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We consider a family of random-matrix ensemb{BME’s) invariant under similarity transformations and
described by the probability densiB(H)=exd —TrV(H)]. Dyson’s mean-field theor¢MFT) of the corre-
sponding plasma model of eigenvalues is generalized to the case of weak confining potential,
V(e)~(AI2)In?(€). The eigenvalue statistics derived from MFT are shown to deviate substantially from the
classical Wigner-Dyson statistics whex<1. By performing systematic Monte Carlo simulations on the
plasma model, we compute all the relevant statistical properties of the RME’s with weak confinement. For
A ~0.4 the distribution function of the energy-level spacifgSDF) of this RME coincides in a large energy
window with the LSDF of the three-dimensional Anderson model at the metal-insulator transition. For the
sameA., the variance of the number of levels)?)—(n)2, in an interval containingn) levels on average,
grows linearly with(n), and its slope is equal to 0.32.02, which is consistent with the value found for the
Anderson model at the critical point.

[. INTRODUCTION sume that all the relevant times are larger than the ergodic
time rp=L%/D (D being the diffusion coefficiehtany dif-
Random-matrix theoryRMT) was introduced by Wignér  fusive particle can completely and homogeneously fill the
and DysoR to provide a statistical description of the quan- total sample volum&/=L¢ during its trajectoryiergodic re-
tized energy levels of heavy nuclei, and since then it hagime) and, thus, does not feel the space dimensionality. Al-
been applied to a great variety of complex systems, quantunernatively, the ergodic time defines a natural energy scale,
and classical. Gor’kov and Eliashbefysuggested that the E.=#%/7mp known as Thouless energy. The ergodic regime,
Wigner-Dyson(WD) statistics, derived from RMT, could be and therefore RMT, is valid within energy intervadsE_,
used to describe the energy levels of small metallic particlesr within an interval containing a number of levels
at low temperature, in connection with the study of theirN<E_/A~g, whereA is the mean level spacing. The quan-
electromagnetic properties. Here, a statistical description iity g is known as the dimensionless conductance in units of
made necessary by the presence of disorder and irregularities/z,. When e>E,, the level statistics depends on the di-
in the shape of the particles. For the case of disordered commensionality and is different from WD distribution
ductors, one can resort to powerful field-theoretical tech{Altshuler-Shklovskii regimg
niques, which have allowed Efetbvand Altshuler and The nonergodic regime is never reachable in the metallic
Shklovskif to show analytically that the WD statistics are phase in the thermodynamic limit, in any energy interval
more than a simple phenomenological conjecture and decontaining a large bufinite number of levels, since the di-
scribe exactly the local fluctuations of the energy levels inmensionless conductanag diverges in the limitL— oo,
metals in a certain regime. Therefore, the WD statistics describe exactly the energy-
The WD statistics are characterized by strong energytevel correlations of the metallic state in the-o limit that
level correlations, giving rise to the phenomenon of the levekxists ford>2 at relatively small disorder.
repulsion. These are the correlations that typically exist Ford=1,2, no metallic state exists in the thermodynamic
among the eigenvalues of a Gaussian ensel@® of ran-  limit, if any disorder is present, the system being always an
dom Hermitian matrices$l, that is, an ensemble of matrices insulator. Ford= 3, with disorder increasing, the system goes
randomly distributed with probability densityP(H) through the Anderson transitibrto the insulating state,
xexg —TrH?]. where all states are localiz&dThe level statistics in these
The GE's(and, therefore, the WD statistjcdo not bear situations obviously cannot be described by the
any hint of the spatial dimensionalit/of a physical system. a-dimensional, classical RMT of the GE. In particular, such
Furthermore, they are, by definition, invariant under similar-simple U(N) invariant random-matrix ensembléRME’s)
ity transformations and thus there is no basis preference inannot be an appropriate description of a Hamiltonian ma-
them. This means that they can be applied only to particulatrix, the eigenvectors of which undergo the phenomenon of
regimes of a physical system whef&) all the normalized localization, since one can construct extended states by a
linear combinations of the eigenstates have similar propetinear combination of localized states. In contrast, the proper
ties; (2) the dimensionality is, in some sense, irrelevant.  P(H) distribution should contain eigenvector-eigenvalue
For a disordered electronic system this is just the ergodicorrelations or a basis preference, which exclude those uni-
regime of the metallic state. In the metallic phase, the eigentary transformations that would lead to the formation of such
states are extended structureless objects. If we further aextended states.
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Random banded matrice¥ are an example of noninvari- Such ensembles arise frongkbbal maximum entropy an-
ant RME's and are perhaps more realistic for describingsatzof RMT, in which an information entropy is maximized
Hamiltonians of quasi-one-dimensional disordered electroniby the distributiorf® The functionV(H) acts like a general-
system$ and other quantum chaotic systefidheir statis-  ized Lagrange multiplier and it is determined, e.g., by requir-
tical properties exhibit a crossover from the WD to the Pois-ing that the density of eigenvalues is some given function
son statistics as a function of the paramdiéfN (b is the  p(e), taken directly from the microscopic system being in-
band width, which is similar to what happens in quasi-one- vestigated:
dimensional systems upon decreasing the rétig ¢ being
the localization length. (Tr[8(e—H)])=p(e). (1.3

Another model worth mentioning is represented by the
ensemble of sparse random matrices. This model has been For a |0ng time it was believed that the local statistical
shown to be closely related to the Anderson model on Properties of the eigenvalues of these ensembles are com-
Bethe lattice”! which is known to possess a localization Pletely independent o and identical to those of the GE.
transition'? On the basis of this similarity, sparse random- This hypothesis, so far supported only by numerical evi-
matrix ensembles should also display an Anderson transitiol€nce, has been proved more rigorously very rec&ttiyor
from a localized to a delocalized regime upon increasing thé large class of functiong. On the other hand, it has also
“mean Connectivity parameteﬁ]’ The energy_|eve| statistics been demonstratéﬁ_sl that there exists another class of
in the delocalized regime have been proven to belong to thBinctionsV, known asweak confining potentialdor which
Wigner-Dyson universality class. the eigenvalue statistics display very strong deviations from

While the RMT description of the quasi-one-dimensionalthe universal WD behavior. Such potentials are characterized

disordered systems can be provided by random banded mhY @ very slow asymptotic growth:
trices, an analogous description of the energy statistics near )
the critical point ford>2 is still missing. This problem has V(e)~AIne|, |e[—o. 14
recently bec_omeiz% very OUtSta?”d'['gzone' after intense study s important to emphasize that this asymptotic behavior of
both numericdf~** and analyticaf"** has shown that the \ pas heen inferred from numerical studiesaridom trans-

spectral correlations at the metal-insulator transition are als@.,. 5trix models for disordered conductors through the
universal and very different from the WD and the Poisson., 4vimum entropy ansa?32%n that case oﬁe considers

Stat'f]t'cs', il N ¢ e eigenvalues of some combination of the transfer matrix,
There is not yet full consensus on the exact nature of thghich"are directly related to the conductance and become

cri_tical energy-level statistics. Th_e main findi_ng of thg aNa-|arger and larger, namely less confined, when the disorder
lytical treatment based on a scaling analf§sféis the exist- reases.

ence of a power-law decay of the two-level correlation func- |1 has been shov=3!that the local eigenvalue fluctua-

tion with a nontrivial critical exponent. All numerical o < of the RME's, with confining potentidll.4), exibit a
simulations show that at the critical point, the statistical fluc-..ossover from the WD statistics to a more Poisson-like be-
tuations of the energy levels are scale invariant. Howevelayior when the parametéyis decreased. Since it is a com-
while some authof$*** claim a good agreement of their .1 lief that there is a connection between the statistics of
numerical results with the analytical —predictions, gjganyalues and eigenstates of a RME, this breakdown of the
others>'7~'% suggest that the critical statistics constitute\y universality seems to contradict the argum@niesented
more simply a *hybrid” between the WD and the Poisson 5p,4ve for the GEthat aU(N) invariant ensemble cannot
distributions without any nontrlyla_l critical exponent. gyhipit Poissonian statistics, typical of localized states. In
The search of a RMT description of the critical statistics gt 31, it has been suggested that Poissonian behavior in
has prompted the investigation of physically motivatedg ., RME’s is a remarkable phenomenon, due to the spon-
RME'’s which exhibit nontrivial deviations from the WD sta- ,1a0us breakdown of tHe(N) symmetry at the transition
tistics. One important generalization has bee.n obtair_led ilﬂ,om a power-law potential/(e)~|e|?, to the logarithmic
Refs. 23 and 24, starting from the GE and introducing &,,sentia| of Eq(1.4) whena— 0. A crucial point in reaching
symmetry breaking term of the form this conclusion was the observation that the two-level corre-
s oo ; lation function of the invariant RME’s with weak confine-
P(H)oe™ T e~ MNTHLAHILA I, (1.)  ment and the one of the RME’s with symmetry breaking are
identical in a certain range of the parameters. Having estab-
Theh-dependent term breaks thEN) invariance and tends |ished that these generalized RME’s with soft confinement
to alignH with a symmetry breaking unitary matriX, thus  belong to a new universality class, characterized by nonclas-
setting the basis preference. It was shown in Ref. 24 thadical correlations that interpolate from the WD to the Poisson
even after averaging ovex the implicit presence of the sym-  statistics, there remains the important question of whether or
metry breaking term causes a dramatic change in the levelot their properties are related to the critical energy-level
correlations of the resulting ensemble, which exhibit a crossstatistics of the Anderson model.
over from the WD to the Poisson statistics. In this paper, we address this question through a careful
On the other hand, a lot of wotkhas been devoted to the study of the RME’s with distribution given by Eq1.3).
analysis ofU(N) invariant generalizations of the GE, of the First, we shall show that the local statistical properties of a
kind generalized RME of this sort can be correctly and easily
determined using an extension of Dyson’s functional deriva-
P(H)xe TV(H), (1.2)  tive formalism for the corresponding one-dimensiofD)
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plasma model for the eigenvalues. This formalism has beetherefore, specified and denoted after their internal symme-
used successfully by Beenakf&to investigate the random- try: orthogonal ensembléOE), unitary ensembl¢UE), and
matrix theory of the transmission eigenvalues in disorderegymplectic ensembléSE).2
conductors. In particular, we prove that a modified mean- The invariance oP(H) in Eq.(2.1) implies that different
field theory(MFT) of the plasma model is able to yield the matrices with the same eigenvalues have the same probabil-
nonuniversal asymptotic behavior of the two-level correla-ity of occurring in the distribution. One can take advantage
tion function for weak confinement. of this property and obtain the joint probability distribution

Second, we perform extensive Monte Carlo simulations o{JPD), 7({€;}), for theeigenvalues;, i=1,2,... N of the
the one-dimensional Coulomb plasma of the eigenvalues anthatricesH. For this purpose, it is necessary to express the
calculate all the relevant quantities that describe short-rangearious components dfl in terms of theN eigenvalues;
and long-range statistical properties of the RME’s. The comand other mutually independent variabfgs which together
parison with the MFT and other analytical results shows thatvith €; form a complete set. The variablgs can be inte-
this Monte Carlo method provides very accurate answers fograted out and the final result for JPD is
this problem and can be used to study more complicated
RME’s where no analytical results are known. 1 N

Finally, we critically compare the level statistics of these AL 1) = _Z |8
RME'’s with the results recently obtained for the 8nderson e CNBeXp( Z'BZ V(e))iljk lei—ed”,
model at the metal-insulator transition. Our analysis shows (2.2
that, while the asymptotic correlations of the RME’s do not
agree with the analytical result of Refs. 21 and 22, two othewhere3=1 for the OE,3=2 for the UE, and3=4 for the
statistical properties, namely, the distribution function of theSE.C, is such that” is normalized to unity. Theniversal

level spacings and level-number variance, are remarkablyastrovf, factoil, | € — e/ # comes form the Jacobian of the

close to those found numerically in exact diagonalizations of riable transformation. It is universal in the sense ttait

the Anderson model. , is always present in the JPD of the eigenvalues, whenever
The paper is organized in the following way. In Sec. I, the initial RME’s distribution probability is of the form Eq.

we set up formahsm and notation and review Dyson's de_rl-(z_l); (2) it is independent of the particular choice \6¢H)

vation of the effective plasma model for the eigenvalue disy,q depends only on the symmetry of the ensemble.

tribution. In Sec. Ill, we develop a MFT of this model, gen-  The JPD's of Eq(2.2) characterize all the statistical prop-

eralized to the weak confining potentials. The MFT study Ofgties of the eigenvalues of an invariant RME, with the in-

the two-level correlation function is carried out in Sec. IV. tgrng] symmetry discussed above. It describes the so-called

Section V is devoted to the study of Monte Carlo simula-gnergy-evel statistics, H is the Hamiltonian of the system.
tions. In Sec. VI we discuss and compare the results of RMT Following Dyson® the JPD can be rewritten in the fol-

with the analytical and numerical results of the energy-leve\owing form:
statistics of the Anderson model at the metal-insulator tran-
sition. Summary and conclusions are presented in Sec. VII.

!f'//'ﬂ({ei})IZQEGX[{_&}W({G})], (2.33

Il. EIGENVALUE STATISTICS AND EFFECTIVE

ONE-DIMENSIONAL PLASMA MODEL
_ _ Teh)==2 Inle—¢l+2 V(e). (.39
We consider an ensemble of randdirk N matricesH. i<j i

The matricesH are supposed to represent, for example, the

Hamiltonian of a complex system, such as a quantum disor- The probability distribution(2.2) has the form of a Gibbs
dered conductor. We take to be eithereal symmetricHer-  distribution for a classical, one-dimensional system Nof
mitian, or quaternion-real self-dual This choice defines “particles” €, described by the “Hamiltonian’7. The

three possible ensembles corresponding to three differeRymmetry parametep plays the role of the equilibrium
physical systems(l) systems with time-reversal and rota- “temperature.”

tional invariance;(2) systems with broken time-reversal  Tpese fictitious “particles,” namely, the eigenvalues
symmetry;(3) systems with time-reversal symmetry, but bro- interact among each other through a pairwise logarithmic
ken rotational invariance. o _ repulsion at any energy scale. The external one-body poten-
_ According to the maximum entropy principle mentionedtjg] v/(¢) keeps the system confined(e) is the only quan-

in the previous sectiofr, we will assume that the probability tity of the RME that can be related to the microscopic pa-

distribution for the RME is defined by the density rameters of the original physical model through dgebal
statistical property, namely, the density of eigenval(s=e
P(H)=Z te ™M), (2.1)  below. The logarithmic repulsion does not depend on any

microscopic detail of the real system, its origin being com-
whereZ is a normalization constant. The volume element ispletely geometrical. From now on we will use this particle
d[H]=II;~;dHj;, for real symmetric matrices, with obvious model analogy freely and call “particles” the eigenvalues of
generalizations for the other two caseéEhe probability den-  the RME's.
sity P(H)d[H] is evidently invariant undeorthogonal uni- The local statistical fluctuations of £n<N eigenvalues
tary, or simplectictransformations, respectively, according to are conveniently described by timelevel correlation func-
the three possible choices éf. The three ensembles are, tions, defined as
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Gn(€q, ... .€n) G,(r)~rh, r<1. (2.10
_ N i e Although theglobal statistics(such as the densityf the
~ (N—n)! Jfoc o Jfoo n{eabde .. de. (24 energy spectra of real systems do not follow the semicircle
law, thelocal statistics of the level correlations of many cha-
By definition, G (€1, . . . ,€,) is the probability of finding  otic and complex systems are very well described by Eq.
simultaneously anyh particles at positiong, e, ... ,€, (2.9. In particular, Eq.(2.9) describes the correlations in

the positions of the remainin—n remaining unspecified. small metallic samples at low temperatdras well as the
G, are positive defined. In particulaB,(€) gives the den- correlations among a large but finite number of energy levels

sity of particles at positiorr, and it will be denoted by of a metallic system in the thermodynamic lirfit.
Until recently, it was believed that the form of the confin-
p(€)=G(e). (2.5 ing potential could only affect the density of eigenstates, but

: . : . not their local statistics, which would, therefore, be universal
It is convenient to mtr_oduce the-level cluster _funqtlons and equal to the WD statistics of the Gaussian ensembles.
or cur_nulants. Theormalized _nle_vel cluster f_unct|on IS de-  gych universality has been indeed proved recently in a rig-
gﬂadu;grfgeaﬁual way of statistical mechanics. The first tWoy ;5 way, for a large class of potentials, which confine the

system strongly, that is, whe¥(e) increases faster than

26,27
G €]
Yi(e)= 1) =1, (2.6) In what follows, we will consider two kinds of non-
p(e) Gaussian potentials, which confine the system weakly, with
G ) the following asymptotic behavior.
_ 2\€1,€2 (1) Power-law potentiai®3°-3¢
Yo(€1,60)=1— ——. 2. '
A = (e 27
We shall always consider the case of lafge 1. In this V(e)= é| €%, 0<a<l, |e|—wx (2.12)
S1€l% , . .

limit, the normalized cluster functions are very useful, since

they tend to definite limits when the variables are written in

the correct units. In taking thid— oo limit, it is necessary to (2) Squared logarithmic potenti&f;*:

measure the particle positions in terms of the mean level

spacingA. If limy_..p(€) =po=const,A=p,* and the di- A

mensionless variables are simply V(e)= Eln2|e|, |€|—o0. (2.12

Si:Ei/A. (28)

On the other hand, if ligp_,..p(€) # const, we need to con-
sider a rescaling of the; with the local density or the more
complicated unfolding procedufsee Sec. IV B

In any case, thes; will form a statistical model for an
infinite number of particles with mean spacing equal to unity.
It is only when written in terms of these rescaled variables
that the local statistical properties of the eigenvalues of dif- Ill. MEAN-FIELD THEORY
ferent RME’s can be meaningfully compared. . . .

We now come to the discussion on the explicit form of the . We now consider a MFT anaIyS|s of th? classpal one-

dimensional plasma model of eigenvalueg{e;}), into

otentialV(e) and how the statistics depend on it. The case™ . L - ;
gf the GE,(w)ith potentiab (&) = €2 is the :nly one for which which the original probability density of RME has been

exact solutions for the density, two-point correlation func-m"’Il%p.mt'hWe first dteftllnella.(t:or;nlnuo;ds ll;m'F ctn‘ tgns _mo%fl,
tion, and other statistical properties have been known exactly?'9 1N the asympto |cN|m| ot largeéy, by Introducing the
for a long time® They are usually referred to as WD or Particle density(e) =2i"5(e—¢;). In this limit, we will as-

classical statistics. One can show that in the Iaidinit, the ~ Sume that the Coulomb gas is a classical fluid with a con-
particle density obeys Wigner's semicircle law, with a radiustinuous and smooth macroscopic density. By substituting this

proportional toNY2" The two-point cluster function, in a definition of p(e) in Eq. (2.3b), the Hamiltonian7({en})
region around the origine=0, is translationally invariant, P€comes aenergyfunctional,. 7[p(e)], of p(e)
Yo(S1,82) =Yo(r), r=[s;—s,|. For B=2 [Gaussian uni-
tary ensembléGUE)], it has the famous form,

sin(wr)}2

r

It is a legitimate mathematical interest to investigate these
cases and see if the WD universality is preserved. However,
these RME’s have also a physical interest, since they have
been suggested by random transfer matrix models of disor-
dered conductors.

1= [+
.74[P(6)]:_§J_wd€J_wde’P(f)P(é’)|n|€_5,|
Yo(r)=

(2.9

—+ oo
+f dep(e)V(e). 3.1
Similar expressions hold for the other two GE's. ’°°
At small separations, the correlation function
G,(r)=1-Y,(r) vanishes, due to the phenomenon of level WhenN is large but finite, the assumption of a smooth
repulsion brought about by the logarithmic interaction, density is only an approximation. Consequently, the first
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term of the right-hand side of Eq§3.1) does not reproduce combination of these two terms acts as an entropy contribu-
exactly the corresponding term of EQ.3b, because it ne- tion multiplied by an effective temperatur&€; (),

glects the two-level correlations, that is, it allows the pres- . 1

ence of the “charges’(e)de and p(e’)de’ at separations T(B)=p "—1/2, (3.7)
€—€'—0. Since the interaction |a—€'| is singular, this ap- \yhich vanishes foB=2. We can write the free energy, at
proximation has an effect, albeit small, becadsés large.  gquilibrium, of the system in the following form:

One can compute the correction in @&Nléxpansion to this
term and see that it is of the fofth

1= [+

1 F=_§f,xdeffmdf'<p(6)><p(e’)>|n|6—f'|

sHpeN=5| dep(amipe). (32 N
+ | actptanvie

It is convenient to introduce a grand canonical potential
Qlp]l=Hp]l— "V 1p]l, where./" is the particle number oo
functional./[p]=fp(€)de andu is the chemical potential. _T*(l[g)J’ de[ —{p(€))In{p(e€))]. (3.9
The average density of particlg(e)) can be expressed in -

terms of the functional integral, For the class of confining potentials of E@.11) and Eq.

(2.12, one can show that the relative contribution of the
<p(€)>=Z_1f p(e)e PUPIp: Z=f e Plrlgyp, correction to the MFT equation is of ord&~!InN, and,
therefore, vanishes in the thermodynamic limit. For the time
(3.3 . . : )
being, we will neglect this correction and concentrate on the
The one-body potentia¥/(e) acts as a source term for the MFT Eq. (3.5).
field p(€) and{p(€)) can be expressed as

_ A. Solution of the eigenvalue densit
(p(€))=(BZ)"16ZI5V(e). (3.4 g Y

We now present the solution of the integral equati®:b)

Up to now we have only assumed the existence of dor the particle density(€)ue=(p(€))ue. The solution of
smooth particle densityp(¢€)), necessary in taking the con- this equation, confined to the regionD<e<D, can be
tinuous limit of the Coulomb plasma, which presumably is afound using the Cauchy methticand is given by
good approximation wheN is large. The MFT, based on the
continuous approximation, amounts to neglecting any en- 1 D dvid d
tropy fluctuations about the average and using the saddle-  Pmr(€)= vaz—fz Refo \/D?_i;_—fz (3.9
point approximation in the integral equation fgi(€)). The 3 "

MFT equation obeyed byp(€))yr is thereforé® wheree, =e+10 and the band edge is to be found from
. the normalization condition. We will discuss separately the
f, de'(p(€'))yelnle—€'|=V(e) -, (3.5 two cases of a power-law and logarithmic potential.

o . 1. Power-law confinement, \&)=A/2| €|*
where the “Lagrange multiplier’u is to be found from the

normalization condition/(p(€))yrde=N. The MFT inter- The integral equation fofp(e))wr becomes

pretation of this equation is very natural, since it represents N

the condition of mechanical equilibrium for the charge den- (€)= A_am ReJD '3 dé

sity (p(€))umr Subject to the external potentisl{ ). Such a MF m 0 VDZ—¢2 £-e’

MFT approximation completely disregards the entropy part (3.10

S pl=—[de(p(e))In{(p(e)) in the free-energyfunctional,
Flpl=7p]—T]p], and is exactly applicable only for
B==. However, the long-range nature of the pairwise inter
action in Eqg.(3.1) makes the MFT approximation valid in
the bulk of the spectrum, even at finifg, when N— o,
Indeed Dysoff has calculated the first correction to this
equation in a M expansion and shown that the more accu
rate equation fofp(e)) reads

We need to distinguish further between the casesl and
_a<1. Fora=1, the integral in Eq(3.10 is divergent in the
thermodynamic limitN—oe, when the band edg® also
goes to infinity. The main contribution to the integral is made
by the regioné~D and, therefore, for any fixed<D, one
_can neglect the dependence in the integrand of E§.10.
Then the mean level density tends to eonstant
p—N¥"Ye Thus, we reach the important conclusion that,

+oo B—2 for =1, there exists translational invariance in thepace
f de'(p(€’))Inje—€'|+ Tln(p(e))ZV(e)—pﬁ in the N—o limit, exactly as in the case of the Gaussian

o (3.6 ensemble. Therefore, far=1, we have a condition of strong

: confinement, and the corresponding local statistics belong to

The second term on the left-hand side of E46) is the sum  the WD universality class, in agreement with Refs. 26 and
of two parts. The term proportional te T=—1/8 comes 27. On the other hand, far<1, the integral in Eq(3.10 is
clearly from the entropy contribution to the free energy. Theconvergent even in the limb—o. For finiteN (and, there-
part independentof 8 is generated in the passage to thefore, finiteD), the integral can be calculated by transforming
continuous limit as discussed aboVysee Eq.(3.6)]. The the original contour of integration into a sum of two pieces,
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I'=T,Ur',, wherel'; is the negative imaginary axis, and The expression for the MFT density fdd finite takes a
I', is a part of the positive real axjdD:~]. Since we are simpler expression after the limit— 0 is taken,
interested only in the real part contribution, the integral over

I', does not contribute and we end up with _arcsiny1—e%/D?
pMF(G)_AT- (3.19
Ax ( N ?J de 3.1 The band edge is now an exponential functiorNof
PMF(E)— 7 Sin \/f.fz §2+62 (3.1)
D=2 exgN/A). (3.20
:A“2 E) “y1-2° (l lt+a §_1_Zz The singularity aie=0 is again an artifact of the MFT solu-
aD T 2] |7t e 20 2 2 ' tion. On the other hand, we will see that in the bulk of the
(3.12 spectrum, the mean density is accurately described by Eq.
(3.19.
- T@2e) 1 )

““T(a)(1+a) 2 +0(a), (313 IV. THE TWO-LEVEL CORRELATION FUNCTION
wherez=¢€/D andF(a,b;c;X) is a hypergeometric function. In this section, we StUdy the two-level correlation function
The band edge is found from the normalization condition tousing the MFT developed in the previous section. Some of
be these results have been already derivedder2, using the

different method of the orthogonal polynomidfs:* MFT
NT2(al2)\ Ve will allow us to generalize these results to any valugBof
D= AT (@) (3.19
A. MFT integral equation for the two-level
The limiting function pye(€) =limy_...p ue(€) is immedi- correlation function
at_er/Dobtoa.med from Eq.(3.12 by taking the limit Within the continuous formalism of the previous section,
2= elD—0: let us consider the following definition of the density-density
Aa a1 correlation functiorR,(e,€’):
€) tar( —) —. (3.195 ,

Purl€)= 5B | Tt  {ple)p(e)

Ry(€,€' )= —1. (4.2
Therefore, fora<1, the mean density in the thermodynamic (p(e))p(e))

limit, pye(€), does not scale as a powerldfand, especially, Using the definition ofo(€), one sees thaR,(e,e’) differs

is not translational invarianpy, is divergent ae=0. How-  from the two-levelclusterfunction Y,(e,e’) defined in Eq.
ever, as we will show in Sec. V, this is an artifact of the MFT (2.9) of Sec. | by the singular self-correlation,

solution and the exact density is sharply peaked, but finite at

the center. We can say that the system undergoes a “phase

transition” at =1 and the symmetry that is broken is the Vole €)= (p(e)) ( €)) d(e~€’)~Ry(e.€’). 4.2
translational invariance of the problem in the limit- . ) ) )
The correlation functiofiR,(€,€’) can be easily expressed in
2. Squared logarithmic confinement, \éj=A/2 In%(|e]) terms of a functional derivative ofp(e€)) with respect to

V(e) in Eq. (3.3). By using the relation5Q)/ V(€)= p(e),
In order to solve the integral equation for the MFT den- 0 optain®®

sity, it is convenient to represent this potential as a limit of

combinations of the power-law potenti: , Bt &p(e))
V(e)=In2|e|= lim[a 2(|e|*—1)2]. (3.16 pLep
a=0 Within the MFT, it is possible to write down an integral
The MFT density in this case is equation for the two-particle correlation functidhBy tak-

ing the functional derivative/ 6V(e€) in Eq. (3.5 and using
Eq. (4.3, one obtains

R
pur(€) = —5 z

+ o
=7 | den@mmpteneRote il —

=—B 18(e— € )+ B Loul NV (e). (4.4

1/D\® F(E' 7 gl
al2

2\ 2 2« - B0 s important equation is sometimes used to claim and jus-
o ) tify, within the approximation of MFT, the universality of the
whereD satisfies the equation correlations in RMT, or rather their independence of the po-

e W tential V(€). The argument is usually the following. In the
(D> _c (D) } (3.1g '@rgeN limit, one implicitly assumes that, at least in the
a al2 .

2A
- 2 2 region of interest, the average density scalesMkand goes

a
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to a constant{p(€))=pq. In this case, since the two-body s=s(e), in terms of which the density becomes a constant.
interaction is translational invariant, the two-particle correla-The variable that serves this purpose is the integrated density
tion function must be translational invariant as well. In par-of states,
ticular, the variational derivative of the chemical potential,
o U . ¢
yvh|ch is th_e only ter_m that depends_ expllc:ltl_y on_the confin- s( e)zf (p(&))de. 4.7
ing potential and is not translationally invariant, must 0
vanish?® If we now introduce dimensionless variables
s=¢€/A, rescaled by the mean level spacing=p !, one

obtains an equation completely independenV(¢), (p(€))de=(p(s))ds 4.9

By particle conservation,

too where(p(s)) is the average density in the variatse From
,Bf dsR(s—s")In|s'—s"|=—48(s—s’). (4.5 EQs.(4.7) and(4.9), it follows that

(p(s))=1, (s)=1. (4.9
From this one concludes that the limiting correlation func- _ ) . L
tion R,(e— €’) cannot depend on the choice\éfe) and it is The defmmon _of the two-particle correlation function in
universal. Its asymptotic behavior is easily found by solvingth® unfolding variables becomes
Eq. (4.5 by Fourier transformation. The result is of course (p(e)p(el))
the universal WD behavior of the Gaussian ensembles, Ry(s,s')= Ps—ps,_
(p(€5)){p(€g))

1 1 wheree; is the inverse function of(€). Using these defini-
2B (s—s )2 (4.8 tions in Eq.(4.4), the integral equation foR,(s,s’) is*!

1, (4.10
Ry(s—s')~—

This reasoning is crucially based on the assumption that the f+ ds'Ry(s,8")In|eg— eg|=— B 18(s—5").
average density tends to a constant in the thermodynamic —

limit, so that it can be simply rescaled away. But we have (4.11
seen that there are cases in which, if the potential is weak . ~

enough, the density is not at all a constant inhe o limit The MFT equation foKp(s)) reads

and, in fact, it decreases steeply with The system is not +oo
translationally invariant and we cannot carry out the same f ds'(p(s’))Inles—eg|=V(eg) —u.  (4.12
simple rescaling as before. Thus, the proof of the universality -

of the correlations is not applicable, and one may expeckquations4.11) and(4.12 together mean tha@R,(s,s’) is
R,(e,€’) to be different from the WD form. It is often said the solving kernel of

that in this case, MFT breaks down and its equations become
invalid. This statement is not completely correct. The MFT

still gives reasonable and, in fact, accurate results for the
particle density in the bulk of the spectru@s the compari- )
son with numerical simulations will showTherefore, this thatis,
theory should work also for the correlations, when properly o
applied. Of course, we can no longer disregard the presence ‘/I(S):f dsBR,(s,s")e(s'). (4.14
of a nonconstant density, which is responsible for the devia- —

tions from universality. Below we suggest a simple way Outrhe 4qditive constant in E¢4.13 has to be chosen such that
of this problem through the notion sbectrum unfolding = dsy(s) =0, since the variations ifp(s)) must occur at

constantN. 3
B. Spectrum unfolding. Modified MFT equation Equation(4.1)) is the integral equation for the correlation
for weak confinement function Ry(s,s’) in case ofweak confinementrom this
On comparing the correlation functions of different en- equation We can see that, in C;ontrast W'th. [-24:14_1) .Va“d for
ﬁgong confinement, noR,(s,s’) depends implicitly on the

sembles, it is necessary to choose energy units such that tor| inal confining potential through the unfolding variable
mean level spacing is equal to one. This is trivial when the 9 gp 9 9

average density is a constant since in that case\=p~ 1 s(e). Thus it will not, in general, be universal.
and the convenient variable $s= e/ A= ep. The presence of

a nonuniform density in the thermodynamic limit makes this
linear rescaling impossible, even locally if the density is a The solving kernel of the integral equati¢h13 must be
rapidly varying function of the energy, as in the case of thefound separately for each unfolding functie(s), which in
logarithmic confinement. This is a common situation in theturn depends on the confining potential. We are interested in
study of complex energy spectra, where one needs to subtrattte correlations in the bulk of the spectrum, where MFT
off the unwanted effects of a nonconstant average density, iworks and, thus, we can use the MFT expression for the
order to analyze the fluctuations around the average densitjensity in order to obtain the unfolding function.

itself. This difficulty is handled by the so-called “unfolding We first consider the case of the power-law potential with
procedure,” namely, the introduction of the variable 0<a<1, which is the simplest case of weak confinement

f+md51,//(s’)ln| es—€g|=¢(s)+const, (4.13

C. Solution of the MFT integral equation
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where, in principle, nonclassical correlations can arise. Usingletely classical statistics, even when the translational invari-
Eqgs(3.15 and(4.7), the unfolding function in the bulk of the ance is broken in the thermodynamic limit and the unfolding

spectrum in the larg®l limit is

lél 1
S(é)z)\ Sgde)f df,mzkldasgr(é'),

0

N A ) aT 41
"2 (419
or

e(s)=\"Y|s|Yesgn(s). (4.1
In order to simplify the derivation, we choose
a=1/(2k+1), k=1,2,.... Inthis case,

g (2k+1)
6(S)=(X) (4.17)

The integral equation Ed4.13 is now

+ oo
f dsy(s)In|sZk+ D — g2kt D) = (5) + const.

(4.18

We change variables?**D=x s, =x(>*1) and we define

0= 5 (XD, (419
e(X)=(sy), (4.20
EQZ(X:X,) = ﬁ(xx,)_Zk/Qk*—l)Rz(sx asx’),
(4.21
in terms of which Eqs(4.13 and(4.14 become
Jf:dx’ P(x)In|x—x"|= p(x), (4.22
J00= [ BR.30¢), (423

and the condition orfb(x) is now [*Z dx;{/(x)zo. This is

procedure is necessary.

We now consider the case of the double logarithmic po-
tential. The unfolding function in the bulk of the spectrum,
le|>1 is now

A [l 1 A
s(e)=Esgde)f0 de’?=iln|elsgr(e), (4.295

or

e(s)=e?sl"hsgr(s)~2 sinl‘(%s). (4.26)

We plug this function into Eq4.13 and we perform the
change of variable, sinhgA)=x, with the corresponding re-
definition of #, ¢, andR,. Following the same procedure
used for the power-law potential, we arrive at

2s 2s’
Ccos X Ccos T

(s—s’) s+s’

coslHt -

4.27

Again, the correlation function is not translational invariant.
If s ands’ are both in the bulk|s’|,|s|>1 and have the
same sign, we obtain the translational invariant expression,

1 1
- 202
AR sinhz(

Romny(s,s")= Y

A

) , (4.28

where the subscriptn) stands for “normal” part. If
|s—s’|>A, the argument of sinh cannot be expanded And
does not scale away. Thus the correlations for the double
logarithmic potential are no longer universal and in contrast
with the power-law behavior of the WD class, they decrease
exponentially in agreement with the exact solution for
B=2 by Muttalib et al?®

However, there is one more great surprise, pointed out in

exactly the familiar case of pure logarithmic interaction with Ref. 31 for =2, which is the reappearance of strong corre-

strong confinement considered abdeee Eq.(4.5]. The
solution for the solving kerndR,(x,x") is the WD universal

correlation given in Eq(4.6). Using the relation between
R,(x,x") andR,(x,x") and going back to the original vari-

ables,s ands’, we obtain

(2k+1)? (sg')%
7T2ﬁ (52k+1_s/2k+1)2'

Ry(s,8')= (4.29

lations ats’ =~ —s. In fact, whens ands’ are in the bulk but

have different signs’ = —s+As, we obtain
) 1 1
Ra@a(s,s")=— Py sro (4.29
cos A

where the subscripta) stands for “anomalous” part. This

This correlation function is not translational invariant. How- anomalous part of the correlation function breaks dramati-

ever, we restrict ourselves to the case in which b®#nd
s’ are in the bulk and\s=|s—s’|<s. In this limit, we can
expand the previous expression in powerAsfs. The cor-

cally the translational invariance. Its remarkable property is a
narrow correlation hole &'~ —s with a depth, controlled
by A, that does not decrease whis-s’|=2|s|—x . No-

relation becomes translationally invariant, but what is evertice also that the two regions, wher@,y(s,s’) and

more important is that we get back exactly E416), namely,

Ry(a)(s,s") are nonzero, are separated by a very large dis-

the universal WD correlation function. Thus we concludetance whers ands’ are in the bulk of the spectrum andis
that, at the MFT level, the power-law ensemble has comiarge.
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In Ref. 31, a simplified application of the method of the However, no matter how this is realized in practice, what is
orthogonal polynomials, valid foy=e~ "’A<1, was used to important is first the fact that the/ (N) invariant RME with

derive the two-level cluster function for the cg8e 2, yield-  Soft confinement manages to develop the exponentially de-
ing the result: caying two-level correlation function of E¢4.31) in an in-

finitely large energy region in the bulk of the spectrum,

, 1 ) o where the anomalous correlations are irrelevant. Second, the
Ya(8,8")= —zpalsinm(s—s')] normal part of correlation function is exactly equal to the
expression obtained for the RME.1), where the symmetry
2s 2s’ is explicitly broken. This occurrence has been interpreted in
COSN 1| COSN A~ Ref. 31 as a signal of the spontaneous breakdown of the
- . (4.30 U(N) invariance in the case of soft confinement, with the
) s—s s+s :
smhz(—) cosﬁ(—) parametery playing the role of the order parameter.
A A The physical interpretation of the anomalous correlations
The normal part of,(s,s'), ats’'=~—sin terms of Coulqmb_plasma _is very simple h_‘
one looks at how the logarithmic pairwise interaction is
1 [sinm(s—s')]? transformed in the unfolded variables,
Yom(s,8')= | (4.31)
m A2 Sink(S—S f(s,s')= —In|sinh(2s/A) —sinh(2s'/A)[.  (4.36)
A

f(s,s')=—1In

=—In

In the unfolded variables, the interaction is no longer trans-
is identical to the exact solution of Muttalit al,?® for the  lational invariant. We can try to rewrite it in a form that looks
same small values af, and it is also identical to the exact more translationally invariant in the following way:
solution of Mosheet al,?* for the case of a RME with a , ,
symmetry breaking term. 5 sink(s_s )cos}‘( sts )
Here, using the MFT theory, we have generalized this A A
result to anyB. As in all other MFT calculations, only the , ,
asymptotic form of theR, is obtainable within the MFT 2 sin!‘(ﬁ) ~In cosr{i_s) _
treatment. In particular, the oscillatory function that vanishes A A
as|s—s’|—0, and thus gives rise to a residual level repul- (.37
sion, is totally out of reach. In its place we haveslivhich
is the average of the oscillations. Thus, MFT and the method We see that the interaction splits into two terms: the first
of orthogonal polynomialgwhich is exack are completely is an ordinary, translationally invariant, repulsion between
consistent even in the case of weak confinement, where dewo particles located at’ ands; the second, however, rep-
viations from WD occur. resents the interaction between a particle at pos#iowith
The appearance of anomalous correlations’at—s is  theimage chargeat —s of a particle at positiors. In other
the result of the system trying to develop Poissonian-likewords, a particle at positios will repel particles around it.
correlations ats’~s, while, at the same time, complying But its image, with respect to the origin, will also repel par-
with the U(N) invariance, which forces a normalization sum ticles around the positiors. Notice that the image charge
rule onR, to be satisfied even in the lardelimit. 3 The sum  term depends oA—it increases wheA decreases—but it is

rule reads less singular than the direct term, because of the functional
. dependence on cosh(s').
* PNt So far, we have always restricted ourselves to bulk prop-
le Re(s,s)ds’=0, (4.32 erties of the correlations. As we will show in more detail in
the next section, there are some interesting effects in the
or, in terms ofYy(s,s’), correlation function in the center of the spectrum. There,
even the power-law potential fak<<1 displays deviations
+ o0 . .
J Y,(s,s')ds' =1, (4.33 from the universal WD behavior.

and it must be satisfied in the case dféN) invariant RME, V- MONTE CARLO SIMULATIONS

because of the long-range nature of the universal logarithmic The statistical properties of the one-dimensional classical
interaction always present in such ensemBleBhe normal  syster® in thermodynamical equilibrium, the probability
part alone ofY,(s,s’), given in Eq.(4.31), does not satisfy distribution of which is given by Eq€2.39 and(2.3b), can

Eq. (4.32. But the sum rule deficiency be conveniently studied by carrying out Monte CafiC)
simulations. The MC method is useful, because it is not re-
+ . .
4 stricted to a particular value @8, as for the method of or-
7=1 ffoo Yam(9)ds, (4.39 thogonal polynomials, and it is very accurate in all the re-
. ] gions of the spectrum, in contrast with MFT, which is good
is taken care of by the anomalous correlatiths: only in the bulk. It also allows the evaluation of important
. statistical quantities like the level spacing distribution func-
f Yo (S)ds= 7. (4.35 tion (L_SDF) gnd the number variance in a _str_alghtforward
—w way. Finally, it can be used to study level statistics, where the
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“particle” interaction is more general than the simple loga- 0.2

rithmic interaction considered in RMT. These more compli-

cated interactions have been shown to play an important role e B=]
in some disordered systerts. [ p=2

—— MFT for N=101

The nature of MC simulations is best illustrated with an
example. Suppose that we want to calculate the mean par-
ticle densityp(€) as a function of the positioa. According
to Eq.(2.5), we need to perform a multidimensional integral,
which up to an overall normalization is equivalent to a “ther-
mal” average over an ensemble of particle configurations.
The MC method replaces this ensemble average with a
“time” average, but the time evolution is determined by
equations that are artificial and chosen for convenience. To

pe)

calculatep(€), one partitions the real axis into bins with .50 0 50
boundariese,, determined by €
e,=nNAe, N=+123..., (5.1) FIG. 1. Density of states for the logarithmic potential for

A=0.5. The MC results foB=1,2 are plotted in a small region

whereAe is the width of the bins. At the end of each time around the origire=0 with the MFT density, which corresponds to
step(to be defined beloy we obtain an updated configura- B== ar_ld querges ae=0. For g=1,2, a’?d A(not shown, the
tion{e}, i=1,... N, and we add one to a bin if a particle density is finite ate=0. All thg curves rapidly collapse on top of
in this configuration lies in it. As “time” progresses, the each other away from the origin.
number of particles in a bin will become proportional to the
mean density at the position where the bin is centered. Fag#xactly knowrr. For these ensembles the MC simulations
the evolution density, we have taken a simple Metropoligeproduce the known result very accurately. For example, in
algorithm, which works in the following way. At each time the calculation ofP(o), the method is able to detect the
step or sweep, we scan through the particles and attempt fanall deviation that there is between the exact result and the
move each one. Actually, in each sweep, we pitkimes  Wigner surmise. We now proceed to discuss in detail the
one particle at random in the system, so it is possible that ifiesults for the different quantities of interest for the case of
one particular sweep, one particle is chosen more than ond¥Wwer-law and double logarithmic ensemble.
and another is not touched. The moving attempt involves
picking at random any position between the particle that pro-
ceeds and the one that follows the particle that we are trying
to move and taking this position as the new attempted posi- The MC evaluation of the average density of stgiés)
tion. The attempted move is chosen in this particular wayis carried out, as explained in the example above. In Fig. 1,
simply to optimize the convergence rate of the algorithm. Itwe plot this quantity for the logarithmic potential, for
has the important property that if we start with an orderA=0.5 andB=1,2. The case of weak power-law potential,
sequence of particles; <e,< ... €y, the sequence remains with 0<a<1, is qualitatively the sam&. The agreement
ordered in the time evolution. To decide whether or not tobetween the MC result and the MF expressigj given in
accept the move, we calculate the chaddeto the system’'s  Eq. (3.19 is very good, except around the origin, where in
energy that would occur if the particle were moved to thecontrast to MFT, the simulations give a sharply picked, but
new position. IfAE is negative the move is accepted, and thefinite density ate=0. For =2, the MC result coincides
particle is given the new position. IAE is positive, the with the value obtained by the method of orthogonal
move is accepted conditionally. One picks a random numbepolynomials?* The first hundred of these for the power-law
between 0 and 1 and accepts the move if this number ipotential can be easily generated numeriéaland the den-
smaller than exp{ BAE). Before measuring any quantity, the sity at e=0 obtained from them converges very fast. This
system must reach equilibrium and this is obtained by a cerfast N independence of the center of the spectrum is also
tain number of “warming-up” sweeps that reach a “typi- seen very well with the simulations and it is an important
cally” sampled configuration. property of the particle density for weak confinement. We
We have carried out simulations over systems with up taefer to it as the “incompressibility” of the core of the
200 particles. We noticed that the simulations are in all caseparticle-density distribution. In contrast to the case of strong
very stable even for smallét, and, therefore, we have typi- confinementV/(€)~|e|*,a=1, where the density at the cen-
cally worked with systems dfi= 100 particles. Equilibration ter of the spectrum scales witf 1, for <1 the confining
is usually reached very fast and we have typically uset 10potential is too weak to “compress” the particle in the core
sweeps to warm up the system. The averages are taken ow@gion near the origin. After the initial formation of the sharp
10° sweeps and the statistics that we are able to obtain ateut finite peak ak=0 (which happens foN<100), on add-
usually excellent. ing more particles to the system, these always go to the ends
To make sure that the method works and is able to givef the distribution instead of spreading homogeneously
numerically accurate results we have first studied the densityhroughout the spectrum. The particle density in the core of
two-particle correlation function, spacing distribution, andthe spectrum is almost independeniNyfbut depends on the
particle variance of the three Gaussian ensembles that aieverse temperaturg. In the bulk of the spectrum, the den-

A. The density of states
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sity decreases like &~ in the N—o limit. Therefore,
translational invariance is broken in the thermodynamic 02 |
limit, in agreement with the MFT.

B. The two-level correlation function

The MC evaluation of the two-point correlation function 5
Ry(s,s’), as for any other correlation function, faces the &
complication of the breakdown of translational invariance. T
Therefore, we need to carry out a numerical unfolding of the
spectrum in order to compare with the classical statistics. We
have considered three different unfolding procedures that can
be used in different circumstances. In the simplest case, we

are interested in thieulk correlations. Therefore, the simplest 1.2 . . : ‘ .

unfolding scheme consists in carrying out, for each MC con- 0.0 0.5 10 155 2.0 25 3.0
figuration generated at “time’t, {¢}', i=1,... N, the

mapping FIG. 2. The MC two-level correlation functidR,(s'=0,) vss

le| for the power-law potential, witlk=0.2, B=2. The solid line is
{e}t—{s}!, si:sgr(e)f dep(€) e - (5.2 the result of the GUERy(r) = —[sin(zr)/mr]% (We have omitted
0 the ¢ function at the origin.

The unfolded configurations;}' generated in this way are
then used to measure the correlations, which will be autostandard deviation frongs) turns out to be small once the
matically in the right units. system has reached equilibrium.

The second method, which turns out to be particularly For the power-law potential, the Monte Carlo simulations
useful for the logarithmic potential, consists in performingshow that the two-level correlation functid®y(s,s’) is per-
the change of variable—s=s(¢) directly in the joint prob-  fectly equal to the WD expression for amywhen the refer-

ability density function, ence particle is in the bulk of the spectrum, in agreement
. . with the MFT and orthogonal polynomial results. However,
A{e})—A{si})xexd — B#Z({si}) ], (5.3 this universality is broken around the origin. In Fig. 2, we

plot R,(0,5) for «=0.2 andB=2 (the § function is not
=, _ B included. For smalls, R,(0,s) does not follow the classical
(s = Iz] Ines 651|+zi Vies) universal behavios?, but rather starts out like?’*. Thus,
we have a sort of “super-Wigner” behavior, with stronger
1 level repulsion at short separation the smadids. Since the
- EZ exp{In 1/p(es) 1} (54 cluster function must satisfy the normalization sum rule, this

implies a faster decay oR,(0,5) at larges. Using the

Notice that the one-body confining potential is modified by anethod of orthogonal polynomials, one can show that this
B-dependent term coming from the Jacobian of the transfordeCay goes like 1+ L) 44

mation. We now discuss the bulk properties Bf(s,s’) for the

Both these two unfolding schemes make use of the MFY,qaihmic potential. As shown in Fig. 3, the MC simula-

particle density and, therefore, can only be used to study,ng confirm fully the surprising result of the bulk break-
properties in the bulk. In order to study the correlation func-4oun of the translational invariance Ry(s,s') and the ap-
tion around the origin, we need a more precise expression fcifearance of the “ghost’ correlation holé s —s' The
p(e). Therefore, we carry out the following procedure. The gference particle was let free to move in the positive part of

unfolded two-level correlation function &=0 can be ex- 4o spectrum aroungs) =24 (in unfolded coordinatds Be-
pressed as sides the usual correlation hole around this position, another
"N — one appears symmetrically with respectste 0, as if there
Ra(05)=Rp(06s). 6.5 was an image of the reference particle, the “ghost,” located
The functione(s) is now obtained by numerically inverting around(s)=—24. The contribution of the anomalous part
s(e)=[5{p(e'))de’, with the density(p(€)) evaluated di- increases upon decreasiAg For values of the parametér
rectly by the MC simulations. not too small, both parts of the cluster functions obtained
Once we have taken care of the unfolding, the evaluatiomumerically are in good agreement with the analytical results
of the two-level correlation functioR,(s,s’) by MC is very  given in Egs.(4.28 and(4.29, as seen in Fig. 4, where the
simple: we fix a reference particle stand then we compute normal part ofR, is plotted. However, as one can also see
the “conditional” particle densityp(s’)|s of all the remain-  from the same figure, already fér=0.2 the MC result for
ing particles, with respect to the reference point, using dhe normal part starts to deviate from the analytical formula,
partition in bins as explained befofeln studying bulk prop-  which in fact becomes invalid foA<1/7?~0.1. In this re-
erties, the reference particle can be let free to move, since igime, the MC simulations show that the cluster function in-
the unfolded coordinates the density is constant. In this cassfead of decaying exponentially at very smalbtarts out
s in Ry(s,s’) must be interpreted a&s). Because of the more and more flat and in the limit of very smal| it con-
particular way of choosing the trial moves adopted here, theerges to a box or “well” of width 1/2 and depth—(1). A



3724 C. M. CANALI
0.0 | =,
-0.2
0 .
)
< 057
-0.8 .
-0.3 ‘ : : .
. 27 25 23 21¢
-1.0 - : : ~ .
60  -40 20 0 20 40 60

FIG. 3. MC result for the two-level correlation function for the
logarithmic confinement, Eq2.12, showing the existence of a
“ghost” hole ats’=—s. The simulations are performed f@g=2
andA=0.5, withN=101 particles. The reference particle is mobile

around s~24.4. The solid line in the inset corresponds to Eg.

(4.29.

C. The level spacing distribution function

Let us consider a sequence of successive levels
€1<e,=<... and letS;,S,,... be their distance apart,
S=¢€ .1~ €. The average value df is the mean level
spacingA. We suppose for the moment that the average
density and, thereforéy = p 1= const. We further define the
relative spacingso;=S;/A. The nearest neighbor LSDF,

P(0o), is defined by the condition thd&(o)ds is the prob-

ability that any o; will have a value betweenr and
o+do.

If the energy levels are completely uncorrelated, one can
immediately prove that the LSDF is the Poisson distribution,

Pp(o)=exp(— o). (5.6)

In contrast, for a large class of chaotic or disorder systems
where the energy levels are correlat®{o) is very well
described by the so-called Wigner surn8e,

mTT o
PW(O')= TGX% - ZO'Z).

The Wigner surmise vanishes at short separations, show-
ing the phenomenon of level repulsion, typical, for example,
for extended wave functions of a disordered conductor. The

(5.7

similar behavior occurs for the anomalous part as wellPoisson distribution, in contrast, allows level degeneracy, as

Therefore, in theA—0 limit, the cluster function is com-
posed of two rectangular wells centeredsatnd —s. This

in the case of an Anderson insulator, where the wave func-
tions are localized and do not overlap. Notice tRgi(o)

result can also be obtained from the exact solution by Mutfalls down faster at large- thanP(o). This is again due to

talib et al,?® plotting their general expression f&,, which
remains valid in the regime of very small. We conclude
that the correlation functioR(s,s’) of the double logarith-

level repulsion which, in a finite energy window, prevents
the appearance of large energy gaps with no levels in them.
For the Gaussian ensembles one can derive exact expres-

._sions for P(o), which turn out to be very close but not

mic ensemble displays a crossover from WD toward a PoiSyantical to the Wigner surmiseAll the RME's with loga-

sonic behavior forintermediate A i.e., 1/?<A<1, but
never really becomes exactly equal 8s—s’) as in the
Poisson distribution.

0.0 /AA r;:;’;““ = : wdd, 'i“v“t""t:":‘fz" ND
/f /'
-0.2 /,:" /"
/!A "
» 0.4 I
2 ivd/ A=0.5 Exact
= VA A=0.2 Exact
© 06f [+ GUE
I * A=0.5 MC
ie s A=
os| | A=0.2MC
/ //
/,:'u
-1.0 - ' ' :
0.0 04 0.8 1.2 1.6 2.0
Is-s’l

FIG. 4. MC results for the normal part &, (s,s") B=2,

plotted together with the corresponding exact expressions, Eg.
(4.28, and with the GUE curve as a comparison. Notice the good

agreement at smalé—s’| between numerical and exact results for
A=0.5, which becomes worse foh<0.2. The fluctuations at
|s—s’|>1, more visible forA=0.2, are due to finite-size fluctua-

rithmic interaction and strong confinement belong to the GE
(or WD) universality class and thus thd®(o) is also very
close to the Wigner surmise.

The analytical determination of the LSDF is not straight-
forward. ForB3=2, the functionP(o) can be expressed in
terms of a determinant of the two-level cluster function,
which, in general, must be evaluated numeric&lilterna-
tively, one can use MF¥84%47but this method has not been
extended yet to the potentié2.12. On the other hand, the
LSDF is easily calculated by MC. In terms of the plasma
model,P (o) is defined, once the system has been unfolded,
as the probability density of finding the nearest adjacent par-
ticle at a distances from a given reference particle. The
LSDF obviously coincides with the two-level correlation for
very smallo.

From the results of the two-level correlation function, we
expect the LSDF for the power-law potential to be identical
to the Wigner surmise in the bulk, with possible deviations at
the origin. The MC simulations confirm fully these expecta-
tions. To calculate the unfolded spacing around the origin,
we fix a particle ate=0 and we perform the unfolding by
computing

P(e)
(P()] - o)

where the functione(o) is again obtained by numerically
inverting o (€)= f5(p(e’))de’. The result is shown in Fig.

P(o)= , (5.9

tions of the exact density, which the unfolding procedure via theS, where we plot the LSDF fox=0.2 andB=2. The clas-
MFT density cannot cure. These fluctuations are much smaller fosical spacing for the Gaussian orthogonal ensenBIOE)

B=1.

(a=2) is also plotted. The figure clearly shows the devia-
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of the distribution shifts fromr~1 to smaller values=A.

For large separations, the decay is also slower than the GOE
result. In fact, as we show in the inset, plottind®(o) vs
o>1, we can fit rather well the curves with straight lines,

InP(o)~—a(A,B)0, (5.9

where the constarg(A,8) >1 decreases with increasirg
Notice that all curves cross at the same poingrat2. Simi-

lar features and deviations from the Gaussian ensemble are
obtained also from the other two symmetries, unitary and
symplectic.

The crossover toward the Poisson distribution stops, how-
ever, at aroundA~0.2. We have shown that fgx<0.2 the
correlation function, instead of becoming closer and closer to
a ¢ function whenA is further decreased, turns around and

o>1,

FIG. 5. MC result for the LSDF in the middle of the spectrum of for very smallA it approaches instead a square well of width

the power-law potential wittw=0.2 andg=2. For 0—0, P(0)

1/2. Something similar happens for the LSDF. We can al-

vanishes likeo?*=¢'°. The exact GUE distribution is also plot- ready see in Fig. 6 that foh=0.1 the initial slope of the

ted.

distribution has stopped increasing, and the height of the
peak is getting close to one. For yet smaller valueA @fot

tions of P(o) from the classical result. In particular, for shown in the picturg the initial slope startslecreasingand
small o, the LSDF does not follow the universal behavior the LSDF, instead of approaching the Poisson distribution,
o” of the Wigner surmise, but starts out liké’*. This isthe  will tend eventually to a single narrow peak of heightL,
same “super-Wigner” behavior already found for the two- centered atr~1.
point correlation function.

In Fig. 6, we show théulk LSDF for the double logarith-

mic potential in the case of the orthogonal ensemble. We plot i ) .
P(o) for several values of the paramet&r together with So far, we have considered the correlation functions that

the distribution of the Gaussian orthogonal ensemble anf'oPe essentially the local fluctuations of a small number
Poisson distribution for comparison. We see that, for thos@®=1 of energy Igvels. 2We now turn to the variance
values ofA<1 for which the two-particle correlation func- Var(n))={(n—(n))*)=(n%)—(n)* of the number of levels
tion displayed a deviation from the classical GOE behaviorin @n energy window that contains<(n)<N on the aver-
we have a corresponding deviation from the classical LSDF@€- The number variance is a statistical quantity that pro-
toward a more Poisson-like behavid(o) still starts out vides a quantitative measure of the long-range rigidity of the

linearly at smalle, but the initial slope increases upon de- €N€rgy spectrum.

creasingA, as a result of a smaller level repulsion. The peak For the Poisson distribution, the levels are uncorrelated
and there are large level-number fluctuations, leading to a

linear variance,

D. The number variance

10 1

\ o, var((n)) =(n). (5.10
\ 4 . N T . . .
\_ £.--f;g 10 w%?;:\- --------------- On the other hand, the level correlations in the WD statistics
0.8 1 x\ ) ;:-\!_ make the spectrum more rigid and the number variance
_A: . o) DQ{;*@:‘\\ grows onlylogarithmically,
. , -0 s -... ~e 4
Bost N A\ Peer N 2
o : w0 \JO N2
8 N e ‘ | B var,((n))= WT,BIn<n>+CB+ O(1Kn)), (5.1
L Poisson™ A':.’ooo 30 35 40 45 50
02t o2354 \“*-:}‘20_0 where C; is a constant of order 1, which depends on the
=0, )
" A=0.2 - symmetry.
sAR L g The MC results for the power-law confinement show that
oo ® . ., P Eq. (5.11) is perfectly satisfied, for every, in the bulk,

0.0 05 10

FIG. 6. MC results for the bulk LSDF of the logarithmic poten-
tial with B=1 and different values o showing a crossover be-

15 20 25 30 35

(o}

namely, when the energy windows do not contain the origin
with its nonuniversal correlations. On the other end when the
energy windows are centered at the origin, the “super-
Wigner” correlations present at=0 for o<1l manifest

tween the GOE and the Poisson distributions, also plotted. Fofhemselves making the constadf in the number variance

A<0.2, the LSDF stops approaching the Poisson function and tend@ dependent. As we show in Fig. 7, fgr=1, C, decreases
to a singles function peak atr~1. Shown in the inset is the large With @, whena <1, because there is more level repulsion in

o behavior of P(o). Notice the logarithmic scale for the axis.

the area of the origin and, therefore, more level rigidity in the

The two dashed straight lines are fitting functions of the formoverall spectrum. Fora=1, the universal value of the

exp(—a(A,B) o).

Gaussian ensemblg;~0.4420 is recovered. The depen-
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FIG. 7. The MC level-number variance ¢5s) for the power-law FIG. 8. The relative variance vdrf))/(n) vs (n) for the loga-

potential, for3=1 and different values ok<2. The dashed curve fithmic potential for different values ok and 5. The energy win-

is the GOE result given in Eq5.11). The energy windows contain- dows are centered in the bulk of the spectrum and the variance is
ing (N) particles are centered at the origir- 0. The nonuniversal linear with (n). The constant straight lines are the slopes of the
“super-Wigner” behavior of the correlations at=0 is responsible linear term of the exact solution of Ref. 29, f@=2 and corre-

for the a dependence of the constant term in the variance, which i$PondingA.

otherwise equal to the one of GOE.
VI. DISCUSSION AND CONNECTION WITH THE

CRITICAL LEVEL STATISTICS

dence ofCg is, however, the only deviation from universality
OF THE ANDERSON MODEL

in the number variance, the logarithmic dependence being

unchanged for the power-law confinement. Let us first summarize the main results of our analysis of

We now come to the case of the logarithmic potential. Weihe generalized RMT with soft confinement. We have seen
have seen that the presence of the “ghost” correlations breajat ~ for the very weak logarithmic  potential,

translational invariance in the two-point correlation function.\/(¢) ~ A In?|¢, the local level fluctuations in the bulk of the

It was shown in Ref. 31 that, due to such a breakdown Ofspectrum display a crossover from the WD to a more
translational invariance, the number variance for the logapgisson-like behavior, when the parametes decreased. In
r|§hm|c cpnfmement depgnds on the position Of the energyarticular, the two-level correlation function, in the bulk of
window in a very essential way. If the energy window doesine spectrum far from the origin, decays exponentially at
not contain the origin, then the effect of the ghost peak is Nofarge distances. The spacing distribution function still van-
felt and the system is Poisson-like, with translationally in-ijshes like s? at short separation, but the initial slope is
variant correlationdin the energy range considejegiven  gieeper, implying less level repulsion. The tail of the distri-
by.Eq. (4.28). In Fh|s case, the number variance is alsoption decays like exp-a(A, B) o) with a(A, B)>1, inter-
Poisson-like and increasdmearly, as one expects in the mediate between the WD surmise and the Poisson function.

presence of exponentially decaying correlations. The coeffithg |evel-number variance, when calculated within energy
cient of the linear termy is less than 1, and it is given by Eq.

(4.34). Here, 77 is nonzero, because the normal part alone of

the correlation function fails to satisfy the normalization sum 04 o Bol. A0S

rule. It increases upon decreasiAg because the “spectral o E;Zj A0S

weight” of the normal part of the cluster functio@®.31) > =4, A=0.5

decreases. However, if the energy windows are symmetric 03

with respect to the origin, the ghost correlations become ef- H0B06000E0000EOBEEOEEAEOHA0AEEOEE00TBE000000
fective and their contribution allows the sum rule to be sat- oz

var(<n>)

isfied. Therefore, the coefficient of linear temnin the vari-
ance vanishes in this case.

Indeed, the Monte Carlo simulations show a dramatic dif-
ference in the level-number variance in these two cases. In 01 ¢
Fig. 8, we show the number variance for an energy window
centered at a point in the bulk, excluding the origin. The
variance grows linearly and the coefficient of the linear term 0.0 0 2'0 20 50 8'0 100
is in good agreement with Eq4.34 and with the result <>
obtained for the exactly soluble models by Blecleiral ?°
On the other hand, Fig. 9 shows the variance calculated for |G, 9. The MC variance vé) for the logarithmic potential for
symmetric energy windows, containing the origin. The linearthe three symmetries anéi=0.5. The energy windows are now
term is absent and the variancedsnstantfor all integers  centered at the origin. Since the sum rule @432 is satisfied, the
(n)>1. Thus, despite the smaller level repulsion, the overallinear term in the variancésee Fig. 8 vanishes and the system
“level” rigidity is even higher than for the classical RMT.  becomes even more rigid than the GE.

QOGGOOOGOOOOOOOGOVOVOGOOGOGOOROBOGOGIOOOOOOOOLOOOE
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windows in the bulk of the spectrum that exclude the origin,mation about the localization of the wave functions, in con-
is also Poissonian, increasing linearly with the average nuntrast to what happens to the Hamiltonian matrix. Here, we
ber of levels(n). We saw, however, that the Poisson limit have assumed that @(N) invariant RMT for the Hamil-
cannot be reached fully within this ensemble. The nonunivertonian matrix can be constructed from the confining potential
sal behavior of the RME with logarithmic confining potential derived from the corresponding transfer matrix. The hope is
has been attributed to a spontaneous breaking otJtfi¢) that such a RMT will generate the correct local energy-level
invariance. For steeper confining potential§{e) =|€|%, no  statistics, despite the average energy density itself not being
deviation from the WD statistics occurs in the bulk of the well represente@ This procedure is probably too naive, but
spectrum, the only small deviations from universality occur-it is clearly the simplest and we will discuss its implications.
ring at the centet’ The conjecture of the existence of universal statistical
The question that we now want to address is as followsproperties at the metal-insulator transition was put forward
does the nonclassicdhamely, non-WD behavior of the by Shklovskii et al.'® on the basis of numerical studies of
RME with double logarithmic confinement have anything tothe spacing distribution functiofLSDF), which turned out
do with the universal energy-level statistics of the Andersorto be scale invariant at the critical point. In a recent work,
model at the critical point? The first point that needs addressKravtsovet al**?have carried out an analytical study of the
ing, before any comparison of the different statistical prop-critical statistics of the Anderson model. By using the ana-
erties is attempted, is the way in which nonuniversalitylytical properties of the diffusion propagator and certain scal-
comes about in the invariant RMT with weak confinement.ing relations valid at the mobility edge, they have proved that
We have seen that the essential ingredient for obtaining the two-level correlation function has the following asymp-
deviation from the WD statistics is the strong energy depentotic behavior:
dence of the averaged level density: even inhe oo limit,

{p(€)) is a rapidly varying function ot everywhere in the R(s,s")=CB !s—s'|7?"?, [s—s'|>1, (6.29
spectrum. In fact, one cannot even define a condtaal 71
density, since the relative variation g§(e)) over an energy y=1-(vd)"°<1, (6.2b

range equal to the mean level spacing is of order 1. This is gfqec is a positive constant, whilg is a universal critical

odds with the weII-kno_wn result for th? density of states Inexponent related to the critical exponenbf the correlation
the Anderson model: in that casg(e) is constant over a length ¢

large energy region arou_nd _the center, and,_ moreover, it _is @ However, the level-number variance at the critical point
noncritical quantity, that is, it does not exhibit any drastic contains two term8&-51

change at the critical point. One can reply to this serious '

objection by recalling the sim?larly well-known ch'g that var((n)) = n(n)+b(n)?, (6.3
quite often complex systems with differegiobal statistical

propertiessuch as the density of levélsave the samical ~ wheren<1 andb are some universal positive constants. The
level fluctuationd* and vice versa. The most famous examplepower-law term originates directly from the asymptotic
is the GE itself: its semicircle law for the density of states ispower-law tail in the critical two-level correlator and, thus,
certainly not obeyed by any of the spectra of the heavy nuteflects the critical dynamics. But there is alsolimear
clei or other complex systems; yet, its correlations are veryerm,°~>" which had been already predicted by Altshuler
universal and describe accurately the local statistical propegt al>* Formally the origin of this term is again due to the
ties of these systems. Something of this sort might happen isiolation of the sum rule(4.34), by the critical two-level
our case. In this respect, the existence of another ensembg@rrelation functiorf?~>* The physical meaning of this term
[namely the broken symmetry model of Ed.1)], where the is not yet understood. Its existence, however, implies that the
level density is constant in the thermodynamic limit and ney-dominant term in the variance at the critical point is still
ertheless the local level correlations are the same as the RMBOiISsonian, albeit with coefficient less than 1. Notice that the
with weak confinement, is of great importance. Thus, ther&knowledge of the two-level correlation function is not suffi-
exist at least two RME’s, having very different global statis- cient to develop a complete statistical description of the en-
tics, the local statistics of which belong to the same univerergy level at the transition. For example, the LSDF cannot be
sality class. We also must emphasize again that the asymipund without further statistical assumptions. By mapping
totic logarithmic behavior for the confining potential of the the critical energy levels into a plasma model @ssuming
invariant RME has been suggested by studies on transféhe existence of a particular pairwise interactidmne can
matrix models of disordered conductors through the maxiuse the analytical result of E¢6.2a for the two-level cor-
mum entropy principlé>3233In the transfer matrix formal- relation function to derive explicitly the effective repulsive
ism, one can express the conductagcia terms of the ei- interaction among the levef8.Once the resulting interaction
genvalues; of the matrixX=TT'+(TT" "1-2I, whereT  is known, the asymptotic form of the LSDF can be evalu-

is the transfer matrix ant the unit matrix ated, obtaining the resft

N P(o)~exp(—h,a?7?), (6.4)

1
ATy 6.

9= where h, is a positive constant. Despite some numerical
simulations that seem to support this findithgit see below
Localization appears in the presence of exponentially largéhis approach has the serious drawback that it gives rise only
eigenvalues; . Therefore, a simple maximum entropy prin- to the second term of E¢6.3) for the level-number variance,

ciple can provide, through the average dengifx), infor-  the linear term being absent and totally unexplained.



53

3728 C. M. CANALI

. , , A.~0.4 identifies, among all the possible members of the
)‘&%‘x 10" ' ' family of RME with logarithmic confinement, the ensemble
N : which has the closest LSDF to the critical statistics.
o6+ 4 2 10° | ] If we now compute the coefficient of the linear term in
£ £ the variance for the RME witlh\.~0.4 (see Fig. 8 we ob-
% 100} P tain »=0.32, which is consistent with the numerical results
4 ] from the exact diagonalization$® Thus, the RME with
: . s logarithmic confinement is able to reproduce quantitatively
. the shape of the critical LSDF whek=A. and at the same
. time provides an accurate estimate of the leading order term
of the number variance. In some sense, the “residual Pois-
sonian” properties of the critical statistics are well repro-
- 3 . duced by this generalized RMT. The RMT does not provide
0 the asymptotic power-law behavig6.2g9 of the two-level
correlation function found analytically, which, on the other
FIG. 10. LSDF of the RME with logarithmic confinement for _han_d, Is al_so difficult to extract by direct numerical Qiagonal-
B=1, A=0.4, plotted together with the energy LSDF of the three- izations with reha_ble faccura(?)?.CIearly more work is nec-
dimensional Anderson model at the metal-insulator transition, take@SSary to determine if the good agreement shown here be-
from Ref. 18. The inset shows the largebehavior in logarithmic ~ tween the RME with weak confinement and the critical
scale for they axis. A straight line is the best fit for both curves. statistics is more than a furtuitous coincidence. It is, how-
ever, interesting and important that some of the properties of

Following the work by Shklovskiiet al, several other the correlations at the mobility edge can be correctly repro-
groups have studied numerically the energy-level statistics atuced by such a simple ensemble.

the critical point. In all cases, the statistical fluctuation prop-
erty that is easiest to study numerically, namely, the LSDF,
shows scale invariance and a behavior intermediate between
the WD surmise and the Poisson function. There seems to be

In this paper, we have studied in detail the properties of

agreement also on the linear startRifo’) at smallo, with a
slope steeper than the WD function for the metallic regimefamilies of RME that are invariant under similarity transfor-

However, the largs tail behavior is more controversial. Ref- mations, but are characterized by a generalized level confine-

erences 13 and 18 claim tha{o) has a Poissonian decay at ment. We have shown that the level statistics are affected by
the confining potential when this is very soft. In particular,

large o,
for a squared logarithmic potential, the statistical bulk prop-
P(o)~exp(—ao), o>1, 65 erties are nonuniversal and deviate significantly from the

with a~1.9, whereas Refs. 16 and 15 suggest a behavior iMVigner-Dyson statistics of the Gaussian ensembles, exhibit-
agreement with the plasma model result of E6.4). We ing a crossover toward a more Poissonian behavior when an
would like to emphasize that the numerical results publishednternal parameter is decreased. ThéN) invariant RME
in Ref. 18 explicitly show good statistics for large values ofwith logarithmic confining potential belongs, together the
o, and, therefore, we believe that they are reliable to extradRME with a symmetry breaking terisee Eq.(1.1)], to a
the asymptotic behavior d?(o). new universality class, distinct from Wigner-Dyson univer-
The second important result provided by the numericakality of classical RMT.
simulations is the existence of a linear term in the variance, We have shown that the nonuniversal behavior of the two-
as in Eq.(6.3). These calculations do not exclude the presdevel correlation function for these RME’s can still be ob-
ence of a power-law term of the kingn)?”, which is, how-  tained within Dyson’s mean-field theory, generalized to the
ever, difficult to detect and quantify because of the presencease of weak confinement. We have performed Monte Carlo
of the dominant linear teri. The coefficient of the linear simulations to calculate several important statistical proper-
term is shown to bey~0.27 in Ref. 18 and 0.30 in Ref. 17. ties of the generalized RME that probe both short- and long-
The RME with weak confinement that we have consid-range correlations.
ered in this paper is able to reproduce two of the main fea- The statistical properties of the RME with logarithmic
tures seen in the numerical simulations of the critical statisconfinement have strong similarities with the universal
tics: the overall behavior oP(o)—with the linear rise at energy-level statistics of disordered conductors at the metal-
o<1 and the exponential decay at&>1—and the linear insulator transition. In particular, the probability distribution
dependence of the number variance. In Fig. 10, we plot thef the level spacings for a three-dimensional Anderson
LSDF of the RME with logarithmic potential for model at the critical point can be very well fitted, throughout
A=0.4,8=1, together with the critical LSDF of the Ander- a wide energy range, by the corresponding RME function for
son model from Ref. 18. The agreement between the twone particular choice of the internal parameter. Then for the
curves is spectacular in a very large energy range, whersamevalue of the parameter, this RME predicts a linear be-
P(o) varies by five orders of magnitude. Notice in the insethavior for the level-number variance, with a coefficient of
of the figure the behavior for larger of the tail of proportionality close to the value obtained from numerical
In[P(0)], which has apparently a linear slope. The parametediagonalizations of the Anderson model at the critical point.
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