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The sensitivity of x-ray fluorescence spectroscopy to surface and subsurface layers in the nanometer regime
can be greatly enhanced by measuring the fluorescence radiation that is emitted at grazing angles. In this paper,
we present a formalism for the calculation of x-ray fluorescence intensities that is also valid under grazing-
emission conditions. By applying asymptotics to plane-wave expansions, an approximate solution to Maxwell’s
equations for a radiating point source in a layered system is derived, without the use of the optical reciprocity
theorem. In the computation of the fluorescence intensity, secondary and higher-order fluorescence effects are
taken into account. The total fluorescence of a particular layer is obtained by integrating the contributions of
point sources at different depths. The derived expressions compare well with the measured angular dependence
of the fluorescence intensity in a number of typical examples.

I. INTRODUCTION

The use of grazing-incident x-ray beams for the spectro-
chemical analysis of solid samples was first reported by
Yoneda and Horiuchi.1 Irradiating a sample at angles with
the sample surface that are smaller than the critical angle for
total reflection has the advantage that, at these angles, the
x-ray penetration depth is extremely small. Contributions to
the background spectrum from radiation scattered, by the
bulk of the sample are considerably reduced and the sensi-
tivity to surface constituents is greatly enhanced. The tech-
nique, commonly known as total-reflection x-ray fluores-
cence spectrometry~TXRF!, has found wide application. Its
main uses are the analysis of small amounts on top of an
optically flat substrate2,3 and the analysis of contaminants on
semiconductor wafers.4,5

In the case of layered samples that have several distinct
optical interfaces with associated critical angles, standing
wave patterns may be generated inside the layered system,
due to the interference of the incident beam and beams re-
flected from optical interfaces. From the angular dependence
of the fluorescence intensity, one can infer the composition,
the thickness, and the density of thin films and layers.6,7 It
has been stated that variable angle TXRF will become an
established test method for layered samples in semiconductor
technology and materials science.8

Becker, Golovchenko, and Patel9 have demonstrated that
the optical reciprocity theorem implies that x-ray fluores-
cence spectroscopy can be made surface sensitive not only
by means of grazing-incidence, but also by means of
grazing-emission techniques, i.e., by detecting only that part
of the fluorescence radiation that is emitted at grazing angles.
Grazing-emission XRF~GEXRF! has been applied to the
analysis of ultrathin films on semiconductors10 and to the
analysis of ion implantation profiles.11 Noma and Iida12,13

have reported the interference of fluorescence x rays from
thin film samples, using synchrotron radiation. Recently, we
observed the same phenomenon using a laboratory
instrument.14 Compared with grazing-incidence methods,
grazing-emission techniques have the advantage that they al-
low the use of wavelength-dispersive detection. Crystal

monochromators have a much better wavelength resolution
and sensitivity at long wavelengths than the solid-state de-
tection devices used in TXRF.

In the theoretical description of grazing-emission fluores-
cence, the reciprocity theorem has been invariably used to
calculate the fluorescence intensity, as a function of the emis-
sion angle. The theorem states that two sufficiently small
dipoles radiating at the same frequency with momentsP1 and
P2 satisfy:E1(2)•P25E2(1)•P1 , whereE1(2) is the elec-
tric field induced byP1 at the position ofP2 andE2(1) is the
electric field ofP2 atP1 .

15 This implies that the fluorescence
intensity of a characteristic wavelength, emitted at grazing
angles, can be calculated by interchanging the detector and
the radiating atoms. Hence, the calculation is carried out as
though we were dealing with an absorption experiment per-
formed with radiation of the characteristic wavelength emit-
ted by an imaginary source at the position of the detector.
Because it is assumed that the wave incident on the sample
due to this source is plane, the field inside the multilayer can
be readily calculated using well-known recursion formulas.16

Although the reciprocity theorem is an elegant tool for
deriving the fluorescence intensity at grazing angles, we will
not apply it, but instead consider directly the field of a radi-
ating source inside the sample. By asymptotic expansion of
the integral over plane waves, occurring in the expression for
the far field at the detector due to the radiating source, we
obtain a closed formula for the fluorescence intensity of the
radiating source, due to a single atom. The total fluorescence
is then found by integrating over a distribution of atoms. In
Secs. II and III, expressions will be derived for the fluores-
cence intensity from the upper and lower layers of a two-
layer sample.

The motivation for this approach is twofold. First, the
asymptotic analysis gives an indication of the range of emis-
sion angles for which the approximate expression for the
fluorescence intensity is sufficiently accurate. In the recipro-
cal approach, the asymptotic analysis is omitted by assuming
at the onset that the field incident on the sample and radiated
by the imaginary source at the position of the detector is a
plane wave. The asymptotic analysis that is required to esti-
mate the error made by adopting this assumption is identical
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to that used in the direct problem. The second reason for
considering the direct problem from the start is that this way
it is easier to find physical explanations for observed fluores-
cence phenomena, because one is not tempted to think recip-
rocally. A sound understanding of the physics is required to
be able to achieve our ultimate goal, which is the reconstruc-
tion of the sample~elemental compositions, layer thick-
nesses, and layer densities! from measured fluorescence data.

In Sec. IV, we will consider primary fluorescence, which
results from the direct excitation of atoms by the radiation of
the x-ray tube, as well as secondary and higher-order fluo-
rescence, which is induced by the fluorescence of other at-
oms. We will show that secondary fluorescence can contrib-
ute more than 25% to the measured signal and that this
contribution is not constant as a function of the emission
angle. Therefore, secondary~and also higher-order! effects
will be taken into account in the model.

In Sec. V, we will verify the validity of the derived ex-
pressions by comparison with experiments. In the first ex-
periment, theKa fluorescence from a Si layer on a Au sub-
strate is measured. The fringes in the fluorescence intensity
as a function of the emission angle will be explained using
the derived formulas. In the second experiment, the second-
ary fluorescence from Co, due to fluorescence from a thick
underlying Cu substrate, will be demonstrated. The third ex-
periment concerns the analysis of submonolayer amounts.
For the case of Co on a Si substrate, measured and computed
fluorescence intensities will be compared.

II. SOURCE IN A MULTILAYER

We will consider a radiating point source inside a strati-
fied medium consisting ofM homogeneous layers. The radi-
ated power of the source will be calculated in Sec. III and is
assumed to be known here. Let (x,y,z) be a Cartesian coor-
dinate system of which thez axis is perpendicular to the
interfaces and for which the j th layer, with
j51, . . . ,M21, is given byzj,z,zj21 , see Fig. 1. The
M th layer is assumed to fill the half spacez,zM21 . The half
spacez.z0 is in a vacuum and will be referred to by index
0. It will be assumed that the electromagnetic fields depend
on time through the implicit factor exp(2ivt), with
v52pc/l, wherec is the speed of light in a vacuum and
l is the wavelength in a vacuum of the radiation emitted by
the source. Letnj5nj81 in j9 be the complex refractive index
of layer j corresponding to the wavelengthl. The assumed
time dependence implies that the imaginary partsnj9 are non-
negative numbers. It is customary to write

nj8512d j , nj95b j . ~2.1!

We haved05b050, while for jÞ0, d j andb j are very small
numbers, typically of the order of 1023 or less. Usually and,
in particular, in the examples discussed in this paper, thed j
are positive. Hence the real parts of the refractive indices of
the layers of the sample are smaller than 1.

Because the relative difference between the transmission
coefficients for TE and TM polarized plane waves incident at
a surface of discontinuity is of the order of the relative dif-
ference between the refractive indices of the adjacent media,
the scalar theory may be used. Let the source be in point

r s5(xs ,ys ,zs) of layer j s and letP be the radiated power. If
u is a component of the electric field, then the following
holds:

k2nj
2u1nu50 inside layerj , with jÞ j s , ~2.2!

k2nj s
2 u1nu52~4pP!1/2d~r2r s! inside layer j s .

~2.3!

The source strength in the right-hand side is chosen so that
uuu2 is the intensity of the radiation. At the interfaces, we
impose the conditions that are valid for the electrical field in
the case of TE polarized fields, i.e., we demand thatu and
]u/]z are continuous. Furthermore, forz→6`, the field has
to satisfy Sommerfeld’s radiation conditions, which state that
the field is a superposition of plane waves propagating away
from the sample.

By Fourier transformingu with respect tox and y, the
partial differential equations~2.2!, ~2.3! can be reduced to
ordinary differential equations for every Fourier component.
By inverse Fourier transforming the general solutions of
these equations, one obtains the plane-wave expansion of the
field inside all layers. In layerj with jÞ j s , the plane-wave
expansion is written as

u~x,y,z!5E E $Aj~kx ,ky!exp~2 ikz, j z!

1Bj~kx ,ky!exp~ ikz, j z!%

3exp~ ikxx1 ikyy!dkxdky , ~2.4!

where

kz, j5~k2nj
22kx

22ky
2!1/2, ~2.5!

andk52p/l, with l being the wavelength in a vacuum. We
will use the branch of the square root for which the cut is
along the negativex axis, z1/2 is positive real whenz is
positive real, andz1/2 is positive imaginary whenz is nega-
tive real. Thenkz, j is always in the first quadrant of the
complex plane. Inside layerj s , which contains the point
source, the plane-wave expansion can be written as

FIG. 1. Source in a multilayer sample.
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u~x,y,z!5E E $Ajs
~kx ,ky!exp~2 ikz, j sz!1Bjs

~kx ,ky!exp~ ikz, j sz!%exp~ ikxx1 ikyy!dkxdky

2
1

p S P

4p D 1/2H~z2zs! E E sin@kz, j s~z2zs!#

kz, j s
exp@ ikx~x2xs!1 iky~y2ys!#dkxdky , ~2.6!

where H is Heaviside’s function:H(z)51 if z.0 and
H(z)50 if z,0. The integral in~2.4! and the first integral of
~2.6! are solutions of the homogeneous equations, while the
second integral in~2.6! is a particular solution of the equa-
tion in layer j s with the source term on the right-hand side.

The Sommerfeld radiation conditions imply that
A0(kx ,ky)5BM(kx ,ky)50 for all kx ,ky . When there are
many layers, the solutions for the remaining amplitudes
Aj (kx ,ky) andBj (kx ,ky) cannot be written in closed form.
However, for everykx ,ky they can be determined by imple-
menting a recursion formula derived from the demand that
the fieldu and its derivative]u/]z are continuous across the
interfacesz5zj for j50, . . . ,M21.17

The calculation of the field, due to one point source based
on ~2.4! and~2.6!, requires the numerical evaluation of two-
dimensional Fourier integrals. The main interest is the total
fluorescence intensity of a particular layer at the detector and
since its computation requires the integration of the contri-
butions of individual point sources it would, in general, be
too time consuming to employ~2.4! and~2.6! as they stand.
However, we will make use of the fact that the wavelength
l and the layer thicknesses are small compared with the
distance in thez direction of the detector to the sample to
expand the integrals in~2.4! and ~2.6! asymptotically.

III. EXPRESSION FOR THE FIELD IN Z>Z0

We consider the field in a pointr5(x,y,z) inside the
vacuum region (z.z0), due to a point source in (xs ,ys ,zs)
inside the sample (zs,z0). SinceA0(kx ,ky)50 for all kx
andky , we have by~2.4!,

u~x,y,z!5E E B0~kx ,ky!exp~ ikxx1 ikyy1 ikz,0z!dkxdky .

~3.1!

The amplitudesB0(kx ,ky) depend on the position of the
source.

The following asymptotic result will be applied. The map-
ping

~j,h!→j~x2xs!1h~y2ys!1~12j22h2!1/2~z2zs!,
~3.2!

has a unique stationary point (j0 ,h0), which is given by

j05
~x2xs!

ur2r su
, h05

~y2ys!

ur2r su
. ~3.3!

Let f be an arbitrary radial function. Then, by a straightfor-
ward application of the method of stationary phase,18 one
finds that fork→`,

ik

8p2E E f ~Aj21h2!

~12j22h2!1/2
exp$ ik@j~x2xs!1h~y2ys!

1~12j22h2!1/2~z2zs!] %dj dh

;
1

4p
f ~cosu!

exp~ ikur2r su!
ur2r su

, ~3.4!

whereu is the angle betweenr2r s and the planez5z0:

cosu5
@~x2xs!

21~y2ys!
2#1/2

ur2r su
. ~3.5!

The error made in the approximation is of the order

1

k1/2ur2r su1/2sinu
. ~3.6!

We shall apply result~3.4! to the integral over plane waves in
expression~3.1! for the field in a pointr in the vacuum
regionz.z0 , due to a radiating source in either the upper or
lower layer of a two-layer sample. After substituting
j5kx /k andh5ky /k and by usingkz,05k(12j22h2)1/2,
the integral in~3.1! will be transformed to a form similar to
~3.4!. The deriviation for the two-layer sample given below
can be readily generalized to a source inside a multilayer
with an arbitrary number of layers.

If r is the position vector of the detector andr s is the
position vector of a source inside the sample, thenur2r su is
of the order of 10 cm. Hence, only for very small angles
u, which, in practice, are below the critical angle, may the
relative error~3.6! made in using approximation~3.4! not be
small.

A. Source in upper layer of two-layer sample

The reflection and transmission coefficients for a plane
wave with a wave vector (kx ,ky ,kz, j11) inside layer j11
and incident at interfacez5zj are given by

r j
15

kz, j112kz, j
kz, j111kz, j

, t j
15

2kz, j11

kz, j111kz, j
. ~3.7!

For a plane wave impinging at interfacez5zj from the side
of layer j the reflection and transmission coefficients are

r j
252r j

1 , t j
25

kz, j
kz, j11

t j
1 . ~3.8!

For a sample with only two layers, the amplitudes
Aj (kx ,ky), Bj (kx ,ky) of the plane-wave expansions can be
determined explicitly. When the point source with position
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vector r s5(xs ,ys ,zs) is inside the uppermost layer
(z1,zs,z0), one finds for the amplitude of the plane wave
in the vacuum region,

B0~kx ,ky!5
t0

1

kz,1
exp@ ikz,1~z02zs!2 i ~kxxs1kyys1kz,0z0!#

3
i

2p S P

4p D 1/2~xe1x0!, ~3.9!

with

xe5
1

12r 0
1r 1

2exp@2ikz,1~z02z1!#
, ~3.10!

x05
r 1

2exp@2ikz,1~zs2z1!#

12r 0
1r 1

2exp@2ikz,1~z02z1!#
. ~3.11!

By expanding the denominator in~3.10! and~3.11!, one sees
that xe is the contribution to the amplitudeB0 of the direct
ray and of rays having suffered an even number of reflec-
tions.x0 is the contribution of rays that have reflected an odd
number of times.

The integral~3.1! can be written in the form~3.4! by
changing to integration variablesj5kx /k andh5ky /k and
by defining

f ~Aj21h2!5t0
1
kz,0
kz,1

exp@ i ~kz,12kz,0!~z02zs!#

3~4pP!1/2~xe1x0!. ~3.12!

Note that after the introduction ofj and h, the common
factor k can be eliminated from the reflection and transmis-
sion coefficients and that these then become functions of
j21h2 only. But f still depends onk through the exponen-
tial functions in~3.12! and we can, therefore, not apply the
asymptotic result~3.4! without further justification. After
writing f as a sum of terms, each containing only one expo-
nential function, we could, in principle, apply the method of
stationary phase to each of these terms individually. But the
stationary points of the corresponding exponents cannot be
determined explicitly and have to be computed numerically.
These stationary points are very close to the stationary point
~3.3! of mapping~3.2!. The stationary points are so close,
because the exponents occurring inf contain distances mea-
sured along thez axis, between points inside the multilayer,
whereas the mapping~3.2! containsz2zs , which is much
larger whenz corresponds to the detector. It is, therefore,
sufficiently accurate to use stationary point~3.3!. This means
that we can use~3.4!, with f given by~3.12!, as if thisf were
not dependent onk. We, thus, obtain

u~r !;t0
1
kz,0
kz,1

exp@ i ~kz,12kz,0!~z02zs!#

3S P

4p D 1/2exp~ ikur2r su!
ur2r su

~xe1x0!, ~3.13!

where in kz,1 , kz,0 and in r 0
1 , r 1

2 and t0
1 the quantity

(kx
21ky

2)1/2 must be replaced bykcosu. Hence, we have in
~3.13!:

kz,05k sinu, kz,15k~n1
22cosu!1/2, ~3.14!

t0
15

2~n1
22cos2u!1/2

~n1
22cos2u!1/21sinu

, ~3.15!

r 0
15

~n1
22cos2u!1/22sinu

~n1
22cos2u!1/21sinu

, ~3.16!

r 1
25

~n1
22cos2u!1/22~n2

22cos2u!1/2

~n1
22cos2u!1/21~n2

22cos2u!1/2
. ~3.17!

We remark that the first factort0
1kz,0 /kz,1 at the right of

~3.13! equalst0
2 . This transmission factor appears of course

also in the expression of the field that is the solution of the
reciprocal problem in which the source is atr s and the de-
tector is atr . As a matter of fact, the occurrence of transmis-
sion coefficientt0

2 in the asymptotic solution~3.13! of the
direct problem is an illustration of the reciprocity theorem.

At a point in the vacuum region with position vectorr ,
the flux of energy in the direction ofr2r s is in a good
approximation given byI s(r )5uu(r )u2. Let the origin of the
coordinate system be somewhere inside the sample. Then we
have

I s~r !5ut0
2u2exp@22 Imkz,1~z02zs!#

P

4pr 2

3U 1

12r 0
1r 1

2exp@2ikz,1~z02z1!#

1
r 1

2exp@2ikz,1~zs2z1!#

12r 0
1r 1

2exp@2ikz,1~z02z1!#
U2. ~3.18!

Some additional approximations have been made in the deri-
vation of this result. In the denominator of the third factor,
ur2r su has been replaced byr . This is legitimate whenr
corresponds to the position of the detector. Furthermore, for
the angleu occurring in~3.14!, ~3.15!, ~3.16!, and~3.17!, it
is sufficiently acccurate to use the definition

cosu5
~x21y2!1/2

r
, ~3.19!

instead of~3.5!. The unit forI s is the number of photons per
sec~cps! that passes a unit of surface perpendicular tor . It is
seen thatI s depends on the distancer between the detector
and the sample, on the angleu, which the detector makes
with the sample surface and on the depthzs of the source.
Furthermore, in the approximations used, it depends on the
source position only throughzs . By multiplying I s by
4pr 2, we get the number of photons emitted per sec in the
direction of u per unit of solid angle. This quantity is also
referred to as the intensity but, contrary toI s , it depends
only on u and not onr . In order to prevent confusion, we
shall denote it byI s :

I s~u;zs!54pr 2I s~r !. ~3.20!

It is easy to interpret expression~3.18!. The third factor
on the right-hand side of~3.18!, P/(4pr 2), is the intensity of
the point source in a vacuum. The second~exponential! fac-
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tor takes losses into account when the ray propagates from
the source to the upper surfacez5z0 . Becausen18,1, there
is a critical angleucrit, such that

cosucrit5n18 . ~3.21!

For anglesu smaller than the critical angle, the imaginary
part of kz,15k(n1

22cos2u)1/2 becomes large. The rays de-
tected under these angles are evanescent in thez direction
inside the uppermost layer and hence, except for sources
very close to the surfacez5z0 , the detected intensity is low.
The first factor on the right of~3.18!, ut0

2u2, represents the
change in the field strength upon transmission through the
upper surface. If reflections at the interfacez5z1 may be
neglected, i.e., whenr 1

1'0, the detected intensity due to the
point source is in good approximation given by the product
of the aforementioned three factors. However, for small val-
ues ofu, reflections may, in general, not be neglected. The
first of the two ratios of the last factor is the contribution
from the direct rays and from rays that are reflected an even
number of times at the interfacesz5z0 , z5z1 . The second
ratio in the fourth factor is the contribution from rays that
have undergone an odd number of reflections~see Fig. 2!.

Let the functionP(r s) be the fluorescence power per unit
of sample volume corresponding to a particular fluorescence
line of an element in the upper layer. The total fluorescence
intensity of that line, due to the atoms in the upper layer,
expressed in units of number of photons of the line per sec-
ond and per unit of solid angle, is obtained by integrating
~3.20! with P5P(r s) over r s inside the region irradiated by
the tube. In the GEXRF setup, the x-ray tube irradiates a
circular part of the surface of the sample almost uniformly.
The fluorescence power density is, therefore, only a function
of depth zs and if we define the functionp(zs)
5pRtube

2 P(zs), whereR tube is the radius of the irradiated
region, thenp(zs) is the number of photons emitted per sec
and per unit of length in thez direction by the atoms in the
planez5zs . The total fluorescence intensity in unit of cps
per steradian, from the upper layer observed at an angleu
with the sample surface is then

I ~u!5E
z1

z0
ut0

2u2exp@22 Imkz,1~z02zs!#p~zs!

3U 1

12r 0
1r 1

2exp@2ikz,1~z02z1!#

1
r 1

2exp@2ikz,1~zs2z1!#

12r 0
1r 1

2exp@2ikz,1~z02z1!#
U2dzs . ~3.22!

B. Source in lower layer of two-layer sample

When the source is inside the lower layer:zs,z1 , the
amplitudeB0 is given by

B0~kx ,ky!5
t0

1t1
1

kz,2
exp@ ikz,2~z12zs!1 ikz,1~z02z1!

2 i ~kxxs1kyys1kz,0z0!#

3
i

2p S P

4p D 1/2 1

12r 0
1r 1

2exp@2ikz,1~z02z1!#
.

~3.23!

By a deriviation similar to that of~3.13! in Sec. IIIA, we find
that the field at a pointr inside the vacuum region is given
by

u~r !5t0
1t1

1
kz,0
kz,2

exp@ ikz,2~z22zs!1 ikz,1~z02z1!

2 ikz,0~z02zs!#S P

4p D 1/2exp~ ikur2r su!
ur2r su

3
1

12r 0
1r 1

2exp@2ikz,1~z02z1!#
. ~3.24!

The intensity ~in cps per steradian! in the direction ofu
defined by~3.19!, is then

I s~u;zs!5ut0
2t1

2u2exp@22 Imkz,2~z12zs!

22 Imkz,1~z02z1!#P

3U 1

12r 0
1r 1

2exp@2ikz,1~z02z1!#
U2, ~3.25!

where we usedt0
1t1

1kz,0 /kz,25t0
2t1

2 and where the same ap-
proximations have been made as in the derivation of~3.18!.
Formula ~3.25! depends on the position of the source only
throughzs . Again, the interpretation of the result is straight-
forward. The third factor,P, is the intensity~expressed in
number of photons per sec and per steradian! of the point
source in the vacuum. The exponent in the second factor
incorporates the losses of the rays along the path from the
source to the upper surfacez5z0 . We have two critical
angles,u0

crit andu1
crit , corresponding to interfacesz5z0 and

z5z1 , respectively. They are defined by

cosu0
crit5n18 , cosu1

crit5n28 . ~3.26!

FIG. 2. Reflections of rays emitted by a source in the upper
layer of a two-layer sample.
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For values of u smaller than u1
crit , Imkz,2

5k Im(n2
22cos2u)1/2 is large and the wave is evanescent in

the z direction inside layer 2. Hence, except perhaps for
sources very close to the interfacez5z1 , the intensity is
very small. For angles smaller than the critical angleu0

crit , Im
kz,1 is very large and consequently the waves are evanescent
in the z direction in the uppermost layer. Except when this
layer is very thin, the intensity is very small at these angles.
The first factor,ut0

2t1
2u2, accounts for the change in field

strength upon transmission through the interfacesz5z1 and
z5z0 . Finally, when the last factor of~3.25! is expanded, it
becomes clear that it incorporates interferences, due to mul-
tiple reflections~Fig. 3!.

As for the upper layer, letP(zs) be the fluorescence
power per unit of sample volume for a particular line and
element inside the lower layer. This density again depends
only on the depth coordinate. If we again define
p(zs)5pRtube

2 P(zs), the total intensity in the direction ofu
~expressed in the number of photons per second and per
steradian!, due to all the atoms in layer 2, becomes

I ~u!5E
2`

z1
ut0

2t1
2u2exp@22 Imkz,2~z12zs!

22 Imkz,1~z02z1!#p~zs!

3U 1

12r 0
1r 1

2exp@2ikz,1~z02z1!#
U2dzs . ~3.27!

IV. FLUORESCENCE POWER

The fluorescence intensity of a particular line and element
in one of the layers of a two-layer sample at points above the
sample is given by~3.22! and~3.27!. The calculation of this
intensity requires the determination of the fluorescence
power functionp(zs), i.e., of the number of photons emitted
per second and per unit of depth by the atoms situated in the
planez5zs . In this section,p(zs) will be computed.

The major contribution to the fluorescence power is the
so-called primary fluorescence, which results from excitation
directly by the radiation of the tube. Secondary fluorescence
can contribute to the total fluorescence of a particular line
with a wavelengthl when there is fluorescence at another
line with a higher energy than that corresponding to the ab-
sorption edge of the line with the wavelengthl. Tertiary and

higher-order fluorescence are analogously defined.
We will first compute the primary fluorescence and will

then consider secondary and higher-order fluorescence. For
generality the sample will be allowed to consist of an arbi-
trary number of layers. The mass scattering will be neglected
in the calculation.

A. Primary fluorescence

We will largely adhere to the notation used in Ref. 19.
The tube emits a continuous spectrum on which a few char-
acteristic lines of the target elements are superimposed. The
tube spectrum is modeled quantitatively using the algorithm
proposed by Pella, Feng, and Small.20 Let I (l t)dl t be the
number of photons impinging on the sample surface per sec-
ond, having wavelengths in the interval (l t ,l t1dl t). Let
c be the angle between the incident radiation and the normal
to the sample surface. Ifm j (l t) is the mass absorption coef-
ficient of layerj at wavelengthl t andr j is the density of the
layer, then the imaginary part of the refractive index of this
layer at wavelength l t is given by nj9(l t)
5(l t /4p)m j (l t)r j . Due to absorption, the intensity of the
radiation at wavelengthl t at positionz inside layerj is then

I ~l t ,z!dl t5I ~l t!dl texpH 2
1

cosc F (
l51

j21

m l~l t!r l~zl212zl !

1m j~l t!r j~zj212z!G J . ~4.1!

The absorbed power of radiation of wavelengthl t per unit of
depthz and per unit of wavelength is given by

W~l t ,z!5
]

]z
I ~l t ,z!

5
m j~l t!r j

cosc
I ~l t ,z!. ~4.2!

If m i(l t) is the mass absorption coefficient of elementi and
Cj
i is the relative concentration of elementi in layer j , then

one has

m j~l t!5(
i

m i~l t!Cj
i . ~4.3!

The fraction of the absorbed power that can be attributed to
elementi is thusm i(l t)Cj

i /m j (l t). The fluorescence power
of a particular line, with a wavelengthl of elementi inside
layer j , is proportional to this fraction. The factor of propor-
tionality is called the excitation factorE(l,l t). It is the
product of three probabilities: the probability of the excita-
tion of the atom to the required level, the probability of the
emission of a photon from the required level, and the prob-
ability of the emission of a photon of wavelengthl. The
excitation factor depends on the fluorescence wavelengthl
and on the absorbed wavelengthl t . In order to obtain the
total primary fluorescence power of the line with the wave-
lengthl, we have to integrate over the part of the spectrum
of the x-ray tube that has a higher energy than that corre-
sponding to the absorption edge of the line. Hence

FIG. 3. Reflections of rays emitted by a source in the lower
layer of a two-layer sample.
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pprim~z!5E
l t,le~l!

E~l,l t!m
i~l t!I ~l t ,z!dl t

r jCj
i

cosc
, ~4.4!

wherele(l) is the wavelength corresponding to the absorp-
tion edge for the line with a wavelengthl. At the values of
l t corresponding to the characteristic lines in the tube spec-
trum, I (l t) is a d function. Hence, the contribution of these
lines is also contained in the integral~4.4!. It follows from
the definition of the unit forI (l t) that pprim(z) is expressed
in the number of photons emitted per second and per unit of
length in thez direction. The numerical data for physical
parameters used in the equations in this section are taken
from the compilations by Henke, Gullikson, and Davis21 and
de Boer.22

B. Secondary fluorescence

Suppose that there is fluorescence at wavelengthsl and
l8, with l8,le(l). Then the fluorescence at wavelength
l8 contributes to the fluorescence at wavelengthl. In order
to be able to compute this contribution, we have to determine
the field at points inside the sample due to a distribution of
point sources emitting radiation of wavelengthl8. Let
P(l8,zs) be the radiated power per unit of sample volume of
the point sources. This power density is assumed to have
been calculated already and depends on the depth coordinate
only. The field at a pointr5(x,y,z) corresponding to a point
source atr s inside layerj s will be denoted byu(r s ,r ) and is
given by the Fourier integrals~2.4! and ~2.6! inside the
sample. The asymptotic expansion of these integrals is rather
difficult. Therefore, we make the following approximations.

Because only for grazing angles the reflection and trans-
mission coefficients of plane waves at the interfaces differ
from 0 and 1, respectively, and since only a small fraction of
all rays that contribute to the intensity atr5(x,y,z) are at
grazing angles, it suffices to set all reflection and transmis-
sion coefficients in the integrals~2.4! and ~2.6! equal to 0
and 1, respectively. Then, ifr is in the same layerj s as the
point source, the asymptotic analysis yields that the field is in
a good approximation given by

u~r s ,r !5S P~l8,zs!

4p D 1/2 expH
2p in j s

~l8!

l8
ur s2r uJ

ur s2r u
,

~4.5!

In the general case in whichr and r s can be in different
layers we replace this expression by

u~r s ,r !5S P~l8,zs!

4p D 1/2expH
2p i

l8
@r s ,r #J

ur s2r u
, ~4.6!

where@r s ,r # is the integral of the refractive index over the
line segment that links the pointsPs andP of which r s and
r are the position vectors:

@r s ,r #5E
Ps

P

n ds. ~4.7!

Because the integration curve is straight, diffraction at the
interfaces is neglected.

In a good approximation, the time-averaged Poynting vec-
tor has a lengthuu(r s ,r )u2 and points in the direction of
r s2r . The divergence of the negative Poynting vector is the
absorbed power per unit of volume. For the source point at
r s that emits radiation of a wavelengthl8, we find that, in a
good approximation, the power absorbed per unit of volume
of layer j is given by

Ws~l8,r !5
4p

l8
nj9~l8!uu~r s ,r !u2 ~r in layer j !. ~4.8!

Because the refractive index depends onz only, one can
write

@r s ,r #5@zs ,z#
ur s2r u
uzs2zu

, ~4.9!

where we use the concise notation

@zs ,z#
def.
5 F S 0

0

zs
D ,S 00

z
D G . ~4.10!

The total absorbed power per unit of volume of layerj is
obtained by integrating~4.8! over all the radiating point
sources inside the cylindrical region irradiated by the tube.
By using ~4.10! and by switching to cylindrical integration
variables centered onr , we find for r in layer j :

W~l8,r !5
4p

l8
nj9~l8!E E Eirradiated

region

P~l8,zs!expH 2
4p

l8
Im@r s ,r #J

4pur s2r u2
dxs dys dzs

'
nj9~l8!

l8
E
zM

z0
P~l8,zs!dzs E

0

`E
0

2p
expH 2

4p

l8
Im@zs ,z#@r21~zs2z!2#1/2/uzs2zuJ

r21~zs2z!2
r dr df

5
2p

l
8nj9~l8!E

zM

z0
P~l8,zs!E1S 4p

l8
Im@zs ,z# Ddzs , ~4.11!
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whereE1 is the exponential integral:

E1~s!5E
s

`e2t

t
dt. ~4.12!

In the second line, we approximated the upper integration
limit for r by `. This is justified for all pointsr that are not
very close to the boundary of the irradiated region. The ob-
tained expressionW(l8,r ) for the absorbed power can be
seen to depend only on the depthz.

From here onwards, the derivation of the secondary fluo-
rescence power density is similar to that of the primary fluo-
rescence. By using the mass absorption coefficient~4.3!, we
can determine the fraction of the absorbed power of the ra-
diation of wavelengthl8 that can be attributed to the rel-
evant element for the fluorescence at wavelengthl. Multi-
plication by the excitation factorE(l,l8) then converts the
absorbed power to fluorescence power. Because, in the irra-
diated region, the absorbed power~4.11! is a function of the
depth coordinate only, the secondary fluorescence power
Psec(z) per unit of sample volume is also only a function of
z. For convenience, we will introduce the function
psec(z)5pR tube

2 Psec(z), which is the secondary fluorescence
power per unit of length in thez direction.

The total secondary fluorescence is obtained by summing
over all the lines with wavelengthsl8 satisfying
l8,le(l). The total fluorescence power~per unit of length
in thez direction! for the line with wavelengthl correspond-
ing to elementi is then the sum of the primary, secondary,
and higher-order contributions. For a point of layerj , the
resulting sum is

p~l,z!5E
l t,le~l!

E~l,l t!m
i~l t!I ~l t ,z!dl t

r jCj
i

cosc

1
1

2 (
l8,le~l!

E~l,l8!m i~l8!

3E
zM

z0
p~l8,zs!E1S 4p

l8
Im@zs ,z# Ddzs r jCj

i .

~4.13!

Equation~4.13! is the recursion formula for the computation
of the fluorescence power densities of all lines for which
fluorescence occurs. Provided the lines are ordered in se-
quence of increasing absorption edge wavelengthle and the
functions p(l,z) are computed in that order using~4.13!,
secondary, and higher-order fluorescence are all taken into
account.

V. COMPARISON WITH EXPERIMENT

A. Experiment

The laboratory GEXRF spectrometer was constructed by
modifying a commercial PW2400 wavelength-dispersive
XRF spectrometer ~Philips Analytical X-Ray, The
Netherlands!.14 A module consisting of an air-cooled rotat-
able sample table and a double-slit collimator for direction
selection was installed in the conventional spectrometer. The
emission angles could be adjusted between 0 and 0.12 rad
with a minimum step size of 5.031025 rad. The angular

resolution was 8.031024 rad. Spectral selection was per-
formed using a crystal monochromator. Sample irradiation
was carried out by means of a 3 kWsealed x-ray tube having
an Rh anode. Either a flow counter or a scintillation counter
could be used for detection. All the experiments were carried
out in a technical vacuum~of several Pa!.

Thin-layer samples~Si/Au, Co/Si, Co/Cu! were prepared
by means of electron-beam evaporation using a Balzers BAK
550 instrument~Balzers, Liechtenstein!. Homogeneous lay-
ers of submonolayer coverages were prepared as follows.
Silicon platelets were rendered hydrophobic through reaction
with trimethyl silane dimethylamine. An aliquot of a 100 ppb
Co solution was spiked with a complexing agent~ammonium
pyrollidine dithiocarbamate! and was then placed on the sili-
con carrier. The samples were used after evaporation to dry-
ness. The method is closely analogous to the one proposed
by Knoth and Schwenke.23

B. Instrumental factor

To be able to compare measured and computed fluores-
cence intensities, we need to know the response of our in-
strument. We will first discuss the angular dependence of this
so-called instrumental factor.

Formulas~3.22! and ~3.27! are expressions for the fluo-
rescence intensitiesI (u) from the upper and lower layer of
a two-layer sample in the direction defined by the angleu,
with respect to the surface of the sample. They give the flux
of photons per unit of solid angle. In order to be able to
compute the actual number of photons measured per unit of
time, I (u) has to be integrated over the solid angle sus-
pended by the detector. This solid angle is the divergence
Du of the detected beam, which satisfies tan(Du/2)5w/ l ,
wherew is the length of the shorter side of the slits andl is
the distance between the slits~see Fig. 4!. There is an addi-
tional weight factorS(u,u8) in the integration over the di-
vergence, which depends on the geometry of the detector.
Whenr is the effective distance between the sample and the
detector, the detected power~in cps! becomes

Pdetector~r ,u!5
b

4pr Emax$0,u2~Du/2!%

u1~Du/2!

S~u,u8!I ~u8!du8,

~5.1!

FIG. 4. The double-slit collimator. The area of the sample irra-
diated by the tube is shaded.
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whereb is the length of the longer side of the slits. For very
small emission anglesu, the entire area of the sample irra-
diated by the tube contributes to the fluorescence, but for
larger values ofu only a fraction of this area is seen by the
detector. This is the main cause for theu dependence of the
instrumental factor. In Fig. 5, the instrumental factor has
been plotted as a function ofu82u for several values of the
emission angleu. The maximum value ofS is 1; it is at-
tained for those anglesu,u8 for which the entire area of the
sample that is irradiated by the tube contributes to the de-
tected power. Foru50.005 rad and larger values, the interval
of anglesu8 for whichu8°S(u,u8) does not vanish is given
by the divergence interval (u2Du/2,u1Du/2) and the
maximum value ofS is small, because only a small fraction
of the irradiated area is seen by the detector at these angles.
For smaller emission anglesu, the length of the interval of
contributing angles is smaller than the divergence, because
the angles are limited by the irradiated area.

For a quantitive comparison of measured and calculated
intensities, the efficiencies of the crystal monochromator-
detector system for the various emission lines are required.
These efficiencies have been calibrated by using bulk
samples~very thick layers! at large emission angles.

C. Results and discussion

The detected and calculated values of the fluorescence
intensity of theKa line (l57.126 Å! from a 60-nm Si layer
on a thick Au substrate are shown in Fig. 6. The divergence
of the double-slit collimator is sufficiently small for fringes
to be visible at angles above the critical angleucrit50.015
rad of the Si surface. In order to be able to understand the
origin of fringes in the total intensity of the fluorescence
radiation emitted by the incoherently radiating Si atoms, we
will first consider the fluorescence from a single Si atom at
depthzs . This fluorescence can be computed using~3.18!.
The main contribution to the intensity comes from the direct
beam and the beam reflected once, as shown in Fig. 2. If
multiple reflections are neglected,~3.20! becomes

I s~u;zs!5ut0
2u2exp@22 Imkz,1~z02zs!#

3P$11ur 1
2u2exp@24 Imkz,1~zs2z1!#

12ur 1
2ucos@2 Rekz,1~zs2z1!1Arg~r 1

2!#%, ~5.2!

where Arg(r 1
2) is the change in phase suffered by the beam

upon reflection at the interfacez5z1 . The third term be-
tween the brackets corresponds to the interference between
the direct beam and the beam reflected once. For anglesu
not too close to the critical angle, we have

2 Rekz,1~zs2z1!'2p
2~zs2z1!

l
u. ~5.3!

Hence, the period of the interference fringes in the intensity,
due to one atom at depthzs , is approximately
l/@2(zs2z1)# and is thus proportional to the inverse of the
distance between the atom and the interface below it. Figure
7 shows the calculated fluorescence intensities, due to three
atoms at different depths. The plots are based on the ‘‘exact’’
formula ~3.18!. In contrast to Fig. 6, the instrumental factor
is omitted in Fig. 7. The three sources are at distances of
d1/4, d1/2, and 3d1/4, respectively, whered1 is the thick-
ness of the Si layer. The corresponding fringe periods
l/2(zs2z1) are 0.024, 0.012, and 0.008 rad, respectively.
For the SiKa line the refractive index of the Au substrate is
considerably less than the refractive index of the Si layer.

FIG. 5. The instrumental factorS(u,u8) for the detector used in
the experiments, as a function ofu82u for several values ofu. The
divergence isDu50.0008 rad.

FIG. 6. Detected and computed values of SiKa fluorescence
intensity from a 60-nm-thick Si layer on an Au substrate.

FIG. 7. IntensitiesI s for three point sources inside the 60-nm-
thick Si layer of Fig. 6. The point sources are at distances of one-
quarter, one-half, and three-quarters of the layer thickness from the
substrate. This corresponds to fringe periods of 0.024, 0.012, and
0.008, respectively.
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Therefore, reflections at the interface between the Si and the
Au layer are strong and this explains the large amplitudes of
the fringes in Fig. 7.

Now the total fluorescence of the Si layer is obtained by
integrating the intensities due to all atoms in the layer. Atoms
at the same depthzs all contribute to fringes of period~5.3!.
However, except when the thickness of the layer is of the
order of the wavelength, integration over the depthzs causes
cancellation of the fringes. Hence, the fringes that are mea-
sured in the total fluorescence of a layer are, in general, not
caused by the interference of the direct beam and the beam
reflected once.

The second most important interference after that of the
direct beam and the beam reflected once is that between the
direct beam and the beam reflected twice. It follows from
~3.18! and also immediately from Fig. 2

fringe period5
l

2~z02z1!
. ~5.4!

For the SiKa radiation from the 60-nm-thick layer, this
yields a fringe period of 0.006 rad. Because this period is the
same for all atoms, it is still visible in the integrated fluores-
cence intensity of the Si layer. Hence, fringes in the fluores-
cence intensity of the upper layer are predominantly due to
the interference between the direct beam and the beam re-
flected twice and are, therefore, a second-order effect in the
reflection coefficients. The decrease of the fringe amplitude
for increasing emission angle is caused by the decrease of
reflected intensities.

When fringes are visible in the detected fluorescence in-
tensity of a particular line, the thickness of the layer can be
estimated from~5.4!. More accurate values for the thickness
can then be obtained by fitting expression~3.22! to the in-
tensities measured for a number of anglesu.

It is illustrative to simplify the expression for the detected
power in the following way. If the divergence is small, we
may replace~5.1! by

Pdetector~r ,u!'
b

4pr Emax$0,u2~Du/2!%

u1~Du/2!

S~u,u8!du8 I ~u!

'
b

8pr
DuS~u,u!I ~u!, ~5.5!

where in the last line the graph ofu8°S(u,u8) is approxi-
mated by a triangle~see Fig. 5!. Furthermore, if the upper
layer is thin, the fluorescence power densityp(zs) may be
considered to be constant. Then the integral over the depth
that occurs in~3.22! can be computed analytically. The result
is

I ~u!'ut0
2u2

12exp@22 Imkz,1d1#

2 Imkz,1d1
pd1

3
11ur 1

2u2exp@22 Imkz,1d1#1c~u!

u12r 0
1r 1

2exp@2ikz,1d1#u2
, ~5.6!

whered15z02z1 is the thickness of the upper layer andc is
given by

c~u!54ur 1
2uImkz,1d1

exp@22 Imkz,1d1#

12exp@22 Imkz,1d1#

3
sin@2 Rekz,1d11Arg~r 1

2!#2sin@Arg~r 1
2!#

2 Rekz,1d1
.

~5.7!

In most casesc(u) may be neglected. In Fig. 8, several
factors occurring in~5.6! are shown for theKa fluorescence
from the Si layer shown in Fig. 6. The first factor (f 1) to the
right, ut0

2u2, incorporates the change in the field strength
upon transmission through the surfacez50, the second fac-
tor, f 25@12exp(22 Imkz,1d1)#/(2 Imkz,1d1), represents the
mean, taken over all point sources, of the loss suffered by the
direct ray emitted by a particular point source, propagating
through the upper layer. The last factor (f 3) to the right of
~5.6! and the instrumental factor in the small-divergence ap-
proximation f 4 :u°S(u,u) are also shown. Plots of these
factors as functions of the angle are helpful in understanding
the angular dependence of detected fluorescence intensities.

Figure 9 shows the measured and computed fluorescence
intensities corresponding to the CoKa line of a 60-nm layer
of Co on two different substrates, one consisting of Cu, the
other of Si. The factorsf 1 , . . . ,f 4 of the Co fluorescence
intensity on Cu are shown in Fig. 10.

FIG. 8. The factorsf 1 , f 2 , f 3 , and f 4 defined in the text for
the fluorescence intensity from the Si layer of Fig. 6.

FIG. 9. Measured and computed values for the CoKa fluores-
cence intensities from a 60-nm Co layer on a thick Cu substrate
~indicated by1! and on a Si substrate~indicated by *!. The Cu
substrate induces secondary fluorescence in Co, whereas the Si sub-
strate does not.

53 3761CALCULATION OF INTENSITIES IN GRAZING-EMISSION . . .



Contrary to Cu, the fluorescence of Si cannot induce the
Ka fluorescence of Co. Due to a small difference in the
refractive idea of Co, Cu, and Si for the CoKa radiation,
fringes do not occur and hence the influence of the refractive
index of the substrate on the measured fluorescence of Co is
small. Therefore, the measurement of the Co fluorescence on
the Si substrate gives an accurate estimation of the primary
fluorescence intensity in the case of the Cu substrate. This is
confirmed by the results of the comparison with the com-
puted primary fluorescence intensities shown in Fig. 9.

We used a sufficiently thick Cu substrate~5 mm!, so that
the secondary fluorescence amounts to' 28% of the total
Co Ka fluorescence. Below the critical angle, the intensity
of the measured fluorescence on the Cu substrate is higher
than the simulated intensity. An AFM image of the sample
demonstrates that roughness of the Co surface is the cause of
this discrepancy. The Co surface inherits a considerable
roughness from the very rough Cu substrate. For the contri-
bution of the secondary fluorescence to be maximized, the
Cu substrate has to be rather thick and this causes the Cu
surface, and consequently also the Co surface, to be rough.

The computed ratio of the secondary and total fluores-
cence, as a function of the emission angle, is shown in Fig.
11. It can be seen that the relative contribution of the sec-
ondary fluorescence is a slowly increasing function of the
detection angle with a small step at the critical angle. This
increase is due to the fact that, at larger detection angles, the

contribution from Co atoms that are closer to the Cu sub-
strate and, are, therefore, more efficiently excited by the Cu,
becomes more important than at smaller angles. For reasons
mentioned above, the step at the critical angle could not be
measured however.

The last example concerns the analysis of very dilute lay-
ers of submonolayer coverage. The detected and computed
Ka fluorescence intensities of the 1.431014 Co atoms/ cm2

on Si are shown in Fig. 12. The shape of the curve differs
from that obtained for the much thicker layers discussed
above. This can be understood by considering that a layer
with a thickness of one monolayer or less can be modeled as
a distribution of radiating point sources all situated in the
same plane in a vacuum at a certain distance from the
refelecting plane. This distance has to be determined, so that
the measured and computed intensities fit best.

The formula for the fluorescence of atoms that are all at
the same distancezs2z1 to the substrate is, with the excep-
tion of the instrumental factor, given by~3.18!, in whichP is
the total fluorescence power of the plane of fluorescent Co
atoms. Because there is no interface atz5z0 , we have
t0

151, r 0
150, andkz,15kz,05ksinu. Then ~3.18! simplifies

to

I ~r ,u!5
P

4pr 2
u11r 1

2~u!exp@2ik~zs2z1!sinu#u2 ~5.8!

'
P

4pr 2
u11r 1

2~u!u2, ~5.9!

where the dependence onu of the reflection coefficient is
emphasized and where in approximation~5.9!, use has been
made of the fact that the distancezs2z1 of the atoms to the
substrate is of the order of the wavelength and the anglesu
of interest are small. Hence, in a first approximation, theu
dependence of the measured fluorescence intensity is given
by theu dependence of the reflection coefficient. Below the
critical angle for total reflection at the interfacez5z1 , the
absolute value ofr 1

2 is almost constant and equal to 1 but, as
follows from ~3.17!, the phase of the reflection coefficient

FIG. 10. The factorsf 1 , f 2 , f 3 , and f 4 of the fluorescence
intensity from the Co layer on the Cu substrate in Fig. 9.

FIG. 11. Computed ratio of the secondary and total fluorescence
from the Co layer on the Cu substrate in Fig. 9.

FIG. 12. Detected and computed values for the CoKa fluores-
cence of 1.431014 Co atoms/ cm2 on Si. The best fit between the
measurements and the calculations is obtained for a distance to the
Si surface of 10 Å.
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depends onu, so thatr 1
2 varies between21 at u50 and

11 atu5u1
crit5n28 . This explains the shape of the measured

intensity curve.

VI. CONCLUSION

Explicit expressions for the fluorescence intensity at
grazing-emission angles from layered samples can be de-
rived by applying asymptotics to the solution of the Helm-
holtz equation for a radiating point source. Avoiding the use
of the optical reciprocity theorem has the benefit that the
physical significance of the various terms in the general ex-
pressions for the angular dependence of the fluorescence in-
tensity is immediately clear. Moreover, a direct understand-
ing of the physics allows identification of the dominant terms

in the equations, which leads to very simple explanations in
specific cases. This can be demonstrated for the example of
fringes caused by multiple reflections in a layered system
and for that of a distribution of atoms of submonolayer cov-
erage at a given distance from a reflecting surface.
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