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As an alternative to the standard Kohn-Sham procedure, other exact realizations of density-functional theory
~generalized Kohn-Sham methods! are presented. The corresponding generalized Kohn-Sham eigenvalue gaps
are shown to incorporate part of the discontinuityDxc of the exchange-correlation potential of standard Kohn-
Sham theory. As an example, a generalized Kohn-Sham procedure splitting the exchange contribution to the
total energy into a screened, nonlocal and a local density component is considered. This method leads to band
gaps far better than those of local-density approximationand to good structural properties for the materials Si,
Ge, GaAs, InP, and InSb.

I. INTRODUCTION

First-principles calculations based on the Kohn-Sham1

scheme of density-functional theory2 ~DFT! have success-
fully predicted and explained a wide range of solid-state
properties.3 Strictly speaking, however, this is true only for
cohesive and structural properties, whereas band gaps are
typically underestimated by a factor of 2. One approach to
solve this gap problem is to consider the energies of quasi-
particles and to calculate the electron self-energy in terms of
perturbation theory. This approach has been followed by sev-
eral authors4–6 invoking Hedin’sGW approximation.7 While
this procedure has been quite successful, it does not allow
one to calculate structural properties together with energy
gaps in a self-consistent way. Since, however, principal band
gapsEg of semiconductors are differences of ground-state
energies of N and N61 particle systems, Eg
5E(N11)1E(N21)22E(N), they are in principle acces-
sible by DFT.

So far, DFT has been applied almost exclusively within
the Kohn-Sham formalism whereEg is the difference of
single-particle eigenvalues plus a contribution that originates
in the discontinuityDxc of the exchange-correlation potential
at integer particle numbers. In practice, the Kohn-Sham
scheme is usually carried out within the local-density ap-
proximation ~LDA !, whose exchange-correlation potential
exhibits no discontinuity (Dxc50). Indeed, the energy gaps
within LDA show a large discrepancy with experiment that is
caused both by the lack of the discontinuity and errors in the
single-particle eigenvalues resulting from the approximative
nature of the functional.

In this paper we show that there are numerous exact real-
izations of DFT besides the standard Kohn-Sham procedure
that yield the correct total energy of the system and lead to
self-consistently determined single-particle eigenvalues of
theN-particle system whose differences already incorporate
part of the discontinuityDxc . In particular, these schemes
lend themselves to approximations that allow the self-
consistent calculation of both structural properties and en-
ergy gaps of semiconductors in good agreement with experi-

ment, in contrast to LDA. We shall call these alternative
realizations of DFTgeneralized Kohn-Sham (GKS) schemes.

We show that the GKS framework that we develop in this
paper constitutes a rigorous basis for employing nonlocal
potentials such as Hartree-Fock-like exchange potentials or
screened nonlocal exchange potentials within Kohn-Sham-
type approaches. An example of such an approach with
screened nonlocal exchange and LDA correlation potentials
was first proposed by Bylander and Kleinman on empirical
grounds,8 and was shown to give significantly better energy
gaps in Si. This method was also applied to atoms in Refs. 9
and 10. In this work, we show that this method is firmly
rooted within DFT and we present results for structural prop-
erties and band gaps in several semiconductors based on this
screened-exchange GKS scheme. We show that this ap-
proach, which we shall call the screened-exchange LDA
method ~sX-LDA!, compares very favorably with experi-
ment.

The paper is organized as follows. In Sec. II, the GKS
formalism is developed, generalizing earlier work of Ref. 11.
Several examples are given in Sec. III. In particular, a
scheme based on screened nonlocal exchange functionals is
discussed. The analog of the local-density approximation of
this scheme is shown to lead to the sX-LDA method. In Sec.
IV, we analyze the band gaps emerging from the various
GKS schemes and compare them with the standard Kohn-
Sham eigenvalue gaps. Based on nonlocal pseudopotentials
and a plane-wave representation, we present energy gaps,
valence-band widths, lattice constants, and bulk moduli cal-
culated within the sX-LDA method for Si, Ge, GaAs, InP,
and InSb in Sec. V. In addition, we develop a perturbative
version of the sX-LDA scheme that is computationally much
less demanding but still gives results in fair agreement with
the self-consistent version. In addition, several screening
models for the nonlocal exchange potential are discussed. A
summary is given in Sec. VI. In Appendix A, we prove the
Hohenberg-Kohn theorem2 for the GKS formalism. Finally,
some variational properties of the GKS solutions are proven
in Appendix B. Atomic units are used throughout the paper
except where noted.
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II. DERIVATION OF GENERALIZED KOHN-SHAM
SCHEMES

Virtually all concrete applications of density-functional
theory to the ground state of many-electron systems are
based on the well-known Kohn-Sham1 scheme. In this work,
we will develop generalized Kohn-Sham schemes that in-
clude the standard Kohn-Sham scheme as a special case. In
deriving these GKS schemes, we will invoke the
constrained-search formulation of DFT.3,12–15

We start by considering the Schro¨dinger equation ofN
electrons,

~ T̂1V̂ee1 v̂ !C0@v#5E0@v#C0@v#. ~2.1!

In Eq. ~2.1!, T̂ andV̂eeare the operators of the kinetic energy
and the electron-electron interaction, respectively. The nota-
tion emphasizes the fact that the ground-state energyE0 and
wave functionC0 are functionals of the external potential
v(r ). Equation~2.1! is equivalent to the minimization3,12–14

E0@v#5min
r~r !→N

HF@r#1E drv~r !r~r !J , ~2.2a!

F@r#5 min
C→r~r !

^CuT̂1V̂eeuC&. ~2.2b!

The minimizations in Eqs.~2.2! are performed within the
space of all densities yieldingN electrons and all antisym-
metric wave functions yielding the densityr(r ), respec-
tively. Equation ~2.2b! defines the Hohenberg-Kohn func-
tional F@r#.2

The basic idea of the standard Kohn-Sham scheme is to
replace the calculation ofC0@v# by that of a single Slater
determinant that represents a noninteracting model system
and yields the same ground-state density asC0@v#. How-
ever, the expectation value of the Hamiltonian with this de-
terminant only gives part of the total energy whereas the
remaining exchange-correlation contribution to the total en-
ergy is not directly accessible by the determinant.

Alternatively, one may try to introduce~interacting!
model systems that take into account the electron-electron
interaction to some extent and incorporate at least part of the
exchange and correlation contribution to the total energy, but
can still be represented by a single Slater determinant. The
latter is important to obtain tractable single-particle equa-
tions. In this way one may hope to obtain single-particle
equations with eigenvalues that more faithfully reflect the
physical excitation energies and energy gaps.

Let us define an energy functionalS@F# of N-electron
Slater determinantsF. Throughout this work, Slater deter-
minants will be denoted byF to distinguish them from gen-
eral many-electron wave functionsC. S@F# defines a func-
tionalS@$f i%# of theN unitary~spinor! orbitals that generate
F. According to its definition, the functionalS@$f i%# is in-
variant with respect to unitary transformations of the orbitals.
We give three examples of such functionalsS@F# that will
be seen to be relevant for the further discussion, namely

S@F#5^FuT̂uF&, ~2.3!

S@F#5^FuT̂1V̂eeuF&5^FuT̂uF&1UH@$f i%#1Ex@$f i%#,
~2.4!

S@F#5^FuT̂uF&1UH@$f i%#1Ex
sx@$f i%#. ~2.5!

In Eqs. ~2.3!–~2.5!, UH is the Hartree energy andEx is the
exchange energy that arises from the determinantF. Note
that Ex differs in general from the Hartree-Fock exchange
energy.Ex

sx denotes a statically screened exchange interac-
tion with a Thomas-Fermi screening constantkTF ,

Ex
sx@F#52(

i, j

N E drdr 8

3
f i* ~r !f j* ~r 8!e2kTFur2r8uf j~r !f i~r 8!

ur2r 8u
. ~2.6!

In contrast to the first example, the functionalsS@F# in Eqs.
~2.4! and ~2.5! contain part of the electron-electron interac-
tion besides the kinetic energy. Based on these functionals
S@F#, we now define functionalsFS@r# of the density
r(r )5( i uf i(r )u2,

FS@r#5 min
F→r~r !

S@F#5min
$f i %→r~r !

S@$f i%#. ~2.7!

The minimization process in Eq.~2.7! searches all Slater
determinants or unitary orbitals$f i% that yield the density
r(r ). The minimizing determinant is denoted byFS@r#. As
will become clear below, the functionalFS@r# plays an
analogous role as the noninteracting kinetic energy in the
standard Kohn-Sham formalism but, in addition, contains
parts of the electron-electron interaction energy. It depends
not only on the density but also on the chosenS@F#, and is
defined by a single Slater determinant rather than with the
N-particle wave function as is the case of the Hohenberg-
Kohn functional, Eq.~2.2b!. Such functionalsFS will be
shown to lead to an exact realization of DFT, provided the
corresponding functionalsS@F# obey in all cases of interest
the following conditions that guarantee the existence of self-
consistent single particle equations.

~C1! The minimumFS@r# defined by Eq.~2.7! and its
functional derivative with respect tor(r ) exist.

~C2! Define the energy

ES@$f i%;veff#5S@$f i%#1E drveff~r !r~r !, ~2.8!

whereveff is an arbitrary local multiplicative potential. The
minimization of this energy by the usual Lagrange procedure
is required to lead to a set of canonical single-particle equa-
tions that can be cast into the form

ÔS@$f i%#f j1 v̂efff j5« jf j with j51, . . . ,N, ~2.9!

where the operatorÔS may depend on the orbitals and the
functionalS, but not explicitly on the potentialv̂eff , and is
invariant with respect to unitary transformations of the orbit-
als. Furthermore we require that the orbitalsf j that mini-
mizeES@$f i%;veff# are theN energetically lowest eigenstates
of the HamiltonianÔS1 v̂eff in Eq. ~2.9!. Note that the op-
eratorÔS is nonlocal in general. We denote the density that
results from the minimization of the energyES in Eq. ~2.8!
by r0

S(@veff#;r )].
~C3! The involved densities arev representable, i.e., ev-

ery physically realized ground-state densityr0(@v#;r ) of Eq.
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~2.1! equals the densityr0
S(@veff#;r ) for some potential

veff(r ) and, conversely, every densityr0
S(@veff#;r ) is the

ground-state densityr0(@v#;r ) for some external potential
v(r ) in Eq. ~2.1!.

We follow the general practice in density-functional
theory to merely assume the first and third condition rather
than attempting to prove them. We note, however, that the
third condition is less stringent than the condition that any
given arbitrary density must be the ground-state density
r0(@v#;r ) of a Schro¨dinger equation with a suitable external
potential~which has been shown to be invalid16,17!.

In any practical application of the GKS scheme, one will
choose functionalsS@F# that lead to single-particle equa-
tions of a form that is required by the second condition. In

the example Eq.~2.3!, one hasÔS5T̂, whereas Eq.~2.4!
leads toÔS5T̂1 v̂x

NL1û, where v̂x
NL has the form of the

nonlocal Hartree-Fock exchange potential andû is the clas-
sical Coulomb potential of the density given by the orbitals
$f i%.

Next, the total energyE0@v# of the interacting system in
Eq. ~2.1! is divided into the total energy of the model system
and the remainder. In order to do this, we denote the differ-
ence betweenFS@r# of Eq. ~2.7! and the Hohenberg-Kohn
functionalF@r# of Eq. ~2.2b! by the functionalRS@r#,

F@r#5FS@r#1RS@r#. ~2.10!

Then, we can write

E0@v#5 min
r~r !→N

H FS@r#1RS@r#1E drv~r !r~r !J 5 min
r~r !→N

H min
F→r~r !

S@F#1RS@r#1E drv~r !r~r !J
5 min

F→N
HS@F#1RS@r@F##1E drv~r !r~@F#;r !J 5 min

$f i %→N
HS@$f i%#1RS@r@$f i%##1E drv~r !r~@$f i%#;r !J .

~2.11!

Note that the functionalRS@r# and the term*drv(r )r(r ) in
Eq. ~2.11! depend on the determinantF or on the orbitals
$f i% only indirectly through the density. The latter is written
as functionalr(@F#;r ) or r(@$f i%#;r ). The ground-state
densityr0(@v#;r ) is determined by minimizingE0@v# within
the space of unitary orbitals. Because of condition~C2!, a
Lagrange procedure leads to the GKS equations

ÔS@$f i%#f j1 v̂Rf j1 v̂f j5« jf j with j51, . . . ,N, ~2.12!

where

vR~r !5
dRS@r#

dr~r !
. ~2.13!

While the exact form of the functionalRS@r# and of its func-
tional derivativevR(r ) are not known, suitable approxima-
tions can be found as will be discussed in Sec. III.

Importantly, the orbitals resulting from these GKS equa-
tions yield the exact ground-state densityr0(@v#;r ) of the
Schrödinger equation ~2.1! because they are obtained
through the minimization of the true ground-state energy
E0@v# as given in Eq.~2.11!. Note that the GKS equations
have exactly the form of Eq.~2.9! with

veff~r !5v~r !1vR~r !. ~2.14!

After the GKS equations have been solved self-consistently,
the ground-state energyE0@v# of the Schro¨dinger equation
~2.1! can be evaluated according to the equation

E0@v#5FS@r0
S@veff##1RS@r0

S@veff##1E drv~r !r0
S~@veff#;r !,

~2.15!

which follows by inserting the expression Eq.~2.10! for
r0(@v#;r )5r0

S(@veff#;r ) into Eq. ~2.11!. The first and the
third contribution on the right-hand side of Eq.~2.15! can be
calculated exactly.FS@r0

S@veff## follows from evaluating
S@$f i%# with the self-consistent GKS orbitals. The contribu-
tion RS@r0

S(@veff#;r )#, as well as the potentialvR(r ) in the
GKS equations, needs to be approximated. This procedure is
analogous to the treatment of the exchange-correlation func-
tionals in the standard Kohn-Sham scheme. In contrast to the
latter scheme, however, important portions of the exchange
correlation energy are already contained inFS that is treated
exactly.

Note that the self-consistently determined density
r0
S(@veff#;r )5r0(@v#;r ) is the minimizing density not only
of the minimization Eq.~2.11! but also of

E0
S@veff#5min

r~r !→N
HFS@r#1E drveff~r !r~r !J , ~2.16!

with veff(r ) being determined by Eq.~2.14!. This follows
from requirement~C2! because the preceding Eq.~2.16! re-
sults from the minimization of the energyES@$f i%;veff#.

We will now clarify the role of conditions~C1! and~C3!.
The first requirement~C1! guarantees that the functional
FS@r# and its functional derivativedFS@r#/dr(r ) exist.
Consequently, we can conclude thatRS@r# and
dRS@r#/dr(r ) exist for all densitiesr(r ) provided the
Hohenberg-Kohn functionalF@r# and its functional deriva-
tive exist. Indeed, the existence ofF@r# has already been
proven in Refs. 16 and 18, whereas that ofdF@r#/dr(r ) is
merely assumed in the Kohn-Sham formalism.

The first part of requirement~C3! guarantees the existence
of an effective potentialveff(r ) leading to a density
r0
S(@veff#;r ) that equals the ground-state densityr0(@v#;r ).
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Indeed, this existence followsa posteriori whenever the
GKS equations lead to a self-consistent solution.

We show in Appendix B that the second part of require-
ment ~C3! guarantees the calculated densityr0

S(@veff#;r ) to
represent the minimum ofF@r#1*drv(r )r(r ) instead of
merely some stationary solution. In a similar way, one may
also show that the solution of the GKS equations is unique.
This is proven in Appendix A. Thus, the condition~C3! guar-
antees thatr0

S(@veff#;r ) equals the ground-state density
r0(@v#;r ) of Eq. ~2.1!.

In summary, the GKS scheme replaces the original Schro¨-
dinger equation~2.1! by a set of one-particle equations, Eqs.
~2.9!, that are much easier to handle. In this respect, this
scheme is equivalent to the standard Kohn-Sham formalism.
The key difference is that not only the noninteracting kinetic
energy but also the part of the total energy given byFS@r# is
treated exactly.FS@r# is determined by the choice of the
functional S@$f i%#. Different realizations of the GKS
scheme are therefore characterized by the choice of
S@$f i%# and the approximations forRS@r# @Eq. ~2.10!#. The
major advantage of this GKS procedure is that suitable
choices ofFS can result inRS to be small compared to the
total energyE0@v#. Thus, errors in approximatingRS have
only a small effect on the energy.

The derivation given above does not make use of a
Hohenberg-Kohn type theorem.2 For an interacting many-
electron system, the Hohenberg-Kohn theorem states that
there are not two external potentials differing by more than a
constant that give the same ground-state density. For the
GKS equations~2.9!, the equivalent theorem states that there
are not two effective potentialsveff(r ) differing by more than
a constant that give the same densityr0

S(@veff#;r ) as a result
of minimizingES@$f i%;veff# of Eq. ~2.8!. We present a proof
of this latter theorem in Appendix A.

III. EXAMPLES OF GENERALIZED KOHN-SHAM
SCHEMES

A. Standard Kohn-Sham method

By choosingS@$F%# to be equal to the kinetic energy of a
Slater determinant, Eq.~2.3!, one obtains the standard Kohn-
Sham scheme.1,3,12–15Strictly speaking, this is true only for
systems where the wave function of the model system can be
represented by a single Slater determinant. This is the case,
for example, in nondegenerate systems. More general situa-
tions have been discussed in Ref. 19.

With S@$F%# from Eq. ~2.3!, the functionalRS@r# is
given by

RS@r#5U@r#1Ex@r#1Ec@r#, ~3.1!

whereU@r# is the classical Coulomb energy,Ex@r# is the
exchange energy,

Ex@r#52
1

2 (
i51

N

(
j51

N E drE dr 8

3
f i* ~@r#;r !f j* ~@r#;r 8!f j~@r#;r !f i~@r#;r 8!

ur2r 8u
,

~3.2!

andEc@r# is the correlation energy. The corresponding func-
tional derivatives with respect to the density are denoted by
u(@r#;r ), vx(@r#;r ), and vc(@r#;r ) for the Coulomb, ex-
change, and correlation potential, respectively. The standard
Kohn-Sham equations read

@ T̂1 v̂1û@r#1 v̂x@r#1 v̂c@r##f i5« if i

with j51, . . . ,N. ~3.3!

Since Eq.~3.2! does not allow one to directly calculate the
functional derivativevx(@r#;r ) and the correlation energy is
not known exactly, both exchange and correlation energies
and potentials are determined from approximate density
functionals~such as LDA!.

Henceforth,T@r# refers to the kinetic energy evaluated
with the self-consistent orbitals of Eq.~3.3!.

B. Hartree-Fock–Kohn-Sham scheme

If the functionalS@F# is chosen as the sum of the kinetic
and the electron-electron energy as in Eq.~2.4!, one obtains
a GKS scheme that resembles the Hartree-Fock method. The
resulting procedure is known as the Hartree-Fock–Kohn-
Sham~HF-KS! scheme.11,20,21To refer to this case, we shall
denote the~unknown! potentialvR(r ) asvc

HF(@r#;r ) to indi-
cate that it contains the correlation effects. The correspond-
ing generalized Kohn-Sham equations are given by

2 1
2¹2f i~r !1v~r !f i~r !1u~@r#;r !f i~r !

2E dr 8vx
NL~r ,r 8!f i~r 8!1vc

HF~@r#;r !f i~r !5« if i ,

~3.4!

vx
NL~r ,r 8!52(

j51

N f j~r !f j* ~r 8!

ur2r 8u
. ~3.5!

Here, the correlation potential~as well as the energy! differs
from the standard Kohn-Sham case since the orbitals$f i%
obey different one-particle equations but it is believed that
this difference is small.22

Apart from the~unknown! potential termvc
HF(@r#;r ), Eq.

~3.4! corresponds to the Hartree-Fock equations. In contrast
to the Hartree-Fock method, however, this procedure is for-
mally exact.

C. Screened, nonlocal exchange — sX-LDA scheme

Motivated by the observation that Hartree-Fock band gaps
in solids exceed the observed ones by a large amount, it
appears plausible to invoke a screened exchange potential in
the single-particle equations. Indeed, this approach has been
used on the basis of the quasiparticle scheme4–6 to derive
perturbative methods to solve quasiparticle equations. The
latter approach, however, does not easily allow one to com-
pute total energies.

The generalized Kohn-Sham method outlined in this pa-
per offers the possibility to split up the total energy in such a
way that the variational single-particle equations contain a
screened exchange potential. As will be demonstrated below,
this procedure yields single-particle eigenvalues leading to
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more accurate band gaps than both Hartee-Fock and LDA,
while the quality of the total energy remains comparable to
LDA.

To put these ideas into a rigorous framework, we choose
S@r# as given in Eq.~2.5!. The Thomas-Fermi screening
constitutes the simplest version of screening the exchange
energy, particularly if one evaluates the Thomas-Fermi con-
stant with the average total density.

This choice ofS@r# implies a functionalRS@r# that is
given by

RS@r#5Exc
sx@r#5$Ex@r#2Ex

sx@r#1T@r#2Tsx@r#%1Ec@r#.
~3.6!

As indicated, we shall refer to this functional asExc
sx@r#. The

term in the curly brackets takes into account the energy dif-
ference between the exchange energyEx@r# in the standard
Kohn-Sham scheme and the screened exchange energy
Ex
sx@r# as given in Eq.~2.6! and the corresponding difference

T@r#2Tsx@r# in the kinetic energies. Note that the correla-
tion energyEc@r# in Eq. ~3.6! is the same as in the standard
Kohn-Sham procedure.

The resulting generalized Kohn-Sham equations~sX-LDA
equations! are

2 1
2¹2f i~r !1v~r !f i~r !1u~@r#;r !f i~r !

2E dr 8vx
sx,NL~r ,r 8!f i~r 8!1vxc

sx~@r#;r !f i~r !5« if i ,

~3.7!

vx
sx,NL~r ,r 8!52(

j51

N f j~r !e
2kTFur2r8uf j* ~r 8!

ur2r 8u
, ~3.8!

wherevxc
sx(@r#;r ) is the functional derivative ofExc

sx@r# with
respect to the density andv̂x

sx,NL is the nonlocal screened
exchange operator. IfkTF is set equal to zero, the sX-LDA
scheme is identical to the HF-KS scheme of the previous
section III.B.. So far the formalism has been exact. For con-
crete applications, the functionals contributing toRS in Eq.
~3.6! are approximated by

Ex@r#.Ex
LDA@r#5E drr~r !ex@r#, ~3.9!

Ex
sx@r#.Ex

sx,LDA@r#5E drr~r !esx@r#, ~3.10!

Ec@r#.Ec
LDA@r#, ~3.11!

T@r#.Tsx@r#, ~3.12!

with23

ex@r#52
3

4 S 3p D 1/3r1/3, ~3.13!

esx@r#52
3

4 S 3p D 1/3r1/3F~z!, ~3.14!

F~z!512
4

3
z arctan

2

z
2
z2

6 F12S z24 13D lnS 11
4

z2D G .
~3.15!

Here, z5kTF / k̄F and k̄F is the Fermi wave vector corre-
sponding to the average density. Thus, these energy contri-
butions are essentially approximated by functionals corre-
sponding to the homogeneous electron gas, invoking the
spirit of the local-density approximation. Note that the usage
of an average Fermi wave vector is an additional approxima-
tion going slightly beyond LDA.8 The difference
T@r#2Tsx@r# is simply set to zero~see Ref. 22 for reasons
to justify this!.

In effect, the same type of procedure has been employed
by Bylander and Kleinman.8 The derivations in this section
put this procedure on a solid basis within the constrained
search formulation of DFT.

IV. BAND GAPS IN GENERALIZED KOHN-SHAM
SCHEMES

The fundamental energy gapEg in a semiconductor can
be expressed as a total energy difference. Alternatively, it can
be expressed entirely in terms of KS eigenvalues:24,25

Eg5«N11
KS ~N!2«N

KS~N!1«N11
KS ~N11!2«N11

KS ~N!

5«g
KS1Dxc

KS5«g
KS1Dx

KS1Dc
KS ~4.1!

with

«g
KS5«N11

KS ~N!2«N
KS~N!

Dxc
KS5«N11

KS ~N11!2«N11
KS ~N!. ~4.2!

« i
KS(M ) denotes the energeticallyi th lowest Kohn-Sham ei-
genvalue of theM particle system. Thus,«M

KS(M ) is the
highest occupied and«M11

KS (M ) the lowest unoccupied or-
bital energy. The contribution«g

KS is the eigenvalue gap,
given by the difference in energy of lowest unoccupied and
highest occupied level. The contributionDxc

KS results from the
discontinuity of the exchange-correlation potential with re-
spect to particle number24,25 and involves the eigenvalues of
the (N11)-particle system. The magnitude ofDxc

KS in the
exact Kohn-Sham formalism is not known quantitatively26–28

but it is generally believed that a fair fraction of the discrep-
ancy between the LDA eigenvalue gaps and the experimental
gaps originates in this discontinuity.29

The crucial point in the presently introduced GKS scheme
is that it incorporates part of the discontinuityDxc

KS already
into the eigenvalue gap of theN-particle GKS system,
thereby substantially reducing the discrepancy between
theory and experiment.

In order to demonstrate this, we write the exchange part
Dx
KS of the discontinuity in the form30,31

Dx
KS5^N11uD v̂xuN11&2^NuD v̂xuN&,

D v̂x5 v̂x
NL@$f i

KS%#2 v̂x@r~N!#. ~4.3!

Here, uN11& and uN& denote theNth and (N11)th KS or-
bital of an N-particle system andv̂x

NL@$f i
KS%# is the

N-particle nonlocal exchange operator specified in Eq.~3.5!
but evaluated with exact Kohn-Sham orbitals. In addition,
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v̂x@r# is the exact, local Kohn-Sham exchange potential of
the N-particle densityr(N) entering the standard Kohn-
Sham equations, Eq.~3.3!.

The GKS equations~3.4! for the HF-KS scheme can be
written in the form of standard Kohn-Sham equations plus
correction terms,

@ T̂1 v̂1û@r#1 v̂x@r#1 v̂c@r##f i1D v̂x@$f i%#f i1D v̂cf i

5« if i ~4.4!

and we see indeed that the operatorD v̂x from Eq. ~4.3! en-
ters as a potential term in the HF-KS equations. Within a
perturbative approach, this operator simply yields an additive
term to the KS eigenvalues,

« i.« i
KS1^ i uD v̂xu i &. ~4.5!

We note that there is a subtle difference betweenD v̂x in Eq.
~4.4! and Eq. ~4.3!. The former operator contains HF-KS
orbitals instead of standard Kohn-Sham orbitals. In addition,
D v̂c is the operator that emerges from the difference between
the standard Kohn-Sham and the HF-KS correlation poten-
tial. HoweverD v̂c and the differences in the operatorsD v̂x
are likely to be very small22 and are neglected here.

Finally, the eigenvalue gap«g of the HF-KS equations is
given by

«g5«N11~N!2«N~N!

.«N11
KS ~N!2«N

KS~N!1^N11uD v̂xuN11&2^NuD v̂xuN&,

5«g
KS1Dx

KS. ~4.6!

Thus, the exchange contributionDx
KS to the discontinuity

Dxc
KS of Eq. ~4.1! is already contained in the eigenvalue gap in

the HF-KS method. Analogously, the eigenvalue gap in the
sX-LDA formalism of Sec. III C can be shown to contain
parts of the discontinuityDxc

KS . Invoking perturbation theory
once more, one may write

« i
sx.« i

KS1^ i uD v̂x
sxu i &,

D v̂x
sx5 v̂x

sx,NL2 v̂x
sx , ~4.7!

wherev̂x
sx is the operator to the functional derivative of the

screened exchange energyEx
sx@r#@Eqs.~2.6! and ~3.10!#.

The GKS single-particle equations resemble theGW
quasiparticle equations.4–6 However, the GKS approach is a
ground-state formalism and yields the correct ground-state
density and energy. One may use the perturbative expression
Eq. ~4.7! to calculate the sX-LDA eigenvalues with the stan-
dard LDA Bloch orbitals. This grossly reduces the numerical
effort since the nonlocal screened Fock exchange operator is
not needed in the self-consistency procedure. We show in
Sec. V D that even this perturbative approach yields very
favorable results for the energy gaps.

V. IMPLEMENTATION AND RESULTS FOR BULK
SEMICONDUCTORS

In order to test the proposed GKS scheme, we have
implemented it in the form of the sX-LDA equations, Eq.

~3.7!, and applied it to energy gaps and structural properties
of several semiconductors.

A. Numerical procedure

The basis of our computations is the plane-wave pseudo-
potential method.32,33 Technically, the sX-LDA scheme re-
sembles a Hartree-Fock calculation with a screened ex-
change potential. Since we are going to consider bulk solids,
the orbitals in Eq.~3.7! are Bloch states and will be denoted
by cn,k . In a plane-wave basis, the sX-LDA Hamiltonian
matrix in Eq.~3.7! reads

^k1GuĤuk1G8&5 1
2 uk1Gu2dG,G81^k1GuV̂psuk1G8&

14p
r~G2G8!

uG2G8u2
1vxc

sx,LDA~G2G8!

2
4p

V (
n,q

(
G1

3
^n,quq1G1G1&^q1G81G1un,q&

uq2k1G1u21k TF
2 .

~5.1!

Here, the vectorsk andq lie in the first Brillouin zone and
G,G8,G1 denote reciprocal-lattice vectors. We have em-
ployed the standardab initio norm-conserving semilocal
pseudopotentialsV̂ps of Bachelet, Hamann, and Schlu¨ter
~BHS!.34 The numerically most demanding part is the com-
putation of the plane-wave matrix elements of the nonlocal
exchange operator, given by the last term in Eq.~5.1!. For all
investigated semiconductors, we have evaluated thek sums
in the electronic density and in Eq.~5.1! with six specialk
points in the irreducible wedge of the Brillouin zone.35 The
plane-wave Hamiltonian matrix has been cut off at a kinetic
energy of 20 Ry for Si, Ge, and GaAs, 30 Ry for InSb and 45
Ry for InP, respectively. It turned out that in the case of InP
and InSb a smaller cutoff of 20–30 Ry for theG1 sum in Eq.
~5.1! changes the calculated band gaps by less than 1 meV.
We have used the analytic Perdew-Zunger parametrization36

of the electron gas correlation energy37 in Eq. ~3.11!. For a
finite screening wave vectorkTF , the integrand in the last
term of Eq.~5.1! is smooth, justifying the use of only sixk
points. In the limiting case ofkTF50, however, it contains a
singularity. It can be handled efficiently by adding and sub-
tracting another term in the wave-vector integral that com-
pensates this singularity and can be integrated exactly.38 In
order to be able to investigate the sX-LDA method for any
value ofkTF , we have used this approach throughout.

B. Band gaps and structural properties in sX-LDA

We have performed total-energy calculations for several
semiconductors employing the sX-LDA method of Sec.
III C. All results in this section have been obtained with the
Thomas-Fermi~TF! dielectric function, using the average
valence electron density in the screening constantk TF . In
the next section we will discuss alternative screening models.

Figure 1 shows the significant increase in the principal
band gaps of Si, Ge, GaAs, InP, and InSb obtained by the
sX-LDA method compared to LDA results that have been
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obtained with the same BHS pseudopotentials and with the
same experimental lattice constants. For materials that con-
tain heavier anions~Ge, GaAs, and especially InSb!, the
spin-orbit interactions cannot be neglected. It is well estab-
lished that the spin-orbit effects can be added perturbatively
a posteriori in the LDA-pseudopotential framework. This
procedure reproduces the experimental spin-orbit splitting
energies in semiconductors very well.39,40Since we are inter-
ested only in the principal energy gaps, we have sidestepped
this calculation and simply decreased the calculated nonrel-
ativistic gaps by one-third of the valence-band spin-orbit
splitting at G ( 13D0). The energy gaps between the lowest
conduction-band states inG, X, andL points and the top of
the valence band and the valence-band widths are shown in
Table I. As a first remark, we notice that Ge and InSb have
metallic properties within the LDA. In InSb, even nonrela-
tivistic LDA calculations that use pseudopotentials39,41or the

linearized augmented plane-wave method41 predict anega-
tive gap atG, whereas the present nonrelativistic sX-LDA
procedure gives apositivegap of 0.495 eV. Taking the ex-
perimental value for the spin-orbit splitting in InSb, one ob-
tains an sX-LDA band gap of 0.23 eV that perfectly matches
the experimental band gap of 0.235 eV. In Ge, the calculated
energy gap atG is still smaller than the one at theL point by
an amount of 0.373 eV. Thus, this theory is still not able to
reproduce the indirect energy gap in Ge. Table I and Fig. 2
illustrate the significant overall improvement of the predicted
band gaps throughout the Brillouin zone by the sX-LDA
method.

As a further check, we list the sX-LDA electronic energy
eigenvalues at high-symmetry points for the occupied and
lowest-lying unoccupied states of GaAs in Table II and com-
pare them with experimental results andGW calculations of

FIG. 1. Fundamental energy gaps in Si, Ge, GaAs, InP, and InSb
calculated in sX-LDA method compared to the LDA and experi-
mental values.

TABLE I. Energy gaps between the lowest conduction states and the valence-band edge and valence-band
widths ~VBW! of Si, Ge, GaAs, InP, and InSb from present sX-LDA with Thomas-Fermi screening and LDA
calculations compared to available experimental results taken from Ref. 42 except where noted. Energies are
in eV.

Si Ge GaAs InP InSb

E(G) 3.37 0.28 1.11 1.60 0.21
ELDA(G) 2.54 20.06 0.44 0.94 20.32
Eexpt(G) 3.05a, 3.4 0.89 1.52 1.42 0.24
E(X) 1.55 1.45 2.35 2.75 1.82
ELDA(X) 0.61 0.61 1.32 1.64 1.06
Eexpt(X) 1.25a 1.360.2 1.98 2.38 1.79
E(L) 2.18 0.66 1.70 2.45 1.02
ELDA(L) 1.44 0.07 0.91 1.56 0.35
Eexpt(L) 1.6560.01 0.74 1.81 2.03 —

2.1b, 2.460.15c

VBW 12.47 13.41 13.40 11.91 11.02
VBWLDA 11.94 12.80 12.40 11.20 10.48
VBWexpt 12.560.6 12.6,12.960.3d 13.1 11.0 11.7, 11.2e

aReference 43.
bReference 44.
cReference 45.
dReference 46.
eReference 47.

FIG. 2. Direct (G1c) and indirect (L1c andX1c) energy gaps,
relative to the valence-band top, in GaAs calculated in sX-LDA
method compared to the LDA and experimental values.
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Ref. 6. One can see that the sX-LDA method predicts energy
gaps in similar good agreement with experiment as theGW
method does.

Table III displays the calculated structural properties of
various bulk semiconductors as obtained by the sX-LDA
method. The relative errors in the lattice constantsa are be-
low 0.5%, when compared to experiment. Since these errors
are so small, we have calculated all energy gaps at the ex-
perimental lattice constants. The effect of zero point motion
of the ions ona is one order of magnitude smaller than the
remaining discrepancies between theory and experiment and
has been neglected. Table III also shows that the bulk moduli
predicted by sX-LDA underestimate the experimental values
by typically 20%, and agree less well with experiment than
the standard LDA results.

We point out that the present sX-LDA calculations con-
tain, strictly speaking, an inconsistency or at least an ambi-
guity in treating the core and valence electrons. Since we

employ BHS pseudopotentials, the core electrons are treated
within LDA whereas the valence electrons are subject to the
sX-LDA. As a consequence, we have determined only rela-
tive structural energies but not the total cohesive energy. It
would clearly be desirable to employ the same sX-LDA
Hamiltonian for both core and valence electrons. On the
other hand, it is not clear why the same constantkTF should
work well for all electrons. To be consistent, one could use a
screening parameter that depends on thelocal density rather
than the average valence density but this procedure is com-
putationally impractical and we have not pursued it.

There are several known methods that model the valence-
core interactions and core polarization effects more accu-
rately than simple LDA, such as partial core corrections,52

mixed Hartree-Fock LDA calculations,53 model core polar-
ization potentials,54 or self-interaction corrected pseudo-
potentials.55 Partial core corrections eliminate a large part of
the discrepancy between the experimental lattice constants
and the values calculated within LDA.56–58Another recently
proposed scheme that leads to similar improvements is based
on self-interaction-corrected~SIC! pseudopotentials.59

In order to study the effect of our choice of BHS pseudo-
potentials on the lattice constants and the energy gaps, we
have constructed a SIC pseudopotential for the case of Ge,
using a recently developed rigorous procedure59 that incor-
porates the nondiagonal Lagrange multipliers of the SIC
method. The most pronounced difference in the band struc-
ture is obtained for theG point, where the direct energy gap
(G2c8 2G25v8 ) opens by an additional 260 meV in comparison
to the value obtained with the standard BHS pseudopotential.
Changes of other gaps are minor, e.g., the gapsL1c2G25v8
andX1c2G25v8 change by 50 and290 meV, respectively. The
lattice constant increases by 2%. This is consistent with the
increase found earlier within an LDA calculation with SIC
pseudopotentials.59 Overall, the results of the present sX-
LDA calculations do not seem to get significantly altered by
using more sophisticated pseudopotentials.

C. Perturbative sX-LDA eigenvalues: Results

As pointed out in Sec. IV, one may obtain the eigenvalues
of the sX-LDA equations in a much simpler albeit approxi-
mate way from Eq.~4.7! with LDA wave functions by using
first-order perturbation theory. For all semiconductors inves-
tigated in this paper, these approximate energy gaps differ by
less than 10% from the full self-consistent sX-LDA eigen-
values. For example, in the case of Ge, the differences in
perturbative and ‘‘exact’’ sX-LDA energy gaps between the
lowest conduction states in high-symmetry pointsL, X, and
G and the valence-band edge are equal to20.02,20.08, and
0.09 eV, respectively. This good agreement between pertur-
bation theory and the full sX-LDA calculation indicates that
the orbitals emerging from the sX-LDA and LDA proce-
dures, respectively, are quite similar. This is consistent with
previous results by von der Lindenet al., who pointed out
the similarity between LDA and Hartree-Fock wave func-
tions for semiconductors.60

D. Alternative screening models: From HF-KS to sX-LDA

In the formulation of the sX-LDA equations@~3.7! and
~5.1!#, we have employed a Thomas-Fermi type of screening.

TABLE II. Electronic energy levels without spin-orbit correc-
tions ~in eV! for GaAs calculated at the experimental lattice con-
stants. Experimental values are from Ref. 48 except where noted.
GW stands for quasiparticle band-structure calculations of Ref. 6 in
theGW approximation.

LDA sX-LDA Expt. GW

G1v 212.56 213.29 213.1 213.03
G15v 0.0 0.0 0.0 0.0
G1c 0.55 1.21 1.52 1.22
G15c 3.54 4.67 4.72 4.48

X1v 210.25 211.02 210.75 210.69
X3v 26.70 26.72 26.70 27.19
X5v 22.58 22.47 22.80 22.87
X1c 1.43 2.46 2.01 2.01
X3c 1.64 2.55 2.58 2.24

L1v 210.95 211.71 211.24 211.41
L1v 26.52 26.46 26.70 26.97
L3v 21.09 21.05 21.30 21.28
L1c 1.02 1.81 1.85 1.64
L3c 4.52 5.63 5.45a 5.40

aReference 43.

TABLE III. Theoretical lattice constants~in Å! and bulk moduli
~in GPa!, both obtained from fit to Murnaghan’s equation of state
~Ref. 49!, of Si, Ge, GaAs, and InP in sX-LDA with Thomas-Fermi
screening. Experimental values are from Refs. 42 and 50.

Si Ge GaAs InP

a0 5.421 5.635 5.627 5.776
a0
LDA 5.37a 5.567a 5.51a 5.74b

a0
expt 5.43 5.657 5.652 5.869
B0 89.3 62.7 63.1 65.5
B0
LDA 96.8a 76.2a 77.8a 76.0b

B0
expt 87.6–97.9 73.4–75.8 75.3–76.9 72.5

aReference 51.
bReference 41.
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More generally, we can write the screened nonlocal ex-
change contribution in Eq.~5.1! in the form

^k1GuHx
sx,NLuk1G8&

52
4p

V (
n,q

(
G1

^n,quq1G1G1&^q1G81G1un,q&
Q2e~Q!

~5.2!

with Q5uq2k1G1u and with a general dielectric function
e(Q).

For germanium, we have investigated two screening mod-
els besides the Thomas-Fermi case, namely a metallic Hub-
bard model dielectric function61 and a semiconductor model
dielectric function.62 The latter dielectric function contains
two parameters,a51.563 ande0512, wheree(Q)→e0 for
q→0. For each of the different models, the functional de-
rivative vx

sx,LDA(r ) of Ex
sx,LDA@r# @Eq. ~3.10!# has been de-

termined by numerical integration.
The results of these calculations are summarized in Table

IV. We find that the energy gaps depend mostly on the long-
wavelength behavior of the model dielectric functions. Both
the Thomas-Fermi and the Hubbard model yield complete
screening forQ→0 and give very similar results. By con-
trast, the present model of the semiconductor dielectric func-
tion does not guarantee complete screening of a long-
wavelength external potential in a semiconductor. This is due
to the neglect of all off-diagonal elementsGÞG8 in
e21(Q1G,Q1G8) which play an essential role in a self-
consistent calculation. Consequently, the present diagonal
semiconductor dielectric function screens the exchange inter-
action less efficiently than the Thomas-Fermi model and
yields energy gaps that are much closer to the unscreened
Hartree-Fock–Kohn-Sham scheme. All of these models do
not appreciably change thek dependence of the matrix ele-
ment in Eq.~5.2!, but give more or less rigid shifts of the
band structure.

In the calculations with the Thomas-Fermi screening, the
screening constantkTF has been determined according to the
average valence electron density. If one considerskTF an
adjustable parameter, one obtains the standard LDA method
in the limit k TF5`. The opposite limitkTF50, on the other
hand, corresponds to the HF-KS scheme of Sec. III B with
the approximationEc

HF@r#5Ec
LDA@r#. We find that the band

gaps change linearly as a function ofkTF between these two
opposite limits. In particular, the calculated energy gaps in
the HF-KS scheme, which incorporates an LDA correlation
potential, are only marginally different from those obtained
from standard Hartree-Fock calculations for the valence elec-
trons~also employing BHS pseudopotentials!. In Ge, for ex-
ample, the energy gap atG is 7.02 eV in HF-KS and 6.97 eV
in Hartree Fock. Similar results hold for otherk points and
materials. Thus, the improvement of the band gaps calculated
with sX-LDA method is due to the fact that the screening of
the exact exchange potential already takes into account es-
sential correlation effects.

VI. CONCLUSIONS

Employing a constrained-search formulation of DFT, we
have developed a framework to derive various exact realiza-
tions of DFT in addition to the standard Kohn-Sham scheme.
Such generalized Kohn-Sham~GKS! schemes minimize not
only the kinetic energy for fixed density such as the standard
Kohn-Sham method but also part of the electron-electron
energy. As a result, one gains more flexibility in constructing
generalized exchange-correlation functionals. Generally, the
GKS scheme leads to single-particle equations that contain
nonlocal potentials such as the Fock exchange operator. A
key point of the GKS method is that the single-particle ei-
genvalues reflect much more faithfully the lowest excitation
energies~such as band gaps! of the many-electron system
than the Kohn-Sham method. The reason is that the discon-
tinuity of the exchange-correlation potential with respect to
the particle number is, to a large extent, already incorporated
in the GKS single-particle eigenvalues.

We have shown that a previously suggested method based
on a total-energy functional with a nonlocal screened ex-
change and LDA correlation energy8 is firmly rooted within
the presented GKS framework. In particular, we have applied
this approach, that we call sX-LDAmethod, to Si, Ge, GaAs,
InSb, and InP and obtained eigenvalue gaps in excellent
overall agreement with true band gaps in these materials. The
improvements are comparable to the perturbativeGW ap-
proach but the sX-LDA method allows a self-consistent de-
termination of ground-state properties as well.

The lattice constants, as calculated by sX-LDA, agree
well with experiment, whereas the bulk moduli are underes-
timated by typically 20%. In part, we believe this to be
caused by using pseudopotentials that do not model core-
valence polarization effects with sufficient accuracy.

We have developed a perturbative scheme for the sX-
LDA single-particle eigenvalues that basically requires only
a standard LDA calculation and yields semiconductor band
gaps that agree well with the self-consistent sX-LDA eigen-
value gaps.
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TABLE IV. Theoretical lattice constanta0 ~in Å!, bulk modulus
B0 ~in GPa!, and band gaps~in eV! of Ge from the present sX-LDA
calculations with various model dielectric functions. TF, HUBB,
and SEM refer to the Thomas-Fermi, Hubbard~Ref. 61!, and semi-
conductor~Ref. 62! model dielectric functions, respectively. Experi-
mental values are from Ref. 42.

TF HUBB SEM Expt.

a0 5.63 5.66 5.38 5.657
B0 63 60 104 77

G25v8 →L1c 0.76 0.63 3.76 0.74
G25v8 →G2c8 0.38 0.23 3.39 0.89
G25v8 →X1c 1.55 1.43 4.59 1.3
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APPENDIX A: PROOF OF HOHENBERG-KOHN
THEOREM FOR THE GKS SCHEME

The Hohenberg-Kohn theorem corresponding to the GKS
equations is given by the statement that two different poten-
tialsveff(r ) cannot yield the same densityr0

S(r ) as a result of
minimizing ES@$f i%;veff# of Eq. ~2.8!. Its proof consists of
two steps. First, it is shown that two different local potentials
veff(r ) that give the same densityr0

S(r ) also yield the same
Slater determinantF0

S. Potentials that differ by a constant
are considered equivalent. Second, we show that two differ-
ent potentialsveff(r ) cannot give the same Slater determinant
F0

S, in contradiction to the first statement. Altogether, we
establish in this way the one-to-one mapping between
veff(r ) andr0

S(r ).
First, it follows from the minimization ofE0

S@veff# given
in Eq. ~2.16! that once the ground-state densityr0

S(r ) is
known, the ground-state wave functionF0

S is completely de-
termined as a functional of that density by Eq.~2.7!, where
r(r ) is set equal tor0

S(r ). This implies that two different
effective potentials that yield the same ground-state density
r0
S(r ) also give the same ground-state wave functionF0

S.
For the second step of the proof, we note thatF0

S is built
of the orbitals obeying the single particle Eqs.~2.9!. There-
fore, the determinantF0

S is the ground-state wave function of
theN-electron Schro¨dinger equation

$ÔS@$f i%#1 v̂eff%F0
S@veff#5Esum

S @veff#F0
S@veff#. ~A1!

Here, ÔS@$f i%# is the N-electron equivalent of the one-
particle operator that appears in the GKS equations~2.9! or
~2.12! but is denoted by the same symbol. Note that the
energyEsum

S @veff# is nothing but the sum of the eigenvalues
« j of the GKS equations~2.9! or ~2.12!.

By dividing the preceding equation byF0
S, one obtains

2
@Ô@$f i%#F0

S~r1 . . . r i . . . rN!#

F0
S~r1 . . . r i . . . rN!

5F(
i51

N

veff~r i !G2E0
S.

~A2!

We note that one has to form a scalar product of Eq.~A1!
with the spin part ofF0

S if the latter function contains
spinors, in order to make the division well defined. Equation
~A2! determines the effective potential uniquely and there-
fore establishes the Hohenberg-Kohn theorem for the GKS
equations.

The given proof of the Hohenberg-Kohn theorems is a
direct consequence of the requirements~C1! and ~C2!. One
may therefore consider~C1! and ~C2! as an equivalent for-
mulation of the Hohenberg-Kohn theorem in the constrained-
search formulation of the GKS formalism.

APPENDIX B: VARIATIONAL PROPERTIES
OF GKS SOLUTIONS

Here, we show that the second part of requirement~C3! in
Sec. II guarantees the calculated densityr0

S(@veff#;r ) to rep-
resent the minimum ofF@r#1*drv(r )r(r ) instead of
merely some stationary solution. According to~C3!, there
exists some external potentialṽ(r ) for the interacting Schro¨-
dinger equation~2.1! that yields a ground-state density equal
to r0

S(@veff#;r ). We now show that, up to a constant,
ṽ(r )5v(r ). From the Euler equation that corresponds to Eq.
~2.2a!, it follows that this external potentialṽ(r ) is given by
the functional derivative2dF@r#/dr(r ) evaluated at the
density r0

S(@veff#;r ). The potentialveff(r ) is equal to the
functional derivative2dFS@r#/dr(r ) evaluated at the same
density because of the Euler equation corresponding to Eq.
~2.16!. This leads, together with Eq.~2.10!, to the identity

ṽ~r !5veff~r !2vR~r !,

vR~r !5dRS@r#/dr@r #ur~r !5r
0
S~@veff#;r !

. ~B1!

In the course of solving the GKS equations self-consistently,
Eq. ~2.14! connectsveff(r ) to the given real external potential
v(r ). Thus, once convergence of the GKS equations has
been achieved, the identityv(r )5veff(r )2vR(r ) holds and
comparison with Eq.~2.1! leads toṽ(r )5v(r ).

1W. Kohn and l. J. Sham, Phys. Rev.140, A1133 ~1965!.
2P. Hohenberg and W. Kohn, Phys. Rev.136, B864 ~1964!.
3For review see, e.g., R. O. Jones and O. Gunnarsson, Rev. Mod.
Phys.61, 689 ~1989!.

4R. W. Godby, M. Schlu¨ter, and L. J. Sham, Phys. Rev. B37,
10 159~1988!.

5M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett.55, 1418
~1985!; Phys. Rev. B34, 5390~1986!.

6X. Zhu and S. G. Louie, Phys. Rev. B43, 14 142~1991!.
7L. Hedin, Phys. Rev.139, A796 ~1965!.
8B. M. Bylander and L. Kleinman, Phys. Rev. B41, 7868~1990!.
9F. R. Vukajlovic, E. L. Shirley, and R. M. Martin, Phys. Rev. B
43, 3994~1991!.

10H. Yamagami, Y. Takada, H. Yasuhara, and A. Hasegawa, Phys.
Rev. A49, 2354~1994!.

11A. Görling and M. Levy, Phys. Rev. B47, 13 105~1993!.
12M. Levy and J. P. Perdew, inDensity Functional Methods in

Physics, Vol. 123 ofNATO Advanced Science Institutes Series,

edited by R. M. Dreizler and J. da Providencia~Plenum Press,
New York, 1985!, Chap. 2, pp. 11–30.

13R. G. Parr and W. Yang,Density-Functional Theory of Atoms and
Molecules, International Series of Monographs on Chemistry,
No. 16 ~Oxford University Press, New York, 1989!.

14R. M. Dreizler and E. K. U. Gross,Density Functional Theory
~Springer, Berlin, 1990!.

15M. Levy, in Advances in Quantum Chemistry, edited by S. B.
Trickey ~Academic Press, San Diego, 1990!, Vol. 21, p. 69.

16E. Lieb, inDensity Functionals for Coulomb Systems, edited by
H. Feshbach and A. Shimony~MIT, Cambridge, 1982!.

17M. Levy, Phys. Rev. A26, 1200~1982!.
18E. Lieb, Int. J. Quantum Chem.23, 243 ~1983!.
19A. Görling, Phys. Rev. A47, 2783~1993!.
20S. Baroni and E. Tuncel, J. Chem. Phys.79, 6140~1983!.
21H. Stoll and A. Savin, inDensity Functional Methods in Physics

~Ref. 12!, Chap. 7, pp. 177–207.
22A. Görling and M. Ernzerhof, Phys. Rev. A51, 4501~1995!.

53 3773GENERALIZED KOHN-SHAM SCHEMES AND THE BAND-GAP PROBLEM



23J. E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer, Phys.
Rev. Lett.9, 215 ~1962!.

24J. P. Perdew and M. Levy, Phys. Rev. Lett.51, 1884~1983!.
25L. J. Sham and M. Schlu¨ter, Phys. Rev. Lett.51, 1888~1983!.
26R. W. Godby, M. Schlu¨ter, and L. J. Sham, Phys. Rev. Lett.56,

2415 ~1986!.
27O. Gunnarsson and K. Scho¨nhammer, Phys. Rev. Lett.56, 1968

~1986!.
28K. Schönhammer and O. Gunnarsson, J. Phys. C20, 3657~1987!.
29J. P. Perdew and M. Levy, inMany-Body Phenomena at Surfaces,

edited by H. S. D. Langreth~Academic, Orlando, 1984!, Chap.
1, pp. 71–89.

30J. P. Perdew, inDensity Functional Methods in Physics~Ref. 12!,
Chap. 10, pp. 265–308.

31A. Görling and M. Levy, Phys. Rev. A52, 4493~1995!.
32J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C12, 4409~1979!.
33W. E. Pickett, Comp. Phys. Rep.9, 117 ~1989!.
34G. B. Bachelet, D. R. Hamann, and M. Schlu¨ter, Phys. Rev. B26,

4199 ~1982!.
35H. J. Monkhost and J. D. Pack, Phys. Rev. B13, 5188~1976!.
36J. P. Perdew and A. Zunger, Phys. Rev. B23, 5048~1981!.
37D. M. Ceperly and B. J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
38F. Gygi and A. Baldereschi, Phys. Rev. B34, 4405~1986!.
39M. P. Surh, Ming-Fu Li, and S. G. Louie, Phys. Rev. B43, 4286

~1991!.
40L. A. Hemstreet, C. Y. Fong, and J. S. Nelson, Phys. Rev. B47,

4238 ~1993!.
41S. Massidda, A. Continenza, A. J. Freeman, T. M. de Pascale, F.

Meloni, and M. Serra, Phys. Rev. B41, 12 079~1990!.
42Numerical Data and Functional Relationships in Science and

Technology, edited by K.-H. Hellwege, Landolt-Bo¨rnstein, New
Series, Group III, Vols. 17 and 22, edited by O. Madelung, M.
Schulz, and H. Weiss~Springer, Berlin, 1982!, Vol. 23a edited

by A. Goldman and E.-E. Koch~Springer, Berlin, 1989!.
43J. E. Ortega and F. J. Himpsel, Phys. Rev. B47, 2130~1993!.
44R. Hulthen and N. G. Nilsson, Solid State Commun.18, 1341

~1976!.
45D. Straub, L. Ley, and F. J. Himpsel, Phys. Rev. Lett.54, 142

~1985!.
46A. L. Wachs, T. Miller, T. C. Hsieh, A. P. Shapiro, and T.-C.

Chiang, Phys. Rev. B32, 2326~1985!.
47D. E. Eastman, W. D. Grobman, J. L. Freeouf, and M. Erbudak,

Phys. Rev. B9, 600 ~1974!.
48E. P. O’Reilly, inProperties of Gallium Arsenide, 2nd ed., EMIS

Datareviews Series No. 2~INSPEC, London, 1990!, p. 113.
49F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A.30, 244 ~1944!.
50J. D. Wiley, inSemiconductors and Semimetals, edited by R. K.

Willardson and A. C. Beer~Academic, New York, 1975!, Vol.
10, p. 134.

51V. Fiorentini, Phys. Rev. B46, 2086~1992!.
52S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B26, 1738

~1982!.
53B. M. Bylander and L. Kleinman, Phys. Rev. B43, 12 070

~1991!.
54E. L. Shirley and R. M. Martin, Phys. Rev. B47, 15 413~1993!.
55M. M. Rieger and P. Vogl, Phys. Rev. A52, 282 ~1995!.
56A. Qteish and R. J. Needs, Phys. Rev. B43, 4229~1991!.
57A. Garcia and M. L. Cohen, Phys. Rev. B47, 6751~1993!.
58A. Dal Corso, S. Baroni, R. Resta, and S. de Gironcoli, Phys.

Rev. B47, 3588~1993!.
59M. M. Rieger and P. Vogl, Phys. Rev. B52, 6 567~1995!.
60W. von der Linden, P. Fulde, and K.-P. Bohnen, Phys. Rev. B34,

1063 ~1986!.
61J. Hubbard, Proc. R. Soc. London Ser. A243, 336 ~1957!.
62G. Cappellini, R. DelSole, L. Reining, and F. Bechstedt, Phys.

Rev. B47, 9892~1993!.

3774 53SEIDL, GORLING, VOGL, MAJEWSKI, AND LEVY


