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When electrons are added to neutral C60 they go mainly into at1u orbital. The energy of such a (t1u)
n

configuration is affected by a Jahn-Teller interaction withhg vibrations as well as by the Coulomb interaction
that separates the terms. These energies are found for strong, intermediate, and weak coupling; with and
without the term splittings. Figures illustrate how the Jahn-Teller interaction inverts the sequence of energy
levels. Modifications needed to allow for the configuration interaction with the nearbyt1g orbital are indicated.
The effect of the existence of eight differenthg modes instead of the one usually included is discussed, and an
effective single-mode Hamiltonian is proposed that is shown to give a very good approximation to the energies
of low-lying levels. The effect of all this on pairing energies is discussed. A discussion of the effect of warping
terms in the Hamiltonian is included.

I. INTRODUCTION

The C60 molecule in suitable surroundings can act as a
recipient for one or more negative charges. These extra elec-
trons go mainly into a triply degenerate molecular orbital
whose symmetry corresponds to theT1u irreducible repre-
sentation~irrep! of the symmetry group of the molecule,
I h , so that the state withn extra electrons can be described
as a (t1u)

n configuration outside closed shells. The terms of
such a configuration are mostly degenerate in energy, and so
their energies can be expected to be further altered by the
Jahn-Teller interaction with distortions of the molecular
cage. The nature of the distortion and the sizes of the energy
shifts will depend on the strength of the Jahn-Teller interac-
tion, the size of the Coulomb interaction producing the term
splittings, and the energies of the modes of vibration that are
coupled in. It is this collection of problems that are addressed
in this paper.

The problem of the effect of Jahn-Teller interactions in
states resulting from multiple occupancy of triply degenerate
t states has been extensively studied over the last twenty
years in connection with the various charge states of the
vacancy in silicon (V centers! by Watkins and his collabora-
tors ~reviewed by Watkins1!, and the connection with the
similar problem in C60

n2 was pointed out by Lannooet al.2

The similarity consists not only in the symmetry type of the
electronic orbitals being filled, but also in the symmetry type
of the vibrational modes they interact with. TheV centers are
at sites of cubic symmetry, and the modes of vibration con-
cerned are of two symmetry typese andt2 , but if the modes
are taken to be degenerate in frequency and in interaction
strength then the Jahn-Teller Hamiltonian is identical to that
for t states with thehg modes in icosahedral symmetry. In
the V centers a considerable amount of experimental evi-
dence has been accumulated, showing that the Jahn-Teller
interaction is strong, even strong enough to reverse the ex-
pected ordering of the different charge states and to produce
~in the terminology of Anderson3! ‘‘negative-U ’’ pairing en-
ergies, which are discussed in a review article by Watkins.4 It
has also been shown by Anderson, Ham, and Grossman5 that
the term energies must be taken into account along with the

Jahn-Teller interaction to get a correct fit with experiment.
In C60

n2, in contrast with theV centers, we do not have
direct measurements of the various energies. It is likely that
the Jahn-Teller interaction is not particularly strong relative
to the vibrational frequencies, and that the term energies are
neither dominant nor negligible. Unlike theV centers, we do
not have to consider the different coupling strengths ofe and
t2 vibrations, but because of the higher symmetry the effects
of the kinetic energy must be included. Also in C60 there are
eight hg modes of very different frequencies, all of which
should be included in the Jahn-Teller coupling, and this pro-
duces an extra complication.

The problem for C60
n2 was discussed at length by Auer-

bach, Manini, and Tosatti,6 and this study can be regarded as
carrying on from there. This paper takes a different line from
theirs, in that we work from a basis of the coupled electronic
states rather than from a basis of the uncoupled configura-
tions. This makes it easier to consider the effects of the phase
of the electronic wave functions, as well as making it simple
to include the term energies. Using this basis it is possible to
carry a numerical calculation of the energies through all cou-
pling strengths, including the term energies. Where our nu-
merical calculations overlap we agree with Auerbach, Ma-
nini, and Tosatti. We differ from them in the details of some
small corrections at strong coupling, and in this we are cor-
roborated by the numerical results.

This paper also addresses the question of the eighthg
modes, and shows how an effective single-mode Hamil-
tonian can be set up that produces a good approximation to
the low-lying energies.

Plan of the paper

All the work is built on the by now well-known fact7 that
the Hamiltonian for linear Jahn-Teller coupling oft elec-
tronic states tohg modes is invariant under the operations of
the three-dimensional rotation group SO~3!, an accidentally
higher symmetry than the icosahedral symmetry of the full
Hamiltonian. It is also a fact that all angular momentum
states up toL52 remain unsplit in the icosahedral group, so
if we stick with linear coupling it is possible and convenient
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to use angular momentum labeling throughout, to describe
the electronic configurations aspn and the coupled states as
LS coupled terms in the usual spectroscopic notation.

We start in Sec. II with a derivation of the energies in
strong coupling. In this section the term energies are as-
sumed to be overridden by the Jahn-Teller interaction, and
the vibrational kinetic energy produces a structure of pseu-
dorotations above the potential-energy minimum. C60

n2 is
not expected to be a case of strong coupling, but the results
of these calculations are of interest in their own right, and
can be tied in with the numerical work, which is valid at all
coupling strengths.

In Sec. IV the term splittings are introduced and the nu-
merical work that carries through all coupling strengths is
described. The relative energies of all the terms of all the
different configurationspn depend on a single integral of the
Coulomb interaction, and the high spin states are always
lower than the low spin ones. However, the Jahn-Teller in-
teraction will always reduce the energy of the low spin states
more effectively than the high spin states, so the choice of
spin of the ground state will be sensitive to the relative
strengths of these interactions. Figures 1 and 2 illustrate this
effect. This balance has been found to be important in theV

centers in silicon~see the references in the Introduction!. The
effect of configuration interaction on the energy ordering in
C60

n2 is discussed in Sec. IV B.
In Sec. V the effective HamiltonianHeff is introduced to

allow for the coupling to the eight differenthg modes. Some
space is devoted to deriving the corrections that are needed
to get a good representation of the low-energy levels, and it
is shown that these corrections are really quite small, and do
not do much to alter the relative energies of the various con-
figurations. We may thus use the single-mode calculations of
the earlier sections together with the effective parameters
with confidence, though it is important to remember always
that this effective Hamiltonian is directed to giving the cor-
rect ground state, and is of no use for the spectrum of excited
states.

In Sec. VI the effect of a ‘‘warping’’ potential produced
by anharmonicities in the vibrational restoring force and
higher-order terms in the Jahn-Teller interaction is consid-
ered. This term will shift the low-lying energy levels, but it
will not split them. In practice, this term is probably not
important in C60

n2 because of the weakness of the Jahn-
Teller interaction, but it has been included because the theory
is interesting and is new in the context of the multiple elec-
tron states.

FIG. 1. Calculated energy levels at moderate coupling strength
for p2 andp4, ~a! without and~b! with a term splitting correspond-
ing to F25\v/3. Energy is in units of\v. In ~b! at k250 the
1S electronic state is atE54.5\v, the lowestS state is a one-
phonon excitation from1D. The dashed line shows the asymptotic
energy.

FIG. 2. Calculated energy levels at moderate coupling strength
for p3, ~a! without and~b! with a term splitting corresponding to
F25\v/3. Energy is in units of\v. In ~b! at k250 the 2P elec-
tronic state is atE53.5\v, the lowestP state is a one-phonon
excitation from2D. The dashed line shows the asymptotic energy.
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II. THE LOW-LYING ENERGY LEVELS AT STRONG
JAHN-TELLER COUPLING

In this section we start by describing a parametrization of
an hg mode in terms of a set of angles in such a way as to
make the best use of the SO~3! invariance~Sec. II A!. We
then take each configuration of the formpn in turn and dis-
cuss the energy-level structure.

In each case the process starts by setting up the Jahn-
Teller interaction as a matrix of the five components of an
hg mode acting from the basis of the electronic states, using
the angular parametrization~1!, and finding a set of rotations
that diagonalize the Jahn-Teller matrix. The choice of the
remaining angular parameter that minimizes the lowest root

then puts the system onto a particular SO~3! invariant surface
in phase space and forces a form for the kinetic energy. A set
of pseudorotational energy levels follows. Finally we bring
in the phase changes of the electronic state~the Berry phase!
over the surface in phase space, and find a further limitation
on the choice of pseudorotational states, leading to a pre-
dicted structure of energy levels.

A. The hg normal modes

The SO~3! invariance of these systems is exploited by
making a parametrization of the five components of a set of
hg normal coordinates in the following way:8

q15q@~ 3
2 cos

2u2 1
2 !cosa1~A3/2!sin2u sina cos2g#,

q25q@~A3/2!sin2u cosf cosa2 1
2 sin2u cosf sina cos2g1sinu sinf sina sin2g#,

q35q@~A3/2!sin2u sin2f cosa1 1
2 ~11cos2u!sin2f sina cos2g1cosu cos2f sina sin2g#, ~1!

q45q@~A3/2!sin2u cos2f cosa1 1
2 ~11cos2u!cos2f sina cos2g2cosu sin2f sina sin2g#,

q55q@~A3/2!sin2u sinf cosa2 1
2 sin2u sinf sina cos2g2sinu cosf sina sin2g#,

where taking 0<q,`, 0<a,p/3, 0<g,p, 0<u,p/2,
0<f,2p ensures that all possible distortions in the five-
dimensional phase space are covered without repetition. This
parametrization is designed so that(qi

25q2 and the angles
u,g,f behave as Euler angles for the rotations.

In terms of these variables the kinetic-energy operator for
the normal modes takes the form

HKE52
1

2 Fq24
]

]q S q4 ]

]qD 1
1

q2sin3a

]

]a S sin3a ]

]a D G
1

1

8q2 F lx
2

sin2~a22p/3!
1

ly
2

sin2~a12p/3!
1

lz
2

sin2aG ,
~2!

where $lx ,ly ,lz% are the three components of an angular
momentum operatorl within the phonon space. Explicitly,

lx5 i cosgS cotu ]

]g
2cscu

]

]f D1 i sing
]

]u
,

ly52 i singS cotu ]

]g
2cscu

]

]f D1 i cosg
]

]u
, ~3!

lz5 i
]

]g
.

The potential energy of the uncoupled vibrations is simply
1
2q

2.

B. The configurationsp1 and p5

These configurations have already been extensively stud-
ied asT^ (t2% e), p1 explicitly andp5 by implication. The
Jahn-Teller interaction forp1 can be written

MT51
1

2
kF q12A3q4 2A3q3 2A3q2

2A3q3 q11A3q4 2A3q5
2A3q2 2A3q5 22q1

G ~4!

and writing this down defines the coupling coefficientk,
which reappears throughout this paper. In terms of the vari-
ables~1! the linear Jahn-Teller interaction can be written8

kT P
21F 1

2q~cosa2A3 sina! 0 0

0 1
2q~cosa1A3 sina! 0

0 0 2q cosa

G T P , ~5!
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whereT P is an orthogonal matrix given by

T P5BP~g!CP~u!DP~f! ~6!

and the orthogonal matricesBP(g), CP(u), andDP(f) are
given, together with other rotation matrices, in the Appendix.
The matrixT P operating on the components of a vector is a
general three-dimensional rotation in Euler angle form. From
this transformation it is clear that the lowest root of the ma-
trix is 2kq cosa, and is constant over all the rotations
T P , and this root is lowest of all whena50. This transfor-
mation also gives eigenvectors for the roots of the matrix,
and the eigenvector for this lowest root is

uu&5sinu cosfuj&1sinu sinfuh&1cosuuz&, ~7!

where uj&, uh&, and uz& are the three components of the
electronicp base.

Using the foregoing results we now go ahead and apply
the full adiabatic approximation by looking for a solution to
the Schro¨dinger equation in the general form

C5c~q,a,g,u,f!u~q,a,g,u,f,r !, ~8!

where u, the electronic wave function, is a vector in the
electronic space$uj&,uh&,uz&% and r represents all the elec-
tronic coordinates. Here the vectoru is just the eigenvector
uu& that has already been calculated~7!. When thisC is
substituted into the Schro¨dinger equation we get

2 1
2 @u¹2c12¹c•¹u1c¹2u#1~ 1

2q
22kq cosa!cu

5Ecu, ~9!

where 2 1
2¹2 is the appropriate vibrational kinetic-energy

operator. Applying closure to this equation withu gives

2 1
2¹2c2¹c•^uu¹u&2 1

2c^uu¹2u&1~ 1
2q

22kq cosa!c

5Ec. ~10!

Becauseuu& is real,^uu¹u&50, but ^uu¹2u& must be calcu-
lated and included.

First the kinetic-energy operator~2! is adapted to operate
in the neighborhood of the minimum surface by taking out a
factor q21(sina/sin3a)1/2, and puttinga50 wherever this
does not introduce infinities. The result is

HKE52
1

2 F 1q2 ]

]q S q2 ]

]qD1
1

q2sina

]

]a S sina ]

]a D
1

1

q2sin2a

]2

]g2 1
f ~a!

q2 G2
1

6q2 F 1

sinu

]

]u S sinu ]

]u D
1

1

sin2u

]2

]f2G , ~11!

wheref (a)5 2
3 ata50, and this term comes from taking the

above factor out ofc. To get2 1
2 ^uu¹2u& only the last line

of ~11! need be used becauseuu& depends only onu and
f, and this term is 1/(3q2), which exactly cancels the
f (a)/q2 term noted earlier.~This cancellation will not occur
in the cases considered later.! The final form of the vibronic
Schrödinger equation is thus

2
1

2 F 1q2 ]

]q S q2 ]

]qD1
]

]a S sina ]

]a D1
1

q2sin2a

]2

]g2 2q2

12kqGc2
1

6q2 F 1

sinu

]

]u S sinu ]

]u D1
1

sin2u

]2

]f2Gc
5Ec. ~12!

The first part of ~12! is just the Hamiltonian of a three-
dimensional harmonic oscillator with a displaced origin, and

the energy of its lowest state is2 1
2k

21 3
2 . The second part is

the Hamiltonian of a rotator, so the formula for the low-lying
energies at strong coupling forn51,5 is

E1,552
1

2
k21

3

2
1S 1

6k2DL~L11!, ~13!

where L is an integer. Finally we must look at the phase
changes over the (u,f) surface. Inspection of the$qi%, ~1!,
shows that they are repeated when

g→g1p, ~14!

and also under the inversion operation

u→p2u, f→f1p, g→2g. ~15!

The electronic eigenstate~7! is seen to be invariant under
~14! and to change sign under~15!, and the pseudorotational
eigenstates must change sign with the electronic eigenstate to
preserve invariance. Thus invariance under these transforma-
tions requiresL to be odd so that the ground state has
L51.

C. The configurationsp2 and p4

The terms from these two configurations are3P, 1D, and
1S.
The high spin state is simple, being yet anotherP state

coupled to thehg vibrations. The only extra thing we need to
know is how thek in this state relates to the single electron
k, i.e., we need to work out an extra reduced matrix element.
The coupling constant turns out to be2k so that the energies
are as given byE1,5 above, with a distortion of the opposite
sign.

For the low spin states we have a sixfold basis, fiveD
states and oneS state. TheS state does not have any diago-
nal Jahn-Teller coupling, but it is coupled to theD states.
The Jahn-Teller interaction matrix~partitioned to distinguish
theS andD bases! is
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MSD52k3
0 2A2q1 2A2q2 2A2q3 2A2q4 2A2q5

2A2q1 q1
1
2q2 2q3 2q4

1
2 q5

2A2q2 1
2q2

1

2
q11

A3
2
q4

A3
2
q5

A3
2
q2

A3
2
q3

2A2q3 2q3
A3
2
q5 2q1 0

A3
2
q2

2A2q4 2q4
A3
2
q2 0 2q1 2

A3
2
q5

A2q5 1
2q5

A3
2
q3

A3
2
q2 2

A3
2
q5

1

2
q12

A3
2
q4

4 , ~16!

where the coupling constants have been calculated as reduced matrix elements in terms of the single-electron coupling constant
k. This is put in terms of the parametrization~1! and transformed to a nearly diagonal form by a sequence of orthogonal
transformations. This transformation has a block-diagonal form, with a 535 block to rotate theD bases, as given in the
Appendix, and a 131 unit matrix block for theS basis. It is

T SD5ASD~a!BSD~g!CSD~u!DSD~f!, ~17!

where

ASD~a!5F1 0

0 AD~a!
G , BSD~g!5F1 0

0 BD~g!
G ,

CSD~u!5F1 0

0 CD~u!
G , and DSD~f!5F1 0

0 DD~f!
G . ~18!

Then

T SD@MSD#T SD
215@MSD~a!# ~19!

and the interaction matrix@MSD(a)# takes the form

MSD~a!52kq3
0 A2 cos

3a

2
0 0 A2 sin

3a

2
0

A2 cos
3a

2
1 0 0 0 0

0 0 cosS a2
p

3 D 0 0 0

0 0 0 2cosa 0 0

A2 sin
3a

2
0 0 0 21 0

0 0 0 0 0 cosS a1
p

3 D
4 ~20!

This matrix is left incompletely diagonalized to make it ob-
vious where extra terms would have to be put in if the1D
and 1S terms were not assumed degenerate in the first place.
The lowest value of the lowest eigenvalue of this matrix
occurs ata50, and it is22kq. In this case the eigenvector
will be given by a linear combination of the first two col-
umns of the matrixT SD

21 and ~still at a50) this is

u5F 1

A3
•••

A2

3
vD

G , ~21!
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where

vD53
1
2 ~3 cos2u21!

A3
2

sin2u cosf

A3 sin2u cosf sinf

A3
2

sin2u cos2f

A3
2

sin2u sinf

4 . ~22!

Operating on this with~11! gives

2
1

2
¹2u5

1

6q2F 0

•••

6A 3
3vD

G , ~23!

so 2 1
2 ^uu¹2u&52/3q2. Finally we get the vibronic Schro¨-

dinger equation in this case to be, ata50,

2
1

2 F 1q2 ]

]q S q2 ]

]qD1
1

q2sina

]

]a S sina ]

]a D1
1

q2sin2a

]2

]g2

2q214kqGc1
1

q2 F232
1

3Gc2
1

6q2 F 1

sinu

]

]u S sinu ]

]u D
1

1

sin2u

]2

]f2Gc5Ec. ~24!

Treating this equation as before gives

E2,4522k21
3

2
1

1

12k2
1S 1

24k2DL~L11!. ~25!

This is very similar to the equation for the energy ofp1 ~13!,
but now the electronic eigenstate is invariant under both~14!
and ~15!, and the pseudorotational eigenstates must also be
invariant under these transformations, which limitsL to be
an even integer. Thus the lowest two states areS and D
states corresponding to the uncoupled electronic states.9

D. The configuration p3

The terms from this configuration, before coupling, would
be 4S, 2D, and2P. Here the high spin state is trivial, having
no Jahn-Teller coupling. For the low spin states we start by
finding reduced matrix elements of the Jahn-Teller coupling
within and between2D and 2P. The result is that the only
nonzero Jahn-Teller coupling is between2D and 2P, the
matrix elements couplingP to P or D to D are zero. This
absence of diagonal Jahn-Teller terms is noted in the context
of cubic symmetry in Ref. 5, and why it happens is discussed
in Ref. 10. The interaction matrix in the basis ofP andD
states is found, using vector coupling coefficients, to be

MPD5
A3
2
k3

0 0 0 A3q5 q3 2q2 q5 2q42A3q1

0 0 0 2A3q2 2q41A3q1 q5 q2 2q3

0 0 0 0 2q5 2q4 22q3 q2

A3q5 2A3q2 0 0 0 0 0 0

q3 2q41A3q1 2q5 0 0 0 0 0

2q2 q5 2q4 0 0 0 0 0

q5 q2 22q3 0 0 0 0 0

2q42A3q1 2q3 q2 0 0 0 0 0

4 . ~26!

This matrix is transformed by a series of rotations in the angles,f, u, g, and the 838 rotation matrix is made up in
block-diagonal form from matrices given in the Appendix as follows:
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T PD5FBP~g! 0

0 BD~g!
GFCP~u! 0

0 CD~u!
GFDP~f! 0

0 DD~f!
G , ~27!

with the result that

MPD~a!5T PDMPDT PD
215A3kq3

0 0 0 0 0 0 0 2sinS a1
p

3 D
0 0 0 0 2sinS a2

p

3 D 0 0 0

0 0 0 0 0 sina 0 0

0 0 0 0 0 0 0 0

0 2sinS a2
p

3 D 0 0 0 0 0 0

0 0 sina 0 0 0 0 0

0 0 0 0 0 0 0 0

2sinS a1
p

3 D 0 0 0 0 0 0 0

4 .
~28!

At this stage the matrix is still in block form, so that different
energies for the2D and 2P states could be inserted on the
diagonal. With these states degenerate the eigenvalues are
obviously

E5A3kq$6sin~a1p/3!,6sin~a2p/3!,6sina,0,0%.
~29!

All of these roots that are not identically zero have the
same minimum energy for some choice ofa, and we choose
to take sina51. The fact that this lies outside the original
region 0,a,p/3 does not matter, we are just looking at a
different copy of the phase space. With this choice ofa the
$qi% are given by

q15q@~A3/2!sin2u sin2g#,

q25q~2 1
2 sin2 cosf cos2g1sinu sinf sin2g!,

q35q@ 1
2 ~11cos2u!sin2f cos2g1cosu cos2f sin2g#,

~30!

q45q@ 1
2 ~11cos2u!cos2f cos2g2cosu sin2f sin2g#,

q55q~2 1
2 sin2u sinf cos2g2sinu cosf sin2g!,

while the eigenstate for the lowest energy comes out as

u5
1

A2 3
sinu cosf

sinu sinf

cosu

A3
2

sin2u sin2g

2cosu sinu cosf sin2g2sinu sinf cos2g

1
2 ~11cos2u!sin2f sin2g2cosu cos2f cos2g

1
2 ~11cos2u!cos2f sin2g1cosu sin2f cos2g

2cosu sinu sinf sin2g1sinu cosf cos2g

4 .
~31!

To find the strong coupling pseudorotational states in this
case we must use the appropriate form for the vibrational
kinetic energy, which is~2! at a5p/2. In order to standard-
ize the harmonic oscillator part of the operator this time we
take a factor (q3sin 3a)21/2 out of c before settinga5p/2
and get

HKE52
1

2 F1q ]

]q S q ]

]qD1
1

q2
]2

]a2 1
9

4q2G
2

1

8q2
@4lx

214ly
21lz

2#. ~32!

The operator on the second line is a version of the Hamil-
tonian of the symmetric top. The energies and eigenfunctions
of the symmetric top and their relationship to the represen-
tations of finite rotations are set out in Chap. 4 of Edmonds.11

The eigenfunctions are

DM ,K
~L ! ~f,u,g!5ei ~Mf1Kg!dM ,K

~L ! ~u!, ~33!
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whereL,M ,K are integers,L>uM u, andL>uKu. With the
effective moments of inertia in~32! the kinetic energy eigen-
values are

1

2q2 FL~L11!2
3

4
K2G ; ~34!

to find the¹2u term we notice that the components of the
eigenvector~31! is made up of these symmetric top eigen-
states, and if it is written

u5
1

A2 F v1•••

v2
G , ~35!

thenv1 is composed of states withL51, K50 while v2 has
L52, K52, so

2
1

2
¹2u5

1

A2
1

2q2F 2v1•••

3v2
G , ~36!

so that

2^uu 12¹2u&5
1

2q2
5

2
. ~37!

The vibronic Schro¨dinger equation is thus

2
1

2 F1q ]

]q S q ]

]qD1
1

q2
]2

]a2 2q212A3kqGc1
1

q2 F542
9

8Gc
2

1

8q2
@4lx

214ly
21lz

2#c5Ec. ~38!

The first part of this equation represents a two-dimensional
harmonic oscillator with a displaced origin, and the rest the
symmetric top, also with the energy origin displaced. Using
the value ofq at the minimum,q5A3k, the energies come
out as

E352
3

2
k2111

1

24k2
1

1

6k2
@L~L11!2 3

4K
2#. ~39!

The electronic eigenstate~31! is seen to be invariant under
~14! and to change sign under~15!, and the pseudorotational
eigenstates must change sign with the electronic eigenstate to
preserve invariance. Thus invariance under~14! requiresK
to be even, and the sign change under~15! requires the pseu-
dorotational eigenstates to be

F rot5dM ,K
~L ! ~u!eiMfH cosKg for L odd

sinKg for L even.
~40!

The lowest state hasL51, K50 followed closely in energy
by L52, K52; next comesL54, K54 followed by
L53, K52. There are noL50 states, andK50 only oc-
curs with oddL.12

III. PHYSICAL DISTORTIONS OF THE MOLECULE

Because of the large number of atoms in a C60 molecule,
a set ofhg normal coordinates can take many forms, but a

simplehg basis approximates to a rotating quadrupole distor-
tion of the sphere. Taking this form we find that thea50
surface corresponds to an ellipsoidal (3z22r 2) distortion,
with the direction of its axis of symmetry given by (u,f)
relative to a fivefold axis. This is the type of pseudorotation
to be expected withp1, p2, p4, or p5. On the other hand, the
distortion ata5p/2, as inp3, is of (x22y2) type, which
requires the three angles (g,u,f) to describe its orientation.
This latter is called a bimodal distortion by Auerbach, Ma-
nini, and Tosatti.6

The sign of k and the type of distortion

For the initial coupling of a singlep-type orbital to a
single hg distortion, only the productskqi enter into the
Hamiltonian. We are therefore entitled to takek positive, as
we do, allowing the sign to be swallowed up in the definition
of the qi in terms of actual displacements. For instance, the
form of ~4! shows that there is a minimum at
q15k,qiÞ150, and if the shape at the minimum is known,
the sign ofq1 follows.

Oncek and qi are fixed in this way the signs are held
constant for the rest of the paper. For the configurationspn

the coupling constants are given in terms of the one-electron
k, sign and all. The choice ofa to give the minimum energy
in each case can then be translated into the actual values of
theqi .

IV. INTERMEDIATE COUPLING STRENGTHS,
NUMERICAL WORK

The results reported so far have assumed both that the
Jahn-Teller interaction is strong compared with the phonon
energy (k@1) and that the term splitting can be left out. In
fact, we can do better than this on both counts.

A. Term energies inpn

It is possible to express all the term energies for all the
terms of pn, all n, in terms of two parameters which are
electrostatic self-energies, just as is done for atomicpn con-
figurations. In Condon and Shortley13 these atomic term en-
ergies are given as

p2~p4! Energy
1S ~6!F0110F2

1D ~6!F01F2

3P ~6!F025F2

and

p3 Energy
2P 3F0

2D 3F026F2

4S 3F0215F2

, ~41!

whereF0 andF2 are certain integrals of the Coulomb inter-
action within charge distributions depending on thep wave
functions.

Exactly similar expressions can be obtained for molecular
orbitals of T1 symmetry, but the definitions ofF0 and F2
have to be phrased a little differently. This type of calculation
is done for molecular orbitals under cubic symmetry by
Sugano, Tanabe, and Kamimura,14 and their work can be
modified to cover the icosahedral orbitals used here. All the
integrals required are electrostatic self-energies of charge
densities that are products of theT1 wave functions taken in
pairs. As the symmetric productT1^T1 contains only
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A%H, any product of por t1 wave functions can be written
as a linear combination of theA andH (S andD! states. The
Coulomb energy operator,( i. je

2/4pe0r i j , is invariant un-
der space rotations, so only two distinct integrals survive,
one for theA product and one for theH product. It turns out
thatF0 is three times the self-energy of theA product, while
F2 is 3/2 times the self-energy of theH product. For ex-
ample, if we represent two components of theT1 states as
cx andcy , then one of theH components of the symmetric
product is (cxcy1cycx)/A2. The product of the two wave
functions produces a charge densityr(r )5A2cxcy and

F25
3

2E E r~r1!
e2

4pe0ur12r2u
r~r2!dt1dt2 . ~42!

The c i here are to be interpreted as the actual~real! elec-
tronic wave functions of the molecular orbitals, a set of
atomicp states are a particular example of such orbitals. As
self-energies the integralsF0 andF2 are intrinsically posi-
tive. The fact that the orbitals are spread over the C60 sphere
will make them rather smaller than similar integrals in at-
oms.

The effect of including these term splittings at strong
Jahn-Teller coupling can be seen by including them in the
various interaction matrices. Inp2 and p4 the Jahn-Teller
depression of the3P state is 1/4 of that in the combined
singlet states, so that at strong Jahn-Teller coupling the3P
state is above the singlet states, and we have seen that of the
singlet states,1S is below 1D. There is thus a complete
reversal of the ordering of the states as the Jahn-Teller cou-
pling strength is turned up, as is shown by the calculation
illustrated in Fig. 1.

For p3 there is an uncoupled4S state, with no Jahn-Teller
interaction. Because of the term splitting between the2D
and 2P states themselves, the Jahn-Teller effect will only
come in at second order, so if it is weaker than the term
splitting it is effectively quenched. A strong Jahn-Teller in-
teraction puts the2P state marginally below the2D state,
and both well below the4S, so again the Jahn-Teller inter-
action reverses the order of the states, as shown in Fig. 2.

B. Term energies in C60
n2

The pn model is not really good enough to represent the
term splittings in C60

n2. This is because the next unoccupied
orbital abovet1u , t1g , is rather close in energy. The result is
that configurations other thanpn may be mixed in, and this
will alter the simple nature of the configurations assumed
here. The effect of this on the term energies has been inves-
tigated by Negri, Orlandi, and Zerbetto.15 These authors have
done calculations of the energies of the low excited states of
C60

n2 up ton56 with the inclusion of thet1g states in their
base along with thet1u states. They find a different ordering
of terms from the Hund’s rule ordering ofpn as well as extra
terms deriving from other configurations, particularly so
whenn.3 and higher spin states appear. They point out that
the energies are all so close that other types of calculation
may well give other orderings, but it is worth listing a few of
their results to show the sort of thing that happens.

n

2 1Ag
1Au

3T1g
1Hg

0 0.16 0.19 0.30

~ 1S! ~ 3P! ~ 1D !

3 4Au
4Ag

2T1u
2Hu

4Hg

0 0.10 0.42 0.43 0.45

~ 4S! ~ 2P! ~ 2D !

4 1Ag
3T1g

1Au
1Hg

1T1u

0 0.01 0.14 0.15 0.16

~ 1S! ~ 3P! ~ 1D !

5 4Ag
2T1u

6T1u
4Au

4Tg
4Hg

0 0.01 0.11 0.19 0.21 0.24

~2P!

~43!

Here the energies are in eV, and the terms that would be
expected frompn are shown in parentheses.

The amount of configuration interaction indicated by the
energies in this table will alter the model used in the present
calculations in several ways. The accidental SO~3! symmetry
will disappear, and with it the simple way all the coupling
coefficients depend on one parameterk. Without the symme-
try basis the size of the matrices make the type of numerical
calculation described in the next section unprofitable, but
these calculations do show how interpolation can be used.
The Jahn-Teller coupling coefficients within and between
terms will additionally depend on the coupling withint1g and
there will be pseudo-Jahn-Teller coupling via odd modes of
vibration between odd and even terms with the same spin.

It is possible to make some general remarks about the
effect of the Jahn-Teller interaction on the terms shown in
~43!. The magnitude of the Jahn-Teller energy is about 0.1
eV ~Ref. 16! as is the average frequency of thehg modes, so
the scale of the term splitting used in Figs. 1~b! and 2~b! is of
the correct order for C60

n2, which should come in in the
region ofk2 5 1 to 1.5. Inn52 andn54 the configuration
interaction already makes the1Ag(

1S) state lowest, and the
Jahn-Teller interaction will probably encourage it to remain
so. There is experimental evidence that this is so inn52.17

In n54 the near degeneracy of1Ag(
1S) and 3T1g(

3P) will
allow a linear coupling within the triplet state to make it the
ground state if the coupling is really weak, but at the inter-
mediate coupling strength assumed, the coupling in
$1Ag(

1S),1Hg(
1D)% can be expected to bring1Ag(

1S) to the
bottom. In n53 the Hund’s rule that puts a quartet state
lowest is obeyed, and there is the possibility of interaction
with the 4Hg state to push this state down lower than is
shown in Fig. 2~b!. In n55 the number of nearby quartet
states could make the effect of off-diagonal coupling of the
4Ag state competitive with the effect of linear coupling of
2T1u(

2P).

C. Numerical work

All of the pn^h systems can be set up as matrices in the
uncoupled states for numerical diagonalization, using the
SO~5! group for handling the phonon excitations as de-
scribed in Refs. 8 and 18.
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The method involves first taking all theh mode excita-
tions for then-phonon state, and classifying them according
to irreducible representations of SO~5! and SO~3! ~angular
momentum!. This provides a unique labeling system for all
the states needed in this study. These states are then coupled
to the electronic state or states, and all the coupled states of
the required angular momentum are selected out as bases.
The Jahn-Teller interaction can then be set out as a matrix
within these bases, using angular momentum coupling coef-
ficients together with a limited number of fractional parent-
age coefficients for SO~5!.SO~3!, and formulas can be
found for a generaln. If term energies are to be included
they appear on the diagonal of the matrix along with the
uncoupled phonon energy. The resulting infinite matrix ex-
pands withn, but not as fast as if the symmetry adapted
bases had not been used. As what is required here is only the
energy of the few lowest states, the application of a Lanczos
method to a matrix cutoff at a large value ofn is suitable and
fast enough for the accuracy of the results to be monitored.
To do the extrapolation to find the value of the 1/k2 terms in
the energies it was found necessary to take a range of cou-
pling strengths to give values of the Jahn-Teller energy of 50
to 100. The cutoffn needed to be somewhat larger than the
Jahn-Teller energy.

For p1 the matrix has already been set up,8 but now with
very much increased computing power at hand, and with the
use of the Lanczos method, the calculations can be pushed to
a large enoughk to verify that, as 1/k2→0, the lowest energy
does tend toE1,5 @Eq. ~13!# with L51.

The matrices forp3 are simpler and smaller than those for
p2. They are simplified as a result of the lack of Jahn-Teller
coupling within 2P and within 2D. States with even num-
bers of phonons associated with2P will only couple to states
with odd numbers of phonons associated with2D, and vice
versa. In particular, as noS states can be produced from
electronicP states with vibrations of this symmetry, noS
states will change energy with Jahn-Teller coupling strength
~see Ref. 6, Fig. 6!. The matrices that give the lowestP and
D states have been set up and run with large enough values
of k to verify that the lowest energies are given correctly to
order 1/k2 by E3 @Eq. ~39!# with L51, K50 and with
L52, K52. The term energies have also been included in
these matrices, and in Fig. 2 the energies forp3 are plotted
with and without the term splitting. An arbitraryD-P split-
ting of 2\v is used, and the diagram shows the reversal of
the states as the Jahn-Teller coupling is increased, as de-
scribed in the previous subsection.

The extra complication in the matrices forp2 arises from
the existence of coupling betweenS andD, as well as within
D. Consequently, there is no segregation of the product
states, which makes the matrix forp2,D significantly larger
than the matrix forp3,D, and two different reduced matrix
elements must be introduced to allow for the two types of
coupling. These matrices have also been constructed and run
at strong coupling, to verify the asymptotic form of the en-
ergy, and at weak coupling, with and without term splittings,
to provide Fig. 1. Here the choice of parameters is exactly
the same as for Fig. 2.

V. MULTIPLE MODES OF VIBRATION, Heff

At this point we should relax the assumption made so far
that there is only one set ofhg modes to be considered. In

fact, there are eighthg vibrational modes in C60 spread over
a range of frequencies such that the highest frequency is
about five times the lowest.19 The calculated coupling
strengths between these modes and the partially occupied
t1u orbital vary a good deal between authors, but all the
calculations agree that no one mode is much more strongly
coupled than all the others. Under these circumstances it
makes sense to work in terms of an effective or averaged
mode, and it is possible to make a choice that gives the best
approximation to the ground-state energy.20

The choice goes like this: Assume that there is a set of
modes of appropriate symmetry, with the phonon energy of
the i th mode\v i , and its coupling strength iski ~this is in
the same sort of reduced units that have been used in this
paper, so that the Jahn-Teller energy for that particular mode
would be proportional toki

2\v i). Then an orthogonal trans-
formation on the mode coordinates picks out a chosen effec-
tive mode whose frequency and coupling strength are de-
fined by

\veff5\^v&5

(
i

\v iki
2

(
i
ki
2

and keff
2 5(

i
ki
2 . ~44!

We now find the low-lying energy levels of a Jahn-Teller
Hamiltonian of the appropriate form withkeff and veff as
parameters, calledHeff , and regard all the rest of the origi-
nal Hamiltonian as a perturbation. The rest of the Hamil-
tonian consists of a set of normal modes whose frequencies
lie between the frequencies of the original modes, and they
are coupled to the effective mode by an interactionH I that
has only off-diagonal matrix elements, and so only intro-
duces a correction by second-order perturbation.

The size of this correction to the eigenstates ofHeff de-
pends on the mean-square width of the distribution ofv i ’s of
which veff5^v& is a weighted average. The correction is
always to lower energy, and it increases withkeff to an upper
limit that is some fraction ofs5\(^v2&2^v&2)/^v& and
independant ofkeff , reached at aboutkeff51. At small keff ,
Heff is correct up to a correction of orderkeff

4 . Given some
assumption about the distribution ofki ’s over thev i ’s it is
possible to calculate these corrections at strong and weak
coupling as described below for the systems we are con-
cerned with here. Any calculation of the multimode correc-
tion at intermediate coupling strengths is prohibitively com-
plicated, but it has been done numerically in a much simpler
case,21 and the correction did vary smoothly between the two
regimes in the way described above.

For the sake of having some reasonable corrections to put
in the calculations we shall assume here that the eighthg
modes all have the same one-electron Jahn-Teller coupling
coefficient ki , and that their frequencies are uniformly
spread betweenv and 5v, with the result thatveff5v/3,
keff
2 58ki

2 , ands54veff/21. Eachki is assumed to be posi-
tive, as iskeff , with the signs taken up in the definitions of
normal coordinates of each mode, and the distortion associ-
ated withveff is the sum of distortions proportional toki in
each mode~see Ref. 20!.
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A. The significance ofHeff

The effective Hamiltonian is chosen in the first place to
give the best match to the lowest energy level in the system
consistent with the use of a single effective frequency. In
particular, it gives correctly the energy of the minimum on
the lowest adiabatic potential energy surface~APES!, the
first term in ~13!. All the corrections discussed below are
concerned with the residual effects of the kinetic-energy
terms, though clearly this effective Hamiltonian takes care of
many of these too. Hence calculations, such as those by
Koga and Morokuma,16 which work out the Jahn-Teller en-
ergy by minimizing the energy under static distortions of the
cage, should be interpreted in terms of the effective Hamil-
tonian. Their Jahn-Teller energy of about 2 kcal/mol in
C60

2 should be equated with the APES minimum energy of

2 1
2keff

2 \veff . ~These authors also calculate the small extra
energy produced by a further distortion, the ‘‘warping’’ ef-
fect, which is not allowed for here, but see Sec. VI.!

As appears in the following subsections, the corrections
that are calculated to the single-mode approximation are re-
ally quite small, and do not differ greatly from one configu-
ration to another. They are so similar and unimportant that
they have been left out as an unnecessary complication from
Figs. 1 and 2; Fig. 3 can serve to show the general effect.
This means that the effective HamiltonianHeff works very
well on its own for calculations of the low-lying energies,
even where, as here, the coupling strength is spread over a
rather wide range of frequencies. It was necessary to do the
calculations detailed below to justify the use ofHeff , but it
is a happy outcome that their results can be neglected.

B. Multimode corrections for p1, p5, and p2, p4: 3P

All theseP states are relatively simple to work with, and
can be treated under one heading. The methods of Ref. 20 for
strong coupling can be used straightforwardly. The correc-
tions discussed below are included in the plot of energies in
Fig. 3. The corrections at large and small coupling strength
are as calculated, and they should presumably be joined by a
smooth curve.

1. Strong coupling

At strong coupling the correction to the energy of the
lowest APES comes by coupling to the pair of upper surfaces
that are at an energy (3/2)keff\veffq above the lowest one,
and the minimum occurs atq5keff , as can be seen from~5!.
Consequently the energy denominator for this second-order
perturbation is (3/2)keff

2 \veff . The numerator of the second-
order perturbation can be found by using the sum rules~25!
and ~27! of Ref. 20, but as the use of~27! requires some
redefinition of the interaction matrices from the usage in this
paper we shall work directly from Eqs.~18! and~22! of that
paper. Putting these two equations together, and concentrat-
ing on the largest terms at strong coupling, we find the re-
quired interaction Hamiltonian can be written in the notation
of Ref. 20 as

H I5 (
j ,iÞ1

cikeffV
~ j !a i

~ j !† , ~45!

where a i
( j )† creates one phonon in the background set of

normal modes, so this interaction connects the ground state
to states with one phonon excited. The matricesV( j ) are de-
fined by rewriting~4! in the form

MT5k(
j
V~ j !qj . ~46!

The numerator for the second-order perturbation is thus

1
2keff

2 (
i
ci
2(
j ,n

z^0uV~ j !un& z2, ~47!

where the sum overn is over the excited APES’s andu0& is
the vibrational eigenstate on the lowest APES. The extra fac-
tor of 1/2 is because Ref. 20, unlike this paper, usesai and

FIG. 3. Calculated lowest energy level for
p^h. Multimode corrections toHeff for the
eight hg modes of C60 at weak and strong cou-
pling are shown. The dashed line shows the as-
ymptotic energy.
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ai
† in the definition of the Jahn-Teller interaction@Eq. ~1!#.

The sum( j ,nz^0uV( j )un& z25 3
2 can be calculated from the

eigenvectors that form the matrix in~6!, and the sum( ici
2 is

\veffs (s as defined above!. The result of putting all these
ingredients into the second-order perturbation produces a
correction to the ground-state energy of

2 1
2s, ~48!

which is the correction shown in Fig. 3. This calculation is
valid for keff

2 @1, but the numerical work in Ref. 21 suggests
that it holds forkeff

2 *1, and that it is also an upper limit on
the correction.

2. Weak coupling

At weak coupling,ki
2!1, the Jahn-Teller interaction first

comes in as a second-order perturbation, and the energy to
that order is

E~2!52
5

4 (
i
ki
2v i52

5

4
keff
2 v eff . ~49!

Consequently the multimode correction to the effective
Hamiltonian is a correction to the next order of perturbation,
which is fourth order inki .

Taking nondegenerate perturbation to fourth order is not
usually done explicitly in the textbooks, but the standard
methods can be used to give the expression for the correction
to the ground state by a perturbationH as

E~4!52 (
l ,k,nÞ0

H0lHlkHknHn0

ElEkEn
1 (

l ,kÞ0

H0lHl0H0kHk0

ElEk
2

~50!

as long asH0050 as it is in this case.~Nondegenerate theory
can be used because the electronic state belongs to a single
irrep of the symmetry group of the Hamiltonian, and so will
not be split by perturbation to any order.!

The best way to get the matrix elements to put in here is
by using the SO~5!.SO~3! group chain for the phonon states
as is done to prepare the matrices for numerical diagonaliza-
tion. For a single mode of vibration the ground state is con-
nected to only one singly excited phonon state, withL52,
and this in turn is connected to two doubly excited phonon
states, withL52 andL50. These matrix elements of the
Jahn-Teller interaction areA5/4k\v, A1/2k\v, and
A7/8k\v, respectively. It is very easy to substitute these into
~50! to give

E~4!52
~ 5
4 !~ 1

21 7
8 !

2
k4\v1~ 5

4 !2k4\v ~51!

5
45

64
keff
4 \v. ~52!

This fourth-order correction is positive, as is usual in dy-
namic Jahn-Teller systems, corresponding to the fact that the
asymptotic value of the energy,E1,5 ~13!, is greater than
E(2), which would not be the case with simple linear cou-
pling. Before looking for the multimode correction toE(4),
we should also note that the second term in~50! is a product

of two contributions from second-order perturbation, and so
is correctly given byHeff , thus only the first term needs to
be reanalyzed.

For the multimode system we need to consider all types of
two-phonon states. Those with only one mode excited, at
2\v i , are as listed above. The states with two different
modes excited, at (\v i1\v j ), will be made up from prod-
ucts of the two differentL52 states, one from one excitation
of mode i and one from one excitation of modej . These
products comprise states withL52, L51, andL50, with
the important difference that theL51 state is odd under the
interchange ofi and j , so its matrix elements change sign
under this interchange, while the other two states are even.
The relative magnitudes of the coupling strengths to these
three states can be found using vector coupling coefficients
~6j symbols!, and the squares are in the ratios 7:9:4. The
total coupling strength for these three states is the same as
for the excitation of one phonon. Using all this information
we start counting diagrams, and after some tedious algebra
end up with a multimode correction in fourth order of

Emm
~4! 52

45

128(
i , j

ki
2kj

2 ~v i2v j !
2

v i1v j
. ~53!

This is negative definite, as expected, and when calculated
with the eight-mode model for C60 described above gives a
correction

Emm
~4! 520.07keff

4 \veff , ~54!

and this correction is shown in Fig. 3.

C. Multimode corrections in p2, p3, and p4

1. Strong coupling

At strong coupling we assume that the coupling is strong
enough to override the term splittings, so that the matrices
MSD ~16! andMPD ~26! can be used exactly asMT was used
in the previous subsection.

ForMSD (p
2 andp4) the lowest root is at22kq, so the

minimum is atq52k. The energies of the higher APES’s
above the lowest one are

~ 3
2 ,

3
2 ,3,3,3!32k2 ~55!

and the quantities( j z^0uV( j )un& z2 are, in the same order,

~ 8
9 ,

1
6 ,

8
3 ,

8
3 ,

1
6 !3k2. ~56!

Accordingly, the strong-coupling correction inp2 andp4 is

2
1

4
sF8/93/21

1/6

3/2
12S 8/33 D1

1/6

3 G52
137

216
s. ~57!

ForMPD (p3) the lowest root is at2A3kq, so the mini-
mum is atq5A3. The energies of the higher APES’s above
the lowest one are

~ 1
2 ,

1
2 ,1,1,

3
2 ,

3
2 ,2!33k2 ~58!

and the quantities( j z^0uV( j )un& z2 are, in the same order,

~ 3
4 ,

3
4 ,0,

3
2 ,0,0,0!3k2. ~59!

3786 53MARY C. M. O’BRIEN



Accordingly, the strong-coupling correction forp3 is

2
1

6
sF2S 3/41/2D1

3/2

1 G52
3

4
s. ~60!

Evidently, at strong couplingHeff in all these cases re-
mains a very good approximation, only requiring a correc-
tion of a similar size to that shown in Fig. 3.

2. Weak coupling

If the term energies are neglected the calculation using
Heff is still correct to second order, and a fourth-order cor-
rection can be calculated by similar methods to those in the
previous subsection. However, when term energies are in-
cluded, the energy denominators in the second-order pertur-
bation are sums of term energies and phonon energies, so
simple results such as those in~49! no longer apply. It is
therefore more important to have a multimode correction to
the second-order energy, and this has to be done explicitly
for each particular choice of term energy and distribution of
mode coupling.

As an example, we have worked out the second-order
perturbation for the2D state ofp3, using the same term
splitting as in Fig. 2, and the same model of the eighthg
modes as before. The result is a second-order contribution to
the energy for this particular case, which comes out in terms
of the effective parameters as

Emm
~2! 520.544keff

2 \veff . ~61!

This has to be compared with the value in the single-mode
approximation

Eeff
~2!520.500keff

2 \veff , ~62!

which gives the initial slope of the1D level as plotted in Fig.
2. Clearly, even with this broad spread of vibrational modes
coupled, the corrections to the single-mode energies are quite
small, but equally clearly the fine details of how theS andD
levels are shown changing places are not to be relied on.

The 3P level shown on Fig. 2 does not have a Jahn-Teller
interaction with the singlet states, and the multimode correc-
tions for this level will be the same as are shown in Fig. 3.

VI. ‘‘WARPING’’

As mentioned in Sec. I, all the calculations reported so far
have been made by including a Jahn-Teller interaction that is
linear in the phonon coordinates to go with the original har-
monic vibrational Hamiltonian. This Hamiltonian is invariant
under the rotational operations of the SO~3! group, and it has
been by using all the theory that is associated with vibra-
tional symmetry that so much progress has been made. If
either the restriction of linear coupling or of harmonic forces
is relaxed the symmetry of the Hamiltonian is reduced to
icosahedral, and the effect can be adequately represented at
strong coupling as if the equipotentiala5const surface is
warped, so that it has energetic hills and holes. Unless the
departure from SO~3! symmetry is strong, the warping po-
tential will derive from the lowest-order icosahedral invari-
ant polynomial, which destroys that symmetry. Because the
S, P, andD states are not split under icosahedral symmetry

whatever the coupling strength, the warping will have very
little qualitative effect. The states will shift a little, but that is
all. Nevertheless, it is an interesting theoretical problem. The
discussion that follows is all in terms of the strong-coupling
theory, but in the absence of any way of calculating the in-
termediate strength, the best that can be done is to interpolate
between strong and weak, and we must remember that these
interactions that come in with a higher power ofq will be
relatively small at weak coupling where the mean value ofq
is small.

There are two linearly independent third-order polynomi-
als in the$qi% that are invariant under icosahedral symmetry.
They can be written

I 3
~1!522q1

31q1~23q2
216q3

216q4
223q5

2!23A3q22q4

13A3q52q426A3q2q3q5 ~63!

and

I 3
~2!522q1

31q1~23q4
216q5

216q2
223q3

2!13A3q42q2

23A3q32q226A3q4q3q5 . ~64!

The first of these polynomials is also invariant under the
SO~3! symmetry, and can be written in terms of the angular
parametrization as

I 3
~1!522q3cos3a. ~65!

The second one is in general a much more complicated func-
tion of the angular parameters, but on thea50 spherical
surface it can be expressed in the form of a sixth-order har-
monic function,

I 3
~2!5Vicos5231z62315r 2z41105r 4z225r 6

142z~x5210x3y215xy4!. ~66!

This function has extrema that correspond to distortions of
the molecular cage of eitherD5d or D3d symmetry, with
either theD5’s at maxima and theD3’s at minima or vice
versa. In between are saddle points ofD2h symmetry.

A. Warping in p1 and p5

This was described in 1989 by Ceulemans and
Vanquickenborne,22 who plottedVicos, the warping potential
on the a50 surface. The ground-state symmetries have
since been discussed by Wanget al.23 and by Dunn and
Bates.24 If the warping effect is strong enough to override the
kinetic-energy terms introduced in Sec. II, then we must
think of the wave function of the lowest vibronic states as
being a linear combination of states localized in the minima
of the warping potential. Appropriate linear combinations
can be constructed by symmetry, and they must be chosen to
satisfy the symmetry limitations set out in Sec. II B. There
are twelveD5d minima on the sphere, at the vertices of an
icosahedron, but as two points on the sphere corresponds to a
single point inq space, there are six distinct equilibrium
positions. Similarly, if theD3d points, which occur at the
twenty vertices of a dodecahedron, are lowest, there are ten
different equilibrium positions.

53 3787VIBRONIC ENERGIES IN C60
n2 AND THE JAHN-TELLER EFFECT



If the sixD5d minima are lowest, then with strong warp-
ing the states allowed by the symmetry limitations are two
triplets, T1u and T2u , with T1u lowest on any reasonable
model. This means that introducing a smaller warping poten-
tial will split the first excited pseudorotational state,L53,
and bring down theT2u component of it towards the ground
state. The originalT1u or p state may be shifted but it will
not be split.

If the tenD3d minima are lowest, then the states allowed
with strong warping areT1u , T2u , andGu . The lowest state
is againT1u , while the other two together come from the
L53 pseudorotational state. As before the originalT1u or p
state may be shifted but it will not be split.

B. Warping in p2 and p4

Here the phase space to be considered at strong coupling
is also a50, as shown in Sec. II C, so the shape of the
warping surface is just the same as forp1 above. The only
difference is in the symmetry limitations on the vibronic
wave function, which must now be even under inversion on
the sphere. The result is that if the sixD5d points are minima,
then the appropriate linear combinations for the vibronic
states areAg andHg , or S andD, with theS state lowest,
which exactly account for the lowest two pseudorotational
states. If the minima are at the tenD3d states, then the linear
combinations are ofAg , Hg , andGg symmetry, which rep-
resent theL50, L52, and part of theL54 pseudorotational
states. Again the lowest states may be shifted by a moderate
amount of warping, but they will not be split, and as their
ordering is the same at weak and strong warping we may
assume it remains the same throughout.

C. Warping in p3

This is a different and more complicated problem because
the minimum potential occurs ata5p/2, which also corre-
sponds toI 3

(1)50. Equations~30! show that theq’s on this
surface depend ong as well as onu andf, so there is no
longer a simple spherical geometry to be exploited. Inspec-
tion of ~63! and ~64! shows that if the conditionI 3

(1)50 is
satisfied for some set ofq’s it is also satisfied by the same set
taken negative. However this inversion operation changes
the sign ofI 3

(2) , so the warping energy is symmetrical about
zero, and we only need look at one choice of sign for it.

An explicit expression for the warping potential on
a5p/2 can be found in terms of the symmetric top wave
functions quoted in Eq.~33!, and it is

V~f,u,g!5@A11~D5,6
~6!1D5,26

~6! 2D25,6
~6! 2D25,26

~6! !

2A7~D0,6
~6!1D0,26

~6! !#1A55@A11~D5,2
~6!1D5,22

~6!

2D25,2
~6! 2D25,22

~6! !2A7~D0,2
~6!1D0,22

~6! !#. ~67!

A numerical search shows that the minimum value of
V(f,u,g) is 22, and that it takes that minimum value over
a set of six closed loops in$f,u,g% space. The fact that the
minimum energy occupies a one-dimensional continuum in-
stead of a set of discrete points as in the cases considered
previously means that there will still remain some of the
rotational kinetic energy associated with the ground states. It

has not proved possible yet to find an analytical form for the
closed loops or to solve the associated Schro¨dinger equation,
but, as in the other cases, warping is not expected to alter the
degeneracies of the states, nor shift their energies on any-
thing but a small scale.

VII. ENERGY ORDERING AND ‘‘NEGATIVE U ’’

The big difference between the Jahn-Teller energies in
p1 andp2 that gives rise to the observed negativeU in theV
centers in silicon is very obvious from the figures. On the
other hand, the advantage ofp2 overp3 is quite small unless
the Jahn-Teller interaction is very strong.~In comparing the
figures it should be noted that, while Figs. 1 and 2 are plotted
on the same scale, the scale in Fig. 3 is shorter in energy and
longer ink2.) What is not obvious from the figures alone is
that their energy origins must be shifted relative to each other
because of the repulsion that appears as the integralF0 in
~41!, as well as by a multiple of the ionization energyEp of
the t1u molecular orbital. Together these terms add the fol-
lowing energies to the different configurations:

DE52~1,2,3,4,5!Ep1~0,1,3,6,20!F0 , ~68!

for the configurations (p,p2,p3,p4,p5), respectively.
The other effect that can be seen from these figures is the

effect of the Jahn-Teller interaction in reversing the order of
the energy levels within a configuration. It can be seen that,
even at these relatively modest term splittings, the coupling
strength at which the high spin state is no longer below the
low spin states can be well estimated by looking at the as-
ymptotic large-k expressions for the Jahn-Teller energies.

In C60
n2 with configuration interaction taken into account

the discussion in Sec. IV B suggests that thepn model still
gives the correct ground state, except for the case ofp5

where a high spin ground state is likely.

APPENDIX: ROTATION MATRICES

1. Rotation matrices for p states

BP~g!5F cosg sing 0

2sing cosg 0

0 0 1
G , ~A1!

CP~u!5F cosu 0 2sinu

0 1 0

sinu 0 cosu
G , ~A2!

DP~f!5F cosf sinf 0

2sinf cosf 0

0 0 1
G . ~A3!
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2. Rotation matrices for d states

AD~a!53
cos

a

2
0 0 sin

a

2
0

0 1 0 0 0

0 0 1 0 0

2sin
a

2
0 0 cos

a

2
0

0 0 0 0 1

4 , ~A4!

BD~g!5F 1 0 0 0 0

0 cosg 0 0 2sing

0 0 cos2g sin2g 0

0 0 2sin2g cos2g 0

0 sing 0 0 cosg

G ,
~A5!

CD~u!5F ~3c221!/2 2A3sc 0 A3s2/2 0

A3sc ~2c221! 0 2sc 0

0 0 c 0 s

A3s2/2 sc 0 ~11c2!/2 0

0 0 2s 0 c

G
~A6!

~wheres5sinu andc5cosu),

DD~f!5F 1 0 0 0 0

0 cosf 0 0 2sinf

0 0 cos2f sin2f 0

0 0 2sin2f cos2f 0

0 sinf 0 0 cosf

G .
~A7!
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