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When electrons are added to neutral,&hey go mainly into at,, orbital. The energy of such a,()"
configuration is affected by a Jahn-Teller interaction vhighvibrations as well as by the Coulomb interaction
that separates the terms. These energies are found for strong, intermediate, and weak coupling; with and
without the term splittings. Figures illustrate how the Jahn-Teller interaction inverts the sequence of energy
levels. Modifications needed to allow for the configuration interaction with the neggloybital are indicated.
The effect of the existence of eight differdmf modes instead of the one usually included is discussed, and an
effective single-mode Hamiltonian is proposed that is shown to give a very good approximation to the energies
of low-lying levels. The effect of all this on pairing energies is discussed. A discussion of the effect of warping
terms in the Hamiltonian is included.

[. INTRODUCTION Jahn-Teller interaction to get a correct fit with experiment.
In Cgy", in contrast with theV/ centers, we do not have
The Cg, molecule in suitable surroundings can act as adirect measurements of the various energies. It is likely that
recipient for one or more negative charges. These extra elethe Jahn-Teller interaction is not particularly strong relative
trons go mainly into a triply degenerate molecular orbitalto the vibrational frequencies, and that the term energies are
whose symmetry corresponds to tfig, irreducible repre- neither dominant nor negligible. Unlike thécenters, we do
sentation(irrep) of the symmetry group of the molecule, not have to consider the different coupling strengths ahd
I, so that the state with extra electrons can be described 7, vibrations, but because of the higher symmetry the effects
as a €;,)" configuration outside closed shells. The terms ofof the kinetic energy must be included. Also ihere are
such a configuration are mostly degenerate in energy, and saght hy modes of very different frequencies, all of which
their energies can be expected to be further altered by thghould be included in the Jahn-Teller coupling, and this pro-
Jahn-Teller interaction with distortions of the molecularduces an extra complication.
cage. The nature of the distortion and the sizes of the energy The problem for G,"~ was discussed at length by Auer-
shifts will depend on the strength of the Jahn-Teller interacbach, Manini, and Tosatliand this study can be regarded as
tion, the size of the Coulomb interaction producing the termcarrying on from there. This paper takes a different line from
splittings, and the energies of the modes of vibration that aréheirs, in that we work from a basis of the coupled electronic
coupled in. It is this collection of problems that are addressedtates rather than from a basis of the uncoupled configura-
in this paper. tions. This makes it easier to consider the effects of the phase
The problem of the effect of Jahn-Teller interactions inof the electronic wave functions, as well as making it simple
states resulting from multiple occupancy of triply degeneratdo include the term energies. Using this basis it is possible to
t states has been extensively studied over the last twentyarry a numerical calculation of the energies through all cou-
years in connection with the various charge states of theling strengths, including the term energies. Where our nu-
vacancy in silicon ¥ center$ by Watkins and his collabora- merical calculations overlap we agree with Auerbach, Ma-
tors (reviewed by Watkiny, and the connection with the nini, and Tosatti. We differ from them in the details of some
similar problem in Gg"~ was pointed out by Lannoet al?  small corrections at strong coupling, and in this we are cor-
The similarity consists not only in the symmetry type of theroborated by the numerical results.
electronic orbitals being filled, but also in the symmetry type This paper also addresses the question of the dight
of the vibrational modes they interact with. TWecenters are  modes, and shows how an effective single-mode Hamil-
at sites of cubic symmetry, and the modes of vibration contonian can be set up that produces a good approximation to
cerned are of two symmetry typesandr,, but if the modes the low-lying energies.
are taken to be degenerate in frequency and in interaction
strength then the Jahn-Teller Hamiltonian is identical to that
for t states with theny modes in icosahedral symmetry. In
the V centers a considerable amount of experimental evi- All the work is built on the by now well-known fatthat
dence has been accumulated, showing that the Jahn-Telldre Hamiltonian for linear Jahn-Teller coupling bfelec-
interaction is strong, even strong enough to reverse the exronic states tdyy modes is invariant under the operations of
pected ordering of the different charge states and to produdbe three-dimensional rotation group &D an accidentally
(in the terminology of Andersoh “negativeU” pairing en-  higher symmetry than the icosahedral symmetry of the full
ergies, which are discussed in a review article by Watkitts. Hamiltonian. It is also a fact that all angular momentum
has also been shown by Anderson, Ham, and Grossthah  states up td.=2 remain unsplit in the icosahedral group, so
the term energies must be taken into account along with th# we stick with linear coupling it is possible and convenient
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FIG. 1. Calculated energy levels at moderate coupling strength  F|G. 2. Calculated energy levels at moderate coupling strength
for p? andp?, (a) without and(b) with a term splitting correspond-  for p3, (a) without and(b) with a term splitting corresponding to
ing to Fo=fiw/3. Energy is in units ofiw. In (b) at k’=0 the  F,=%/3. Energy is in units ofiw. In (b) atk?=0 the 2P elec-

'S electronic state is aE=4.51w, the lowestS state is a one- tronic state is aE=3.5, the lowestP state is a one-phonon
phonon excitation fromtD. The dashed line shows the asymptotic excitation from2D. The dashed line shows the asymptotic energy.
energy.

» centers in silicorisee the references in the Introduclichhe
to use angular momentum labeling throughout, to describeffect of configuration interaction on the energy ordering in
the electronic configurations g8 and the coupled states as Cgy'~ is discussed in Sec. IV B.
LS coupled terms in the usual spectroscopic notation. In Sec. V the effective Hamiltonia# is introduced to

We start in Sec. Il with a derivation of the energies inallow for the coupling to the eight differeit, modes. Some
strong coupling. In this section the term energies are asspace is devoted to deriving the corrections that are needed
sumed to be overridden by the Jahn-Teller interaction, antb get a good representation of the low-energy levels, and it
the vibrational kinetic energy produces a structure of pseuis shown that these corrections are really quite small, and do
dorotations above the potential-energy minimumyC is  not do much to alter the relative energies of the various con-
not expected to be a case of strong coupling, but the resulfigurations. We may thus use the single-mode calculations of
of these calculations are of interest in their own right, andthe earlier sections together with the effective parameters
can be tied in with the numerical work, which is valid at all with confidence, though it is important to remember always
coupling strengths. that this effective Hamiltonian is directed to giving the cor-

In Sec. IV the term splittings are introduced and the nu-rect ground state, and is of no use for the spectrum of excited
merical work that carries through all coupling strengths isstates.
described. The relative energies of all the terms of all the In Sec. VI the effect of a “warping” potential produced
different configuration®" depend on a single integral of the by anharmonicities in the vibrational restoring force and
Coulomb interaction, and the high spin states are alwaykigher-order terms in the Jahn-Teller interaction is consid-
lower than the low spin ones. However, the Jahn-Teller inered. This term will shift the low-lying energy levels, but it
teraction will always reduce the energy of the low spin statesvill not split them. In practice, this term is probably not
more effectively than the high spin states, so the choice ofmportant in Gg'~ because of the weakness of the Jahn-
spin of the ground state will be sensitive to the relativeTeller interaction, but it has been included because the theory
strengths of these interactions. Figures 1 and 2 illustrate this interesting and is new in the context of the multiple elec-
effect. This balance has been found to be important ilfthe tron states.
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[l. THE LOW-LYING ENERGY LEVELS AT STRONG then puts the system onto a particular(3Qnvariant surface
JAHN-TELLER COUPLING in phase space and forces a form for the kinetic energy. A set

fof pseudorotational energy levels follows. Finally we bring

In this segtlon we start by describing a parametrization of e phase changes of the electronic stite Berry phase
anhgy mode in terms of a set of angles in such a way as tq

make the best use of the S8 invariance(Sec. I A). We over the surface in phase space, and find a further limitation

. . _ . on the choice of pseudorotational states, leading to a pre-
then take each configuration of the fopfi in turn and dis- dicted structure of energy levels.
cuss the energy-level structure.

In each case the process starts by setting up the Jahn-
Teller interaction as a matrix of the five components of an
hy mode acting from the basis of the electronic states, using
the angular parametrizatigt), and finding a set of rotations The SQ@3) invariance of these systems is exploited by
that diagonalize the Jahn-Teller matrix. The choice of themaking a parametrization of the five components of a set of
remaining angular parameter that minimizes the lowest rooliy normal coordinates in the following way:

A. The hgy normal modes

d1=q[(3cof6— 1)cosu+ (\/3/2)sin?d sina cos],
qzzq[(\/§/2)sin29 COSp cosx— 3SiNY Cosp Sina cosy+sind sing sina sin2y],
dz=9[( J3/2)sirto sin2p cose+ 3(1+cos6)sin2p sina cos+ cosd cos2p sina sin2y], (1)
q4=q[(\/§/2)sin20 cos2p cosx+ 3(1+cogh)cos2b sine cosy— cosd sin2p sina sin2y],
q5=q[(\/§/2)sin26 sing cosx— 3sind sing sina cosd—sind cosp Sina sin2y],

where taking Gsq<cw, 0<a<w/3, O<y<m, 0<0<m7/2, _ J J 9
0< <27 ensures that all possible distortions in the five- Ax=1 COSy COtaa—y_CSCﬁ% +isiny -5,
dimensional phase space are covered without repetition. This P 3 P
parametrization is designed so thag?=q? and the angles Ay=—i Siﬂy( cotd— — cse— | +i cosy . 3
0,v,¢ behave as Euler angles for the rotations. J I J
In terms of these variables the kinetic-energy operator for Aoz i
the normal modes takes the form 2= ! ay’
The potential energy of the uncoupled vibrations is simply
207
1] 9 d 1 J |l . d ) 5
Te=—=q 4 7 q4_ +——— —| sin3a— B. The configurationsp* and p
2 aq dq/ Qg<sin3a Jda da . . .
These configurations have already been extensively stud-
ied asT® (7,@ €), p* explicitly and p® by implication. The
1 A2 NG A2 Jahn-Teller interaction fop! can be written
+ === + = + = ,
892 |sif(a—2m/3)  sirf(a+2w/3)  sirfa Gi—V30s V303 —3a,

1
@ Mr=+3k| —V3ds ai+V3a, —v3as| (4
— 30, —V3gs 20,

and writing this down defines the coupling coefficidnt
where{\,,\,,\,} are the three components of an angularwhich reappears throughout this paper. In terms of the vari-
momentum operatax within the phonon space. Explicitly, ables(1) the linear Jahn-Teller interaction can be wriften

Lg(cosx— /3 sina) 0 0

k7pt 0 1g(cosx+ /3 sinw) 0

P\(\)

®

0 0 —( coxx
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where.”p is an orthogonal matrix given by wheref(a)=% ata=0, and this term comes from taking the

above factor out ofy. To get— 3(u|V2u) only the last line
of (11) need be used becauge) depends only or¥ and

, ¢, and this term is 1/(8%), which exactly cancels the
and the orthogonal matric&s(y), Cp(6), andDp(¢) are  (4)/g2 term noted earlieThis cancellation will not occur
given, together with other rotation matrices, in the Appendix, the cases considered lajeFhe final form of the vibronic
The matrix.7p operating on the components of a vector is aschralinger equation is thus

general three-dimensional rotation in Euler angle form. From
this transformation it is clear that the lowest root of the ma-
trix is —kqg cosy, and is constant over all the rotations
Jp, and this root is lowest of all whea=0. This transfor-
mation also gives eigenvectors for the roots of the matrix,

7p=Bp(y)Cp(0)Dp(¢) (6)

19 d d
P T

T2l 2
q aq(q aq] ' da

9 1 9
N —| + —5—o— ——
S g°sirfa dvy° q

1
2

and the eigenvector for this lowest root is 171 o o 1 g2
t2kajy- g2 mﬁ(s'”%)+—nfsi a@z}‘ﬂ
|u)=sind cosp| &) + sind sing| )+ co| ¢), (7
=Eqy. (12)

where |£), |7), and|{) are the three components of the
electronicp base. The first part of(12) is just the Hamiltonian of a three-

Using the foregoing results we now go ahead and applyimensional harmonic oscillator with a displaced origin, and
the full adiabatic approximation by looking for a solution to the energy of its lowest state is3k?+ 3. The second part is
the Schrdinger equation in the general form the Hamiltonian of a rotator, so the formula for the low-lying

energies at strong coupling for=1,5 is
Y=4(q,a,y,0,$)u(q,a,7,6,4,r), )
1

where u, the electronic wave function, is a vector in the Eis=— §k2+ §+(W)'—(L+l)a (13
electronic spacé|&),|n),|{)} andr represents all the elec-
tronic coordinates. Here the vectoris just the eigenvector whereL is an integer. Finally we must look at the phase
lu) that has already been calculatéd). When thisW is  changes over the#($) surface. Inspection of thig;}, (1),

substituted into the Schadinger equation we get shows that they are repeated when
—3[uV2y+2V - Vu+ yV2u]+(39°—kq cose) yu y—vytm, (14)
=Eyu, (99  and also under the inversion operation
where —1V?2 is the appropriate vibrational kinetic-energy 0—m7—0, P¢—d+m, v——1. (15

operator. Applying closure to this equation withgives
The electronic eigenstat@) is seen to be invariant under

- . ) - (14) and to change sign undét5), and the pseudorotational
—zV2Y—= V- (u|Vu) — 2 9(u[V?u) + (3~ kq cose) ¢ eigenstates must change sign with the electronic eigenstate to
—Ey (10) preserve iqvariance. Thus invariance under these transforma-
' tions requiresL to be odd so that the ground state has

L=1.
Becausdu) is real,(u|Vu)=0, but(u|V2u) must be calcu-

lated and included.

First the kinetic-energy operat¢2) is adapted to operate
in the neighborhood of the minimum surface by taking out a  The terms from these two configurations &R, 'D, and
factor g~ 1(sina/sin3a)¥2 and puttinga=0 wherever this *S.
does not introduce infinities. The result is The high spin state is simple, being yet anotRestate

coupled to theng vibrations. The only extra thing we need to

know is how thek in this state relates to the single electron
1119 ,9 1 a(  d k, i.e., we need to work out an extra reduced matrix element.
2|9 ﬁ( q E) + oPsina da ( Sina &_a> The coupling constant turns out to bek so that the energies

are as given by, s above, with a distortion of the opposite

1 9 P sign.
30035

C. The configurations p? and p*

He=—

1 #?  f(a)
T Psita 92 @

1
69°

_— For the low spin states we have a sixfold basis, five

sing 96 states and on8 state. TheS state does not have any diago-

5 nal Jahn-Teller coupling, but it is coupled to tBe states.

Lt (11  The Jahn-Teller interaction matripartitioned to distinguish
Sinfg 9¢?|’ the S andD basesis
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: (16)

where the coupling constants have been calculated as reduced matrix elements in terms of the single-electron coupling constant
k. This is put in terms of the parametrizatiéoh) and transformed to a nearly diagonal form by a sequence of orthogonal
transformations. This transformation has a block-diagonal form, withx& Slock to rotate theD bases, as given in the

Appendix, and a X 1 unit matrix block for theS basis. It is

7 sp=Aspla@)Bsp(y)Csp(#)Dsp( ), (17
where
A ) 1 0 5 | 1 0
a)= , = ,
sol 0 Ag(@) solY 0 [ Bpo(y)
[1 0 g [1 0 } a8
Csp(0)= , andD = . 18
so( 0) 0] Co(0) so(®) 0| Dp(d)
Then
TsolMspl7sp=[Msp(a)] (19
and the interaction matrixM gp(«)] takes the form
B 3a 3a "
0 J2 cos- 0 0 J2 sino- 0
3a
V2 cos5- 1 0 0 0 0
au
0 0 cos( a— —) 0 0 0
Mgp(@)=—kq 3 (20
0 0 0 —Ccosw 0 0
3
V2 sin7a 0 0 0 -1 0
a
0 0 0 0 0 co{ a+ 3
|
This matrix is left incompletely diagonalized to make it ob- .
vious where extra terms would have to be put in if th2 —
and 'S terms were not assumed degenerate in the first place. V3
The lowest value of the lowest eigenvalue of this matrix u= , (21)

occurs ate=0, and it is—2kq. In this case the eigenvector
will be given by a linear combination of the first two col-
umns of the matrix7g5 and (still at a=0) this is
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where

1(3 cog6-1)

5 sin cosp

3 sirfé cosp sing

Up (22

? Sin’@ cos2p

3 .
> sind sing

Operating on this witi(11) gives

(23

so —3(u|V2u)=2/3g2. Finally we get the vibronic Schro
dinger equation in this case to be,®t 0,

MARY C. M. O’'BRIEN
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1[1 , 0 1 9/ 9 1 &
" 2|2 999 9g) T qZsing 9a| S a) T qZsita 912

2+ 4kq|y+ L LIt 9y 0 J

A" +aka| 9t 2137 3)¥ " 6q?|sing 70| S g

(92
+ mrﬁz {//ZEI,[/. (24)
Treating this equation as before gives

E, = —2Kk? 3+ 1 L(L+1 25
2.4= N RET Rl (L+1). (29

This is very similar to the equation for the energypdf(13),

but now the electronic eigenstate is invariant under bt

and (15), and the pseudorotational eigenstates must also be
invariant under these transformations, which linlitdo be

an even integer. Thus the lowest two states @rand D
states corresponding to the uncoupled electronic states.

D. The configuration p®

The terms from this configuration, before coupling, would
be %S, 2D, and?P. Here the high spin state is trivial, having
no Jahn-Teller coupling. For the low spin states we start by
finding reduced matrix elements of the Jahn-Teller coupling
within and betweerD and ?P. The result is that the only
nonzero Jahn-Teller coupling is betweéB and 2P, the
matrix elements coupling® to P or D to D are zero. This
absence of diagonal Jahn-Teller terms is noted in the context
of cubic symmetry in Ref. 5, and why it happens is discussed
in Ref. 10. The interaction matrix in the basis Bfand D
states is found, using vector coupling coefficients, to be

" 0 0 0 V345 s 0,  Os  —04— 30
0 0 0 | —\30, —as+\3aq; s a2 —03
0 0 0 0 —0s 204 —203 a2
V3 V35 —/30, 0 0 0 0 0 0
Mpp=—k (26)
as —0a+30;  — s 0 0 0 0 0
-0 ds 204 0 0 0 0 0
ds 92 —2qs| O 0 o 0 0
L —da— 30, —03 a2 0 0 0 0 0 -

This matrix is transformed by a series of rotations in the anglesf, y, and the &8 rotation matrix is made up in
block-diagonal form from matrices given in the Appendix as follows:



All of these roots that are not identically zero have the
same minimum energy for some choiceagfand we choose
to take sim=1. The fact that this lies outside the original
region 0<a< /3 does not matter, we are just looking at a
different copy of the phase space. With this choicexahe
{q;} are given by

91 =0l (V3/2)sir? 6 sin2y],

d,=q(—3sin2 cogh cosy+ sind sing sin2y),

a3=0q[ 3 (1+cogh)sin2p cosy+ cosd cos2p sin2y],
(30

qs=0[ 2(1+cog6)cos2p cos2y—cod sin2p siny],

gs5=q(—3sind sing cos—sind cosp sin2y),

while the eigenstate for the lowest energy comes out as
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_ _[Betm | 0 Jicete)| o [Pe(¢)| O
,/pD: ’ (27)
0 [BomIil 0 [Co(®)]| 0 |Dp(¢)
with the result that
. 7T L |
0 0 0|0 0 0 0 —sina+ 3
a
0 0 0|0 —sin( a— §> 0 o 0
0 0 0|0 0 sime 0 0
= . 0 0 0|0 0 0 O 0
Mpp(@) =7ppoMpp7pp=3Kq -
0 —sin( a— §> 0 |0 0 0 O 0
0 0 sink | O 0 0
0 0 0|0 0 0
aw
—sin( a+ 3 0 0 |0 0 0 O 0
(28)
|
At this stage the matrix is still in block form, so that different B siné cosp -
energies for theD and 2P states could be inserted on the sind sing
diagonal. With these states degenerate the eigenvalues are
obviously coy
3
_ _ _ 1 £ sir6 sin2y
E= \V3kag{ = sin(a+ 7/3), = sina— /3), = sine, 0,0 u=— 2
(29 V2| —cog sing cosp Sin2y—sind sing cosy

1(1+cog0)sin2p sin2y—cosh cos2p cosy
2(1+cog0)cos2p sin2y+ cosd sin2p cosy
— €09 sind sing sin2y+sind cosp cosyy

(31)

To find the strong coupling pseudorotational states in this
case we must use the appropriate form for the vibrational
kinetic energy, which i$2) at = 7/2. In order to standard-
ize the harmonic oscillator part of the operator this time we
take a factor ¢3sin 3v) Y2 out of ¢ before settingw= /2
and get

e 1o o) 1 &# 9
k€= 2lq a9\ %9a) T @ 9a? T ae?
1
—8—qz[4>\§+4>\§+x§]. (32

The operator on the second line is a version of the Hamil-
tonian of the symmetric top. The energies and eigenfunctions
of the symmetric top and their relationship to the represen-
tations of finite rotations are set out in Chap. 4 of Edmahids.
The eigenfunctions are

@&'?K(d),0,’}/)=ei(M¢+K7)d§\}l_,)K(9)' (33
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whereL,M,K are integersL=|M|, andL=|K|. With the simplehy basis approximates to a rotating quadrupole distor-
effective moments of inertia i(82) the kinetic energy eigen- tion of the sphere. Taking this form we find that the=0

values are surface corresponds to an ellipsoidalz{3 r?) distortion,
with the direction of its axis of symmetry given by, ()
L[L(LJF 1)— ng}. (34) relative to a fivefold axis. This is the type of pseudorotation
2q° 4" to be expected witp?!, p?, p4, or p®. On the other hand, the

distortion ata= /2, as inp®, is of (x2—y?) type, which
requires the three angley,@, ¢) to describe its orientation.
This latter is called a bimodal distortion by Auerbach, Ma-
nini, and Tosattf

to find the V2u term we notice that the components of the
eigenvector(31) is made up of these symmetric top eigen-
states, and if it is written

1 The sign ofk and the type of distortion
P B 35 g yp

V2 v For the initial coupling of a single-type orbital to a
2 single hy distortion, only the product&g; enter into the
thenv, is composed of states with=1, K=0 whilev, has  Hamiltonian. We are therefore entitled to takepositive, as

L=2,K=2, so we do, allowing the sign to be swallowed up in the definition
of the g; in terms of actual displacements. For instance, the
1 11 20, form of (4) shows that there is a minimum at
—ovy=— | - |, (36) d.=k,q;.1=0, and if the shape at the minimum is known,
2 J2 29 the sign ofq; follows.

3u2 Oncek and g; are fixed in this way the signs are held

so that constant for the rest of the paper. For the configuratighs
the coupling constants are given in terms of the one-electron
k, sign and all. The choice af to give the minimum energy
292 2" (37 in each case can then be translated into the actual values of
theq;.

~(u[3v2u) =

The vibronic Schrdinger equation is thus

1&( d
qJq qaq

IV. INTERMEDIATE COUPLING STRENGTHS,
NUMERICAL WORK

1 4

1
T N2
+ q2 py% g°+2v3kq

2

1(5
P+ a8 4
1 The results reported so far have assumed both that the
— —[4N2+AN2+ \2]yY=E . (38)  Jahn-Teller interaction is strong compared with the phonon
8q Y energy k>1) and that the term splitting can be left out. In
The first part of this equation represents a two-dimensional?Cl: We can do better than this on both counts.

harmonic oscillator with a displaced origin, and the rest the

symmetric top, also with the energy origin displaced. Using A. Term energies inp"
the value ofg at the minimumg= 3k, the energies come |t is possible to express all the term energies for all the
out as terms ofp", all n, in terms of two parameters which are
3 1 1 electrostatic self-energies, just as is done for atgoiicon-
Es=— =K+ 1+ ——+ —>[L(L+1)—2K?]. (39 figurations. In Condon and Shortféythese atomic term en-
2 24k 6k ergies are given as
The electronic eigenstai@1) is seen to be invariant under 2 4 E 3 E
(14) and to change sign undét5), and the pseudorotational P(p") | nergy P | nergy
eigenstates must change sign with the electronic eigenstate to s (6)Fq+10F, 2p | 3F,
preserve invariance. Thus invariance un@ef) requiresK 1p (6)Fo+F an 2D | 3F.—6F.," (41)
to be even, and the sign change undés) requires the pseu- 5 02 . 0 2
dorotational eigenstates to be P | (6)Fo—5F; S | 3Fo—15F;
. [coKy for L odd whereF, andF, are certain integrals of the Coulomb inter-
D= df\,,L)K(G)e'M‘/’ ) (40 action within charge distributions depending on fhevave
’ sinKy for L even. functions.
The lowest state hds=1, K=0 followed closely in energy Exactly similar expressions can be obtained for molecular

by L=2, K=2; next comesL=4, K=4 followed by Orbitals of T, symmetry, but the definitions df, and F,
L=3, K=2. There are nd.=0 states, an&=0 only oc- have to be phrased a little differently. This type of calculation

curs with oddL .12 is done for molecular orbitals under cubic symmetry by

Sugano, Tanabe, and Kamimdfaand their work can be

modified to cover the icosahedral orbitals used here. All the

integrals required are electrostatic self-energies of charge
Because of the large number of atoms in @ @olecule, densities that are products of tfie wave functions taken in

a set ofhy normal coordinates can take many forms, but apairs. As the symmetric product,;®T; contains only

lll. PHYSICAL DISTORTIONS OF THE MOLECULE
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A@H, any product of por t; wave functions can be written n

as a linear combination of theandH (SandD) states. The 5 | 1p
Coulomb energy operatoEi>je2/47reor-- is invariant un-

1 3 1
g Ay Tag Hq
]

der space rotations, so only two distinct integrals survive, 0 016 019 0.30

one for theA product and one for thel product. It turns out (19 (°P) (D)
thatF is three times the self-energy of tAeproduct, while 3| %A N 27 2N ay
F, is 3/2 times the self-energy of thed product. For ex- " 1 . g
ample, if we represent two components of the states as 0 010 042 043 0.45

¥ and ¢, , then one of thed components of the symmetric (*s) (°P) (?D) (43)

product is @, i+ ¢, 1,)/\2. The product of the two wave T 3 T T T
functions proddcesya charge densitfr) = 2y, 4, and A Ty Au Hyg Ty
- 0 001 014 015 0.16

3 o2 ('s) (°p) (‘D)

=— — 4 2 6 4 4 4
Fo zffp(r1)4morl_r2|p(rz)d71drz- 42) 5] 47, 7Ty °Ty A, Ty *Hy
0 001 011 0.19 021 0.24

The ¢; here are to be interpreted as the act{rab) elec- (?P)
tronic wave functions of the molecular orbitals, a set of . .
atomicp states are a particular example of such orbitals. A§-|ere the energnles aré in ey, and the terms that would be
self-energies the integrals, and F, are intrinsically posi- expected fronp™ are shown in parentheses.

tive. The fact that the orbitals are spread over thg €pbhere Thg amount of configuration interaction indi.cated by the
will make them rather smaller than similar integrals in at-€nergies in this table will alter the model used in the present

oms calculations in several ways. The accidenta$Qymmetry
The effect of including these term splittings at strongWIII disappear, and with it the simple way all the coupling
Jahn-Teller coupling can be seen by including them in thecoefﬂm_ents depend on one p_araméeterthout the symme-.
various interaction matrices. Ip? and p* the Jahn-Teller try ba5|§ the size .Of th? matrices make .the type Of. numerical
depression of théP state is 1/4 of that in the combined calculation described in the next section unprofitable, but
singlet states, so that at strong Jahn-Teller couplinge these calculations do show how interpolation can be used.

state is above the singlet states, and we have seen that of t e%ﬁqs\]\?vrsl?;lzedl:gcr)n(;?lupélggeggifzctfgfoxvﬁihr:n va?r? b::]v(;/een
singlet states'S is below !D. There is thus a complete y dep piing Wittty

reversal of the ordering of the states as the Jahn-Teller cojhere will be pseudo-Jahn-Teller coupling via odd modes of
vibration between odd and even terms with the same spin.

ﬁlll:r;?rasg(ejni%tiils tlurned up, as is shown by the calculation It is possible to make some general remarks about the
For p® there ?s a'n uncoupledss state, with no Jahn-Teller effect of the Jahn-Teller interaction on the terms shown in
interaction. Because of the term spli’tting between fie (43). The magn_itude of the Jahn-Teller energy is about 0.1
and 2P states themselves, the Jahn-Teller effect will onlyev (Ref. 18 as is the average frequency of themodes, so
come in at second order ,so if it is weaker than the tem{he scale of the term splitting used in Figébland 2b) is of
) n— . 7
splitting it is effectively quenched. A strong Jahn-Teller in- rzeigr?rg?lg ErdletrofgrSQ)mn,_V\éh:: dih—ozlljlghgocrgr?ﬁmurlgtighne
teraction puts the?P state marginally below théD state, intgeraction aTread makes t_HeA (is) ;tate Iowestgand the
and both well below thé's, so again the Jahn-Teller inter- Jahn-Teller intera)étion will rogabl encourage i'E to remain
action reverses the order of the states, as shown in Fig. 2. . : pr y rag D17
s0. There is experimental evidence that this is sa#12.
In n=4 the near degeneracy 6fy(*S) and 3T4(*P) will
B. Term energies in Cgg"~ allow a linear coupling within the triplet state to make it the

N i ground state if the coupling is really weak, but at the inter-
The p" model is not really good enough to represent the o qiate coupling strength assumed, the coupling in

term splittings in Gg *_. This is becau_se the next unoccupigd{lA (1S),'H,(*D)} can be expected to brinkp,(1S) to the
orbital abovety,, t1g, is rather close in energy. The result is bottgom. In n9:3 the Hund's rule that puts agquartet state
that configurations other thapl' may be mixed in, and this |oest is obeyed, and there is the possibility of interaction
will alter the simple nature of the conflg_uratlons assu_mequth the *H, state to push this state down lower than is
here. The effect of this on the term energies has been invegyown in Fi%]. 2b). In n=5 the number of nearby quartet

tigated by Negri, Orlandi, and Zerbe&BThese authors have giates could make the effect of off-diagonal coupling of the
done calculations of the energies of the low excited states oztAg state competitive with the effect of linear coupling of

Ceo'~ up ton=6 with the inclusion of the, 4 states in their 2T,,(?P).
base along with the;, states. They find a different ordering !

of terms from the Hund’s rule ordering pf' as well as extra

terms deriving from other configurations, particularly so
whenn>3 and higher spin states appear. They point out that All of the p"®h systems can be set up as matrices in the
the energies are all so close that other types of calculationncoupled states for numerical diagonalization, using the
may well give other orderings, but it is worth listing a few of SO5) group for handling the phonon excitations as de-
their results to show the sort of thing that happens. scribed in Refs. 8 and 18.

C. Numerical work
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The method involves first taking all the mode excita-  fact, there are eighty vibrational modes in G, spread over
tions for then-phonon state, and classifying them accordinga range of frequencies such that the highest frequency is
to irreducible representations of ) and S@3) (angular about five times the lowedt. The calculated coupling
momentum. This provides a unique labeling system for all strengths between these modes and the partially occupied
the states needed in this study. These states are then couplgd orbital vary a good deal between authors, but all the
to the elgctronic state or states, and all the coupled states gk|cylations agree that no one mode is much more strongly
the required angular momentum are selected out as bas§gypled than all the others. Under these circumstances it

The Jahn-Teller interaction can then be set out as a matrif,akes sense to work in terms of an effective or averaged
v_v|§h|n these bases_, using f_;mgular momentum _coupllng CO®ode, and it is possible to make a choice that gives the best
ficients together with a limited number of fractional parent'approximation to the ground-state enefdy.

age coefficients for SG)2SO3), and formulas can be The choice goes like this: Assume that there is a set of

found for a generah. If term energies are to be included modes of appropriate symmetrv. with the ohonon enerav of
they appear on the diagonal of the matrix along with the, . pprop Y Y P | energy
uncoupled phonon energy. The resulting infinite matrix ex-thelth modefw;, and its coupllng strength is; (this is n-
pands withn, but not as fast as if the symmetry adaptedthe same sort of reduced units that have been }Jsed in this
bases had not been used. As what is required here is only tfR&P€r, SO that the Jahn-1'2eller energy for that particular mode
energy of the few lowest states, the application of a Lanczo¥ould be proportional t&% ;). Then an orthogonal trans-
method to a matrix cutoff at a large valuerofs suitable and formation on the mode coordinates picks out a chosen effec-
fast enough for the accuracy of the results to be monitoredive mode whose frequency and coupling strength are de-
To do the extrapolation to find the value of thé&Zterms in  fined by

the energies it was found necessary to take a range of cou-

pling strengths to give values of the Jahn-Teller energy of 50

to 100. The cutofin needed to be somewhat larger than the 2 7w k2
Jahn-Teller energy. i i X )

For p! the matrix has already been setput now with fhweg=h(w)=——-and k=2 k7. (44)
very much increased computing power at hand, and with the 2 ki2 '

use of the Lanczos method, the calculations can be pushed to [

a large enoughk to verify that, as °— 0, the lowest energy

does tend td, 5 [Eq. (13)] with L=1. We now find the low-lying energy levels of a Jahn-Teller
The matrices fop® are simpler and smaller than those for Hamiltonian of the appropriate form witkey and ey as

p2. They are Slmp||f|6d as a result of the lack of Jahn'TenerparameterS, Ca”ed%/eﬁ, and regard all the rest of the origi_

coupling within ?P and within ?D. States with even num- na| Hamiltonian as a perturbation. The rest of the Hamil-

bers of phonons associated witR will only couple to states  tonian consists of a set of normal modes whose frequencies

with odd numbers of phonons associated wih, and vice  |ie between the frequencies of the original modes, and they

versa. In particular, as n§ states can be produced from zre coupled to the effective mode by an interactigh that

electronicP states with vibrations of this symmetry, % has 0n|y 0ff-diagona| matrix elements, and so on|y intro-

states will change energy with Jahn-Teller coupling strengtijuces a correction by second-order perturbation.

(see Ref. 6, Fig. 6 The matrices that give the loweBtand The size of this correction to the eigenstatesiof de-

D states have been set up and run with large enough valuggnds on the mean-square width of the distributioms of

of k to verify that the lowest er_lergies are given corre(_:tly towhich wer=(w) is a weighted average. The correction is

order 1k* by Ez [Eq. (39)] with L=1, K=0 and with  always to lower energy, and it increases with to an upper

L=2, K=2. The term energies have also been included inimit that is some fraction ofr=%((w?) —(w)?)/{w) and

these matrices, and in Fig. 2 the energiesgdrare plotted independant ok, reached at abotke= 1. At small ke,

with and without the term splitting. An arbitray-P split- 5 s correct up to a correction of ordéfs. Given some

ting of 27w is used, and the diagram shows the reversal of,qqmption about the distribution kfs over thew;’s it is

the states as the Jahn-Teller coupling is increased, as dgpssible to calculate these corrections at strong and weak

scribed in the previous subsection. , coupling as described below for the systems we are con-
The extra complication in the matrices fof arises from  cerned with here. Any calculation of the multimode correc-

the existence of coupling betwe&mndD, as well as within  tjon at intermediate coupling strengths is prohibitively com-

D. Consequently, there is no segregation of the produchjicated, but it has been done numerically in a much simpler

states, which makes the matrix fpf,D significantly larger case” and the correction did vary smoothly between the two
than the matrix forp*,D, and two different reduced matrix regimes in the way described above.

elements must be introduced to allow for the two types of "kor the sake of having some reasonable corrections to put

coupling. These matrices have also been constructed and ryf the calculations we shall assume here that the dight

at strong coupling, to verify the asymptotic form of the en-mgges all have the same one-electron Jahn-Teller coupling

ergy, and at weak coupling, with and without term splittings, coefficient k,, and that their frequencies are uniformly

to provide Fig. 1. Here the choice of parameters is exaCtlyspread betweem and 5w, with the result thaw.q= w/3,

the same as for Fig. 2. kZ;=8k?, ando=4we/21. Eachk; is assumed to be posi-

tive, as iskeqs, with the signs taken up in the definitions of

normal coordinates of each mode, and the distortion associ-
At this point we should relax the assumption made so faiated withw. is the sum of distortions proportional g in

that there is only one set df; modes to be considered. In each modédsee Ref. 2

V. MULTIPLE MODES OF VIBRATION,  Zg
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2
n=l or 5, P

FIG. 3. Calculated lowest energy level for
p®h. Multimode corrections to7.; for the
eight h; modes of G, at weak and strong cou-
pling are shown. The dashed line shows the as-
ymptotic energy.

2
X
A. The significance of 7 1. Strong coupling

The effective Hamiltonian is chosen in the first place to At strong coupling the correction to the energy of the
give the best match to the lowest energy level in the systentowest APES comes by coupling to the pair of upper surfaces
consistent with the use of a single effective frequency. Inthat are at an energy (3R)# we¢q above the lowest one,
particular, it gives correctly the energy of the minimum onand the minimum occurs at=K, as can be seen fro(b).
the lowest adiabatic potential energy surfd@PES, the  Consequently the energy denominator for this second-order
first term in (13). All the corrections discussed below are Perturbation is (3/R¢i wet. The numerator of the second-
concerned with the residual effects of the kinetic-energyorder perturbation can be found by using the sum r(@&s
terms, though clearly this effective Hamiltonian takes care ofNd (27) of Ref. 20, but as the use ¢27) requires some
many of these too. Hence calculations, such as those Hf.deflnltlon of the mter_actlon matrices from the usage in this
Koga and Morokuma® which work out the Jahn-Teller en- Paper we shall work directly from Eqgl8) and (22) of that

ergy by minimizing the energy under static distortions of theP2Per- Putting these two equations together, and concentrat-

cage, should be interpreted in terms of the effective Hamil!N9 OnN the largest terms at strong coupling, we find the re-

tonian. Their Jahn-Teller energy of about 2 kcal/mol in duired interaction Hamiltonian can be written in the notation

Cso should be equated with the APES minimum energy ofOf Ref. 20 as

—%kgﬁﬁweﬁ. (These authors also calculate the small extra

energy produced by a further distortion, the “warping” ef- o

fect, which is not allowed for here, but see Sec.)VI. =2 CikegtV D alT, (45)
As appears in the following subsections, the corrections J=1

that are calculated to the single-mode approximation are re-

ally quite small, and do not differ greatly from one configu- \ynere o' creates one phonon in the background set of

ration to another. They are so similar and unimportant thaf,orma modes, so this interaction connects the ground state
they have been left out as an unnecessary complication frogy ate5 with one phonon excited. The matrivés are de-
Figs. 1 and 2; Fig. 3 can serve to show the general effect, .4 by rewriting(4) in the form

This means that the effective Hamiltonia#« works very

well on its own for calculations of the low-lying energies,

even where, as here, the coupling strength is spread over a .

rather wide range of frequencies. It was necessary to do the Mr=k>, Vig;. (46)
calculations detailed below to justify the use.@fy;, but it !

is a happy outcome that their results can be neglected.

The numerator for the second-order perturbation is thus

B. Multimode corrections for p?, p°, and p?, p* 3P

All these P states are relatively simple to work with, and 1.2 2 i 2
can be treated under one heading. The methods of Ref. 20 for EkeﬁZ Ci ]21 KoV In)P?, (47)
strong coupling can be used straightforwardly. The correc-

tions discussed below are included in the plot of energies in

Fig. 3. The corrections at large and small coupling strengtiwhere the sum oven is over the excited APES'’s ar|@) is

are as calculated, and they should presumably be joined bythe vibrational eigenstate on the lowest APES. The extra fac-
smooth curve. tor of 1/2 is because Ref. 20, unlike this paper, useand
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a;r in the definition of the Jahn-Teller interacti¢Bg. (1)]. of two contributions from second-order perturbation, and so
The sum; (0|V@n)[2=2 can be calculated from the S correctly given by 7, thus only the first term needs to
be reanalyzed.

eigenvectors that form the matrix {6), and the suniiciz s For the multimode system we need to consider all types of
hwego (o as defined aboveThe result of putting all these two-phonon states. Those with only one mode excited, at

Icno%zg'tfongstolr#% ;r}iu?]%?g{]a%ogirrg@e;tfurbatlon produces Qhwi, are as listed above. The states with two different
modes excited, ati(w; +% w;), will be made up from prod-
—ig, (48)  ucts of the two different =2 states, one from one excitation
of modei and one from one excitation of mode These
which is the correction shown in Fig. 3. This calculation is products comprise states with=2, L=1, andL =0, with
valid for k¢>1, but the numerical work in Ref. 21 suggests the important difference that the=1 state is odd under the
that it holds fork3s=1, and that it is also an upper limit on interchange of andj, so its matrix elements change sign
the correction. under this interchange, while the other two states are even.
The relative magnitudes of the coupling strengths to these
2. Weak coupling three states can be found using vector coupling coefficients
At weak coupling k?<1, the Jahn-Teller interaction first (6] symbols, and the squares are in the ratios 7:9:4. The

comes in as a second-order perturbation, and the energy {8t@! coupling strength for these three states is the same as
that order is for the excitation of one phonon. Using all this information

we start counting diagrams, and after some tedious algebra

) 5 ) 5, end up with a multimode correction in fourth order of
E' ):_ZZ ki wi=—7 Kef efr- (49 )
' (4) > 2,2 (@I~ @)
: _ _ EW =—— > KXk : (53
Consequently the multimode correction to the effective 128 73 1wt w;

Hamiltonian is a correction to the next order of perturbation
which is fourth order irk; .

Taking nondegenerate perturbation to fourth order is no
usually done explicitly in the textbooks, but the standard
methods can be used to give the expression for the correction E® — _00K4 % 54
to the ground state by a perturbatibhas mm - Weftlt Deff 649

'This is negative definite, as expected, and when calculated
Yvith the eight-mode model for £ described above gives a
correction

and this correction is shown in Fig. 3.
B HoHikHknHno HoHioHokHko
1Ko E ELE, 150 E,EE C. Multimode corrections in p?, p%, and p*
(50)

as long ado=0 as it s in this cas¢Nondegenerate theory a¢ grong coupling we assume that the coupling is strong
can be used because the electronic state belongs to a singlg, gk to override the term splittings, so that the matrices

irrep of the symmetry group of the Hamiltonian, and so will Msp (16) andMpp (26) can be used exactly 48, was used
not be split by perturbation to any order. in the previous subsection.

The best way to get the matrix elements to put in here is For Msp (p? andp?) the lowest root is at-2kg, so the
by using the S@)> SQ(3) group chain for the phonon states nimum’is atq=2k. The energies of the higher APES's
as is done to prepare the matrices for numerical diagonaliza(,j{bove the lowest one are
tion. For a single mode of vibration the ground state is con-
nected to only one singly excited phonon state, with 2, (2,2.3,3,3%2K2 (55)
and this in turn is connected to two doubly excited phonon Zrar
states, withL=2 andL=0. These matrix elements of the and the quantitieX;|(0]V(|n)[? are, in the same order,
Jahn-Teller interaction are\5/4k#w, +1/Xk#iw, and
N respectively. It is very easy to substitute these into (5.5.5.5,8) XK (56)
(50) to give

E@# =

1. Strong coupling

Accordingly, the strong-coupling correction pf andp* is

(H(Z+3%) 1 [8/9 1/6 (8/3\ 1/6 137
EW=—- ——Khot+(3)%k* 51 gt 42| |+ =
: ot (kMo (5 P s (3)+ o L PNC
45 ForM 3) the lowest root is at- \/3kg, so the mini-
=gk, (52) o (P') V3kg

mum is atq= V3. The energies of the higher APES’s above

. L " ) ) the lowest one are
This fourth-order correction is positive, as is usual in dy-

namic Jahn-Teller systems, corresponding to the fact that the (31,1113 3 2)x3Kk2 (59)
asymptotic value of the energ¥, s (13), is greater than _

E®, which would not be the case with simple linear cou-and the quantitiex;|(0]V{|n)[? are, in the same order,
pling. Before looking for the multimode correction E*),

we should also note that the second terng5) is a product (3,2.0,2,00,0x%xk2 (59)
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Accordingly, the strong-coupling correction fpf is whatever the coupling strength, the warping will have very
little qualitative effect. The states will shift a little, but that is
1 3/4\ 3/2 3 all. Nevertheless, it is an interesting theoretical problem. The
- =02\ 5|+ ——|=— 0. (60) ; ; ; ; i
6 1/2 1 4 discussion that follows is all in terms of the strong-coupling

theory, but in the absence of any way of calculating the in-
Evidently, at strong couplingZ; in all these cases re- termediate strength, the best that can be done is to interpolate
mains a very good approximation, only requiring a correc-between strong and weak, and we must remember that these

tion of a similar size to that shown in Fig. 3. interactions that come in with a higher power gfwill be
relatively small at weak coupling where the mean valug of
2. Weak coupling is small.

If the term energies are neglected the calculation using 1here are two linearly independent third-order polynomi-
T is still correct to second order, and a fourth-order cor-2lS in the{q;} that are invariant under icosahedral symmetry.
rection can be calculated by similar methods to those in thd "€y can be written
previous subsection. However, when term energies are in- D 3 ) ) ) ) )
cluded, the energy denominators in the second-order pertur- |3~ =—201+0:1(—303+ 6095+ 605—392) — 33030,
bation are sums of term energies and phonon energies, so 2
simple results such as those #9) no longer apply. It is +33050,— 63020505 (63)
therefore more important to have a multimode correction tg, 14
the second-order energy, and this has to be done explicitly
:;)ggscckggaritrgjlar choice of term energy and distribution of |<32>: —2q§+q1(—3q§+6q§+6q§—3q§)+3\/§q§q2

As an example, 2We have worked _out the second-order —3\/§q§q2—6\/§q4q3q5. (64)
perturbation for the?D state ofp?, using the same term
splitting as in Fig. 2, and the same model of the eight ~The first of these polynomials is also invariant under the
modes as before. The result is a second-order contribution 8OQ(3) symmetry, and can be written in terms of the angular
the energy for this particular case, which comes out in termgarametrization as
of the effective parameters as

1§V =—2q%cos3n. (65)
E2) = —0.5442h wef. (61)
The second one is in general a much more complicated func-
This has tO. be Compared with the value in the Single-modqon of the angu|ar parameters, but on thes0 Spherica|
approximation surface it can be expressed in the form of a sixth-order har-

2 2 monic function,
Eef = — 0.50(Kg¢h (62

which gives the initial slope of théD level as plotted in Fig. 1§ = Vicos=2312°~ 315r?7*+ 10572~ 5r°
2. Clearly, even with this broad spread of vibrational modes +422(x5— 10c%y2+ 5xy?). (66)
coupled, the corrections to the single-mode energies are quite
small, but equally clearly the fine details of how tBandD This function has extrema that correspond to distortions of
levels are shown changing places are not to be relied on. the molecular cage of eithdDsy or Dy symmetry, with

The 3P level shown on Fig. 2 does not have a Jahn-Tellereither theDs's at maxima and thd®’s at minima or vice
interaction with the singlet states, and the multimode correcversa. In between are saddle pointsDaf;, symmetry.
tions for this level will be the same as are shown in Fig. 3.

A. Warping in p* and p°®

V1. "WARPING This was described in 1989 by Ceulemans and

As mentioned in Sec. I, all the calculations reported so faivanquickenborné? who plottedV,..s, the warping potential
have been made by including a Jahn-Teller interaction that ien the «=0 surface. The ground-state symmetries have
linear in the phonon coordinates to go with the original har-since been discussed by Wargal?® and by Dunn and
monic vibrational Hamiltonian. This Hamiltonian is invariant Bates®* If the warping effect is strong enough to override the
under the rotational operations of the @Dgroup, and it has  kinetic-energy terms introduced in Sec. Il, then we must
been by using all the theory that is associated with vibrathink of the wave function of the lowest vibronic states as
tional symmetry that so much progress has been made. Heing a linear combination of states localized in the minima
either the restriction of linear coupling or of harmonic forcesof the warping potential. Appropriate linear combinations
is relaxed the symmetry of the Hamiltonian is reduced tocan be constructed by symmetry, and they must be chosen to
icosahedral, and the effect can be adequately representedsatisfy the symmetry limitations set out in Sec. Il B. There
strong coupling as if the equipotential=const surface is are twelveDsy minima on the sphere, at the vertices of an
warped, so that it has energetic hills and holes. Unless thigosahedron, but as two points on the sphere corresponds to a
departure from S@) symmetry is strong, the warping po- single point inq space, there are six distinct equilibrium
tential will derive from the lowest-order icosahedral invari- positions. Similarly, if theDyq points, which occur at the
ant polynomial, which destroys that symmetry. Because théwenty vertices of a dodecahedron, are lowest, there are ten
S, P, andD states are not split under icosahedral symmetndifferent equilibrium positions.
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If the six Dgq minima are lowest, then with strong warp- has not proved possible yet to find an analytical form for the
ing the states allowed by the symmetry limitations are twoclosed loops or to solve the associated Sdimger equation,
triplets, T,, and T,,, with T;, lowest on any reasonable but, as in the other cases, warping is not expected to alter the
model. This means that introducing a smaller warping potendegeneracies of the states, nor shift their energies on any-
tial will split the first excited pseudorotational state=3,  thing but a small scale.
and bring down thd ,,, component of it towards the ground
state. The originall;, or p state may be shifted but it will
not be split. VII. ENERGY ORDERING AND “NEGATIVE U~

If the tenD 34 minima are lowest, then the states allowed
with strong warping aré& 4, T,,, andG,,. The lowest state
is againTq,, while the other two together come from the
L =3 pseudorotational state. As before the origifig| or p
state may be shifted but it will not be split.

The big difference between the Jahn-Teller energies in
p! andp? that gives rise to the observed negativén theV
centers in silicon is very obvious from the figures. On the
other hand, the advantage f overp? is quite small unless
the Jahn-Teller interaction is very stror{¢n comparing the
o, . figures it should be noted that, while Figs. 1 and 2 are plotted

B. Warping in p“ and p on the same scale, the scale in Fig. 3 is shorter in energy and

Here the phase space to be considered at strong couplin@nger ink?.) What is not obvious from the figures alone is
is also =0, as shown in Sec. Il C, so the shape of thethat their energy origins must be shifted relative to each other
warping surface is just the same as firabove. The only because of the repulsion that appears as the intégyah
difference is in the symmetry limitations on the vibronic (41), as well as by a multiple of the ionization energy of
wave function, which must now be even under inversion orihe t;, molecular orbital. Together these terms add the fol-
the sphere. The result is that if the £, points are minima, lowing energies to the different configurations:
then the appropriate linear combinations for the vibronic
states aréAy andH,, or S andD, with the S state lowest,
which exactly account for the lowest two pseudorotational AE=-(1,2,3,4,5E,+(0,1,3,6,20F, (68)
states. If the minima are at the tény states, then the linear
combinations are oAy, Hy, andG4 symmetry, which rep-
resent thd.=0, L=2, and part of th&. =4 pseudorotational
states. Again the lowest states may be shifted by a moderageﬁ
amount of warping, but they will not be split, and as their

for the configurationsif,p?,p3,p* p°), respectively.
The other effect that can be seen from these figures is the
ect of the Jahn-Teller interaction in reversing the order of
the energy levels within a configuration. It can be seen that,
Yven at these relatively modest term splittings, the coupling
strength at which the high spin state is no longer below the
low spin states can be well estimated by looking at the as-
C. Warping in p® ymptotic largek expressions for the Jahn-Teller energies.

This is a different and more complicated problem because N Ceo' With configuration interaction taken into account
the minimum potential occurs at= /2, which also corre- the discussion in Sec. IV B suggests that ffilemodel still
sponds tol (31):0_ Equations(30) show that theg’s on this ~ 91V€S the _correqt ground state,_ e>_<cept for the casqa)Sof
surface depend oy as well as ond and &, so there is no Where a high spin ground state is likely.
longer a simple spherical geometry to be exploited. Inspec-
tion of (63) and (64) shows that if the conditiorh(31)=0 is
satisfied for some set ofs it is also satisfied by the same set
taken negative. However this inversion operation changes
the sign ofl 2, so the warping energy is symmetrical about 1. Rotation matrices for p states
zero, and we only need look at one choice of sign for it.

An explicit expression for the warping potential on

assume it remains the same throughout.

APPENDIX: ROTATION MATRICES

a=m/2 can be found in terms of the symmetric top wave [ cosy siny O]
functions quoted in Eg(33), and it is Bp(y)=| —siny cosy 0], (A1)
V6, 0,7) = NIU A+ A o= % 1% ) o0
NI+ T )1+ BT VIU A+ AP, ] ]
© ’ © ’ 6 6)’ ’ cos¥ 0 —sind
_%75,2_ £%75,72)_ \/?(96,2—"_)(/(0,72)] (67) CP(Q): 0 1 0 , (A2)
A numerical search shows that the minimum value of | sinf 0 co9 |
V(¢,0,y) is —2, and that it takes that minimum value over
a set of six closed loops i, 6,y} space. The fact that the
minimum energy occupies a one-dimensional continuum in- cosp sing O
stead of a set of discrete points as in the cases considered o 0
previously means that there will still remain some of the Dp(¢)=| —sing cosp . (A3)

rotational kinetic energy associated with the ground states. It 0 0 1
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2. Rotation matrices for d states - (302_1)/2 _ \/§sc 0 \/§32/2 07
[« ] J3sc  (2¢?-1) 0 -sc 0
coss 0 O sin O
2 2 Cp(6)= 0 0 C 0 s
0O 10 0 O J3s2/2 sc 0 (1+c®/2 0
Ap(e)=| O 0 1 0 Of, (A4) .o 0 -s 0 c
a a (AB6)
—sing 00 cos; 0
(wheres=sind andc=co%),
| 0 0 0 0 1]
r1 0 0 0 0 7 M1 0 0 0 0 7
0 cosy 0 0 —siny 0 cosp 0 0 —sing
Bp(y)=|0 O cosz  sin2y 0 , Dp(¢)=[0 O cos2p  sin2¢ 0
0 0 —siny cosy 0 0 0 —sin2¢ cos2p 0
L O siny 0 0 coyy | L0 sing 0 0 cosp |
(A5) (A7)
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