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Frank B. Gallagher and Frank C. Spano
Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122

(Received 14 August 1995

We calculate the biexciton phase space for a model polymer consisting of a one-dimensional &ray of
coupled quantum cells, each containing two levels. The Hamiltonian allows for electron and hole trgnsfer (
and includes on-sité/y) and extended\(;/r) Coulombic interactions. The double electron-hole pair basis set
is numerically diagonalized for as many lds=31 cells. A phase boundary for two-photon-allowed biexcitons
with A* symmetry is calculated iffie,8) space wherex=V,/V, and B=t/V,. The phase space generally
supports multiple biexcitons; the most tightly bound biexciton exists over a region limitegiy11 and
0.84<a=<1. Higher-energy biexcitons occupy successively smaller corners of phase space centgred on
and a=1. The two-photon absorption spectrum in the regidiwZ2A, where A is the one-photon gap,
generally shows two types of peaks: high-energy ones associated with biexcitons and lower-energy peaks
associated with single excitons &f" symmetry.

. INTRODUCTION two-photon transitions to states with tveeh pairs appeat:®
It is a formidable theoretical challenge to calculate the

The existence of biexcitons and their influence on thenonlinear optical response of a long-chain polymer in a way
nonlinear optical response of conjugated polymers are cutthat handles the enormous doukkn pair basis set in a size
rently subjects of considerable interest. Biexcitons are suszonsistent manner. Approaches based on singles and doubles
pected in the two-photon absorptiofTPA) spectra and configuration interactionl can treat as many as 40 orbitals,
pump-probe transient absorption spectra of several polybut suffer from being size inconsistent. Mukamel and
mers including polydiacetylene (PDA),'  polypara- Wang® developed an equations of motion theory that can
phenylenevinylenéPP\V),> and polysilangPS.3"® Recently  treat several hundred orbitals but factorized the two-exciton
they have been discovered in the quasi-one-dimension@borrelation function. Our motivation for the present work
mixed organic charge-transfer crystal, Antracene/PMDAygas to develop a theory for nonlinear susceptibilities in con-
(Ref. 7 through high-intensity differential pump-probe spec-jygated polymers that includes charge transfer and Coulom-
troscopy. In conventional inorganic semiconductors biexciyc interactions in a size consistent way, allowing investiga-
tons are well establishédbeing first observed in bulk CuCl tion of the large size or polymer limit. To this end we chose

almost three decades afo. the one-dimensional version of the usual tight-binding two-

The most p_opular theoretical treatment of the OPFica' "®hand semiconductor Hamiltoniddh,_;, written in an electron-
sponse in conjugated polymers is based on the Parlser-PaH- ”

AL . - . ole representation. We consider a one-dimensional array of
Pople(PPP Hamiltonian in a basis set containing a single N i I h taining two levet. - includ
orbital per carbon atom or twep® orbitals per Si atom in the quantum Ccefls, each containing two ev_eIH;e_h Includes
case of polysilane¥1214-18E|ectron transfer is regulated the opposing forces of charge delocalizatiap, @nd local-
by the near-neighbor coupling integraid + 8), where 8 is ization Fhrough on.-smvo) and extended\{;/r) Coulomb
the alternation parameter, and Coulombic interactions are adteractions. Prewoyg& V‘g) calculated the nonresonant
counted for using the Ohno potential. Exact calculations byhird-order susceptibility, ', for this Hamiltonian but
Soos and co-worket¥2can handle as many a=14 or- avoided the biexciton regime, which is the central focus of
bitals, which for large alternatios>0.6) is sufficient to the current paper. The Hamiltonian is identical to that studied
obtain accurate extrapolations to the polymer or long chaiiy Ostreich and Schonhamriin their analysis of the Stark
regime!! They also established that for intermediate alterna€ffect in 1D semiconductors and is similar to that used by
tions (6~0.33 that pertain to polysilanes, for example, the Ishide?® in his analysis of biexciton effects and lattice relax-
lowest one- and two-photon allowed states have strongtion on the transient absorption spectrum of 1D polymers. A
excitonic character® Several other groups have developed3D version was analyzed by Ivanov and H&Lim order to
exciton models, under which optical properties are attributedlescribe two-photon absorption of biexcitons in direct-gap
to one-dimensional(1D) Wannier excitond®='821 Abe  semiconductors such as CuCl.
has shown that the lowest one-photon allowed exciton Unlike the PPP HamiltoniaRl,.,, commutes with the total
consumes most of the oscillator strength in one dimenSion, number of electrons or holes. Thus there is no mixing be-
and has used only the lowest-energy one-exciton states tween the one- and two-electron excitations, an effect that is
calculate the third-order nonlinear optical respolfs&he  important in weakly alternating polymet$;*2but much less
method is highly successful in describing THRef. 19 and  so in polysilanes, for example. In polysilanes, the larger al-
third-harmonic generation from polysilarf8sén the spectral ternation causes the lowest-energy one-photon allowed state
region between 2 and 5 eV, but fails at higher energies wherélB,) to be significantly lower in energy than the two-
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53 THEORY OF BIEXCITONS IN ONE-DIMENSIONAL POLYMERS 3791

photon allowed 2 state!? an ordering that is supported by
experiment® and that is preserved undet, . With the p=N-1
electron (or hole number being a good quantum number
comes the unambiguous definition of a biexciton, as any
state with twoe-h pairs that is lower in energy than twice
the lowest one-exciton energy. Recently, Guo, Chandross,
and Mazumdaf have proposed a definition of biexcitons
under the PPP Hamiltonian based on energy and transition
dipole momeni{from the 1B, state considerations. Another
advantage of our approach is that size consistency follows
naturally and it is computationally far less intensive to cal-
culate nonlinear optical properties.

Calculations of TPA are restricted to the case when the
ground state is the one with no electrons or holeg, Sec-
tion Il derives the conditions under which the ground state
is Gy, as opposed to a charge density wd@DW). The
following section deals with one and twah excitations.
When reflection, charge conjugation, and rotational symme-
tries are used to block diagonalize the Hamiltonian, we are
able calculate one and tweh pair eigenstates and eigen- _ .
values for as many as 31 two-level quantum cells given the FIG. 1 Schematic repres_,e_ntatlon of the model p_olymer. There
constraints of computer memory. We also develop a furthefe N unlt_ cells, each containing two_ _molecular orb_ltal_s and two
approximation for small values df'V, that truncates the electrons in the.nel.JtraI case. The position ofpﬂecell is given by .
electron-hole separation to at most one lattice spacing. Th;gq' (1). Arrows indicate direction of the negative lobe of the anti-
allows treatment of much larger sizes, on the order of sever Or.'dmg .Orb'tal'.NOte that upon reflection through _;hzaplane the
. . antibonding orbitals change sign but not the bonding ones.
hundred cells. All of our calculations are conducted in the
polymer limit, obtained by taking\ sufficiently large to ob-
serve convergence. A demonstration of the consistency of the
energy based definition of biexcitions with hole-hole local-
ization is made in Sec. V. This is followed by a derivation of Circle, the position of theth cell is
a biexciton phase space diagram in the dimensionless vari-
ablesa=V,/V, and 8=t/V,. We find that the most tightly
bound biexciton exists for smap (8<0.11) and « in the ro= a
range a=0.845. There are also smaller regions containing P 2sin(#@/N
multiple biexcitons centered about the pog#0 anda=1.

In Sec. VI we calculate TPA in the model polymer for the
case where the ground stafgy is a state with no electrons
or holes, being careful to avoid parameter ranges that fav
the CDW ground state. The spectral range is restricted so th

the fund;rrnenta}t ph(tjton ftr.equ;ancy IS Ies_s thzn t?e IOW%S nearest-neighbor distan@e held constantto observe con-
energy exciton transition frequency in order to avoi vergence in the quantities of interest.

divergences from one-photon absorption. This is also the Each quantum cell contains two levels, corresponding to

range over which most experiments are performed. We awo Wannier functions, for example, denoted @as$ground
ticipate TPA peaks arising from two-photon allowed one €X-and o* (excited. o is symmetric, whiles* is antisymmetric

citons as well as biexcitons and work out the conditions uny ith respect to a local inversion center on the polymer back-

der which the various peaks will be present. Several TPA,,ne “The two levels are connected via a transition dipole

spectra are calculated covering horizontal and vertical CUt] oment ;
NN M, taken to lie along the polymer backbofsee
through the biexciton phase space. We also study the behaﬁg. 1). This arrangement corresponds to an idealized polysi-

lor of th_et b|e>;0|tt0n t:jan5|t|on le)tq[Ie mom?nt f:jt?n;}gtgl lane chain, for example, where each cell consists of two Si
one-exciton stateé and compare 1t to recent predic €~ atoms, with in- and out-of-phase combinations of the two

tion VII summarizes the main results and discusses applicac')verlapping silicors p* orbitals forming the bondings) and

tions to experiment. antibonding(o*) molecular orbitals. A charge neutral cell
contains two electrons; the ground-state configuratiosfjs
while the optically driven excited state or bond exciton is
o'o* L. The bond exciton may ionize into a charge separated
species consisting of a monovalent anitrfo*!) and a
The model polymer consists &f coupled quantum cells, monovalent cation(o?). All other configurations, such as
where N is taken to be odd. In order to exploit periodic doubly ionized states, are discounted.
boundary conditions, the cell positions are taken to be at In an electron-hole representation, the two-band Hamil-
each of the vertices of a regular polygon withsides of tonian that describes the array of coupled quantum cells is
lengtha. With a/2 sin(#/N) the radius of the circumscribed given by

p=N

p=N-2

){sin(zwp/N)?+cos(2wp/N)]}, (1)

wherei andj are unit vectors along the andy axes, re-
spectively. Figure 1 shows the schematic of the model. In
is work we are not concerned with finite-size effects. The
Iblymer limit corresponds to takinyg large enougliwith the

II. HAMILTONIAN
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Whereég (d;;) creates an electraiole) in ¢* (o) at thepth cell and periodic boundary conditions are imposed. All operators
obey Fermi commutation relations. In E®) a constant representing the energy of the filled valence band is omitted; hence
the ground stat&, with no electrons or holes has zero energy. The first two sums include the effective one-particle energies
of the electrons and holes,+ e, is the single cell transition energy omitting the electron-hole interaction but including the
average interaction between the electron and hole with the filled valence band. The elbol®rtransfer integral is

—t. (—t;), with t,,t;, taken positive, as for a direct-gap semiconductor. The pairwise Coulombic potépialp’) is

V(p—p')=Vy, p=p’ (3a)
V(p—p")=Vi/lp—p'|, 0<|p—p'|<(N—-1)/2, (3b)

with Vg,V,;>0. For N—1)/2<|p—p’|<N—-1,V(p—p’) is obtained by replacingp—p’| with N—|p—p’| in Eq.(3b). The
extended interaction itBb) assumes a distan¢gp—p’|a between cellp andp’ and not the length of the connecting chord,
which is correct for a finite ring. In the polymer limit the use of Egb) is exact. The final sum in Eq2) represents the
electron and hole interactions, which may ultimately lead to excitons and biexcitons.

Because the Hamiltonian in ER2) commutes with the total number of electrons, it can be decomposed into diagonal
blocks,H,,, each withn electrons andh holes in the case of the neutral chain considered here. Invoking charge conjugation
symmetry allows further block diagonalization, making possible investigations for |argéve therefore set=t.=t,, and
obtain

N

Hi=(ecten/Vo—p 2 (Eiprat 8 iyt ditpr it dhady) =2 a(p—p')E;dy dyrty, (43)
= pp/
N
R R e aan e o~ 1 mtat oA A AEAE A A
H,=2(e.+ eh)/VO—BpZ1 (c;cp+l+ c;+1cp+ d;dp+1+ dg+1dp)+ > 2 a(p—p ){CEC;,Cp,cpr d;d;,dp,dp
= pp!
—2¢}d’,dy &}, (4b)
|
where the Hamiltonians have been made dimensionless A=e,+en+Vof Y (a,B), 9)
through division by the on-site potentid}. The dimension- - _ -
less electron or hole transfer term is where fi"”(a,8) are the eigenvalues of H,—n(e.
+e,)/ V], ordered so that=1 is the lowest value. The di-
B=t/V,, (5  mensionlessth eigenvalue oH,,E{" can then be written
as

and the dimensionless Coulombic interaction is

A
a(p—p")=V(p—p')/Vo, (6) E(M=n V—O+[f§”><a,ﬂ>—nf<f><a,ﬁ>], (10)

so thata(0)=1 anda(n) =a/n (n=1). The long-range Cou- 0 \hich it follows thatA=V,E {} by takingn=i=1.
lombic interaction is therefore characterized by a single pa- We conclude this section with the Hamiltonian that de-
rameter, scribes the interaction of the polymer with light. For an elec-
a=V. IV @) tric field F oriented along the axis the interaction isArepre—
1ero: sented within the dipole approximation bil,,=—iF,
In all that follows the values oé are limited to the range ~ Where u is the polymer transition dipole moment operator.
The second quantized form @f, is

Osa=1, (8) \ "
o - ea
where the upper limit follows fronv,;<V,. L= e D (c;dg+ doCp) + > sinIN >, sin(2wp/N)
The one and twa-h pair eigenstates depend (()l;nly an p=1 Sinm/N p=1
) X . n
and B, while theith eigenvaluelenergy of H,, E;", re- X{dgdp—cgcp}, (11)

quires a third parameteg,+e€,,. Taking advantage of the

fact that the lowest eigenvalue bf; corresponds to a one- where Eq.(1) was used in the second term. The first term in
photon allowed statéwhich is readily measured in a linear Eg. (11) induces interband transitions between the ground
absorption experimentve choose the third parameter to in- state and the single-h pair manifold, and between the
stead be\, the one-photon energy gap, defined as single e-h pair manifold and the double-h pair manifold.
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Since we are ultimately concerned with linear polymiensd 0.10
not ring9 the first term neglects the change in the vector

productu,-i as the ring is traversed. This leads to thie=0 1
optical selection rule wherk is the center-of-mass momen-
tum of the multiparticle state. The second term in EHL)
represents the intercell transition dipole moment, and is re- 1
sponsible for intraband transitions that conserve the number

A/V,=1/5

of e-h pairs. Replacing the sines by their small argument Q.0.057
approximations would yield the straight chain version but it .
would not be invariant to a rotation bi. This leads to large
N divergence¥ in its matrix elements with the wave func- ) AlVy=1/3
tions of H, or H, which are periodic inN. Hence the sine _
dependence must be retained.
0.00 T T T T T T T T T
0.85 0.90 0.95 1.00

Ill. GROUND STATE OF |:|e-h

Bef f . h d h pai ifolds | FIG. 2. Phase boundaries separating the neutral groundGgate
elore OC?SI'Ing on t, e or;]e and heen pair r?ak?'cf) "S et i containing no electrons or holes and the CDW ground state for
us more carefully consider the ground state of the full Hami “several values ofA/Vy. CDW ground states exists at all points

tonian, Hep,. In the optical response secti@il) we con- | Lqer the curves.
sider only the case where the ground state is the state with no
electrons or holes, denoted &. HoweverH,_, also sup-

ports a CDW ground state. To see this consider first the caggoundary for several values afV,. The numerical analysis
B=0. In a lattice containingN sites, a CDW consists of of Fig. 2 shows that th@=0 condition from Eq(14) can be
alternating array oN/2 electrons andN/2 holes. The energy extended formny point (a,8): there are no CDW's as long as
of this state(in units of V) is given by ANVg>2 In2—1~0.386. AsA/V, decreases below this value

the CDW region occupies an increasing larger corner in
. B=0, (12) phase_spac_e neait_l andg=0. The phase-spf_;\ce di{;\gram in
Fig. 2 is strictly valid forg><1. This range of3 is sufficient,
meever, to completely characterize biexcitons as is shown
In Sec. V.

ECDW:E

A-i-l 2 In2
V_o( n2a)

where 2 In2 is Madalung’s constant in one dimension an
A=e,+e,—V, is the one-photon band gap f@=0. Main-
taining A>0, the energy of the CDW can fall below zero,

displacingG, as the ground state whenever
IV. ONE- AND TWO-PHOTON ALLOWED EIGENSTATES

a>1/21n2~0.72. (13 In labeling the excited states of the Hamiltonian it is con-
Within this range ofe, a CDW phase transition occurs at venient and customary to indicate the symmetries of the
Ecow=0, or, from Eq.(12), whenA/V,=2 In2a—1. Hence, states with respect to reflection and inversion. In our case we
for =0 the ground state i§, when consider a ring with an odd number of cells, which lacks an
inversion center. However, the Hamiltonians in E4). are
still invariant under reflection about the siie=N (see Fig.
1) and under the interchange of electron and holes. Hence we
adapt a notation that indicates the symmetries with respect to
otherwise the ground state is a CDW. these two operations as well as the number of electron-hole

For small nonzero values g8 (with B2<1) there is a pairs. A

negative second-order correction to the CDW energy, givenA The reflection and exchange operations, denoteRl aisd
by —2NB%[(4 In2—1)a—1], where[(4 In2—1)a—1] is the  Q respectively, are defined through their effects on the elec-
energy required to transfer a given chatgesitive or nega-  tron and hole creation and annihilation operators:
tive) on the CDW to a neighboring site, creating a bond
exciton and a neighboring cell in it ground stdte®). The ~ [dp CN—p
energy of the charge density wave can then be written as R d; - pr (163

A
—>2aln2—-1; (14
Vo

dn-p A(cp
= and R

(de Cg
and

E _Nia_ fY(a,B)+2an2
cow=7 |y, 1 (a,p)+2a

~(Cp d,
ol i)l
Because&Q andR commute withH, andQ?=R?=1, the
where Eq.(9) was used for the one-photon gap, Taking  eigenstates ofl, are simultaneously eigenstatesRandQ
Ecopw=0, yields an equation in the three independent variwith eigenvalues oft-1 (symmetrig or —1 (antisymmetrig.

ablesA/V,, a, and B, which defines a phase boundary sur-The transition dipole moment operator in Edl) is anti-
face. In Fig. 2 we show thé&x,8) dependence of the phase symmetric with respect to both operations,

~(dy Cn
and Q(dx :(Cﬂ' (16b)

2
48 ] . B?<1, (15

T2 1a-1
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Rity=— pux, (179 3 /S / / an /
1/ / ‘e-h continuum , . / iy
é/&x: - [Lx . (A7b S "/// o
1 2B-(1
It then follows that starting from a ground sta®g with the M ()
full symmetry of the Hamiltonian, only eigenstates that are | A4
antisymmetric with respect to both operations are one-photon 2 1A+(1)
allowed, while states that are symmetric with respect to both /\’\‘\\
operations are two-photon allowed. R i ﬁ\*\/
The mth one-photon allowed eigenstate bBff;, with a J ]
single electron-hole pair is designatedmaB™ (1), whereB~ =
denotes odd symmetry with respect to reflectid@) (@and 1 Nl)
charge conjugatiofr—). The number of electron-hole pairs is 1
enclosed in the bracket. States are indexed according to their |
energy withm=1 corresponding to the state with lowest en-
ergy. Although not indicated in the label the one-photon al- 1
lowed mB™ (1) states are also invariant to ring rotations by |
(27/N)s radians p=*1,+2,...,#(N—1)/2] and hence
carry a center-of-mass momentum of zero. This follows from O B e e e e L e e s
the Ak=0 selection rule embodied in the interband transition ~-10 -5 0 5 10
dipole moment in Eq(11). SuchmB™ (1) states can be ex- n
panded as
(N—-1)/2 I;IS 3. gnzergx;levggdiag?ﬁw ff(i)ll cglclulakt}ed nu;nﬁriclally for
_ «=0.9, 5=0.2, =0.5, andN=101. Only three of the lowest-
mB (1):'321 n:_%_ i aﬁn;)o(n)dgcg+n|G>’ energy 'l‘éound stat%s and the electron-ho)lle continuum are shown.
The corresponding wave functions for the bound states are also
ai™y(n)=a{",(—n), (18)  shown as a function of the electron-hole distane,

where n designates the distance between the electron and
hole and thek index in the expansion coefficients indicates athjs reduces the number of states by a factoNofThe re-
center-of-mass momentum of zero. The expansion coeffimaining four particle eigenstates can be expanded as
cients are even with respect to electron-hole interchange, al-
though the symmetry of the entire wave function is odd. N (N-1)/2N-1 N
(This follows because of the additional sign change induced >, >, > >, aq;j,kdgd;wcgﬂcg”lG), (20
by reordering of the electron and hole fermion operators. =1 a=1 j=1k=j+1

Themth two-photon allowed state with one electron-holeynerep indicates the position of the first hole andis the
pair is designated anA"(1), whereA™ denotes even sym- isiance between the two holgsandk (with k> ) index the
metry with respect to reflectionA) and charge conjugation gjectron positions relative to the first hole. Wihodd, the
(+). Such states are optically allowed from theB (1)  {4ta1 number of independengjk states is therefore
states and can be expanded as N(N—1)%4. We can further isolate the two-photon allowed
eigenstates, denotehA"(2), which have even symmetry

N (N=1)/2
™ i i i -
mA*(1)= E E cos{— (2p+n) u_poq reflection and charge conjugation through the expan
p=1 n=—(N-1)/2 N sion:
Xaf(rﬂ)zw,N(n)d;cg+n|G>, N (N-1)22N-1 N

mA*(2)=2 2 2 X'al",(1+R)
=1 gq=1 j[=1k=j+1 """

Ay (=) == n(N). (19 TR e el

These states carry a vanishingly small center-of-mass mo-

mentum ofx2#/Na, and result when the intraband transition The prime indicates that the summation in Ef1) is re-

dipole moment operator in E11) operates omB (1).  gyicted to statesq( j,k) that are not related by, Q, or RO.
Note that the expansion coefficients are now odd with ré-s the number of two-photon allowed eigenstates is fur-
spect to electron-hole interchange. Figure 3 shows afer reduced by approximately a factor of four,Nd/16. At
energy-level diagram including only the one- and tWo-is size we can numerically diagonaliek for N as high as

photon allowed eigenstates bf,. 1B (1) is lowest in en- 39 At this size there are already close to 2000 basis func-
ergy, followed by A™(1) and B~ (1). Higher-energy states o< of the form of Eq(2D).

are not shown. The alternating order is characteristid pih
the polymer limit.

Finally, let us consider the two-photon allowed eigen-
states oH, having two electron-hole pairs. The total number When 8<a(1)—a(2)=a/2, the lowest-energy states with
of four-particle eigenstates iS?(N—1)%/4. If we include one or twoe-h pairs are tightly bound, with the electron-hole
only those states with a center-of-mass momentum of zereeparation limited to at most one lattice spacing. This leads

X(1+Q)dld! el el [G). (22)

A. The small-8 limit
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to an enormous reduction in the one and tevd pair basis more challenging to derive. This is essentially because the

sets extending our analysis to polymers with several hundrebasis set, although drastically reduced in size, is still quite

unit cells. large, including double-bond excitons, mixed bond-charge
States with a single-h pair can easily be calculated ana- transfer excitons, and double charge transfer excitons. How-

lytically. The states in Eqg18) and(19) can be expanded in ever, the basis set size is now ©f N] so that diagonaliza-

a basis set that includes only one-exciton bdodFrenke]  tion of H, can easily proceed fdl of several hundred. In

states and nearest-neighbor charge-tran€d) states. The what follows we will refer to this basis set as ttiencatedor

three relevant basis functions are reducedbasis set.
N
by=N"122, dic!|G), 22
1b) le ool ) (229 V. BIEXCITONS AND TWO-EXCITONS
N "k(2p+1)] One-excitons or just excitons are states that are localized
|+ —%=V2IN> cog xmiepr 2 d,T)Cg+1|G>, in the electron-hole separation coordinate but are delocalized
p=1 | N with respect to the center-of-mass coordinate. We define
(22b biexcitons as states consisting of two electrons and two holes
N ) _ with a delocalized center of mass but with localization in the
km(2p—1) hole-hole relative coordinate. Localization with respect to
_ —_ N .t . p
|=+h= Z/szl COS_ N _dPCP*1|G>' the hole-hole distance leads naturally to their description as

excitonic molecules because of the analogy with a homo-
k=0,1,..N—1, (220 nuclear diatomic molecule. States with two excitons that are

i _ ) delocalized with respect to the hole-hole distance are referred
the first being the bond exciton and the latter the nearest, a5qyo-excitons In this section we derive the conditions
neighbor CT excitons. These states are connected via th&,qer which biexcitons are formed.

charge transfer part ¢f; in (1). Diagonalizing the subspace

, ¢ We focus only on states witA™ symmetry and exclude
gives the three eigenstates:

from the subsequent analysis the “dark” biexcitons. The
two-photon allowed\ ™ states are found by diagonalizing the
1A*(1)= L (|+=Y1—|—+)0), (239 A*. subblock ofH, having zero center-of-mass momentum.
J2 This block has approximateN®/16 four-particle basis func-
tions of the form(21). With 64 Mbytes of RAM computer

1B (1)=c4]b)+co(]+ —=)o+|—+)o), (23D  memory the diagonalization was limited to sizes of at most
N=31. The far smalleB~(1) subblock, consisting of ap-
2B (1)=cyb)—cy(|+ —)ot|—+)o), B<la, proximatelyN basis functions with zero center-of-mass mo-

(2309 mentum, was also numerically diagonalized in order to

with c,=MA+88212 and c,=2¥28[\2+84%[Y2 with ~ €valuate the biexciton binding energy.
2A=1—a+[(1-@)*+328%“2 The corresponding energies !N one dimension and for arly,>0 no matter how small,

(in units of V) are 1B~ (1) is a bound state of one electron and one hole. We can
then calculate the biexciton binding energy by evaluating
Ele(l): A/VO, (243) AEmA+(2) y deﬁned as
EZBf(l):A/VO'i‘ \ (1—a)2+ 3232, (24b) AEmAJr(Z)EEmAJr(Z)_ZElB’(l) ) (26)
= 11— J(1—a)?+3282 where the subscripts on the energy terms have been altered in
Einr )= ANVot2{(1-a)+(1-a)"+326%, an obvious way from those in Eq10) by including the
B<la (240 symmetry labels. The superscript then becomes redundant

and is omitted. A negative valuAE o+ (2)<0, indicates the
where the one-exciton transition energy S=e.te, existence of a bound exciton pair or biexcitomA*(2), with
—(Vol2){(1+ a) +(1— a)*+32B%}. Actually, 8 should be  binding energyAE,a+(2)|. To show that this condition co-
replaced by cod27/N) in Eq. (240 but the error induced incides with localization in the hole-hole relative coordinate,
by neglecting the cosine vanishesMNspproaches large val- we plot in Fig. 4 the probability of finding the two holes a
ues defining the polymer limit. distanceq apart,P(q), in the statenA™(2) at several val-
At B=0 the 7 (1) and 1A™(1) states are degenerate. As ues OfAEma+(2)- The normalized distributio®,(q) is av-
B increases the degeneracy is lifted with tha™11) state  eraged over the electron positions and is given by
lower in energy than the B (1) state. The energies of the
three states are ordered as follows: NN
Pm(@)=2, 2 [afil* (27
Eig-(ySEia+()SEzs-(1) - (25 J=1 k=)t
The ordering is actually independent @being small and is As Fig. 4 shows, whem\E,5+2)>0 the probability in-
a general property dfl;. creases with separation, characteristic of the delocatized
Unfortunately, similar analytical results in the double exciton state. WhenAEa+(2)<<0, P(q) becomes local-
electron-hole subspadgvhere electrons and holegithin a  ized. The peak inP,,(q) can be associated with the bond
given pairare limited by at most one lattice spacjraye far  distance of themA™(2) excitonic molecule. Figure 4 shows
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1.0 b o o o & & o
(@)

FIG. 5. The relative arrangements of two electrons and two
| holes for a biexciton candidate whg8=0. The cells without an
indicated charge are in their ground st&t®). Theq=4 case shown

T 0.5 is bound relative to two freeB (1) excitons whenever, according
to Eq.(31), «>60/61.

makes sense_from a wave-function point of view since the
eigenstates o, depend only onx and 8.
0.0 L W To appreoiate tne nature of the p_haso diagranfaiyB)
0 5 4 6 8 10 12 space, and in partloular hovy many blexoltons are to be ex-
pected, we begin with the simple case wigk-0, where the
q local states in Eq918)—(21) are now the eigenstates. There
is a single one-photon allowed one-exciton statB, (1)
® =(IWN)=}_,d]cl|G), with energy A=V(E;g-(1)=6c
+ep— V. leen the Iv potential in Eq.(3) and the restric-
tion a<1, the only candidates for biexciton states are those
depicted graphically in Fig. 5. They consist of two nearest-
neighbor charge transfer states in which the hole-hole dis-
tance as well as the electron-electron distance.igAny
<057 other arrangement of electrons and holes will necessarily
have AEj,a+(2)>0 for a<1.) One-half of these states have
A" symmetry and are written as

N
(q 1)A+ :_pZ {dp +q p+1cg+q+1
0.0 ; B

tqt
dpdp+q p+g+N-— 1Cp+N l}|G>

FIG. 4. The hole-hole correlation functio®(q) vs g. In 9=23,..., (29)

(@ P4(q) corresponding to the stateAT (2) is shown forA=V,,
a=1 and four values of3: 8=0.01 (circleg, B=0.075 (squarey B=0,
B=0.10 (triangles, and 8=0.12 (diamond$. The corresponding

values of AEja+(p) are —0.277, —2. 6x1072, —2.9x107% and  with energies
+3.4x1074 respectively. In(b) P,(q) correspondlng to the state

2A*(2) is shown forA=V,, a=1 and three values g8: 5=0.01

(circles, B=0.02 (squarey and $=0.03 (tnangles). The corre- Eqe1at(2)=2 £+ _ 1+(a-Da(q+1) a
sponding values oR\E,a+(; are —3.3x1072, —4.8x10 3 and (@-1DAT2) Vo (a—1)a(q+1)
+1.7x10* All curves were calculated W|tN 25 cells and the

full basis set. q=23,..., (30)
the evolution of the lowest-energyAT (2) biexciton as well B=0.

as the higher-energy/A2"(2) biexciton. In both cases local-
ization increases with biexciton binding energy. Th&"12)  To find which of these states are biexcitons one needs to
biexciton is eventually localized nege=2 while the 247(2) evaluateAE,_1)a+(2) Using Eq.(26), and force the right-

biexciton localizes neag=3. hand siddrhs) to be negative. This leads to a condition®n
Generally, the totaldimensionlessbiexciton energy de-
pends omM\/V,, «, andB. In what follows, we investigate the (q—1)q(q+1)

parameter ranges over which biexcitons exist. The problem B=0 (3D
is greatly simplified by recognizing that the biexciton bind-

ing energy, from Eqs(10) and(26) is

1+(q—1)q(g+1)’

for which the state ¢—1)A™(2) is a biexciton. The lowest-
i : .
AE —f —2f, ' 28 energy state A7 (2) (g=2) is therefore a biexciton when
mat @)= Tmar 2 (@ B) - w(@p) (29 a>6/7~0.857, while the next highest stat&2(2) is a biex-
for the mth biexciton. ThusAEa+(2)=0, which defines the citon (q=3) when a>24/25=0.96, and so on. This is con-
biexciton phase boundaries, depends onlyaoand 8. This  sistent with Fig. 4, which shows that #sdecreases the low-
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phase boundaries are shown: one that divides the region of

e i (a) delocalized two-excitons and the region where only the
i 1A*(2) biexciton exists, and one that divides the latter re-
i gion from one that supports two biexcitonsA1(2) and
0.10 4 rec 2A"(2). Boundaries separating the and (m+1) biexciton
| o regions, withm>1 are not shown. They occupy successively
@ smaller regions in phase space and are centereg-atand
i B=0.
0.05 - Figure 6 shows that the smadl approximation is a good
i one over the entire biexciton phase space. The largest devia-
i tion occurs near thex=1 intercept of the A*(2) phase
i boundary, with the truncated basis set calculation underesti-
0.00 mating the intercept by about 15%. TRe-0 intercepts agree
0.80 in both calculations with the analytical results given by Eq.
(31). The figure shows that theAT’ (2) biexcitons are disso-
0.15 T ciated with increasing over most of the range 6&a<1 as
] (b expected. A notable exception occurs nears. Surprisingly,
- 1A™(2) biexcitons exist even whea is slightly lessthan ;
] increasingg in this region initially leads to the creation of a
0107 Yeexcitons biexciton; i.e., it enhances the binding of two excitons. The
] unusual behavior stems from a resonance effect. Wiven
Q S and =0, the binding energy of theAL" (2) state from Eqgs.
. (26) and(30) with g=2 is zero. This state is degenerate with
0057 — the (N—1)/2 eigenstates of the form
£ N
1 = il 1 tqt  ofat _ _
. xﬁ%% N p§=)1 did}, (ChcholG). a=1.2,...(N-1)/2,

0.80 0.90 1.00 (32

(04 . . . . .
which consist of two noninteracting bond excitdesectrons

FIG. 6. The biexciton phase space showing two phase bound@nd holes are paired on tPe same Sit@egenerate pertur-
aries(see text The phase boundaries were calculated numericallyPation theory shows thatAl” (2) and the noninteracting bond
by SOIVINGAE p+ (=0 andAE,a+(» =0 for N=25 using the full excitons are mixed at zero order, S|gn|f|cant_ly Iowe_rlng the
basis set6a and the truncated basis s@h) under the smalp  energy of the bound state for nonzeBoThus, increasings
limit. In the region labeled 2 biex. there améleasttwo biexcitons ~Neara=$ leads to an increase in theé\1(2) biexciton bind-
since it encompasses successively smaller regions containing g energy. An identical argument applies to the higher biex-
least 3 biexcitons, 4 biexcitons, etc., which are not shown. citons with the unusual behavior appearing near the paints
given by the rhs of Eq(31) with g>2.

Figure 7 shows how the biexciton binding energy
|AE;a+(2)| varies over the biexciton phase space. The bind-
ing energy peaks ata=1, 8=0) with |[AE;x+(»)|=0.33
from Eqgs.(26) and(30), and decreases steadily as one moves
into the biexciton phase space. Near S the (minute bind-
ing energy increases witA over a range3=0.01-0.02 due
to the aforementioned resonance effect. Figures 6 and 7 show
that no biexcitons are possible whghsurpasses approxi-
mately 0.11, or whem is less than approximately 0.845.

est two biexcitons localize ogq=2 andq=3, respectively.
Note that whenae=1, the infinite chain supports an infinite
number of biexcitons, with binding energies that vanisiy as
tends to infinity.

We now turn to the general question of biexciton exist-
ence over the complet&y,8) space. Intuitively, one might
expect that increasing dissociates biexcitons. The more
tightly bound biexcitons neat=1 would survive larger val-
ues of B. For «a slightly greater tharf a vanishingly small
value of 8 might be expected to dissociate the biexciton. To
test these predictions we numerically calculated the biexciton
phase diagram. The phase boundary forriik biexciton is
a solution ofAE 4+ (2)=0. Figure 6 shows the phase bound-  The biexcitons of the last section can be observed through
aries calculated for a chain 8f=25 sites using the full basis the technique of two-photon absorption. The absorption of a
set[Fig. 6(a)] and the reduced basis introduced in Sec. IV forlaser beam of frequency is enhanced whenevew2s in
small 8 [Fig. 6(b)]. N=25 is large enough to ensure conver- resonance with the biexciton transition frequency,
gence of the lowest biexciton energies to their polymer valVVoEpa+(2)/%. In this section we calculate TPA in the spec-
ues to within approximately 5% over the entire phase boundtral region Zw<2A for the 1D polymer with the Hamil-
ary. This was checked by calculating the phase boundary faonian(4). In this range we avoid one-photon resonances to
smaller sizes in the full basis set and observing convergencene-exciton states. Furthermore, we limit our analysis to the
For example, in the small-beta limit, where much larger sizephase space near or within the biexciton existence region,
can be studied, the=1 intercept changes by less than 3% where 8 is small (8<0.11) and less thanx. The resulting
when N is increased to 100. The diagram only applies toexcitons and biexcitons are therefore tightly bound with radii
states withA™ symmetry. Furthermore, only two of the many much smaller than the total polymer lengtth=25, used in

VI. TWO-PHOTON ABSORPTION SPECTRA
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our full-basis calculations. At this size, the wave functions
and energies are converged to their polymer values.

In addition tomA*(2) biexciton peaks there may also be
peaks arising from the two-photon allowed single exciton
statesmA*(1). Since the symmetry of these states guaran-
tees a node an=0 (n being the electron-hole separation
they have total charge transfer character. Hence we refer to
these states as CT excitons from here on. In this section we
explore the relationship between these peaks.

Two-photon absorption is a third-order process governed
by the imaginary part of the nonlinear susceptibility
X\ (— w0,0,— ). For a sample consisting of randomly ori-
ented chaingas is the case for most polymer filjrsnd for
light polarized along thex axis, only the component3),,
contributes to the response. If we ignore the transverse re-
sponse of an individual chaing3), is related to the indi-
107* : — ‘ vidual chain(secondl hyperpolarizability,y,,x, by

0.00 0.04 ﬁ 0.08 0.12
X = EL(0INE) Yyxux (33)

(@]
©

Ll Ll

<

Lol

1072

IAE1A+(2)I

Lol

107°

ool

FIG. 7. Biexciton binding energyAE; 5+ (5| calculated using
the full basis set foN=25 as a function of for several values of \yhere the factor of comes from the orientational average
a: a=1 (crosses a=0.95 (asterisky a=0.91 (circles a=0.868 g 5 |ocal field factor andr is the number of chains per unit
(squarel anda=0.859(diagonal crossgsThe energies are dimen- 5105 The two-photon absorptiper sitein a given chain is
sionless and in units df. obtained by taking the largi- limit of Im[y/N], where,
from here ony representsy,, - For incident light detuned
far to the red of any one-photon resonances wé°get

IM[ yn(— 0 0,0,— 0)]

S h(DT mat+(1){Gol ax/ 1B~ (1)){IB (1) | | mA™ (1)){MA™ (1)| iy nB™(1)){nB™(1)] iex| Go)
<11 (Eig-(1)~ %) (Eng- (1)~ h0)[(Emar (1)~ 2h0)>+T7 1 )]

: (34)

where ', a+()y is the inverse radiative lifetime of the state contribution is nonresonant and therefore negligible in the
mA* (1), with 1=1,2. An additional factor of two for the spectral range 8 —2hw>I"15-(1y, Which is assumed in Eq.
electron spin degeneracy is included in E84). The first  (34).

summation is over the two main pathways, which contribute The transition dipole matrix elements that connect the

to the TPA. They can be schematically depicted as states in pathwayél) and (2) originate from either the first
or second terms in Eq.l1). In pathway(1l) the first and
G—mB (1)—nA*(1)-=m'B~(1)—~G [pathway (1)], fourth transitions are interband ones, while the intermediate

two are intraband. In pathwa§?) all transitions are inter-

band. The form of the intraband component in Effl) is
G—mB (1)=nA"(2)—=m’'B (1)—G [pathway (2)], adapted to a ring; in order to correct for a straight polymer

we have to multiply thd =1 contribution in Eq.34) by an

corresponding to the=1 andl =2, respectively in Eq(34). extra factor of two. This offsets the factor gf which is
Each state is connected via a transition dipole matrix eleinherent in averaging of sff2 7p/N] (from the intraband
ment. In the range 72v<2A pathway (1) represents two- dipole moment squarg¢aver allp. Theh(l) factor accounts
photon absorption to CT exciton states\* (1), while path-  for this: h(1)=2 andh(2)=1.

way (2) represents two-photon absorption to biexcitons We have verified numerically that the per-site response
mA*(2). In the complete expression fop(—w;w,w,—w) N~ Um[ y(— w;w,0,— )] using Eq.(34) converges ad is
there is an additional pathway that involves four transitiongaken to large values. This was shown rigorously in Ref. 21
between the ground state and the one-exciton states. Sucta the case of nonresonant susceptibilities, and the limiting



FIG. 8. The JA™ (1) crossover curves calculated numerically for
the full basis set wititN=101 (solid line) and analytically from Eq.
(36) (dashed lingfor several values ah/V,=1%3 2. In all cases the
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0.2 @ 0.2
AIVy=1/3
AlV,=1/3
/// / 1/4
Q0.1 - AlV,=
/// =01
, "(;/V0=I/5
//
0.0 T T T T T T T é /
0.80 obsto 1.00 0.0 N S T
0.2 0.60 0.80 1.00
(b)
AlV,=1/4 o
| FIG. 9. The crossover curvésolid lineg for several values of
A/V, along with the biexciton phase boundarigsshed lines
Q01 A AECTE E1A+(1)_2A/VO (35)
///‘/ is evaluatedAE~;=0 is a curve in(a,B) space that includes
- the points at which the energy of theA1(1) CT exciton
1 / é peak crosses over into the randecVoEja+(1y<2A. When
AE~r<0, which corresponds to all points under the curve,
/ there is an additional peak arising from the CT exciton state
0.0 — 1A*(1) in the regionA<2hw<2A, and possibly more peaks
0.60 0.80 1.00 from the mA*(1) states withm>1. When AE.1>0 these
0.2 o peaks are shifted beyond\2Figure 8 shows such crossover
AV, =1/5 ©) curves for several values af'V, along with the CDW phase
region.
| For small B8 the crossover curves can be derived analyti-
cally by using the energies in E4). Inserting Eq(24) into
Eqg. (35 the conditionAE-;<0 becomes
Q0.1 4 A A A
e — < | <
88 Vo @ Vo(Vo 1>, B<a, (36)
7 as the condition under which the TPA peak lies in the gap.
The AE-1=0 curves, obtained by making E6) an equal-
ity, are then simply parabolas. These are also shown in Fig.
0.0 T T T | T T T 8.
0.60 OdBO 1.00 Figure 9 shows the crossover curves for several values of

ANV, as well as then=1 andm=2 biexciton phase bound-
aries. WhemA\/V,=1/5 the crossover curve intersects the

=1) biexciton phase boundary. In the region where the biex-
citon phase space overlaps the area under the crossover

analytical curves underestimate the exact numerical results. Alsgurve, JA*(2) biexcitons andnA(1) excitons will contrib-

shown is the CDW ground-state region.

ute TPA peaks in the rangdi@<2A. As A/V, increases, the
crossover curves shift to the left, eventually completely en-

values were derived analytically in the regimes of weak analosing the biexciton phase space; here we expect biexciton

strong localization. Before using E¢34) to calculate TPA

peaks will always be accompanied by CT exciton peaks.

spectra we turn to a simpler endeavor and answer the follow- Using Eq.(34) we now evaluate the TPA spectra in vari-

ing question. For values of and B8 within the biexciton

ous regions of the biexciton phase space. We start along a

phase space are there additional TPA peaks arising from theorizontal cut in(«,8) space keepingd=0.01 constant and

higher CT excitons? In other words under what rangea of
and B can we expect pathway$) and(2) to contribute to the
TPA spectrum?

taking A/V,=0.40, so that the phase space is devoid of
CDW's [see Eq.(14)]. According to Fig. 9 the CT exciton
crossover curve completely encloses the biexciton phase

The solution can be obtained by straightforward numeri-space, so that the biexciton peak, if present, will always be

cal analysis. For a given value afV, the quantity

accompanied by a CT exciton peak. Figure 10 shows TPA
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which is in excellent agreement with the numerical value, as
shown in Fig. 10a). The TPA intensity corresponding to
pathway(1) can be derived analytically in the smallimit.
Using Egs.(11) and(23), the result is

32 1
pathway 1)« (1—a)?+3282 | (E1p-(1)— E1a+(1)/2)?
1
" (Ezg-(1)~ E1a+(1)/2)°
2

- (E1g-(1)— E1a+(1)/2(E2g-(1y— E1a+1)/2) |’

which yields intensities that are in excellent agreement with
those in Fig. 10a). These analytical expressions also work
well for the 1A™ (1) feature in Figs. 1) and 1Gc).

When« is increased tar=0.95 the A" (2) biexciton ex-
istence region is entered. Figure(hDshows two TPA peaks,
the low-energy one corresponding to the CT exciton and the
higher-energy one corresponding to thA™12) biexciton.
Both peaks continue to shift to lower energy asis in-
creased further. Eventually, the two-biexcitfbA™(2) and
2A*(2)] existence regiosee Fig. 6, is entered in Fig. 1@)
when «=1. This is marked by the appearance of a second
biexciton peak from the &% (2) state. Note that horizontal
cuts with smaller values oB will yield greater numbers of
biexciton peaks whew=1.

Figure 11 shows the results of a vertical cutinB) space
with @=0.95. In this case\/V,=3, so that the CT exciton
crossover curve again encloses th&™12) biexciton phase
space. Along this cut there are no CDW's. This series of
spectra demonstrate that Aincreases the peak positions are
generally blueshifted.

Figures 10 and 11 show that the biexciton peaks as well as
the CT exciton peaks always lie in the ranye’2iw<<2A.
The lower limit on the CT exciton energy follows from the
fact that forH, the state B (1) is always lowest in energy.
The lower limit for the biexciton is more subtle. It arises
because the increase Wy necessary to increase the binding
energy beyondd, would simultaneously create the CDW
ground state.

Lastly, we turn our attention to the transition dipole mo-
ment from the B~ (1) state to the most tightly bound biex-

l_:IG. 10. TPA spectrzﬁjn arbitrary unit$ at th_ree _points along a citon, 1A+(2). Recently, Guo, Chandross, and Mazun@lar
horizontal cut(8=0.01) in phase space. The stick figure spectra arepgye suggested that biexcitons can be identified as those

obtained from Eq(34) in the limit of smallI" with all "+ ()

=T". In all casesN=25, u.=ea/2, andA/Vy=0.4>2In 2—-1, so
that CDW's do not exist at any poifi&, ). The solid sticks are full
basis-set calculations while the hollow sticks are truncated basis-s?f
calculations in the smaj limit. In all cases the two calculations

cannot be distinguished.

states having an energy below the two-exciton continuum
2A, with a transition moment fromB ™ (1) lessthan that to

the band-edge two-exciton state. We investigated this crite-
on in Figs. 12 and 13, wherg 1B~ (1)|a,|mA"(2))] is
shown as a function of the normalized energy
VoEma+(2)/A. Aseries of such plots are shown at two cuts in
(a,B) space near theA"(2) biexciton phase boundary. Fig-

spectra at three points along the cut. The first pointures 12a)-12(c) display three points along a horizontal cut
(«=0.85, 8=0.01), is outside the A"(2) biexciton phase with constant3=0.01. All three points lie within the biexci-

region of Fig. 6, but is below tha/V,=3 crossover curve in

ton phase space so that the first peak corresponds to the

Fig. 8, indicating that only CT excitons contribute TPA 1A™(2) biexciton and is therefore belowAZn all cases. The

peaks. Figure 1@) shows a single CT exciton peak. At these figure shows that when the biexciton initially splits from the
small values of3 the tightly bound exciton approximation of two-exciton continuum, it carries with it more oscillator
the last section is valid. Using ER4b) we get

strength than the band-edge two-exciton state. The situation
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FIG. 11. Same as Fig. 10 except that TPA spetnarbitrary FIG. 12. Magnitude of the exciton-biexciton transition dipole

unity are taken at three points along a vertical ¢wt=0.95 in _ ~ T .

phase space. The truncated basis set calculations cannot be disQn/H?Em ent,(}f fg%)lg\i';:;? (;Z?t/sﬂr?\éa?stk?e;%rzgt)lObr;egiitgﬁ efr::;gey

guished from the full basis set calculations(@, while they are 0=mA®(2) "y points ) P
boundary and within the biexciton phase region. In all cases

slightly higher in energy inlb) and (c). 5=0.01 andA/V,=0.2
- . O_ L.

reverses as the binding energy increases; eventually the os-
cillator strength resides primarily in the band-edge two-calized over all cells. This is because creating a second ex-
exciton state as predicted by Guo, Chandross, anditon within a radiusR from the first has a probabilitiR/N.
Mazumdar'® Figures 18a)—13(c) display three points along However, this argument cannot explain  how
a vertical cut with constan=0.95. Again all three points [(1B~(1)|z,|mA*(2))|? for a weakly bound, large radius
are just within the A"(2) biexciton phase space. The samebiexciton can greatly exceed that of the two-exciton band-
gualitative behavior is observed as in Fig. 12. edge state as in Figs. @ and 13a). The problem lies in the

In a tightly bound biexciton with a small radiu®, the  assumption that the band-edge two-exciton wave function
oscillator strength(1B~(1)|i,|mA*(2))|? is roughlyR/N  has site amplitudes that are in-phase; it may contain one or
times that of the band-edge two-exciton state, which is delomore nodes in the relative coordinate of the two excitons,
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of the oscillator strength. As the biexciton becomes more
tightly bound it acquires higher wave-vector components,
B=0.09 causing the oscillator strength to drop, while the two-exciton

. band-edge state regains a larler0 component. Eventually

1 the two-exciton band-edge state recovers enough of the zero
mode state to surpass the biexciton in oscillator strength. The
same behavior also applies to Frenkel biexcitéASn linear
chains.

10.0 @

5.0 1

VII. DISCUSSION AND CONCLUSION

KlB—(l)y2x|mA+(2)X/uc

The two-band tight-binding Hamiltonian in E¢) with
the Coulombic potential in Eq3) supports multiple biexci-
0.0 : r l < : ton states in limited regions @#,8) phase space as shown in
1.85 VE2.OO i 2.15 Fig. 6. Because the Hamiltonian commutes with the total
0 ma*) particle number, the biexcitons presented here are well de-
® fined, and correspond to states with two electrons and two
holes with localization in the hole-hole relative coordinate
(see Fig. 4. The shape of the phase boundaries in Fig. 6
1 sensitively depends on the form of the extended Coulombic
. potential, which we have taken to be the usual fbfm for
r=a. Truncating the interaction to nearest neighbor only
[a(n)=0; n>1], as in the case of strong screening, for ex-
ample, increases the binding energy of the"12) biexciton
1 but eliminates the existence of all higher biexcitons. In this
. case thg3=0 intercept of the A" (2) biexciton phase bound-
ary occurs ate=3, instead ofa=2 obtained with the ex-
l I tended potential in Eq3). Such screening may arise in poly-
0.0 l ‘ \ } . . A .
1.85 2.00 215 mer films where the chain density is high. In this case there
VE /A may also be interchain biexcitons with omeh pair per
© chain. Such a scenario was recently discussed by Soos and
1 Kepler®
Given the form of the Coulombic potential, the existence
of biexcitons depends only on the parameternd 8, while
the existence of the CDW ground state depend&,08, and
i AN, (see Fig. 2 A CDW is possible only when
5.0 - A<(2In2—1)V,, or when the on-site electron-electron repul-
i sion V, exceeds 2.6 times the energyof the lowest one-
photon allowed state, B (1). As V, increases above this
limit the CDW region occupies an increasingly larger corner
of phase space centered Gn=1, 8=0), but as long as it is
1 l completely enclosed by the biexciton phase boundary it is
0.0 : : ] : ﬂ 1 possible to discuss TPA to biexcitons from the neutral ground
1.85 2.00 2.15 state G, in the region that avoids the CDW. We note that
VoEpry! A Ostreich and Schonhamniéintentionally avoided the CDW
region by diagonalizing the same Hamiltonian in E2). for
FIG. 13. Magnitude of the exciton-biexciton transition dipole @<1/2In2~0.72. Their large-scale numerical calculations
moment, (1B~ (1)| i mA*(2))/uc, as a function of the energy Showed no stable biexcitons, a result consistent with our own
VoEma+(2) /A for several points near the biexciton phase boundarycalculations, which show biexcitons only whe#=0.845.
and within the biexciton phase region. In all cases0.95 and The orderinge g- <E 5+ iS a general property dfi; and
AV=0.33. is consistent with experimental findings for PS and PPV. An
important limitation of our model is its inability to account

which leads to a substantial reduction in dipole moment/©" the reverse ordering that occurs in weakly alternating

even though it remains completely delocalized. A biexcitonpc;yg;rsasr?ghsiséfglgjcggyﬁg%ri';ggegg3l’3“g%ﬁh&%%%gﬁgy’
state can be expanded in a noninteracting two-exciton bas,%y. ' 00S analyze .

set, |K), whereK is the wave vector corresponding to the Chains and studied in detr?ul the spln—c_harge crossover over a
relative motion of the two excitons. When a biexciton ini- '2"9¢ of parameters. Their treatment is exact, taking full ac-

tially splits from the two-exciton band, it has a large radiuscf)unt of the hspm statls.tlcs afndh||m|ted to at mqst seven
and consequently a large=0 (nodeless component; the dimers. On t e_ band side of the grossover reglﬁaBS
remaining two-exciton band-edge state is left with a smaller<Eza)) calculations for large alternatiorig=0.6) show that
K =0 component. Thus, initially the biexciton captures morethe lowest excited state under the PPP Hamiltonian has

1 L 1
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strong bond exciton character while two-photon allowed experimental valueA~3.4 eV givest=0.34 eV,V,=8.5 eV,
cited states have largely charge-transfer character, in agreandV,;=8.1 eV. The value of is close to the value of 0.5 eV
ment with our results. However, unlike the present treatmenigbtained from photoelectron spectra of methylated
they also include a two-photon allowed excited state withinpolysilanes’® Since thee-h interaction parameters corre-
the dimer cell that contributes to the biexciton ne&g-.  spond too and ¢* molecular orbitals it is difficult to com-
An obvious extension of the current model is to include thispare with the accepted atomic parameters used in the Ohno
state. Recently, Knoester and Spéstudied TPAin alinear potential, for examplé®-*2The most critical parameter is the
chain of coupled three-level systems where the second anghjue of «, which under the extended potential in Egb),
third levels are respectively one- and two-photon allowed. must be larger than about 0.84 to have biexcitons at all.
There is some experimental evidence supporting biexciHowever, the cutoff can be significantly lowered, as previ-
tons in PDA(Ref. 1) and a much greater amount in PS.  gysly mentioned, to 0.67 using the screened potefién)
This comes mainly through the existence of a redshifted in=0, n>1]. We note that Ishida, Aoki, and Chikjin ana-
duced absorption peak in differential pump-probe absorptiom),zing the same Hamiltonian as ours used=0.80 in
experiments®~° and from a high-energy peak in the TPA modeling polysilane. Currently we are exploring the exist-

spectrunf. The TPA spectrum of polysilane shows a broadence of biexcitons for other potentials and in cases without
peak at about 1.8 (A~3.4 eV) as well as a much narrower charge conjugation symmetry.

peak at about 18° The low-energy peak has been attrib-
uted to theA, CT exciton staté"'* while the high-energy
peak may be a biexcitoh® Both features are roughly the
same magnitude in intensity. Parameters in our model can be
found that reproduce these spectral features; for example, Acknowledgments are made to the National Science
Fig. 11(b) shows approximately this spectrum, and a better fifFoundation through NSF-DMR9312029, for support of this
can be obtained by using=0.04 instead of3=0.03 and research. We thank Z. G. Soos for many stimulating discus-
A=0.40V, instead ofA=0.33V,. Then,a=0.95 and the ex- sions.
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