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We calculate the biexciton phase space for a model polymer consisting of a one-dimensional array ofN
coupled quantum cells, each containing two levels. The Hamiltonian allows for electron and hole transfer (t)
and includes on-site~V0! and extended (V1/r ) Coulombic interactions. The double electron-hole pair basis set
is numerically diagonalized for as many asN531 cells. A phase boundary for two-photon-allowed biexcitons
with A1 symmetry is calculated in~a,b! space wherea[V1/V0 and b[t/V0 . The phase space generally
supports multiple biexcitons; the most tightly bound biexciton exists over a region limited byb&0.11 and
0.84&a<1. Higher-energy biexcitons occupy successively smaller corners of phase space centered onb50
and a51. The two-photon absorption spectrum in the region 2\v,2D, whereD is the one-photon gap,
generally shows two types of peaks: high-energy ones associated with biexcitons and lower-energy peaks
associated with single excitons ofA1 symmetry.

I. INTRODUCTION

The existence of biexcitons and their influence on the
nonlinear optical response of conjugated polymers are cur-
rently subjects of considerable interest. Biexcitons are sus-
pected in the two-photon absorption~TPA! spectra and
pump-probe transient absorption spectra of several poly-
mers including polydiacetylene ~PDA!,1 polypara-
phenylenevinylene~PPV!,2 and polysilane~PS!.3–6 Recently
they have been discovered in the quasi-one-dimensional
mixed organic charge-transfer crystal, Antracene/PMDA
~Ref. 7! through high-intensity differential pump-probe spec-
troscopy. In conventional inorganic semiconductors biexci-
tons are well established,8 being first observed in bulk CuCl
almost three decades ago.9

The most popular theoretical treatment of the optical re-
sponse in conjugated polymers is based on the Pariser-Parr-
Pople~PPP! Hamiltonian in a basis set containing a singlepz
orbital per carbon atom or twosp3 orbitals per Si atom in the
case of polysilanes.10–12,14–18Electron transfer is regulated
by the near-neighbor coupling integralst~16d!, whered is
the alternation parameter, and Coulombic interactions are ac-
counted for using the Ohno potential. Exact calculations by
Soos and co-workers10–12 can handle as many asN514 or-
bitals, which for large alternation~d.0.6! is sufficient to
obtain accurate extrapolations to the polymer or long chain
regime.11 They also established that for intermediate alterna-
tions ~d;0.33! that pertain to polysilanes, for example, the
lowest one- and two-photon allowed states have strong
excitonic character.12 Several other groups have developed
exciton models, under which optical properties are attributed
to one-dimensional~1D! Wannier excitons.13–18,21 Abe
has shown that the lowest one-photon allowed exciton
consumes most of the oscillator strength in one dimension,13

and has used only the lowest-energy one-exciton states to
calculate the third-order nonlinear optical response.14 The
method is highly successful in describing TPA~Ref. 19! and
third-harmonic generation from polysilanes20 in the spectral
region between 2 and 5 eV, but fails at higher energies where

two-photon transitions to states with twoe-h pairs appear.3–6

It is a formidable theoretical challenge to calculate the
nonlinear optical response of a long-chain polymer in a way
that handles the enormous doublee-h pair basis set in a size
consistent manner. Approaches based on singles and doubles
configuration interaction15 can treat as many as 40 orbitals,
but suffer from being size inconsistent. Mukamel and
Wang16 developed an equations of motion theory that can
treat several hundred orbitals but factorized the two-exciton
correlation function. Our motivation for the present work
was to develop a theory for nonlinear susceptibilities in con-
jugated polymers that includes charge transfer and Coulom-
bic interactions in a size consistent way, allowing investiga-
tion of the large size or polymer limit. To this end we chose
the one-dimensional version of the usual tight-binding two-
band semiconductor HamiltonianĤe-h written in an electron-
hole representation. We consider a one-dimensional array of
N quantum cells, each containing two levels.Ĥe-h includes
the opposing forces of charge delocalization (t), and local-
ization through on-site~V0! and extended (V1/r ) Coulomb
interactions. Previously,21 we calculated the nonresonant
third-order susceptibility,x~3!, for this Hamiltonian but
avoided the biexciton regime, which is the central focus of
the current paper. The Hamiltonian is identical to that studied
by Ostreich and Schonhammer22 in their analysis of the Stark
effect in 1D semiconductors and is similar to that used by
Ishida23 in his analysis of biexciton effects and lattice relax-
ation on the transient absorption spectrum of 1D polymers. A
3D version was analyzed by Ivanov and Haug24 in order to
describe two-photon absorption of biexcitons in direct-gap
semiconductors such as CuCl.

Unlike the PPP HamiltonianĤe-h commutes with the total
number of electrons or holes. Thus there is no mixing be-
tween the one- and two-electron excitations, an effect that is
important in weakly alternating polymers,10–12but much less
so in polysilanes, for example. In polysilanes, the larger al-
ternation causes the lowest-energy one-photon allowed state
(1Bu) to be significantly lower in energy than the two-
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photon allowed 2Ag state,
12 an ordering that is supported by

experiment,3–6 and that is preserved underĤe-h . With the
electron ~or hole! number being a good quantum number
comes the unambiguous definition of a biexciton, as any
state with twoe-h pairs that is lower in energy than twice
the lowest one-exciton energy. Recently, Guo, Chandross,
and Mazumdar18 have proposed a definition of biexcitons
under the PPP Hamiltonian based on energy and transition
dipole moment~from the 1Bu state! considerations. Another
advantage of our approach is that size consistency follows
naturally and it is computationally far less intensive to cal-
culate nonlinear optical properties.

Calculations of TPA are restricted to the case when the
ground state is the one with no electrons or holes,G0. Sec-
tion III derives the conditions under which the ground state
is G0, as opposed to a charge density wave~CDW!. The
following section deals with one and twoe-h excitations.
When reflection, charge conjugation, and rotational symme-
tries are used to block diagonalize the Hamiltonian, we are
able calculate one and twoe-h pair eigenstates and eigen-
values for as many as 31 two-level quantum cells given the
constraints of computer memory. We also develop a further
approximation for small values oft/V0 that truncates the
electron-hole separation to at most one lattice spacing. This
allows treatment of much larger sizes, on the order of several
hundred cells. All of our calculations are conducted in the
polymer limit, obtained by takingN sufficiently large to ob-
serve convergence. A demonstration of the consistency of the
energy based definition of biexcitions with hole-hole local-
ization is made in Sec. V. This is followed by a derivation of
a biexciton phase space diagram in the dimensionless vari-
ablesa5V1/V0 andb5t/V0 . We find that the most tightly
bound biexciton exists for smallb ~b,0.11! and a in the
range 1>a*0.845. There are also smaller regions containing
multiple biexcitons centered about the pointb50 anda51.

In Sec. VI we calculate TPA in the model polymer for the
case where the ground state,G0 is a state with no electrons
or holes, being careful to avoid parameter ranges that favor
the CDW ground state. The spectral range is restricted so that
the fundamental photon frequency is less than the lowest-
energy 1B2 exciton transition frequency in order to avoid
divergences from one-photon absorption. This is also the
range over which most experiments are performed. We an-
ticipate TPA peaks arising from two-photon allowed one ex-
citons as well as biexcitons and work out the conditions un-
der which the various peaks will be present. Several TPA
spectra are calculated covering horizontal and vertical cuts
through the biexciton phase space. We also study the behav-
ior of the biexciton transition dipole moment from the 1B2

one-exciton state and compare it to recent predictions.18 Sec-
tion VII summarizes the main results and discusses applica-
tions to experiment.

II. HAMILTONIAN

The model polymer consists ofN coupled quantum cells,
whereN is taken to be odd. In order to exploit periodic
boundary conditions, the cell positions are taken to be at
each of the vertices of a regular polygon withN sides of
lengtha. With a/2 sin~p/N! the radius of the circumscribed

circle, the position of thepth cell is

r p5
a

2 sin~p/N!
$sin~2pp/N! î1cos~2pp/N! ĵ %, ~1!

where î and ĵ are unit vectors along thex and y axes, re-
spectively. Figure 1 shows the schematic of the model. In
this work we are not concerned with finite-size effects. The
polymer limit corresponds to takingN large enough~with the
nearest-neighbor distancea held constant! to observe con-
vergence in the quantities of interest.

Each quantum cell contains two levels, corresponding to
two Wannier functions, for example, denoted ass ~ground!
ands* ~excited!. s is symmetric, whiles* is antisymmetric
with respect to a local inversion center on the polymer back-
bone. The two levels are connected via a transition dipole
momentmc , taken to lie along the polymer backbone~see
Fig. 1!. This arrangement corresponds to an idealized polysi-
lane chain, for example, where each cell consists of two Si
atoms, with in- and out-of-phase combinations of the two
overlapping siliconsp3 orbitals forming the bonding~s! and
antibonding~s* ! molecular orbitals. A charge neutral cell
contains two electrons; the ground-state configuration iss2,
while the optically driven excited state or bond exciton is
s1s*1. The bond exciton may ionize into a charge separated
species consisting of a monovalent anion~s2s*1! and a
monovalent cation~s1!. All other configurations, such as
doubly ionized states, are discounted.

In an electron-hole representation, the two-band Hamil-
tonian that describes the array of coupled quantum cells is
given by

FIG. 1. Schematic representation of the model polymer. There
areN unit cells, each containing two molecular orbitals and two
electrons in the neutral case. The position of thepth cell is given by
Eq. ~1!. Arrows indicate direction of the negative lobe of the anti-
bonding orbital. Note that upon reflection through theyz plane the
antibonding orbitals change sign but not the bonding ones.
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Ĥe-h5 (
p51

N

~eeĉp
†ĉp1ehd̂p

†d̂p!2 (
p51

N

$te~ ĉp
†ĉp111 ĉp11

† ĉp!1th~ d̂p
†d̂p111d̂p11

† d̂p!%1
1

2 (
pp8

V~p2p8!$ĉp
†ĉp8

† ĉp8ĉp

1d̂p
†d̂p8

† d̂p8d̂p22ĉp
†d̂p8

† d̂p8ĉp%, ~2!

whereĉp
† (d̂p

†) creates an electron~hole! in s* ~s! at thepth cell and periodic boundary conditions are imposed. All operators
obey Fermi commutation relations. In Eq.~2! a constant representing the energy of the filled valence band is omitted; hence
the ground stateG0 with no electrons or holes has zero energy. The first two sums include the effective one-particle energies
of the electrons and holes.ee1eh is the single cell transition energy omitting the electron-hole interaction but including the
average interaction between the electron and hole with the filled valence band. The electron~hole! transfer integral is
2te (2th), with te ,th taken positive, as for a direct-gap semiconductor. The pairwise Coulombic potentialV(p2p8) is

V~p2p8!5V0 , p5p8 ~3a!

V~p2p8!5V1 /up2p8u, 0,up2p8u<~N21!/2, ~3b!

with V0 ,V1.0. For (N21)/2,up2p8u<N21,V(p2p8) is obtained by replacingup2p8u with N2up2p8u in Eq. ~3b!. The
extended interaction in~3b! assumes a distanceup2p8ua between cellsp andp8 and not the length of the connecting chord,
which is correct for a finite ring. In the polymer limit the use of Eq.~3b! is exact. The final sum in Eq.~2! represents the
electron and hole interactions, which may ultimately lead to excitons and biexcitons.

Because the Hamiltonian in Eq.~2! commutes with the total number of electrons, it can be decomposed into diagonal
blocks,Ĥn , each withn electrons andn holes in the case of the neutral chain considered here. Invoking charge conjugation
symmetry allows further block diagonalization, making possible investigations for largerN. We therefore sett[te5th and
obtain

Ĥ15~ee1eh!/V02b (
p51

N

~ ĉp
†ĉp111 ĉp11

† ĉp1d̂p
†d̂p111d̂p11

† d̂p!2(
pp8

a~p2p8!ĉp
†d̂p8

† d̂p8ĉp , ~4a!

Ĥ252~ee1eh!/V02b (
p51

N

~ ĉp
†ĉp111 ĉp11

† ĉp1d̂p
†d̂p111d̂p11

† d̂p!1
1

2 (
pp8

a~p2p8!$ĉp
†ĉp8

† ĉp8ĉp1d̂p
†d̂p8

† d̂p8d̂p

22ĉp
†d̂p8

† d̂p8ĉp%, ~4b!

where the Hamiltonians have been made dimensionless
through division by the on-site potentialV0. The dimension-
less electron or hole transfer term is

b[t/V0 , ~5!

and the dimensionless Coulombic interaction is

a~p2p8![V~p2p8!/V0 , ~6!

so thata~0!51 anda(n)5a/n ~n>1!. The long-range Cou-
lombic interaction is therefore characterized by a single pa-
rameter,

a[V1 /V0 . ~7!

In all that follows the values ofa are limited to the range

0<a<1, ~8!

where the upper limit follows fromV1<V0 .
The one and twoe-h pair eigenstates depend only ona

and b, while the i th eigenvalue~energy! of Ĥn , E i
(n), re-

quires a third parameter,ee1eh . Taking advantage of the
fact that the lowest eigenvalue ofĤ1 corresponds to a one-
photon allowed state~which is readily measured in a linear
absorption experiment! we choose the third parameter to in-
stead beD, the one-photon energy gap, defined as

D[ee1eh1V0f 1
~1!~a,b!, ~9!

where f i
(n)~a,b! are the eigenvalues of [Ĥn2n(ee

1eh)/V0], ordered so thati51 is the lowest value. The di-
mensionlessi th eigenvalue ofĤn ,E i

(n) can then be written
as

Ei
~n!5n

D

V0
1@ f i

~n!~a,b!2n f1
~1!~a,b!#, ~10!

from which it follows thatD5V0E 1
(1) by takingn5 i51.

We conclude this section with the Hamiltonian that de-
scribes the interaction of the polymer with light. For an elec-
tric field F oriented along thex axis the interaction is repre-
sented within the dipole approximation byĤ int52m̂xF,
where m̂ is the polymer transition dipole moment operator.
The second quantized form ofm̂x is

m̂x5mc(
p51

N

~cp
†dp

†1dpcp!1
ea

2 sinp/N (
p51

N

sin~2pp/N!

3$dp
†dp2cp

†cp%, ~11!

where Eq.~1! was used in the second term. The first term in
Eq. ~11! induces interband transitions between the ground
state and the singlee-h pair manifold, and between the
singlee-h pair manifold and the doublee-h pair manifold.
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Since we are ultimately concerned with linear polymers~and
not rings! the first term neglects the change in the vector
productmc• î as the ring is traversed. This leads to theDk50
optical selection rule wherek is the center-of-mass momen-
tum of the multiparticle state. The second term in Eq.~11!
represents the intercell transition dipole moment, and is re-
sponsible for intraband transitions that conserve the number
of e-h pairs. Replacing the sines by their small argument
approximations would yield the straight chain version but it
would not be invariant to a rotation byN. This leads to large
N divergences17 in its matrix elements with the wave func-
tions ofH1 or H2 which are periodic inN. Hence the sine
dependence must be retained.

III. GROUND STATE OF Ĥ e-h

Before focusing on the one and twoe-h pair manifolds let
us more carefully consider the ground state of the full Hamil-
tonian, Ĥe-h . In the optical response section~VI ! we con-
sider only the case where the ground state is the state with no
electrons or holes, denoted asG0. HoweverĤe-h also sup-
ports a CDW ground state. To see this consider first the case
b50. In a lattice containingN sites, a CDW consists of
alternating array ofN/2 electrons andN/2 holes. The energy
of this state~in units ofV0! is given by

ECDW5
N

2 F D

V0
1~122 ln2a!G , b50, ~12!

where 2 ln2 is Madalung’s constant in one dimension and
D5ee1eh2V0 is the one-photon band gap forb50. Main-
taining D.0, the energy of the CDW can fall below zero,
displacingG0 as the ground state whenever

a.1/2 ln 2'0.72. ~13!

Within this range ofa, a CDW phase transition occurs at
ECDW50, or, from Eq.~12!, whenD/V052 ln2a21. Hence,
for b50 the ground state isG0 when

D

V0
.2a ln221; ~14!

otherwise the ground state is a CDW.
For small nonzero values ofb ~with b2!1! there is a

negative second-order correction to the CDW energy, given
by 22Nb2/@~4 ln221!a21#, where @~4 ln221!a21# is the
energy required to transfer a given charge~positive or nega-
tive! on the CDW to a neighboring site, creating a bond
exciton and a neighboring cell in it ground state~s2!. The
energy of the charge density wave can then be written as

ECDW5
N

2 F D

V0
2H f 1~1!~a,b!12a ln2

1
4b2

~4 ln221!a21 J G , b2!1, ~15!

where Eq.~9! was used for the one-photon gap,D. Taking
ECDW50, yields an equation in the three independent vari-
ablesD/V0, a, andb, which defines a phase boundary sur-
face. In Fig. 2 we show the~a,b! dependence of the phase

boundary for several values ofD/V0. The numerical analysis
of Fig. 2 shows that theb50 condition from Eq.~14! can be
extended foranypoint ~a,b!: there are no CDW’s as long as
D/V0.2 ln221'0.386. AsD/V0 decreases below this value
the CDW region occupies an increasing larger corner in
phase space neara51 andb50. The phase-space diagram in
Fig. 2 is strictly valid forb2!1. This range ofb is sufficient,
however, to completely characterize biexcitons as is shown
in Sec. V.

IV. ONE- AND TWO-PHOTON ALLOWED EIGENSTATES

In labeling the excited states of the Hamiltonian it is con-
venient and customary to indicate the symmetries of the
states with respect to reflection and inversion. In our case we
consider a ring with an odd number of cells, which lacks an
inversion center. However, the Hamiltonians in Eq.~4! are
still invariant under reflection about the sitep5N ~see Fig.
1! and under the interchange of electron and holes. Hence we
adapt a notation that indicates the symmetries with respect to
these two operations as well as the number of electron-hole
pairs.

The reflection and exchange operations, denoted asR̂ and
Q̂ respectively, are defined through their effects on the elec-
tron and hole creation and annihilation operators:

R̂S dpdp†D5S dN2p

dN2p
† D and R̂S cpcp†D52S cN2p

cN2p
† D ~16a!

and

Q̂S cncn†D5S dndn†D and Q̂S dndn†D5S cncn†D . ~16b!

BecauseQ̂ andR̂ commute withĤn andQ̂
25R̂251, the

eigenstates ofĤn are simultaneously eigenstates ofR̂ andQ̂
with eigenvalues of11 ~symmetric! or 21 ~antisymmetric!.
The transition dipole moment operator in Eq.~11! is anti-
symmetric with respect to both operations,

FIG. 2. Phase boundaries separating the neutral ground stateG0
containing no electrons or holes and the CDW ground state for
several values ofD/V0. CDW ground states exists at all points
under the curves.
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R̂m̂x52m̂x , ~17a!

Q̂m̂x52m̂x . ~17b!

It then follows that starting from a ground stateG0 with the
full symmetry of the Hamiltonian, only eigenstates that are
antisymmetric with respect to both operations are one-photon
allowed, while states that are symmetric with respect to both
operations are two-photon allowed.

The mth one-photon allowed eigenstate ofĤ1 with a
single electron-hole pair is designated asmB2~1!, whereB2

denotes odd symmetry with respect to reflection (B) and
charge conjugation~2!. The number of electron-hole pairs is
enclosed in the bracket. States are indexed according to their
energy withm51 corresponding to the state with lowest en-
ergy. Although not indicated in the label the one-photon al-
lowedmB2~1! states are also invariant to ring rotations by
(2p/N)s radians [s561,62,...,6(N21)/2] and hence
carry a center-of-mass momentum of zero. This follows from
theDk50 selection rule embodied in the interband transition
dipole moment in Eq.~11!. SuchmB2~1! states can be ex-
panded as

mB2~1!5 (
p51

N

(
n52~N21!/2

~N21!/2

ak50
~m! ~n!dp

†cp1n
† uG&,

ak50
~m! ~n!5ak50

~m! ~2n!, ~18!

where n designates the distance between the electron and
hole and thek index in the expansion coefficients indicates a
center-of-mass momentum of zero. The expansion coeffi-
cients are even with respect to electron-hole interchange, al-
though the symmetry of the entire wave function is odd.
~This follows because of the additional sign change induced
by reordering of the electron and hole fermion operators.!

Themth two-photon allowed state with one electron-hole
pair is designated asmA1~1!, whereA1 denotes even sym-
metry with respect to reflection (A) and charge conjugation
~1!. Such states are optically allowed from themB2~1!
states and can be expanded as

mA1~1!5 (
p51

N

(
n52~N21!/2

~N21!/2

cosFpN ~2p1n!G
3ak52p/N

~m! ~n!dp
†cp1n

† uG&,

ak52p/N
~m! ~2n!52ak52p/N

~m! ~n!. ~19!

These states carry a vanishingly small center-of-mass mo-
mentum of62p/Na, and result when the intraband transition
dipole moment operator in Eq.~11! operates onmB2~1!.
Note that the expansion coefficients are now odd with re-
spect to electron-hole interchange. Figure 3 shows an
energy-level diagram including only the one- and two-
photon allowed eigenstates ofĤ1. 1B

2~1! is lowest in en-
ergy, followed by 1A1~1! and 2B2~1!. Higher-energy states
are not shown. The alternating order is characteristic ofĤ1 in
the polymer limit.

Finally, let us consider the two-photon allowed eigen-
states ofĤ2 having two electron-hole pairs. The total number
of four-particle eigenstates isN2(N21)2/4. If we include
only those states with a center-of-mass momentum of zero

this reduces the number of states by a factor ofN. The re-
maining four particle eigenstates can be expanded as

(
p51

N

(
q51

~N21!/2

(
j51

N21

(
k5 j11

N

aq; j ,kdp
†dp1q

† cp1 j
† cp1k

† uG&, ~20!

wherep indicates the position of the first hole andq is the
distance between the two holes,j andk ~with k. j ! index the
electron positions relative to the first hole. WithN odd, the
total number of independentq jk states is therefore
N(N21)2/4. We can further isolate the two-photon allowed
eigenstates, denotedmA1~2!, which have even symmetry
upon reflection and charge conjugation through the expan-
sion:

mA1~2!5 (
p51

N

(
q51

~N21!/2

(
j51

N21

(
k5 j11

N

8aq; j ,k
~m! ~11R̂!

3~11Q̂!dp
†dp1q

† cp1 j
† cp1k

† uG&. ~21!

The prime indicates that the summation in Eq.~21! is re-
stricted to states (q; j ,k) that are not related byR̂, Q̂, or R̂Q̂.
Thus the number of two-photon allowed eigenstates is fur-
ther reduced by approximately a factor of four, toN3/16. At
this size we can numerically diagonalizeĤ2 for N as high as
31. At this size there are already close to 2000 basis func-
tions of the form of Eq.~21!.

A. The small-b limit

Whenb!a~1!2a~2!5a/2, the lowest-energy states with
one or twoe-h pairs are tightly bound, with the electron-hole
separation limited to at most one lattice spacing. This leads

FIG. 3. Energy-level diagram forĤ1, calculated numerically for
a50.9, b50.2, D/V050.5, andN5101. Only three of the lowest-
energy bound states and the electron-hole continuum are shown.
The corresponding wave functions for the bound states are also
shown as a function of the electron-hole distance,n.
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to an enormous reduction in the one and twoe-h pair basis
sets extending our analysis to polymers with several hundred
unit cells.

States with a singlee-h pair can easily be calculated ana-
lytically. The states in Eqs.~18! and~19! can be expanded in
a basis set that includes only one-exciton bond~or Frenkel!
states and nearest-neighbor charge-transfer~CT! states. The
three relevant basis functions are

ub&[N21/2(
p51

N

dp
†cp

†uG&, ~22a!

u12&k[A2/N(
p51

N

cosFkp~2p11!

N Gdp†cp11
† uG&,

~22b!

u21&k[A2/N(
p51

N

cosFkp~2p21!

N Gdp†cp21
† uG&,

k50,1,..,N21, ~22c!

the first being the bond exciton and the latter the nearest-
neighbor CT excitons. These states are connected via the
charge transfer part ofĤ1 in ~1!. Diagonalizing the subspace
gives the three eigenstates:

1A1~1!5
1

A2
~ u12&12u21&1), ~23a!

1B2~1!5c1ub&1c2~ u12&01u21&0), ~23b!

2B2~1!5c2ub&2c1~ u12&01u21&0), b!1,a,
~23c!

with c15l/@l218b2#1/2 and c2523/2b/@l218b2#1/2 with
2l[12a1@~12a!2132b2#1/2. The corresponding energies
~in units ofV0! are

E1B2~1!5D/V0 , ~24a!

E2B2~1!5D/V01A~12a!2132b2, ~24b!

E1A1~1!5D/V01
1
2 $~12a!1A~12a!2132b2%,

b!1,a, ~24c!

where the one-exciton transition energy isD5ee1eh
2(V0/2)$(11a)1A(12a)2132b2%. Actually,b should be
replaced byb cos~2p/N! in Eq. ~24c! but the error induced
by neglecting the cosine vanishes asN approaches large val-
ues defining the polymer limit.

At b50 the 2B2~1! and 1A1~1! states are degenerate. As
b increases the degeneracy is lifted with the 1A1~1! state
lower in energy than the 2B2~1! state. The energies of the
three states are ordered as follows:

E1B2~1!<E1A1~1!<E2B2~1! . ~25!

The ordering is actually independent ofb being small and is
a general property ofH1.

Unfortunately, similar analytical results in the double
electron-hole subspace~where electrons and holeswithin a
given pairare limited by at most one lattice spacing! are far

more challenging to derive. This is essentially because the
basis set, although drastically reduced in size, is still quite
large, including double-bond excitons, mixed bond-charge
transfer excitons, and double charge transfer excitons. How-
ever, the basis set size is now ofO[N] so that diagonaliza-
tion of Ĥ2 can easily proceed forN of several hundred. In
what follows we will refer to this basis set as thetruncatedor
reducedbasis set.

V. BIEXCITONS AND TWO-EXCITONS

One-excitons or just excitons are states that are localized
in the electron-hole separation coordinate but are delocalized
with respect to the center-of-mass coordinate. We define
biexcitons as states consisting of two electrons and two holes
with a delocalized center of mass but with localization in the
hole-hole relative coordinate. Localization with respect to
the hole-hole distance leads naturally to their description as
excitonic molecules because of the analogy with a homo-
nuclear diatomic molecule. States with two excitons that are
delocalized with respect to the hole-hole distance are referred
to as two-excitons. In this section we derive the conditions
under which biexcitons are formed.

We focus only on states withA1 symmetry and exclude
from the subsequent analysis the ‘‘dark’’ biexcitons. The
two-photon allowedA1 states are found by diagonalizing the
A1 subblock ofĤ2 having zero center-of-mass momentum.
This block has approximatelyN3/16 four-particle basis func-
tions of the form~21!. With 64 Mbytes of RAM computer
memory the diagonalization was limited to sizes of at most
N531. The far smallerB2~1! subblock, consisting of ap-
proximatelyN basis functions with zero center-of-mass mo-
mentum, was also numerically diagonalized in order to
evaluate the biexciton binding energy.

In one dimension and for anyV0.0 no matter how small,
1B2~1! is a bound state of one electron and one hole. We can
then calculate the biexciton binding energy by evaluating
DEmA1(2) , defined as

DEmA1~2![EmA1~2!22E1B2~1! , ~26!

where the subscripts on the energy terms have been altered in
an obvious way from those in Eq.~10! by including the
symmetry labels. The superscript then becomes redundant
and is omitted. A negative value,DEmA1(2),0, indicates the
existence of a bound exciton pair or biexciton,mA1~2!, with
binding energyuDEmA1(2)u. To show that this condition co-
incides with localization in the hole-hole relative coordinate,
we plot in Fig. 4 the probability of finding the two holes a
distanceq apart,Pm(q), in the statemA1~2! at several val-
ues ofDEmA1(2) . The normalized distributionPm(q) is av-
eraged over the electron positions and is given by

Pm~q![ (
j51

N21

(
k5 j11

N

uaq; jk
~m! u2. ~27!

As Fig. 4 shows, whenDEmA1(2).0 the probability in-
creases with separation, characteristic of the delocalizedtwo-
exciton state. WhenDEmA1(2),0, Pm(q) becomes local-
ized. The peak inPm(q) can be associated with the bond
distance of themA1~2! excitonic molecule. Figure 4 shows
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the evolution of the lowest-energy 1A1~2! biexciton as well
as the higher-energy 2A1~2! biexciton. In both cases local-
ization increases with biexciton binding energy. The 1A1~2!
biexciton is eventually localized nearq52 while the 2A1~2!
biexciton localizes nearq53.

Generally, the total~dimensionless! biexciton energy de-
pends onD/V0, a, andb. In what follows, we investigate the
parameter ranges over which biexcitons exist. The problem
is greatly simplified by recognizing that the biexciton bind-
ing energy, from Eqs.~10! and ~26! is

DEmA1~2!5 f mA1~2!~a,b!22 f 1B2~1!~a,b! ~28!

for themth biexciton. ThusDEmA1(2)50, which defines the
biexciton phase boundaries, depends only ona andb. This

makes sense from a wave-function point of view since the
eigenstates ofĤ2 depend only ona andb.

To appreciate the nature of the phase diagram in~a,b!
space, and in particular how many biexcitons are to be ex-
pected, we begin with the simple case withb50, where the
local states in Eqs.~18!–~21! are now the eigenstates. There
is a single one-photon allowed one-exciton state, 1B2(1)
5(1/AN)(p51

N dp
†cp

†uG&, with energy D[V0E1B2(1)5ee
1eh2V0. Given the 1/r potential in Eq.~3! and the restric-
tion a<1, the only candidates for biexciton states are those
depicted graphically in Fig. 5. They consist of two nearest-
neighbor charge transfer states in which the hole-hole dis-
tance as well as the electron-electron distance isq. ~Any
other arrangement of electrons and holes will necessarily
haveDEmA1(2).0 for a<1.! One-half of these states have
A1 symmetry and are written as

~q21!A1~2!5
1

A2N (
p51

N

$dp
†dp1q

† cp11
† cp1q11

†

2dp
†dp1q

† cp1q1N21
† cp1N21

† %uG&,

q52,3,..., ~29!

b50,

with energies

E~q21!A1~2!52H D

V0
112

11~q21!q~q11!

~q21!q~q11!
aJ ,

q52,3,..., ~30!

b50.

To find which of these states are biexcitons one needs to
evaluateDE(q21)A1(2) using Eq.~26!, and force the right-
hand side~rhs! to be negative. This leads to a condition ona,

a.
~q21!q~q11!

11~q21!q~q11!
, b50 ~31!

for which the state (q21)A1~2! is a biexciton. The lowest-
energy state 1A1~2! ~q52! is therefore a biexciton when
a.6/7'0.857, while the next highest state 2A1~2! is a biex-
citon ~q53! whena.24/2550.96, and so on. This is con-
sistent with Fig. 4, which shows that asb decreases the low-

FIG. 4. The hole-hole correlation function,Pm(q) vs q. In
~a! P1(q) corresponding to the state 1A1~2! is shown forD5V0,
a51 and four values ofb: b50.01 ~circles!, b50.075 ~squares!,
b50.10 ~triangles!, and b50.12 ~diamonds!. The corresponding
values of DE1A1(2) are 20.277, 22.631022, 22.931023, and
13.431024, respectively. In~b! P2(q) corresponding to the state
2A1~2! is shown forD5V0, a51 and three values ofb: b50.01
~circles!, b50.02 ~squares!, and b50.03 ~triangles!. The corre-
sponding values ofDE2A1(2) are 23.331022, 24.831023, and
11.731024. All curves were calculated withN525 cells and the
full basis set.

FIG. 5. The relative arrangements of two electrons and two
holes for a biexciton candidate whenb50. The cells without an
indicated charge are in their ground state~s2!. Theq54 case shown
is bound relative to two free 1B2~1! excitons whenever, according
to Eq. ~31!, a.60/61.

3796 53FRANK B. GALLAGHER AND FRANK C. SPANO



est two biexcitons localize onq52 andq53, respectively.
Note that whena51, the infinite chain supports an infinite
number of biexcitons, with binding energies that vanish asq
tends to infinity.

We now turn to the general question of biexciton exist-
ence over the complete~a,b! space. Intuitively, one might
expect that increasingb dissociates biexcitons. The more
tightly bound biexcitons neara51 would survive larger val-
ues ofb. For a slightly greater than67 a vanishingly small
value ofb might be expected to dissociate the biexciton. To
test these predictions we numerically calculated the biexciton
phase diagram. The phase boundary for themth biexciton is
a solution ofDEmA1(2)50. Figure 6 shows the phase bound-
aries calculated for a chain ofN525 sites using the full basis
set@Fig. 6~a!# and the reduced basis introduced in Sec. IV for
smallb @Fig. 6~b!#. N525 is large enough to ensure conver-
gence of the lowest biexciton energies to their polymer val-
ues to within approximately 5% over the entire phase bound-
ary. This was checked by calculating the phase boundary for
smaller sizes in the full basis set and observing convergence.
For example, in the small-beta limit, where much larger sizes
can be studied, thea51 intercept changes by less than 3%
when N is increased to 100. The diagram only applies to
states withA1 symmetry. Furthermore, only two of the many

phase boundaries are shown: one that divides the region of
delocalized two-excitons and the region where only the
1A1~2! biexciton exists, and one that divides the latter re-
gion from one that supports two biexcitons, 1A1~2! and
2A1~2!. Boundaries separating them and ~m11! biexciton
regions, withm.1 are not shown. They occupy successively
smaller regions in phase space and are centered ata51 and
b50.

Figure 6 shows that the smallb approximation is a good
one over the entire biexciton phase space. The largest devia-
tion occurs near thea51 intercept of the 1A1~2! phase
boundary, with the truncated basis set calculation underesti-
mating the intercept by about 15%. Theb50 intercepts agree
in both calculations with the analytical results given by Eq.
~31!. The figure shows that the 1A1~2! biexcitons are disso-
ciated with increasingb over most of the range 6/7<a<1 as
expected. A notable exception occurs neara56

7. Surprisingly,
1A1~2! biexcitons exist even whena is slightly lessthan 6

7;
increasingb in this region initially leads to the creation of a
biexciton; i.e., it enhances the binding of two excitons. The
unusual behavior stems from a resonance effect. Whena5
6
7 andb50, the binding energy of the 1A1~2! state from Eqs.
~26! and~30! with q52 is zero. This state is degenerate with
the ~N21!/2 eigenstates of the form

1

AN (
p51

N

dp
†dp1q

† cp
†cp1q

† uG&, q51,2,...,~N21!/2,

~32!

which consist of two noninteracting bond excitons~electrons
and holes are paired on the same sites!. Degenerate pertur-
bation theory shows that 1A1~2! and the noninteracting bond
excitons are mixed at zero order, significantly lowering the
energy of the bound state for nonzerob. Thus, increasingb
neara56

7 leads to an increase in the 1A
1~2! biexciton bind-

ing energy. An identical argument applies to the higher biex-
citons with the unusual behavior appearing near the pointsa
given by the rhs of Eq.~31! with q.2.

Figure 7 shows how the biexciton binding energy
uDE1A1(2)u varies over the biexciton phase space. The bind-
ing energy peaks at~a51, b50! with uDE1A1(2)u50.33
from Eqs.~26! and~30!, and decreases steadily as one moves
into the biexciton phase space. Neara56

7 the ~minute! bind-
ing energy increases withb over a rangeb50.01–0.02 due
to the aforementioned resonance effect. Figures 6 and 7 show
that no biexcitons are possible whenb surpasses approxi-
mately 0.11, or whena is less than approximately 0.845.

VI. TWO-PHOTON ABSORPTION SPECTRA

The biexcitons of the last section can be observed through
the technique of two-photon absorption. The absorption of a
laser beam of frequencyv is enhanced whenever 2v is in
resonance with the biexciton transition frequency,
V0EmA1(2) /\. In this section we calculate TPA in the spec-
tral region 2\v,2D for the 1D polymer with the Hamil-
tonian ~4!. In this range we avoid one-photon resonances to
one-exciton states. Furthermore, we limit our analysis to the
phase space near or within the biexciton existence region,
whereb is small ~b,0.11! and less thana. The resulting
excitons and biexcitons are therefore tightly bound with radii
much smaller than the total polymer length,N525, used in

FIG. 6. The biexciton phase space showing two phase bound-
aries~see text!. The phase boundaries were calculated numerically
by solvingDE1A1(2)50 andDE2A1(2)50 for N525 using the full
basis set~6a! and the truncated basis set~6b! under the small-b
limit. In the region labeled 2 biex. there areat leasttwo biexcitons
since it encompasses successively smaller regions containing at
least 3 biexcitons, 4 biexcitons, etc., which are not shown.
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our full-basis calculations. At this size, the wave functions
and energies are converged to their polymer values.

In addition tomA1~2! biexciton peaks there may also be
peaks arising from the two-photon allowed single exciton
states,mA1~1!. Since the symmetry of these states guaran-
tees a node atn50 ~n being the electron-hole separation!
they have total charge transfer character. Hence we refer to
these states as CT excitons from here on. In this section we
explore the relationship between these peaks.

Two-photon absorption is a third-order process governed
by the imaginary part of the nonlinear susceptibility
x i jkl
(3) ~2v;v,v,2v!. For a sample consisting of randomly ori-

ented chains~as is the case for most polymer films! and for
light polarized along thex axis, only the componentx xxxx

(3)

contributes to the response. If we ignore the transverse re-
sponse of an individual chain,x xxxx

(3) is related to the indi-
vidual chain~second! hyperpolarizability,gxxxx, by

xxxxx
~3! 5 1

5L~s/Na!gxxxx, ~33!

where the factor of15 comes from the orientational average,L
is a local field factor ands is the number of chains per unit
area. The two-photon absorptionper sitein a given chain is
obtained by taking the large-N limit of Im @gN/N#, where,
from here ong representsgxxxx. For incident light detuned
far to the red of any one-photon resonances we get25

Im@gN~2v;v,v,2v!#

58(
I51

2

(
l ,m,n

h~ I !GmA1~ I !^G0um̂xu lB2~1!&^ lB2~1!um̂xumA1~ I !&^mA1~ I !um̂xunB2~1!&^nB2~1!um̂xuG0&

~ElB2~1!2\v!~EnB2~1!2\v!@~EmA1~ I !22\v!21GmA1~ I !
2

#
, ~34!

where 2GmA1(I ) is the inverse radiative lifetime of the state
mA1(I ), with I51,2. An additional factor of two for the
electron spin degeneracy is included in Eq.~34!. The first
summation is over the two main pathways, which contribute
to the TPA. They can be schematically depicted as

G→mB2~1!→nA1~1!→m8B2~1!→G @pathway ~1!#,

G→mB2~1!→nA1~2!→m8B2~1!→G @pathway ~2!#,

corresponding to theI51 andI52, respectively in Eq.~34!.
Each state is connected via a transition dipole matrix ele-
ment. In the range 2\v,2D pathway ~1! represents two-
photon absorption to CT exciton statesmA1~1!, while path-
way ~2! represents two-photon absorption to biexcitons
mA1~2!. In the complete expression forgN~2v;v,v,2v!
there is an additional pathway that involves four transitions
between the ground state and the one-exciton states. Such a

contribution is nonresonant and therefore negligible in the
spectral range 2D22\v@G1B2(1) , which is assumed in Eq.
~34!.

The transition dipole matrix elements that connect the
states in pathways~1! and ~2! originate from either the first
or second terms in Eq.~11!. In pathway ~1! the first and
fourth transitions are interband ones, while the intermediate
two are intraband. In pathway~2! all transitions are inter-
band. The form of the intraband component in Eq.~11! is
adapted to a ring; in order to correct for a straight polymer
we have to multiply theI51 contribution in Eq.~34! by an
extra factor of two. This offsets the factor of12, which is
inherent in averaging of sin2[2pp/N] ~from the intraband
dipole moment squared! over allp. Theh(I ) factor accounts
for this: h~1!52 andh~2!51.

We have verified numerically that the per-site response
N21Im@gN~2v;v,v,2v!# using Eq.~34! converges asN is
taken to large values. This was shown rigorously in Ref. 21
for the case of nonresonant susceptibilities, and the limiting

FIG. 7. Biexciton binding energy,uDE1A1(2)u calculated using
the full basis set forN525 as a function ofb for several values of
a: a51 ~crosses!, a50.95 ~asterisks!, a50.91 ~circles! a50.868
~squares!, anda50.859~diagonal crosses!. The energies are dimen-
sionless and in units ofV0.
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values were derived analytically in the regimes of weak and
strong localization. Before using Eq.~34! to calculate TPA
spectra we turn to a simpler endeavor and answer the follow-
ing question. For values ofa and b within the biexciton
phase space are there additional TPA peaks arising from the
higher CT excitons? In other words under what ranges ofa
andb can we expect pathways~1! and~2! to contribute to the
TPA spectrum?

The solution can be obtained by straightforward numeri-
cal analysis. For a given value ofD/V0 the quantity

DECT[E1A1~1!22D/V0 ~35!

is evaluated.DECT50 is a curve in~a,b! space that includes
the points at which the energy of the 1A1~1! CT exciton
peak crosses over into the rangeD,V0E1A1(1),2D. When
DECT,0, which corresponds to all points under the curve,
there is an additional peak arising from the CT exciton state
1A1~1! in the regionD,2\v,2D, and possibly more peaks
from themA1~1! states withm.1. WhenDECT.0 these
peaks are shifted beyond 2D. Figure 8 shows such crossover
curves for several values ofD/V0 along with the CDW phase
region.

For smallb the crossover curves can be derived analyti-
cally by using the energies in Eq.~24!. Inserting Eq.~24! into
Eq. ~35! the conditionDECT,0 becomes

8b22
D

V0
a,

D

V0
S D

V0
21D , b!a, ~36!

as the condition under which the TPA peak lies in the gap.
TheDECT50 curves, obtained by making Eq.~36! an equal-
ity, are then simply parabolas. These are also shown in Fig.
8.

Figure 9 shows the crossover curves for several values of
D/V0 as well as them51 andm52 biexciton phase bound-
aries. WhenD/V051/5 the crossover curve intersects the~m
51! biexciton phase boundary. In the region where the biex-
citon phase space overlaps the area under the crossover
curve, 1A1~2! biexcitons andmA1~1! excitons will contrib-
ute TPA peaks in the range 2\v,2D. As D/V0 increases, the
crossover curves shift to the left, eventually completely en-
closing the biexciton phase space; here we expect biexciton
peaks will always be accompanied by CT exciton peaks.

Using Eq.~34! we now evaluate the TPA spectra in vari-
ous regions of the biexciton phase space. We start along a
horizontal cut in~a,b! space keepingb50.01 constant and
taking D/V050.40, so that the phase space is devoid of
CDW’s @see Eq.~14!#. According to Fig. 9 the CT exciton
crossover curve completely encloses the biexciton phase
space, so that the biexciton peak, if present, will always be
accompanied by a CT exciton peak. Figure 10 shows TPA

FIG. 8. The 1A1~1! crossover curves calculated numerically for
the full basis set withN5101 ~solid line! and analytically from Eq.
~36! ~dashed line! for several values ofD/V05

1
3,
1
4,
1
5. In all cases the

analytical curves underestimate the exact numerical results. Also
shown is the CDW ground-state region.

FIG. 9. The crossover curves~solid lines! for several values of
D/V0 along with the biexciton phase boundaries~dashed lines!.

53 3799THEORY OF BIEXCITONS IN ONE-DIMENSIONAL POLYMERS



spectra at three points along the cut. The first point
~a50.85, b50.01!, is outside the 1A1~2! biexciton phase
region of Fig. 6, but is below theD/V05

1
3 crossover curve in

Fig. 8, indicating that only CT excitons contribute TPA
peaks. Figure 10~a! shows a single CT exciton peak. At these
small values ofb the tightly bound exciton approximation of
the last section is valid. Using Eq.~24b! we get

V0E1A1~1!'1.38D,

which is in excellent agreement with the numerical value, as
shown in Fig. 10~a!. The TPA intensity corresponding to
pathway~1! can be derived analytically in the smallb limit.
Using Eqs.~11! and ~23!, the result is

pathway~1!}
b2

~12a!2132b2 F 1

~E1B2~1!2E1A1~1!/2!2

1
1

~E2B2~1!2E1A1~1!/2!2

2
2

~E1B2~1!2E1A1~1!/2!~E2B2~1!2E1A1~1!/2!G ,
which yields intensities that are in excellent agreement with
those in Fig. 10~a!. These analytical expressions also work
well for the 1A1~1! feature in Figs. 10~b! and 10~c!.

Whena is increased toa50.95 the 1A1~2! biexciton ex-
istence region is entered. Figure 10~b! shows two TPA peaks,
the low-energy one corresponding to the CT exciton and the
higher-energy one corresponding to the 1A1~2! biexciton.
Both peaks continue to shift to lower energy asa is in-
creased further. Eventually, the two-biexciton@1A1~2! and
2A1~2!# existence region~see Fig. 6!, is entered in Fig. 10~c!
whena51. This is marked by the appearance of a second
biexciton peak from the 2A1~2! state. Note that horizontal
cuts with smaller values ofb will yield greater numbers of
biexciton peaks whena51.

Figure 11 shows the results of a vertical cut in~a,b! space
with a50.95. In this caseD/V05

1
3, so that the CT exciton

crossover curve again encloses the 1A1~2! biexciton phase
space. Along this cut there are no CDW’s. This series of
spectra demonstrate that asb increases the peak positions are
generally blueshifted.

Figures 10 and 11 show that the biexciton peaks as well as
the CT exciton peaks always lie in the rangeD,2\v,2D.
The lower limit on the CT exciton energy follows from the
fact that forĤ1 the state 1B

2~1! is always lowest in energy.
The lower limit for the biexciton is more subtle. It arises
because the increase inV0 necessary to increase the binding
energy beyondD, would simultaneously create the CDW
ground state.

Lastly, we turn our attention to the transition dipole mo-
ment from the 1B2~1! state to the most tightly bound biex-
citon, 1A1~2!. Recently, Guo, Chandross, and Mazumdar18

have suggested that biexcitons can be identified as those
states having an energy below the two-exciton continuum
2D, with a transition moment from 1B2~1! lessthan that to
the band-edge two-exciton state. We investigated this crite-
rion in Figs. 12 and 13, whereu^1B2(1)um̂xumA1(2)&u is
shown as a function of the normalized energy
V0EmA1(2) /D. A series of such plots are shown at two cuts in
~a,b! space near the 1A1~2! biexciton phase boundary. Fig-
ures 12~a!–12~c! display three points along a horizontal cut
with constantb50.01. All three points lie within the biexci-
ton phase space so that the first peak corresponds to the
1A1~2! biexciton and is therefore below 2D in all cases. The
figure shows that when the biexciton initially splits from the
two-exciton continuum, it carries with it more oscillator
strength than the band-edge two-exciton state. The situation

FIG. 10. TPA spectra~in arbitrary units! at three points along a
horizontal cut~b50.01! in phase space. The stick figure spectra are
obtained from Eq.~34! in the limit of small G with all GmA1(1)

5G. In all casesN525, mc5ea/2, andD/V050.4.2 ln 221, so
that CDW’s do not exist at any point~a,b!. The solid sticks are full
basis-set calculations while the hollow sticks are truncated basis-set
calculations in the small-b limit. In all cases the two calculations
cannot be distinguished.
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reverses as the binding energy increases; eventually the os-
cillator strength resides primarily in the band-edge two-
exciton state as predicted by Guo, Chandross, and
Mazumdar.18 Figures 13~a!–13~c! display three points along
a vertical cut with constanta50.95. Again all three points
are just within the 1A1~2! biexciton phase space. The same
qualitative behavior is observed as in Fig. 12.

In a tightly bound biexciton with a small radiusR, the
oscillator strengthu^1B2(1)um̂xumA1(2)&u2 is roughlyR/N
times that of the band-edge two-exciton state, which is delo-

calized over all cells. This is because creating a second ex-
citon within a radiusR from the first has a probabilityR/N.
However, this argument cannot explain how
u^1B2(1)um̂xumA1(2)&u2 for a weakly bound, large radius
biexciton can greatly exceed that of the two-exciton band-
edge state as in Figs. 12~a! and 13~a!. The problem lies in the
assumption that the band-edge two-exciton wave function
has site amplitudes that are in-phase; it may contain one or
more nodes in the relative coordinate of the two excitons,

FIG. 11. Same as Fig. 10 except that TPA spectra~in arbitrary
units! are taken at three points along a vertical cut~a50.95! in
phase space. The truncated basis set calculations cannot be distin-
guished from the full basis set calculations in~a!, while they are
slightly higher in energy in~b! and ~c!.

FIG. 12. Magnitude of the exciton-biexciton transition dipole
moment,^1B2(1)um̂xumA1(2)&/mc , as a function of the energy
V0EmA1(2) /D for several points near the 1A1~2! biexciton phase
boundary and within the biexciton phase region. In all cases
b50.01 andD/V050.2.
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which leads to a substantial reduction in dipole moment,
even though it remains completely delocalized. A biexciton
state can be expanded in a noninteracting two-exciton basis
set, uK&, whereK is the wave vector corresponding to the
relative motion of the two excitons. When a biexciton ini-
tially splits from the two-exciton band, it has a large radius
and consequently a largeK50 ~nodeless! component; the
remaining two-exciton band-edge state is left with a smaller
K50 component. Thus, initially the biexciton captures more

of the oscillator strength. As the biexciton becomes more
tightly bound it acquires higher wave-vector components,
causing the oscillator strength to drop, while the two-exciton
band-edge state regains a largerK50 component. Eventually
the two-exciton band-edge state recovers enough of the zero
mode state to surpass the biexciton in oscillator strength. The
same behavior also applies to Frenkel biexcitons26,27in linear
chains.

VII. DISCUSSION AND CONCLUSION

The two-band tight-binding Hamiltonian in Eq.~4! with
the Coulombic potential in Eq.~3! supports multiple biexci-
ton states in limited regions of~a,b! phase space as shown in
Fig. 6. Because the Hamiltonian commutes with the total
particle number, the biexcitons presented here are well de-
fined, and correspond to states with two electrons and two
holes with localization in the hole-hole relative coordinate
~see Fig. 4!. The shape of the phase boundaries in Fig. 6
sensitively depends on the form of the extended Coulombic
potential, which we have taken to be the usual 1/r form for
r>a. Truncating the interaction to nearest neighbor only
@a(n)50; n.1#, as in the case of strong screening, for ex-
ample, increases the binding energy of the 1A1~2! biexciton
but eliminates the existence of all higher biexcitons. In this
case theb50 intercept of the 1A1~2! biexciton phase bound-
ary occurs ata52

3, instead ofa56
7 obtained with the ex-

tended potential in Eq.~3!. Such screening may arise in poly-
mer films where the chain density is high. In this case there
may also be interchain biexcitons with onee-h pair per
chain. Such a scenario was recently discussed by Soos and
Kepler.6

Given the form of the Coulombic potential, the existence
of biexcitons depends only on the parametersa andb, while
the existence of the CDW ground state depends ona, b, and
D/V0 ~see Fig. 2!. A CDW is possible only when
D,~2 ln221!V0, or when the on-site electron-electron repul-
sion V0 exceeds 2.6 times the energyD of the lowest one-
photon allowed state, 1B2~1!. As V0 increases above this
limit the CDW region occupies an increasingly larger corner
of phase space centered on~a51, b50!, but as long as it is
completely enclosed by the biexciton phase boundary it is
possible to discuss TPA to biexcitons from the neutral ground
stateG0 in the region that avoids the CDW. We note that
Ostreich and Schonhammer22 intentionally avoided the CDW
region by diagonalizing the same Hamiltonian in Eq.~2! for
a,1/2 ln2'0.72. Their large-scale numerical calculations
showed no stable biexcitons, a result consistent with our own
calculations, which show biexcitons only whena*0.845.

The orderingE1B2,E1A1 is a general property ofĤ1 and
is consistent with experimental findings for PS and PPV. An
important limitation of our model is its inability to account
for the reverse ordering that occurs in weakly alternating
polymers such as polyacetelylene. Recently Mukhopadhyay,
Hayden, and Soos11 analyzed dimerized PPP and Hubbard
chains and studied in detail the spin-charge crossover over a
range of parameters. Their treatment is exact, taking full ac-
count of the spin statistics and limited to at most seven
dimers. On the band side of the crossover region (E1Bu
,E2Ag

) calculations for large alternations~d50.6! show that
the lowest excited state under the PPP Hamiltonian has

FIG. 13. Magnitude of the exciton-biexciton transition dipole
moment,^1B2(1)um̂xumA1(2)&/mc , as a function of the energy
V0EmA1(2) /D for several points near the biexciton phase boundary
and within the biexciton phase region. In all casesa50.95 and
D/V050.33.
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strong bond exciton character while two-photon allowed ex-
cited states have largely charge-transfer character, in agree-
ment with our results. However, unlike the present treatment,
they also include a two-photon allowed excited state within
the dimer cell that contributes to the biexciton near 2E1B2.
An obvious extension of the current model is to include this
state. Recently, Knoester and Spano28 studied TPA in a linear
chain of coupled three-level systems where the second and
third levels are respectively one- and two-photon allowed.

There is some experimental evidence supporting biexci-
tons in PDA~Ref. 1! and a much greater amount in PS.3–6

This comes mainly through the existence of a redshifted in-
duced absorption peak in differential pump-probe absorption
experiments1,3–5 and from a high-energy peak in the TPA
spectrum.6 The TPA spectrum of polysilane shows a broad
peak at about 1.8D ~D'3.4 eV! as well as a much narrower
peak at about 1.3D.6 The low-energy peak has been attrib-
uted to theAg CT exciton state12,14 while the high-energy
peak may be a biexciton.3–6 Both features are roughly the
same magnitude in intensity. Parameters in our model can be
found that reproduce these spectral features; for example,
Fig. 11~b! shows approximately this spectrum, and a better fit
can be obtained by usingb50.04 instead ofb50.03 and
D50.40V0 instead ofD50.33V0. Then,a50.95 and the ex-

perimental valueD'3.4 eV givest50.34 eV,V058.5 eV,
andV158.1 eV. The value oft is close to the value of 0.5 eV
obtained from photoelectron spectra of methylated
polysilanes.29 Since thee-h interaction parameters corre-
spond tos ands* molecular orbitals it is difficult to com-
pare with the accepted atomic parameters used in the Ohno
potential, for example.10–12The most critical parameter is the
value ofa, which under the extended potential in Eq.~3b!,
must be larger than about 0.84 to have biexcitons at all.
However, the cutoff can be significantly lowered, as previ-
ously mentioned, to 0.67 using the screened potential@a(n)
50, n.1#. We note that Ishida, Aoki, and Chikyu30 in ana-
lyzing the same Hamiltonian as ours useda50.80 in
modeling polysilane. Currently we are exploring the exist-
ence of biexcitons for other potentials and in cases without
charge conjugation symmetry.
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