn”
X<¢n”| (Pnl>Nn"_ 5nln2Pi(Zz)<<Pn2| ¢nrr><¢nrr| Qonl)Nn”]
27e? . ,
=-—3 ffdzl dz,|z,— 2,|[ @5 (21) @nr(Z1) — pi(Z1) S ] z Np| dr(22)|2—Npi(zy) |. (Ad)
n//
|
From the expression of the average electron density , , , , /
n(z,u,T) [EQq. (1.29], we find, using Egs(1.41) and (A2), V,=—2me nSJ dz'|z—2'|[p(2)) - pi(Z))], (AB)

we see thatr,, reads

n(z,1,T)= 20 Nol (2]
Unn’:J’ dz; (P:(Zl)ﬁon'(zl)vzl_gnn’f lePi(Zl)Vzl-
(A7)

1_ The o, self-energy is thus related to thg Hartree potential
Pe(z)_ Nn(ZYMYT)I (AS) through

By setting



- [ 4z 2. (AB)

APPENDIX B: DERIVATION OF EQ.
From Egs.(2.3) and(1.47) we obtain

(2.29

Ep _
AN,

T [ f dz ¢ (2)[h,+ V1 y(2)

_j dz VzPi(Z)]
ez

N,
+ [ adlgy@l2-n

bp(D+ b} (2) = ¢p( )

(B1)

=J dZ| ()|~ p;

[since[dZ] ¢,(2z)|?=1], so that

)y Sk N[ 4 pi2)]5 5 (B2

oy // '
From Eq.(1.43 we get

v,
Ny

dpe(Z’
—ZweZnSJ dz'|z—27'| pe/(/. ). (B3)
o

Inserting Eq.(B3) into Eq. (B2) yields

1 JE
N}p} /1///bﬁ=—2we2nsf sz dZ|z—2'|

Ipe(Z")

N, (B4)

X[pe(2)—pi(2)]

By looking at Eq.(2.19), we see that the right-hand side
of Eq. (B4) is equal to - JE/d./7,,) so that we have

=0.

(B5)

N— Ny
a1 ! Par,

APPENDIX C: .7, GROUND-STATE ENERGY STARTING
FROM AN ARBITRARY |07+ 07--+) STATE

The}r,;//o Hamiltonian defined in Eq2.10 depends on a
set of parameterg ", through the definition op.(z). Let us
consider arN-particle statg./7---./7- - -) with ./} elec-
trons in the lowest state of the subband and/ | #./7,.
This state is eigenstate cﬁ‘i//o with energy

)

SK%
472 2
0 for gq=2K,.

2 cos (

Jnn(@) =
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2 11/2
_ 1_ -
Kn[ 4K§}
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(CD

S 7 |
; ./]”/n HS/] nt E,

If we Iook for the }/o ground state, i.e., for the lowest

N7 --) at constant/’,, (which entersEn) we
find that |t corresponds to/ 7 =N, with
er ~
= —Np+Ep, (C2)

mS

where y is a constantLagrange multiplier. We see that
N/ is different from./"|, except when/;, equals the “equi-
librium” filling N, given by Eqg.(2.29. We could be dis-
turbed at first by the fact that tHe/ ;- - -./,- - -) state we
choose to start witlifor physical reasonsin Sec. I, is not
the .7, ground state. However we are going to show that, if
we start with the7Z, ground statéN; - - - N/ - - -}, we do find
the same Hartree ground-state energy.

Equation(C2) gives the.7, ground-state fillingN; as
functions of the./",. If we now look for the set of/",
which minimizes the7,, ground-state energy, we find that it
must verify

IZ(N]- Nl

Y= o (C3
Using Egs.(C1) and(2.28 and remembering that
2 NJ=2 Np=2 /=N, (C4)
P P P
we can rewrite Eq(C3) as
y' = ENpM Z(N 4 (C5)

This shows thaN,’)=./J/"p=Np [with N, the self-consistent
solution of Eq.(2.29] is indeed solution of Eq9/C2) and
(C5). In other words, the/; and. /", which give the lowest
F, eigenenergy are such that?=./,=N,.

_ If we then introduce the”(9=9) interaction on this lowest
4 ground state, we find again that the energy is not modi-
fied, due to the “magic” relation[Eg. (2.12], so that
#(N;---N,---) is indeed the exact ground-state energy of
the Hartree Hamiltonian.

APPENDIX D: SUMS APPEARING
IN THE EXCHANGE ENERGY

Let us considerd,(q) as defined by Eq(3.13. For
n=m, J,, is proportional to the intersection area of two
circles with same radius. We find

a for 0=sqg=<2K,
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For n#m the two circles have different radius, and we find

SK3
E for 0=sqg=K;—K,
2 2
JiAa)=14 SK; K2 aq .
+ ' for K;—Ky=g=K;+K
m 0 K710 KlSII’la or Kq 2=( 1 2

0 for g=K;+K,
with

f#=cos !

9> +Ki-K3]
29k, | °

IM. Combescot, O. Betbeder-Matibet, C. BenoitaaGuillaume, A Fetter and J. Waleck&uantum Theory of Many-Particle Sys-

and K. Boujdaria, Solid State Commus8, 309 (1993. tems(McGraw-Hill, New York, 197).
20. Betbeder-Matibet, M. Combescot, and C. Tanguy, Phys. ReV**We have sefi=kg=1 ande?=q%/4mwee,, Whereq is the elec-
Lett. 72, 4125(1994). tron charge and the dielectric constant of the material.
3W. Kohn and L. J. Sham, Phys. Lelt40A, 1133(1965. 13 et us stress that the additional * prefactor which comes in Eq.
4T. Ando and S. Mori, J. Phys. Soc. Jpt¥, 1518(1979. (1.195 and which helps to keep,; small, indeed appears in the
5G. E. W. Bauer and T. Ando, J. Phys.10, 1537(1986. 719=09) expansion of the Hartree energy, as explicitly shown in
8G. Eliasson, P. Hawrylak, and J. J. Quinn, Phys. Re85B5569 Ref. 1. With this definition of\, the numerical coefficients of
(1987. this expansion are of the order of 1.
7J. C. Ryan, Phys. Rev. B3, 12 406(1991). 145, L. Chuang, M. S. C. Luo, S. Schmitt-Rink, and A. Pinczuk
8J.C. Ryan and T. L. Reinecke, Phys. RevdB 9615(1993. [Phys. Rev. B46, 1897 (1992] have also used similar self-
%M. L. Glasser, F. Garcia-Moliner, and V. R. Velasco, Phys. Scr.  consistentq# 0 matrix elements for the exchange energy in a
43, 512(199). one-subband filling case. However, in this casgyaexpansion

10These subband filling changes were not considered in Refs. 8 and of the Hartree terms is quite accurate and such a self-consistent
9. treatment is unnecessary.



