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A. Seidl, A. Galing, P. Vogl, and J. A. Majewski
Walter Schottky Institut and Physik Department, Technische UniveMiiachen, 85748 Garching, Germany

M. Levy
Department of Chemistry and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
(Received 24 August 1995

As an alternative to the standard Kohn-Sham procedure, other exact realizations of density-functional theory
(generalized Kohn-Sham methgdse presented. The corresponding generalized Kohn-Sham eigenvalue gaps
are shown to incorporate part of the discontinuity, of the exchange-correlation potential of standard Kohn-
Sham theory. As an example, a generalized Kohn-Sham procedure splitting the exchange contribution to the
total energy into a screened, nonlocal and a local density component is considered. This method leads to band
gaps far better than those of local-density approximagiotito good structural properties for the materials Si,

Ge, GaAs, InP, and InSh.

I. INTRODUCTION ment, in contrast to LDA. We shall call these alternative
realizations of DFTgeneralized Kohn-Sham (GKS) schemes
First-principles calculations based on the Kohn-Sham We show that the GKS framework that we develop in this
scheme of density-functional the8ryDFT) have success- paper constitutes a rigorous basis for employing nonlocal
fully predicted and explained a wide range of solid-statepotentials such as Hartree-Fock-like exchange potentials or
properties’ Strictly speaking, however, this is true only for screened nonlocal exchange potentials within Kohn-Sham-
cohesive and structural properties, whereas band gaps atge approaches. An example of such an approach with
typically underestimated by a factor of 2. One approach tascreened nonlocal exchange and LDA correlation potentials
solve this gap problem is to consider the energies of quasivas first proposed by Bylander and Kleinman on empiricall
particles and to calculate the electron self-energy in terms ofroundst and was shown to give significantly better energy
perturbation theory. This approach has been followed by sewjaps in Si. This method was also applied to atoms in Refs. 9
eral author§®invoking Hedin'sGW approximatior’. While  and 10. In this work, we show that this method is firmly
this procedure has been quite successful, it does not allovooted within DFT and we present results for structural prop-
one to calculate structural properties together with energgrties and band gaps in several semiconductors based on this
gaps in a self-consistent way. Since, however, principal bangcreened-exchange GKS scheme. We show that this ap-
gapsEy of semiconductors are differences of ground-statgproach, which we shall call the screened-exchange LDA
energies of N and N=*1 particle systems, E;  method (sX-LDA), compares very favorably with experi-
=E(N+1)+E(N—1)—2E(N), they are in principle acces- ment.

sible by DFT. The paper is organized as follows. In Sec. I, the GKS
So far, DFT has been applied almost exclusively withinformalism is developed, generalizing earlier work of Ref. 11.
the Kohn-Sham formalism whergy is the difference of Several examples are given in Sec. lll. In particular, a

single-particle eigenvalues plus a contribution that originatescheme based on screened nonlocal exchange functionals is
in the discontinuityA,. of the exchange-correlation potential discussed. The analog of the local-density approximation of
at integer particle numbers. In practice, the Kohn-Shanthis scheme is shown to lead to the sX-LDA method. In Sec.
scheme is usually carried out within the local-density ap4V, we analyze the band gaps emerging from the various
proximation (LDA), whose exchange-correlation potential GKS schemes and compare them with the standard Kohn-
exhibits no discontinuity 4,.=0). Indeed, the energy gaps Sham eigenvalue gaps. Based on nonlocal pseudopotentials
within LDA show a large discrepancy with experiment that isand a plane-wave representation, we present energy gaps,
caused both by the lack of the discontinuity and errors in thezalence-band widths, lattice constants, and bulk moduli cal-
single-particle eigenvalues resulting from the approximativeculated within the sX-LDA method for Si, Ge, GaAs, InP,
nature of the functional. and InSb in Sec. V. In addition, we develop a perturbative
In this paper we show that there are numerous exact realrersion of the sX-LDA scheme that is computationally much
izations of DFT besides the standard Kohn-Sham proceduress demanding but still gives results in fair agreement with
that yield the correct total energy of the system and lead téhe self-consistent version. In addition, several screening
self-consistently determined single-particle eigenvalues ofmodels for the nonlocal exchange potential are discussed. A
the N-particle system whose differences already incorporatsummary is given in Sec. VI. In Appendix A, we prove the
part of the discontinuityA,.. In particular, these schemes Hohenberg-Kohn theorefrfor the GKS formalism. Finally,
lend themselves to approximations that allow the self-some variational properties of the GKS solutions are proven
consistent calculation of both structural properties and enin Appendix B. Atomic units are used throughout the paper
ergy gaps of semiconductors in good agreement with experiexcept where noted.
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Il. DERIVATION OF GENERALIZED KOHN-SHAM — - ) s )
SCHEMES FJO]=(P[T|®)+Un[{Ai}1+EFT{i}]. (2.9

_ o ) _ In Egs.(2.39—(2.5), Uy is the Hartree energy arig, is the
Virtually all concrete applications of density-functional gxchange energy that arises from the determidantNote
theory to the ground state of many-electron systems argai £ differs in general from the Hartree-Fock exchange

baseq”og thelwell-knowr} Kc()jhr}L—Sﬁélsé%heme_ Ihn this w?]rk, __energy.ES* denotes a statically screened exchange interac-
we will develop generalized Kohn-Sham schemes that 'n’['\%n with a Thomas-Fermi screening constan,

clude the standard Kohn-Sham scheme as a special case.

deriving these GKS schemes, we will invoke the N
constrained-search formulation of DE¥>~1° EX®]=->, | drdr’

We start by considering the Sclilinger equation oN 1<l
electrons,

o LH WG re T g gi(r)
(T+Veet0)¥Yolv]=Eg[v]¥olv]. (2.1 [r—r’'| '

In Eq.(2.1), T andV,. are the operators of the kinetic energy In contrast to the first example, the function&[sb] in Egs.

and the electron-electron interaction, respectively. The nota2.4) and (2.5 contain part of the electron-electron interac-
tion emphasizes the fact that the ground-state enEgggnd  tion besides the kinetic energy. Based on these functionals
wave function¥, are functionals of the external potential S{®], we now define functionals=p] of the density
v(r). Equation(2.1) is equivalent to the minimizatiot?=4  p(r)==i| (1|3,

(2.6

_ F9p]=min S®]=min S[{¢}]. 2.7
Eolv]=min [F[p]+f drv(r)p(r)], (2.2a ®—p(r) Giopn
(r—N
- o The minimization process in EJ2.7) searches all Slater
Flpl= min (V|T+Vd V). (2.2p  determinants or unitary orbitalsp;} that yield the density
W —p(r) p(r). The minimizing determinant is denoted By p]. As

The minimizations in Eqs(2.2) are performed within the Will become clear below, the functiondp] plays an
space of all densities yieldiny electrons and all antisym- @analogous role as the noninteracting kinetic energy in the
metric wave functions yielding the densiiy(r), respec- Standard Kohn-Sham formalism but, in addition, contains

tively. Equation(2.20) defines the Hohenberg-Kohn func- Parts of the electron-electron interaction energy. It depends

tional F[p].2 not only on the density but also on the cho&d], and is
The basic idea of the standard Kohn-Sham scheme is tg€fined by a single Slater determinant rather than with the

replace the calculation oF[v] by that of a single Slater N-particle wave function as is the case of the Hohenberg-

determinant that represents a noninteracting model systefehn functional, Eq.(2.2b. Such functionals=™ will be

and yields the same ground-state densitylagv]. How- shown to Ie_ad to an exact real|zat|<_)n of DFT, proylded the

ever, the expectation value of the Hamiltonian with this de-corresponding functional§| & ] obey in all cases of interest

terminant only gives part of the total energy whereas thdhe following conditions that guarantee the existence of self-

remaining exchange-correlation contribution to the total enconsistent single particle equations. _

ergy is not directly accessible by the determinant. (C1) The minimumFp] defined by Eq.(2.7) and its
Alternatively, one may try to introducdinteracting  functional derivative with respect to(r) exist.

model systems that take into account the electron-electron (C2) Define the energy

interaction to some extent and incorporate at least part of the

exchange and correlation contribution to the total energy, but ES[{¢i};ueﬁ]:S[{¢i}]+f droeg(r)p(r), (2.8

can still be represented by a single Slater determinant. The

latter is important to obtain tractable single-particle equawherev 4 is an arbitrary local multiplicative potential. The

tions. In this way one may hope to obtain single-particleminimization of this energy by the usual Lagrange procedure

equations with eigenvalues that more faithfully reflect thejs required to lead to a set of canonical single-particle equa-

physical excitation energies and energy gaps. tions that can be cast into the form
Let us define an energy functiong§[ ®] of N-electron R
Slater determinant®. Throughout this work, Slater deter- OS[{¢i}]¢j+ﬁeﬁ¢j=sj¢j with j=1,... N, (2.9

minants will be denoted b to distinguish them from gen-
eral many-electron wave functions. S ®] defines a func- ) . X .
y SLP] functional S, but not explicitly on the potentiad ., and is

tional i}1 of theN unitary (spinop orbitals that generate . . , ) . .
S y(spinop 9 invariant with respect to unitary transformations of the orbit-

®. According to its definition, the function&[{¢;}] is in- . . "
variant with respect to unitary transformations of the orbitals.alfc" Fusrthermore we require that t'he orbitafis that mint-
We give three examples of such function&[sb] that will mize ET{¢i};ver] are theN energetically lowest eigenstates

. . S ~ .
be seen to be relevant for the further discussion, namely ©f the HamiltonianO®+ v in Eq. (2.9). Note that the op-
eratorO® is nonlocal in general. We denote the density that

where the operato@S may depend on the orbitals and the

S[q>]:<q>|:r|q>>, 2.3 results from the minimization of the enerdy? in Eq. (2.8
o ) by p5([ver):n)]-
FP]=(P|T+VdP)=(D|T|®)+Uy[{di} 1+ E;[{di}], (C3) The involved densities are representable, i.e., ev-

(2.9 ery physically realized ground-state dengitf[ v ];r) of Eq.
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(2.1) equals the densitypS([vei];r) for some potential the example Eq(2.3), one hasOS=T, whereas Eq(2.4)
ver(r) and, conversely, every density([ver];r) is the leads toOS=T+o)"+0, whereo}" has the form of the
ground-state densitpy([v];r) for some external potential nonlocal Hartree-Fock exchange potential @ni the clas-
v(r) in Eq. (2.2). sical Coulomb potential of the density given by the orbitals
We follow the general practice in density-functional {¢;}.
theory to merely assume the first and third condition rather Next, the total energ¥g[v] of the interacting system in
than attempting to prove them. We note, however, that théq. (2.1 is divided into the total energy of the model system
third condition is less stringent than the condition that anyand the remainder. In order to do this, we denote the differ-
given arbitrary density must be the ground-state densitgnce betweefrSp] of Eq. (2.7) and the Hohenberg-Kohn
po([v];r) of a Schrdinger equation with a suitable external functional F[p] of Eq. (2.2 by the functionalR¥ p],
potential(which has been shown to be invafid).
In any practical application of the GKS scheme, one will Flp]l= Fs[p]+ Rs[p], (2.10
choose functional§ @] that lead to single-particle equa-
tions of a form that is required by the second condition. InThen, we can write

Eolv]= min [Fs[p]-f—RS[p]-f—f drv(r)p(r)]= min [ min S[(I)]‘FRS[p]-I—f dl‘v(l‘)p(l’)J

p(r)—N p(r)—=N|{ ®—p(r)

d—N {¢i}—N

:min[S[d>]+R5[p[<1>]]+ | drv<r>p<[<b];r>]= min [S[{¢i}]+R5[p[{¢i}]]+ | drv<r>p<[{¢i}];r>].
2.1

Note that the functionaR p] and the termfdru(r)p(r) in  which follows by inserting the expression E.10 for

Eq. (2.11) depend on the determinadt or on the orbitals po([v];r)=p5([ves];r) into Eq. (2.10. The first and the
{¢;} only indirectly through the density. The latter is written third contribution on the right-hand side of E&.15 can be

as functionalp([®];r) or p([{¢i}];r). The ground-state calculated exactly.F pJves]] follows from evaluating
densitypo([v];r) is determined by minimizingo[v ] within - g[{;}] with the self-consistent GKS orbitals. The contribu-
the space of unitary orbitals. Because of conditi@®), a  tion R p5([ves];r)], as well as the potentialg(r) in the
Lagrange procedure leads to the GKS equations GKS equations, needs to be approximated. This procedure is
. analogous to the treatment of the exchange-correlation func-
OF{¢i}1¢p;+0rep;+0hj=¢j¢p; with j=1,... N, (2.12  tionals in the standard Kohn-Sham scheme. In contrast to the
latter scheme, however, important portions of the exchange

where correlation energy are already containedrigthat is treated
exactly.
oa(r)= SR p] (2.13 Note that the self-consistently determined density
R op(r) -’ ) pg([veﬁ];l’)Zpo([v];r) is the minimizing density not only

' of the minimization Eq(2.11) but also of
While the exact form of the function® p] and of its func-

tional derivativevg(r) are not known, suitable approxima- _ )
tions can be found as will be discussed in Sec. lIl. Eqlver] = min
Importantly, the orbitals resulting from these GKS equa- p(N—=N
tions yield the exact ground-state density([v];r) of the  with vg(r) being determined by Eq2.14). This follows
Schralinger equation (2.1) because they are obtained from requiremen{C2) because the preceding E&.16 re-
through the minimization of the true ground-state energysults from the minimization of the enerds™ { #;};vesl.
Eolv] as given in Eq(2.11). Note that the GKS equations We will now clarify the role of conditiongC1) and(C3).

Fs[p]+f drveﬁ(r)p(r)], (2.16

have exactly the form of Eq2.9) with The first requiremen{C1) guarantees that the functional
FSp] and its functional derivativesSFp]/dp(r) exist.
Ver(r)=v(r)+uvg(r). (2.14  Consequently, we can conclude thaRYp] and

SR p]/6p(r) exist for all densitiesp(r) provided the
After the GKS equations have been solved self-consistently{ohenberg-Kohn functiondf[p] and its functional deriva-
the ground-state enerdyo[v] of the Schrdinger equation tive exist. Indeed, the existence Bfp] has already been
(2.1 can be evaluated according to the equation proven in Refs. 16 and 18, whereas thatséf p]/ dp(r) is
merely assumed in the Kohn-Sham formalism.
The first part of requiremer€C3) guarantees the existence
EO[U]:FS[Pg[Ueﬂ]]’LRS[Pg[Ueff]Hf dro(npg([verli).  of an effech;tive po?entialverff(r)) gIeading to a density

(2.15 pg([veﬁ];l’) that equals the ground-state density([v];r).
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Indeed, this existence followa posteriori whenever the andE[p] is the correlation energy. The corresponding func-

GKS equations lead to a self-consistent solution. tional derivatives with respect to the density are denoted by
We show in Appendix B that the second part of require-u([p];r), v«([p];r), andv.([p];r) for the Coulomb, ex-

ment (C3) guarantees the calculated dengif([ves];r) to  change, and correlation potential, respectively. The standard

represent the minimum oF[p]+ fdru(r)p(r) instead of Kohn-Sham equations read
merely some stationary solution. In a similar way, one may

also show that the solution of the GKS equations is unique. [T+0+0[p]+0p1+0c[pl1di =i

This is proven in Appendix A. Thus, the conditi¢é@3) guar- o

antees thatp3([veq];r) equals the ground-state density with j=1,... N. (3.3
po([v];r) of Eq. (2.1). Since Eq.(3.2) does not allow one to directly calculate the

In summary, the GKS scheme replaces the original SChrOfunctional derivativev,([ p];r) and the correlation energy is

dinger equatiori2.1) by a set of one-particle equations, EAS. ot known exactly, both exchange and correlation energies

(2.9, th"’}t are .much easier to handle. In this respect, _thi%nd potentials are determined from approximate density
scheme is equivalent to the standard Kohn-Sham formal'sn?unctionals(such as LDA.

The key difference is that not only the noninteracting kinetic Henceforth, T[p] refers to the kinetic energy evaluated

energy but also the part of the total energy giverFp] is with the self-consistent orbitals of E¢B.3).
treated exactlyFp] is determined by the choice of the

functional S {¢;}]. Different realizations of the GKS

scheme are therefore characterized by the choice of

S[{¢;}] and the approximations f&® p] [Eq. (2.10]. The If the functionalS[®] is chosen as the sum of the kinetic

major advantage of this GKS procedure is that suitableand the electron-electron energy as in E2j4), one obtains

choices ofF g can result inRS to be small compared to the a GKS scheme that resembles the Hartree-Fock method. The

total energyEq[v]. Thus, errors in approximatinB® have  resulting procedure is known as the Hartree-Fock—Kohn-

only a small effect on the energy. Sham(HF-KS) schemé!?*?1Tg refer to this case, we shall
The derivation given above does not make use of alenote thunknowr potentialvg(r) aSUCHF([p];r) to indi-

Hohenberg-Kohn type theoremFor an interacting many- cate that it contains the correlation effects. The correspond-

electron system, the Hohenberg-Kohn theorem states thatg generalized Kohn-Sham equations are given by

there are not two external potentials differing by more than a

constant that give the same ground-state density. For the —3V2i(r)+v(r)¢i(r)+u([pl;r) ¢i(r)

GKS equationg2.9), the equivalent theorem states that there

B. Hartree-Fock—Kohn-Sham scheme

are not two effective potentials.z(r) differing by more than — f dr’v)'fL(r,r’)q&i(r’)+vEF([p];r)¢i(r)=si¢i ,
a constant that give the same den$i§{[veﬁ];r) as a result
of minimizing ES{;};vx] of Eq. (2.8). We present a proof (3.9

of this latter theorem in Appendix A.
N ,
wr e - S, B .
lll. EXAMPLES OF GENERALIZED KOHN-SHAM v (1) = & r=r] (3.5
SCHEMES

Here, the correlation potentighs well as the energyiffers
A. Standard Kohn-Sham method

from the standard Kohn-Sham case since the orb{tél$

By choosingS[{®}] to be equal to the kinetic energy of a obey different one-particle equations but it is believed that
Slater determinant, Eq2.3), one obtains the standard Kohn- this difference is smafi?
Sham schem&31?-1®Strictly speaking, this is true only for  Apart from the(unknown potential termv ([ p];r), Eq.
systems where the wave function of the model system can b@.4) corresponds to the Hartree-Fock equations. In contrast
represented by a single Slater determinant. This is the cast the Hartree-Fock method, however, this procedure is for-
for example, in nondegenerate systems. More general situanally exact.
tions have been discussed in Ref. 19.

Wwith S[{®}] from Eq. (2.3, the functionalRYp] is C. Screened, nonlocal exchange — sX-LDA scheme

given by . .
Motivated by the observation that Hartree-Fock band gaps

R p]=U[p]+E, p]+Edpl, (3.1 in solids exceed the observed ones by a large amount, it
appears plausible to invoke a screened exchange potential in
where U[ p] is the classical Coulomb energl, [ p] is the the single-particle equations. Indeed, this approach has been

exchange energy, used on the basis of the quasiparticle scHefeo derive
perturbative methods to solve quasiparticle equations. The
1 N latter approach, however, does not easily allow one to com-
Elpl=—3 iZl 121 f dff dr’ pute total energies.

The generalized Kohn-Sham method outlined in this pa-
¢F ([plindF ([pLir ) i([plin) di([pir”) per offers the possibility to split up the total energy in such a
X , way that the variational single-particle equations contain a
screened exchange potential. As will be demonstrated below,

(3.2 this procedure yields single-particle eigenvalues leading to

=
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more accurate band gaps than both Hartee-Fock and LDA, 4 2 72 72 4
while the quality of the total energy remains comparable to F(z)=1—- 3z arctan—— =17 +3/In{ 1+ ]|
LDA. 3 6 4 z

(3.19
To put these ideas into a rigorous framework, we choose
S[p] as given in Eq.(2.5. The Thomas-Fermi screening Here, z= kTF/kF and kF is the Fermi wave vector corre-
constitutes the simplest version of screening the exchang@onding to the average density. Thus, these energy contri-
energy, particularly if one evaluates the Thomas-Fermi conbutions are essentially approximated by functionals corre-

stant with the average total density. sponding to the homogeneous electron gas, invoking the
This choice ofS[p] implies a functionalR¥ p] that is ~ Spirit of the local-density approximation. Note that the usage
given by of an average Fermi wave vector is an additional approxima-

tion going slighty beyond LDA The difference
RYp]1=EXpl={ELp]—ESpl+Tlp]-TNplt+EJfp].  TLp1—T*{p] is simply set to zerdsee Ref. 22 for reasons
(3.6) 1o justify this).
In effect, the same type of procedure has been employed

As indicated, we shall refer to this functional B§{ p]. The by Bylander and Kleinmafi.The derivations in this section
term in the curly brackets takes into account the energy difput this procedure on a solid basis within the constrained
ference between the exchange endigyp] in the standard search formulation of DFT.
Kohn-Sham scheme and the screened exchange energy
ES{p] as given in Eq(2.6) and the corresponding difference IV. BAND GAPS IN GENERALIZED KOHN-SHAM
T[p]—T{p] in the kinetic energies. Note that the correla- SCHEMES
tion energyE [ p] in Eqg. (3.6) is the same as in the standard
Kohn-Sham procedure.

The resulting generalized Kohn-Sham equatitg6LDA
equationg are

The fundamental energy gdf, in a semiconductor can
be expressed as a total energy difference. Alternatively, it can
be expressed entirely in terms of KS eigenvaltfes:

1921+ (D (D) Ul (1) o NN o () el 1) ek

=ef o+ A= S HASHALS 4.0
- [arog g rotoln s =ed, with
(3.7 8 _8N+1(N)_8N (N)
I , AKS= N+1 N 4.2
sxNLr- s :_§ pj(r)e kelr r|¢1?‘(r) 38 xo=enzal )—enta(N). ( ).
Uy () r—r| ' : KS(M) denotes the energeticalish lowest Kohn-Sham ei-

e genvalue of theM partlcle system. Thusa S(M) is the
wherevX([p];r) is the functional derivative o3 p] with highest occupied andMH(M) the lowest unoccupied or-
respect to the density anef® NL s the nonlocal screened bital energy. The contrlbutlomgS is the eigenvalue gap,
exchange operator. K is set equal to zero, the sX-LDA given by the difference in energy of lowest unoccupied and
scheme is identical to the HF-KS scheme of the previousighest occupied level. The contributitz&rfcS results from the
section III.B.. So far the formalism has been exact. For condiscontinuity of the exchange-correlation potential with re-
crete applications, the functionals contributingR8 in Eq.  spect to particle numb&?2®and involves the eigenvalues of
(3.6) are approximated by the (N+1)-particle system. The magnitude af> in the

exact Kohn-Sham formalism is not known quantitati7&iy®
but it is generally believed that a fair fraction of the discrep-
Exlp]=Ep]= f dro(redel, (3.9 ancy between the LDA eigenvalue gaps and the experimental
gaps originates in this discontinufty.
The crucial point in the presently introduced GKS scheme
Eixfp]inx’LDA[PFf drp(r)esdpl,  (3.10 s that it incorporates part of the discontinuity)> already
into the eigenvalue gap of th&l-particle GKS system,

__LDA thereby substantially reducing the discrepancy between
Eclp]=EcIpl, (311 theory and experiment.
< In order to demonstrate this, we write the exchange part
Tlpl=T"1p], (312 AKS of the discontinuity in the fordf=3.
11223 ~ ~
with AXKS=<N+1|AUX|N+1>—<N|AUX|N>,

(3.13 v ANL[{d’ S}]_ax[p(N)]- 4.3
Here,|N+ 1) and|N) denote theNth and (N+1)th KS or-
bital of an N-particle system andoN-[{¢f5}] is the

e lp]=— E(i 1/3’)1/3':(2) (3.14 N-particle nonlocal exchange operator specified in Bd)
s 4\ ’ ' but evaluated with exact Kohn-Sham orbitals. In addition,

elrl==71=

1/3
5[]
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v, p] is the exact, local Kohn-Sham exchange potential 0f3.7), and applied it to energy gaps and structural properties
the N-particle densityp(N) entering the standard Kohn- of several semiconductors.
Sham equations, E@3.3).
The GKS equation$3.4) for the HF-KS scheme can be A. Numerical procedure
written in the form of standard Kohn-Sham equations plus

correction terms, The basis of our computations is the plane-wave pseudo-

potential method?*3 Technically, the sX-LDA scheme re-

T+o+0UMol+ +3 LAD Vb4 AD b sembles a Hartree-Fock calculation with a screened ex-
[Tro+ulpltodpltodellditAvdiditlditAved change potential. Since we are going to consider bulk solids,
=g (4.4  the orbitals in Eq(3.7) are Bloch states and will be denoted

) . by #, . In a plane-wave basis, the sX-LDA Hamiltonian
and we see indeed that the operatar, from Eq. (4.3 en-  matrix in Eq.(3.7) reads

ters as a potential term in the HF-KS equations. Within a

perturbative approach, this operator simply yields an additive (k + G| H |k+G"y=3|k+G|?6g g+ (Kk+ G|f/psj k+G')
term to the KS eigenvalues, '
p(G—G’)

- SXLDA/ ~ _ ~1
sizsﬁs+(i|Avx|l>. (45) +tam |G_Gf|2 +vxc (G G )
We note that there is a subtle difference betwaen in Eq. A
(4.4 and Eq.(4.3. The former operator contains HF-KS —3; GE
orbitals instead of standard Kohn-Sham orbitals. In addition, a4 =
Av. is the operator that emerges from the difference between (n,q/q+G+G1){(q+G’'+G4|n,q)

the standard Kohn-Sham and the HF-KS correlation poten-
tial. HoweverAo, and the differences in the operataxs,
are likely to be very sméaf and are neglected here. (5.9

Finally, the eigenvalue gap, of the HF-KS equations is Here, the vector& andq lie in the first Brillouin zone and

given by G,G’,G; denote reciprocal-lattice vectors. We have em-
eq=ers1(N)— &y (N) ployed the standardb initio norm-conserving semilocal
g TN+l N pseudopotentials/,s of Bachelet, Hamann, and Sctéu
=KS (N)—eKS(N)+ (N+1|AD N+ 1) —(N|AD,|N), (BHS).** The numerically most demanding part is the com-
KS . KS putation of the plane-wave matrix elements of the nonlocal
=g TA”. (4.6 exchange operator, given by the last term in &ql). For all

Th h h butioh S he di _— investigated semiconductors, we have evaluatecktsams
us, the exchange contributioh,” to the discontinuity , 16 electronic density and in E¢5.1) with six specialk

AJS of Eq. (4.1 is already contained in the eigenvalue gap inygints in the ireducible wedge of the Brillouin zofeThe

the HF-KS method. Analogously, the eigenvalue gap in the)lane-wave Hamiltonian matrix has been cut off at a kinetic
sX-LDA formalism of Sec. Il C can be shown to contain energy of 20 Ry for Si, Ge, and GaAs, 30 Ry for InSb and 45
parts of the discontinuit>. Invoking perturbation theory Ry for InP, respectively. It turned out that in the case of InP

lg—k+Gyl?+ k3¢

once more, one may write and InSb a smaller cutoff of 20—30 Ry for tfB& sum in Eq.
o KS et s (5.1 changes the calculated band gaps by less than 1 meV.
el =gi +(i|Avi), We have used the analytic Perdew-Zunger parametriZition
of the electron gas correlation enetgyn Eq. (3.11). For a
Al}ixzﬁix’NL—ﬁix, (4.7  finite screening wave vectdte, the integrand in the last

o - ) o term of Eq.(5.1) is smooth, justifying the use of only sk
wherev” is the operator to the functional derivative of the points. In the limiting case df-=0, however, it contains a
screened exchange ener§y{p][Egs.(2.6) and(3.10]. singularity. It can be handled efficiently by adding and sub-
The GKS single-particle equations resemble 88V  {racting another term in the wave-vector integral that com-
quasiparticle equatiors.® However, the GKS approach is a pensates this singularity and can be integrated exatly.
ground-state formalism and yields the correct ground-stat@rder to be able to investigate the sX-LDA method for any

density and energy. One may use the perturbative expressiQRjue ofk.z, we have used this approach throughout.
Eq. (4.7) to calculate the sX-LDA eigenvalues with the stan-

dard LDA Bloch orbitals. This grossly reduces the numerical
effort since the nonlocal screened Fock exchange operator is .
not needed in the self-consistency procedure. We show in We have performed tptal—energy calculations for several
Sec. VD that even this perturbative approach yields vengemiconductors employing the sX-LDA method of Sec.
favorable results for the energy gaps. [l C. All results in this section have been obtained with the
Thomas-Fermi(TF) dielectric function, using the average
V. IMPLEMENTATION AND RESULTS EOR BULK valence eIec_tron den_slty_ in the screening consk_aqm. In
SEMICONDUCTORS the next section we will discuss alternative screening models.
Figure 1 shows the significant increase in the principal
In order to test the proposed GKS scheme, we havéand gaps of Si, Ge, GaAs, InP, and InSb obtained by the
implemented it in the form of the sX-LDA equations, Eq. sX-LDA method compared to LDA results that have been

B. Band gaps and structural properties in sX-LDA
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FIG. 1. Fundamental energy gaps in Si, Ge, GaAs, InP, and InSb
calculated in sX-LDA method compared to the LDA and experi-

FIG. 2. Direct (";;) and indirect ;. and X;;) energy gaps,
mental values.

relative to the valence-band top, in GaAs calculated in sX-LDA
method compared to the LDA and experimental values.

obtained with the same BHS pseudopotentials and with the

same experimental lattice constants. For materials that cotinearized augmented plane-wave metHopredict anega-
tain heavier anion§Ge, GaAs, and especially Insbthe tive gap atI’, whereas the present nonrelativistic sX-LDA
spin-orbit interactions cannot be neglected. It is well estabprocedure gives @ositivegap of 0.495 eV. Taking the ex-
lished that the spin-orbit effects can be added perturbativelperimental value for the spin-orbit splitting in InSb, one ob-
a posteriori in the LDA-pseudopotential framework. This tains an sX-LDA band gap of 0.23 eV that perfectly matches
procedure reproduces the experimental spin-orbit splittinghe experimental band gap of 0.235 eV. In Ge, the calculated
energies in semiconductors very w&lf°Since we are inter- energy gap af is still smaller than the one at thepoint by
ested only in the principal energy gaps, we have sidesteppegh amount of 0.373 eV. Thus, this theory is still not able to
this calculation and simply decreased the calculated nonreleproduce the indirect energy gap in Ge. Table | and Fig. 2
ativistic gaps by one-third of the valence-band spin-orbitillustrate the significant overall improvement of the predicted
splitting atT" (3Ao). The energy gaps between the lowestband gaps throughout the Brillouin zone by the sX-LDA
conduction-band states In, X, andL points and the top of method.

the valence band and the valence-band widths are shown in As a further check, we list the sX-LDA electronic energy
Table I. As a first remark, we notice that Ge and InSb havesigenvalues at high-symmetry points for the occupied and
metallic properties within the LDA. In InSb, even nonrela- lowest-lying unoccupied states of GaAs in Table Il and com-
tivistic LDA calculations that use pseudopotentiafor the  pare them with experimental results aBdV calculations of

TABLE |. Energy gaps between the lowest conduction states and the valence-band edge and valence-band
widths (VBW) of Si, Ge, GaAs, InP, and InSb from present sX-LDA with Thomas-Fermi screening and LDA
calculations compared to available experimental results taken from Ref. 42 except where noted. Energies are

in eV.

Si Ge GaAs InP InSb
E(T) 3.37 0.28 1.11 1.60 0.21
E-PA(T) 2.54 —0.06 0.44 0.94 —-0.32
E®P(I) 3.08, 3.4 0.89 1.52 1.42 0.24
E(X) 1.55 1.45 2.35 2.75 1.82
ELPA(X) 0.61 0.61 1.32 1.64 1.06
E®*P(X) 1.2% 1.3+0.2 1.98 2.38 1.79
E(L) 2.18 0.66 1.70 2.45 1.02
ELPA(L) 1.44 0.07 0.91 1.56 0.35
E®*P(L) 1.65+0.01 0.74 1.81 2.03 —

2.1°, 2.4+0.15

VBW 12.47 13.41 13.40 11.91 11.02
VBW LA 11.94 12.80 12.40 11.20 10.48
VBW &®t 12.5+0.6 12.6,12.9.0.% 13.1 11.0 11.7, 112

8Reference 43.
bReference 44.
‘Reference 45.
dReference 46.
®Reference 47.
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TABLE |I. Electronic energy levels without spin-orbit correc- €mploy BHS pseudopotentials, the core electrons are treated
tions (in eV) for GaAs calculated at the experimental lattice con- Within LDA whereas the valence electrons are subject to the
stants. Experimental values are from Ref. 48 except where note@X-LDA. As a consequence, we have determined only rela-
GW stands for quasiparticle band-structure calculations of Ref. 6 idive structural energies but not the total cohesive energy. It

the GW approximation. would clearly be desirable to employ the same sX-LDA
Hamiltonian for both core and valence electrons. On the
LDA sX-LDA Expt. Gw other hand, it is not clear why the same constaptshould

work well for all electrons. To be consistent, one could use a

?1” _13'(5)’6 _13'39 _13610 _13(')05’ screening parameter that depends onldleal density rather
1% ' ' ' : than the average valence density but this procedure is com-

T'ie 0.55 121 1.52 1.22 putationally impractical and we have not pursued it.

s 3.54 4.67 4.72 4.48 There are several known methods that model the valence-
core interactions and core polarization effects more accu-

X1y —-10.25 —11.02 —-10.75 —10.69 rately than simple LDA, such as partial core correctidths,

X3y —6.70 —6.72 —6.70 —7.19 mixed Hartree-Fock LDA calculatior’$, model core polar-

Xsy —2.58 —2.47 —2.80 —2.87 ization potential$* or self-interaction corrected pseudo-

Xie 1.43 2.46 2.01 2.01 potentials>® Partial core corrections eliminate a large part of

Xac 1.64 2.55 2.58 224 the discrepancy between the experimental lattice constants
and the values calculated within LDR-%8 Another recently

Ly, —-10.95 -11.71 -11.24 -11.41 proposed scheme that leads to similar improvements is based

Ly, —6.52 —6.46 —6.70 -6.97 on self-interaction-correcte(&1C) pseudopotential%g.

Ls, -1.09 —-1.05 -1.30 -1.28 In order to study the effect of our choice of BHS pseudo-

Lyic 1.02 1.81 1.85 1.64 potentials on the lattice constants and the energy gaps, we

Lac 452 5.63 5.4% 5.40 have constructed a SIC pseudopotential for the case of Ge,
using a recently developed rigorous proceduthat incor-

®Reference 43. porates the nondiagonal Lagrange multipliers of the SIC

method. The most pronounced difference in the band struc-
Ref. 6. One can see that the sX-LDA method predicts energyure is obtained for th& point, where the direct energy gap
gaps in similar good agreement with experiment asGié (', —T';. ) opens by an additional 260 meV in comparison
method does. _ to the value obtained with the standard BHS pseudopotential.
Table 1l displays the calculated structural properties OfChanges of other gaps are minor, e.g., the daps-T's,
various bulk semiconductors as obtained by the SX'LDAandxlc—l“g& change by 50 ang-90 meV, respectively. The
method. The relative errors in the lattice constantare be- lattice constant increases by 2%. This is consistent with the

o . .
low 0.5%, when compared to experiment. Since these EITOG crease found earlier within an LDA calculation with SIC
are so small, we have calculated all energy gaps at the e

. tal latti tants. The effect of int mot )seudopotentiaf® Overall, the results of the present sX-
perimental fatlice constants. 1he €fiect of zero point MoloN KA ¢4|cyations do not seem to get significantly altered by
of the ions ona is one order of magnitude smaller than the

- ; . ) using more sophisticated pseudopotentials.
remaining discrepancies between theory and experiment andS 9 P P P

has been neglected. Table Il also shows that the bulk moduli
predicted by sX-LDA underestimate the experimental values
by typically 20%, and agree less well with experiment than As pointed out in Sec. IV, one may obtain the eigenvalues
the standard LDA results. of the sX-LDA equations in a much simpler albeit approxi-
We point out that the present sX-LDA calculations con-mate way from Eq(4.7) with LDA wave functions by using
tain, strictly speaking, an inconsistency or at least an ambifirst-order perturbation theory. For all semiconductors inves-
guity in treating the core and valence electrons. Since weéigated in this paper, these approximate energy gaps differ by
less than 10% from the full self-consistent sX-LDA eigen-
TABLE III. Theoretical lattice constantén A) and bulk moduli ~ values. For example, in the case of Ge, the differences in
(in GPa, both obtained from fit to Murnaghan's equation of state perturbative and “exact” sX-LDA energy gaps between the
(Ref. 49, of Si, Ge, GaAs, and InP in sX-LDA with Thomas-Fermi lowest conduction states in high-symmetry poibtsX, and

C. Perturbative sX-LDA eigenvalues: Results

screening. Experimental values are from Refs. 42 and 50. I' and the valence-band edge are equat®02,—0.08, and
0.09 eV, respectively. This good agreement between pertur-
Si Ge GaAs InP bation theory and the full sX-LDA calculation indicates that

the orbitals emerging from the sX-LDA and LDA proce-

a‘L’DA 5'4;1 5'63; 5'637 5;76 dures, respectively, are quite similar. This is consistent with
agxpt 53 5.56 551 57 previous results by von der Lindest al., who pointed out
o 5.43 5.657 5.652 5869 the similarity between LDA and Hartree-Fock wave func-
Bo 89.3 62.7 63.1 65.5 tions for semiconductor¥,
BLPA 96.8 76.2 77.8 76.0°

t
B 87.6-97.9 73.4-15.8 75.3-76.9 72.5 D. Alternative screening models: From HF-KS to sX-LDA
3Reference 51. In the formulation of the sX-LDA equationg3.7) and

bReference 41. (5.1)], we have employed a Thomas-Fermi type of screening.
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TABLE IV. Theoretical lattice constard, (in A), bulk modulus ~ gaps change linearly as a functionlgi: between these two
By (in GPa, and band gapén eV) of Ge from the present sX-LDA opposite limits. In particular, the calculated energy gaps in
calculations with various model dielectric functions. TF, HUBB, the HF-KS scheme, which incorporates an LDA correlation
and SEM refer to the Thomas-Fermi, Hubb@Ref. 61), and semi-  potential, are only marginally different from those obtained
conductor(Ref. 62 model dielectric functions, respectively. Experi- from standard Hartree-Fock calculations for the valence elec-

mental values are from Ref. 42. trons(also employing BHS pseudopotentialg Ge, for ex-

ample, the energy gap Btis 7.02 eV in HF-KS and 6.97 eV
TF HUBB SEM Expt. in Hartree Fock. Similar results hold for othkrpoints and

ao 5.63 5.66 538 5.657 m_aterials. Thus, the improvement of the band gaps cal_culated

B, 63 60 104 77 with sX-LDA method is due to the fact that the screening of
the exact exchange potential already takes into account es-

T Ly, 0.76 063 3.76 074 sential correlation effects.

Ths,—T5e 0.38 0.23 3.39 0.89

I, — Xoc 1.55 1.43 4.59 1.3 VI. CONCLUSIONS

Employing a constrained-search formulation of DFT, we
have developed a framework to derive various exact realiza-
tions of DFT in addition to the standard Kohn-Sham scheme.
Such generalized Kohn-Shaf@KS) schemes minimize not
(k+G| HSANL K+ G only the kinetic energy for fixed density such as the standard

X Kohn-Sham method but also part of the electron-electron
A (n,qlg+G+G;)q+G’+Gy|n,q) energy. As a result, one gains more flexibility in constructing
. 62 2 02¢(Q) generalized exchange-correlation functionals. Generally, the
ng G GKS scheme leads to single-particle equations that contain
(5.2  nonlocal potentials such as the Fock exchange operator. A
key point of the GKS method is that the single-particle ei-
with Q=[q—k+G,| and with a general dielectric function genvalues reflect much more faithfully the lowest excitation
€(Q). energies(such as band gap®f the many-electron system

For germanium, we have investigated two screening modthan the Kohn-Sham method. The reason is that the discon-
els besides the Thomas-Fermi case, namely a metallic Hukinuity of the exchange-correlation potential with respect to
bard model dielectric functidh and a semiconductor model the particle number is, to a large extent, already incorporated
dielectric functior®? The latter dielectric function contains in the GKS single-particle eigenvalues.

More generally, we can write the screened nonlocal ex
change contribution in Ed5.1) in the form

two parameterse=1.563 ande,=12, wheree(Q)— €, for We have shown that a previously suggested method based
q—0. For each of the different models, the functional de-on a total-energy functional with a nonlocal screened ex-
rivative v3*"PA(r) of ES*"PA[p] [Eq. (3.10] has been de- change and LDA correlation enefyis firmly rooted within
termined by numerical integration. the presented GKS framework. In particular, we have applied

The results of these calculations are summarized in Tablthis approach, that we call sX-LDA method, to Si, Ge, GaAs,
IV. We find that the energy gaps depend mostly on the longinSb, and InP and obtained eigenvalue gaps in excellent
wavelength behavior of the model dielectric functions. Bothoverall agreement with true band gaps in these materials. The
the Thomas-Fermi and the Hubbard model yield completémprovements are comparable to the perturbatBM/ ap-
screening forQ—0 and give very similar results. By con- proach but the sX-LDA method allows a self-consistent de-
trast, the present model of the semiconductor dielectric functermination of ground-state properties as well.
tion does not guarantee complete screening of a long- The lattice constants, as calculated by sX-LDA, agree
wavelength external potential in a semiconductor. This is duavell with experiment, whereas the bulk moduli are underes-
to the neglect of all off-diagonal element&+#G’ in  timated by typically 20%. In part, we believe this to be
€ 1(Q+G,Q+G’) which play an essential role in a self- caused by using pseudopotentials that do not model core-
consistent calculation. Consequently, the present diagonaklence polarization effects with sufficient accuracy.
semiconductor dielectric function screens the exchange inter- We have developed a perturbative scheme for the sX-
action less efficiently than the Thomas-Fermi model and-DA single-particle eigenvalues that basically requires only
yields energy gaps that are much closer to the unscreenedstandard LDA calculation and yields semiconductor band
Hartree-Fock—Kohn-Sham scheme. All of these models dgaps that agree well with the self-consistent sX-LDA eigen-
not appreciably change tHedependence of the matrix ele- value gaps.
ment in Eqg.(5.2), but give more or less rigid shifts of the
band structure.

In the calculations with the Thomas-Fermi screening, the
screening constarid: has been determined according to the  Helpful comments by Professor Del Sole and financial
average valence electron density. If one considggsan  support by the Deutsche Forschungsgemeins¢B&tB 348,
adjustable parameter, one obtains the standard LDA methd8ayerische ForschungsverbundFOROPTQ, and Volks-
in the limit k ;g,=0o. The opposite limik;z=0, on the other wagenstiftung are gratefully acknowledged. One ofAIS3.)
hand, corresponds to the HF-KS scheme of Sec. Ill B withthanks the Deutsche Forschungsgemeinschaft for a Habilita-
the approximatiorE” [ p]=ELP*[p]. We find that the band tionsstipendium.
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APPENDIX A: PROOF OF HOHENBERG-KOHN We note that one has to form a scalar product of &d.)
THEOREM FOR THE GKS SCHEME with the spin part of®j if the latter function contains
pinors, in order to make the division well defined. Equation
(A2) determines the effective potential uniquely and there-
fore establishes the Hohenberg-Kohn theorem for the GKS
equations.
The given proof of the Hohenberg-Kohn theorems is a

The Hohenberg-Kohn theorem corresponding to the GK
equations is given by the statement that two different poten
tialsve(r) cannot yield the same dens&bﬁ(r) as a result of
minimizing ES{¢;};veq] of Eq. (2.8). Its proof consists of

two steps. Flrst, it is shown that.two dlﬁerent. local potenualsdirect consequence of the requiremet@d) and (C2). One
ver(r) that give the same densmg(r) also yield the same may therefore consideiCl) and (C2) as an equivalent for-

. S . .
Slater determinantbg. Potentials that differ by a constant mjation of the Hohenberg-Kohn theorem in the constrained-
are considered equivalent. Second, we show that two differsa5rch formulation of the GKS formalism.

ent potential® ¢4(r) cannot give the same Slater determinant
®3, in contradiction to the first statement. Altogether, we
establish in this way the one-to-one mapping between
ve(r) andpg(r).

First, it follows from the minimization 0E3[ve] given Here, we show that the second part of requirent€s} in
in Eqg. (2.16 that once the ground-state densji(r) is  Sec. Il guarantees the calculated dengg{{vel;r) to rep-
known, the ground-state wave functidrp is completely de- resent the minimum ofF[p]+ fdru(r)p(r) instead of
termined as a functional of that density by Eg.7), where ~ merely some stationary solution. According (83), there
p(r) is set equal tgpS(r). This implies that two different €Xists some external potentia{r) for the interacting Schro
effective potentials that yield the same ground-state densit§linger equatiori2.1) that yields a ground-state density equal
pa(r) also give the same ground-state wave functigh to pg([verl;r). We now show that, up to a constant,

For the second step of the proof, we note tatis built ~ v(r)=v(r). From the Euler equation that corresponds to Eg.
of the orbitals obeying the single particle E¢2.9). There-  (2:28, it follows that this external potential(r) is given by
fore, the determinanby is the ground-state wave function of the functional derivative—6F[p]/5p(r) evaluated at the

the N-electron Schidinger equation density pg([ueﬁ];r). The potentialvu(r) is equal to the
functional derivative— sF p]/8p(r) evaluated at the same

{f)s[{¢i}]+ﬁeﬁ}rb§[veﬁ]=E?un[veﬁ]q)g[veﬁ]_ (A1)  density because of the Euler equation corresponding to Eq.
(2.16). This leads, together with E¢2.10), to the identity

APPENDIX B: VARIATIONAL PROPERTIES
OF GKS SOLUTIONS

Here, (35[{¢i}] is the N-electron equivalent of the one-

particle operator that appears in the GKS equati@9 or 0(N)=vex(r)—vr(r),
(2.12 but is denoted by the same symbol. Note that the
energyEs,[ver] is nothing but the sum of the eigenvalues vR(r)= 5RS[P]/5P[V]|p(r):p§([veﬁ];r)- (B1)

gj of the GKS equation$2.9) or (2.12.
By dividing the preceding equation b, one obtains  |n the course of solving the GKS equations self-consistently,

- s N Eq.(2.14 connectw o4(r) to the given real external potential
_[OH i1 Po(ry - - .Ti- .. TN S o) |—ES v(r). Thus, once convergence of the GKS equations has
D(ry...r1...TN) &y e o been achieved, the identity(r) =v(r) —vg(r) holds and

(A2) comparison with Eq(2.1) leads tov (r)=v(r).
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