
Model for a random-matrix description of the energy-level statistics of disordered systems
at the Anderson transition

C. M. Canali*
International Centre for Theoretical Physics, 34100 Trieste, Italy

~Received 29 August 1995!

We consider a family of random-matrix ensembles~RME’s! invariant under similarity transformations and
described by the probability densityP(H)5exp@2TrV(H)#. Dyson’s mean-field theory~MFT! of the corre-
sponding plasma model of eigenvalues is generalized to the case of weak confining potential,
V(e);(A/2)ln2(e). The eigenvalue statistics derived from MFT are shown to deviate substantially from the
classical Wigner-Dyson statistics whenA,1. By performing systematic Monte Carlo simulations on the
plasma model, we compute all the relevant statistical properties of the RME’s with weak confinement. For
Ac'0.4 the distribution function of the energy-level spacings~LSDF! of this RME coincides in a large energy
window with the LSDF of the three-dimensional Anderson model at the metal-insulator transition. For the
sameAc , the variance of the number of levels,^n2&2^n&2, in an interval containinĝn& levels on average,
grows linearly with^n&, and its slope is equal to 0.3260.02, which is consistent with the value found for the
Anderson model at the critical point.

I. INTRODUCTION

Random-matrix theory~RMT! was introduced by Wigner1

and Dyson2 to provide a statistical description of the quan-
tized energy levels of heavy nuclei, and since then it has
been applied to a great variety of complex systems, quantum
and classical.3 Gor’kov and Eliashberg4 suggested that the
Wigner-Dyson~WD! statistics, derived from RMT, could be
used to describe the energy levels of small metallic particles
at low temperature, in connection with the study of their
electromagnetic properties. Here, a statistical description is
made necessary by the presence of disorder and irregularities
in the shape of the particles. For the case of disordered con-
ductors, one can resort to powerful field-theoretical tech-
niques, which have allowed Efetov5 and Altshuler and
Shklovskii6 to show analytically that the WD statistics are
more than a simple phenomenological conjecture and de-
scribe exactly the local fluctuations of the energy levels in
metals in a certain regime.

The WD statistics are characterized by strong energy-
level correlations, giving rise to the phenomenon of the level
repulsion. These are the correlations that typically exist
among the eigenvalues of a Gaussian ensemble~GE! of ran-
dom Hermitian matricesH, that is, an ensemble of matrices
randomly distributed with probability densityP(H)
}exp@2TrH2#.

The GE’s~and, therefore, the WD statistics! do not bear
any hint of the spatial dimensionalityd of a physical system.
Furthermore, they are, by definition, invariant under similar-
ity transformations and thus there is no basis preference in
them. This means that they can be applied only to particular
regimes of a physical system where~1! all the normalized
linear combinations of the eigenstates have similar proper-
ties; ~2! the dimensionality is, in some sense, irrelevant.

For a disordered electronic system this is just the ergodic
regime of the metallic state. In the metallic phase, the eigen-
states are extended structureless objects. If we further as-

sume that all the relevant times are larger than the ergodic
time tD5L2/D (D being the diffusion coefficient!, any dif-
fusive particle can completely and homogeneously fill the
total sample volumeV5Ld during its trajectory~ergodic re-
gime! and, thus, does not feel the space dimensionality. Al-
ternatively, the ergodic time defines a natural energy scale,
Ec5\/tD known as Thouless energy. The ergodic regime,
and therefore RMT, is valid within energy intervalse!Ec ,
or within an interval containing a number of levels
N,Ec /D;g, whereD is the mean level spacing. The quan-
tity g is known as the dimensionless conductance in units of
e2/\. When e.Ec , the level statistics depends on the di-
mensionality and is different from WD distribution
~Altshuler-Shklovskii regime!.

The nonergodic regime is never reachable in the metallic
phase in the thermodynamic limit, in any energy interval
containing a large butfinite number of levels, since the di-
mensionless conductanceg diverges in the limitL→`.
Therefore, the WD statistics describe exactly the energy-
level correlations of the metallic state in theL→` limit that
exists ford.2 at relatively small disorder.

For d51,2, no metallic state exists in the thermodynamic
limit, if any disorder is present, the system being always an
insulator. Ford53, with disorder increasing, the system goes
through the Anderson transition7 to the insulating state,
where all states are localized.8 The level statistics in these
situations obviously cannot be described by the
a-dimensional, classical RMT of the GE. In particular, such
simple U(N) invariant random-matrix ensembles~RME’s!
cannot be an appropriate description of a Hamiltonian ma-
trix, the eigenvectors of which undergo the phenomenon of
localization, since one can construct extended states by a
linear combination of localized states. In contrast, the proper
P(H) distribution should contain eigenvector-eigenvalue
correlations or a basis preference, which exclude those uni-
tary transformations that would lead to the formation of such
extended states.
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Random banded matrices9,10 are an example of noninvari-
ant RME’s and are perhaps more realistic for describing
Hamiltonians of quasi-one-dimensional disordered electronic
systems9 and other quantum chaotic systems.10 Their statis-
tical properties exhibit a crossover from the WD to the Pois-
son statistics as a function of the parameterb2/N (b is the
band width!, which is similar to what happens in quasi-one-
dimensional systems upon decreasing the ratioj/L, j being
the localization length.

Another model worth mentioning is represented by the
ensemble of sparse random matrices. This model has been
shown to be closely related to the Anderson model on a
Bethe lattice,11 which is known to possess a localization
transition.12 On the basis of this similarity, sparse random-
matrix ensembles should also display an Anderson transition
from a localized to a delocalized regime upon increasing the
‘‘mean connectivity parameter.’’11 The energy-level statistics
in the delocalized regime have been proven to belong to the
Wigner-Dyson universality class.11

While the RMT description of the quasi-one-dimensional
disordered systems can be provided by random banded ma-
trices, an analogous description of the energy statistics near
the critical point ford.2 is still missing. This problem has
recently become a very outstanding one, after intense study,
both numerical13–20 and analytical,21,22 has shown that the
spectral correlations at the metal-insulator transition are also
universal and very different from the WD and the Poisson
statistics.

There is not yet full consensus on the exact nature of the
critical energy-level statistics. The main finding of the ana-
lytical treatment based on a scaling analysis21,22 is the exist-
ence of a power-law decay of the two-level correlation func-
tion with a nontrivial critical exponent. All numerical
simulations show that at the critical point, the statistical fluc-
tuations of the energy levels are scale invariant. However,
while some authors15,16,20 claim a good agreement of their
numerical results with the analytical predictions,
others13,17–19 suggest that the critical statistics constitute
more simply a ‘‘hybrid’’ between the WD and the Poisson
distributions without any nontrivial critical exponent.

The search of a RMT description of the critical statistics
has prompted the investigation of physically motivated
RME’s which exhibit nontrivial deviations from the WD sta-
tistics. One important generalization has been obtained in
Refs. 23 and 24, starting from the GE and introducing a
symmetry breaking term of the form

P~H!}e2TrH2
e2h2N2Tr~@L,H#@L,H#†!. ~1.1!

Theh-dependent term breaks theU(N) invariance and tends
to alignH with a symmetry breaking unitary matrixL, thus
setting the basis preference. It was shown in Ref. 24 that
even after averaging overL the implicit presence of the sym-
metry breaking term causes a dramatic change in the level
correlations of the resulting ensemble, which exhibit a cross-
over from the WD to the Poisson statistics.

On the other hand, a lot of work25 has been devoted to the
analysis ofU(N) invariant generalizations of the GE, of the
kind

P~H!}e2TrV~H!. ~1.2!

Such ensembles arise from aglobal maximum entropy an-
satzof RMT, in which an information entropy is maximized
by the distribution.25 The functionV(H) acts like a general-
ized Lagrange multiplier and it is determined, e.g., by requir-
ing that the density of eigenvalues is some given function
r(e), taken directly from the microscopic system being in-
vestigated:

^Tr@d~e2H!#&5r~e!. ~1.3!

For a long time it was believed that the local statistical
properties of the eigenvalues of these ensembles are com-
pletely independent ofV and identical to those of the GE.
This hypothesis, so far supported only by numerical evi-
dence, has been proved more rigorously very recently26,27for
a large class of functionsV. On the other hand, it has also
been demonstrated28–31 that there exists another class of
functionsV, known asweak confining potentials, for which
the eigenvalue statistics display very strong deviations from
the universal WD behavior. Such potentials are characterized
by a very slow asymptotic growth:

V~e!;A ln2ueu, ueu→`. ~1.4!

It is important to emphasize that this asymptotic behavior of
V has been inferred from numerical studies ofrandom trans-
fer matrix models for disordered conductors, through the
maximum entropy ansatz.25,32,33 In that case, one considers
the eigenvalues of some combination of the transfer matrix,
which are directly related to the conductance and become
larger and larger, namely less confined, when the disorder
increases.

It has been shown28–31 that the local eigenvalue fluctua-
tions of the RME’s, with confining potential~1.4!, exibit a
crossover from the WD statistics to a more Poisson-like be-
havior when the parameterA is decreased. Since it is a com-
mon belief that there is a connection between the statistics of
eigenvalues and eigenstates of a RME, this breakdown of the
WD universality seems to contradict the argument~presented
above for the GE! that aU(N) invariant ensemble cannot
exhibit Poissonian statistics, typical of localized states. In
Ref. 31, it has been suggested that Poissonian behavior in
such RME’s is a remarkable phenomenon, due to the spon-
taneous breakdown of theU(N) symmetry at the transition
from a power-law potential,V(e);ueua, to the logarithmic
potential of Eq.~1.4! whena→0. A crucial point in reaching
this conclusion was the observation that the two-level corre-
lation function of the invariant RME’s with weak confine-
ment and the one of the RME’s with symmetry breaking are
identical in a certain range of the parameters. Having estab-
lished that these generalized RME’s with soft confinement
belong to a new universality class, characterized by nonclas-
sical correlations that interpolate from the WD to the Poisson
statistics, there remains the important question of whether or
not their properties are related to the critical energy-level
statistics of the Anderson model.

In this paper, we address this question through a careful
study of the RME’s with distribution given by Eq.~1.3!.
First, we shall show that the local statistical properties of a
generalized RME of this sort can be correctly and easily
determined using an extension of Dyson’s functional deriva-
tive formalism for the corresponding one-dimensional~1D!
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plasma model for the eigenvalues. This formalism has been
used successfully by Beenakker39 to investigate the random-
matrix theory of the transmission eigenvalues in disordered
conductors. In particular, we prove that a modified mean-
field theory~MFT! of the plasma model is able to yield the
nonuniversal asymptotic behavior of the two-level correla-
tion function for weak confinement.

Second, we perform extensive Monte Carlo simulations of
the one-dimensional Coulomb plasma of the eigenvalues and
calculate all the relevant quantities that describe short-range
and long-range statistical properties of the RME’s. The com-
parison with the MFT and other analytical results shows that
this Monte Carlo method provides very accurate answers for
this problem and can be used to study more complicated
RME’s where no analytical results are known.

Finally, we critically compare the level statistics of these
RME’s with the results recently obtained for the 3dAnderson
model at the metal-insulator transition. Our analysis shows
that, while the asymptotic correlations of the RME’s do not
agree with the analytical result of Refs. 21 and 22, two other
statistical properties, namely, the distribution function of the
level spacings and level-number variance, are remarkably
close to those found numerically in exact diagonalizations of
the Anderson model.

The paper is organized in the following way. In Sec. II,
we set up formalism and notation and review Dyson’s deri-
vation of the effective plasma model for the eigenvalue dis-
tribution. In Sec. III, we develop a MFT of this model, gen-
eralized to the weak confining potentials. The MFT study of
the two-level correlation function is carried out in Sec. IV.
Section V is devoted to the study of Monte Carlo simula-
tions. In Sec. VI we discuss and compare the results of RMT
with the analytical and numerical results of the energy-level
statistics of the Anderson model at the metal-insulator tran-
sition. Summary and conclusions are presented in Sec. VII.

II. EIGENVALUE STATISTICS AND EFFECTIVE
ONE-DIMENSIONAL PLASMA MODEL

We consider an ensemble of randomN3N matricesH.
The matricesH are supposed to represent, for example, the
Hamiltonian of a complex system, such as a quantum disor-
dered conductor. We takeH to be eitherreal symmetric, Her-
mitian, or quaternion-real self-dual.3 This choice defines
three possible ensembles corresponding to three different
physical systems:~1! systems with time-reversal and rota-
tional invariance; ~2! systems with broken time-reversal
symmetry;~3! systems with time-reversal symmetry, but bro-
ken rotational invariance.

According to the maximum entropy principle mentioned
in the previous section,25 we will assume that the probability
distribution for the RME is defined by the density

P~H!5Z21e2TrV~H!, ~2.1!

whereZ is a normalization constant. The volume element is
d@H#5) i> jdHi j , for real symmetric matrices, with obvious
generalizations for the other two cases.3 The probability den-
sity P(H)d@H# is evidently invariant underorthogonal, uni-
tary, or simplectictransformations, respectively, according to
the three possible choices ofH. The three ensembles are,

therefore, specified and denoted after their internal symme-
try: orthogonal ensemble~OE!, unitary ensemble~UE!, and
symplectic ensemble~SE!.2

The invariance ofP(H) in Eq. ~2.1! implies that different
matrices with the same eigenvalues have the same probabil-
ity of occurring in the distribution. One can take advantage
of this property and obtain the joint probability distribution
~JPD!, P ($e i%), for theeigenvaluese i , i51,2, . . . ,N of the
matricesH. For this purpose, it is necessary to express the
various components ofH in terms of theN eigenvaluese i
and other mutually independent variablespj , which together
with e i form a complete set. The variablespj can be inte-
grated out and the final result for JPD is3

P ~$e i%!5CNb
expS 2

1

2
b(

i

N

V~e!D)
i,k

ue i2ekub,

~2.2!

whereb51 for the OE,b52 for the UE, andb54 for the
SE.CNb

is such thatP is normalized to unity. Theuniversal

Jastrow factor) i,kue i2ekub comes form the Jacobian of the
variable transformation. It is universal in the sense that~1! it
is always present in the JPD of the eigenvalues, whenever
the initial RME’s distribution probability is of the form Eq.
~2.1!; ~2! it is independent of the particular choice ofV(H)
and depends only on the symmetry of the ensemble.

The JPD’s of Eq.~2.2! characterize all the statistical prop-
erties of the eigenvalues of an invariant RME, with the in-
ternal symmetry discussed above. It describes the so-called
energy-level statistics, ifH is the Hamiltonian of the system.

Following Dyson,34 the JPD can be rewritten in the fol-
lowing form:

P ~$e i%!5ZNb

21exp@2bH~$e i%!#, ~2.3a!

H~$en%!52(
i, j

lnue i2e j u1(
i
V~e i !. ~2.3b!

The probability distribution~2.2! has the form of a Gibbs
distribution for a classical, one-dimensional system ofN
‘‘particles’’ e i , described by the ‘‘Hamiltonian’’H. The
symmetry parameterb plays the role of the equilibrium
‘‘temperature.’’

These fictitious ‘‘particles,’’ namely, the eigenvaluese i ,
interact among each other through a pairwise logarithmic
repulsion at any energy scale. The external one-body poten-
tial V(e) keeps the system confined.V(e) is the only quan-
tity of the RME that can be related to the microscopic pa-
rameters of the original physical model through itsglobal
statistical property, namely, the density of eigenvalues~see
below!. The logarithmic repulsion does not depend on any
microscopic detail of the real system, its origin being com-
pletely geometrical. From now on we will use this particle
model analogy freely and call ‘‘particles’’ the eigenvalues of
the RME’s.

The local statistical fluctuations of 1'n!N eigenvalues
are conveniently described by then-level correlation func-
tions, defined as
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Gn~e1 , . . . ,en!

5
N!

~N2n!! E2`

1`

. . . E
2`

1`

PN~$e i%!de1 . . .den . ~2.4!

By definition,Gn(e1 , . . . ,en) is the probability of finding
simultaneously anyn particles at positionse1 ,e2 , . . . ,en ,
the positions of the remainingN2n remaining unspecified.
Gn are positive defined. In particular,G1(e) gives the den-
sity of particles at positione, and it will be denoted by

r~e![G1~e!. ~2.5!

It is convenient to introduce then-level cluster functions
or cumulants. Thenormalized n-level cluster function is de-
fined in the usual way of statistical mechanics. The first two
cumulants are

Y1~e!5
G1~e!

r~e!
51 , ~2.6!

Y2~e1 ,e2!512
G2~e1 ,e2!

r~e1!r~e2!
. ~2.7!

We shall always consider the case of largeN@1. In this
limit, the normalized cluster functions are very useful, since
they tend to definite limits when the variables are written in
the correct units. In taking theN→` limit, it is necessary to
measure the particle positions in terms of the mean level
spacing,D. If limN→`r(e)5r05const,D5r0

21 and the di-
mensionless variables are simply

si5e i /D. ~2.8!

On the other hand, if limN→`r(e)Þ const, we need to con-
sider a rescaling of thee i with the local density or the more
complicated unfolding procedure~see Sec. IV B!.

In any case, thesi will form a statistical model for an
infinite number of particles with mean spacing equal to unity.
It is only when written in terms of these rescaled variables
that the local statistical properties of the eigenvalues of dif-
ferent RME’s can be meaningfully compared.

We now come to the discussion on the explicit form of the
potentialV(e) and how the statistics depend on it. The case
of the GE, with potentialv(e)5e2 is the only one for which
exact solutions for the density, two-point correlation func-
tion, and other statistical properties have been known exactly
for a long time.3 They are usually referred to as WD or
classical statistics. One can show that in the largeN limit, the
particle density obeys Wigner’s semicircle law, with a radius
proportional toN1/2. The two-point cluster function, in a
region around the origine50, is translationally invariant,
Y2(s1 ,s2)5Y2(r ), r5us12s2u. For b52 @Gaussian uni-
tary ensemble~GUE!#, it has the famous form,

Y2~r !5Fsin~pr !

pr G2. ~2.9!

Similar expressions hold for the other two GE’s.3

At small separations, the correlation function
G2(r )512Y2(r ) vanishes, due to the phenomenon of level
repulsion brought about by the logarithmic interaction,

G2~r !;r b, r!1. ~2.10!

Although theglobal statistics~such as the density! of the
energy spectra of real systems do not follow the semicircle
law, thelocal statistics of the level correlations of many cha-
otic and complex systems are very well described by Eq.
~2.9!. In particular, Eq.~2.9! describes the correlations in
small metallic samples at low temperature,5 as well as the
correlations among a large but finite number of energy levels
of a metallic system in the thermodynamic limit.21

Until recently, it was believed that the form of the confin-
ing potential could only affect the density of eigenstates, but
not their local statistics, which would, therefore, be universal
and equal to the WD statistics of the Gaussian ensembles.
Such universality has been indeed proved recently in a rig-
orous way, for a large class of potentials, which confine the
system strongly, that is, whenV(e) increases faster than
ueu.26,27

In what follows, we will consider two kinds of non-
Gaussian potentials, which confine the system weakly, with
the following asymptotic behavior.

~1! Power-law potential,30,35,36

V~e!5
A

2
ueua, 0,a,1, ueu→`. ~2.11!

~2! Squared logarithmic potential,28,31

V~e!5
A

2
ln2ueu, ueu→`. ~2.12!

It is a legitimate mathematical interest to investigate these
cases and see if the WD universality is preserved. However,
these RME’s have also a physical interest, since they have
been suggested by random transfer matrix models of disor-
dered conductors.

III. MEAN-FIELD THEORY

We now consider a MFT analysis of the classical one-
dimensional plasma model of eigenvaluesP ($e i%), into
which the original probability density of RME has been
mapped. We first define a continuous limit of this model,2,34

valid in the asymptotic limit of largeN, by introducing the
particle densityr(e)5( i

Nd(e2e i). In this limit, we will as-
sume that the Coulomb gas is a classical fluid with a con-
tinuous and smooth macroscopic density. By substituting this
definition of r(e) in Eq. ~2.3b!, the HamiltonianH($en%)
becomes anenergyfunctional,H@r(e)#, of r(e)

H@r~e!#52
1

2E2`

1`

deE
2`

1`

de8r~e!r~e8!lnue2e8u

1E
2`

1`

der~e!V~e!. ~3.1!

WhenN is large but finite, the assumption of a smooth
density is only an approximation. Consequently, the first
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term of the right-hand side of Eq.~3.1! does not reproduce
exactly the corresponding term of Eq.~2.3b!, because it ne-
glects the two-level correlations, that is, it allows the pres-
ence of the ‘‘charges’’r(e)de and r(e8)de8 at separations
e2e8→0. Since the interaction lnue2e8u is singular, this ap-
proximation has an effect, albeit small, becauseN is large.
One can compute the correction in a 1/N expansion to this
term and see that it is of the form34

dH@r~e!#52
1

2E2`

1`

der~e!ln„r~e!…. ~3.2!

It is convenient to introduce a grand canonical potential
V@r#5H@r#2mN @r#, whereN is the particle number
functionalN @r#5*r(e)de andm is the chemical potential.
The average density of particlêr(e)& can be expressed in
terms of the functional integral,

^r~e!&5Z21E r~e!e2bV@r#Dr; Z5E e2bV@r#Dr.

~3.3!

The one-body potentialV(e) acts as a source term for the
field r(e) and ^r(e)& can be expressed as

^r~e!&5~bZ!21dZ/dV~e!. ~3.4!

Up to now we have only assumed the existence of a
smooth particle densitŷr(e)&, necessary in taking the con-
tinuous limit of the Coulomb plasma, which presumably is a
good approximation whenN is large. The MFT, based on the
continuous approximation, amounts to neglecting any en-
tropy fluctuations about the average and using the saddle-
point approximation in the integral equation for^r(e)&. The
MFT equation obeyed bŷr(e)&MF is therefore

34

E
2`

1`

de8^r~e8!&MFlnue2e8u5V~e!2m, ~3.5!

where the ‘‘Lagrange multiplier’’m is to be found from the
normalization condition*^r(e)&MFde5N. The MFT inter-
pretation of this equation is very natural, since it represents
the condition of mechanical equilibrium for the charge den-
sity ^r(e)&MF subject to the external potentialV(e). Such a
MFT approximation completely disregards the entropy part
S @r#52*de^r(e)& ln^r(e)& in the free-energyfunctional,
F @r#5H@r#2TS @r#, and is exactly applicable only for
b5`. However, the long-range nature of the pairwise inter-
action in Eq.~3.1! makes the MFT approximation valid in
the bulk of the spectrum, even at finiteb, when N→`.
Indeed Dyson34 has calculated the first correction to this
equation in a 1/N expansion and shown that the more accu-
rate equation for̂r(e)& reads

E
2`

1`

de8^r~e8!& lnue2e8u1
b22

2b
ln^r~e!&5V~e!2m.

~3.6!

The second term on the left-hand side of Eq.~3.6! is the sum
of two parts. The term proportional to2T521/b comes
clearly from the entropy contribution to the free energy. The
part independentof b is generated in the passage to the
continuous limit as discussed above@see Eq.~3.6!#. The

combination of these two terms acts as an entropy contribu-
tion multiplied by an effective temperature,T!(b),

T!~b!5b2121/2, ~3.7!

which vanishes forb52. We can write the free energy, at
equilibrium, of the system in the following form:

F52
1

2E2`

1`

deE
2`

1`

de8^r~e!&^r~e8!& lnue2e8u

1E
2`

1`

de^r~e!&V~e!

2T!~b!E
2`

1`

de@2^r~e!& ln^r~e!&#. ~3.8!

For the class of confining potentials of Eq.~2.11! and Eq.
~2.12!, one can show34 that the relative contribution of the
correction to the MFT equation is of orderN21lnN, and,
therefore, vanishes in the thermodynamic limit. For the time
being, we will neglect this correction and concentrate on the
MFT Eq. ~3.5!.

A. Solution of the eigenvalue density

We now present the solution of the integral equation~3.5!
for the particle densityr(e)MF[^r(e)&MF . The solution of
this equation, confined to the region2D,e,D, can be
found using the Cauchy method37 and is given by

rMF~e!5
1

p2AD22e2 ReE
0

D dV/dj

AD22j2
j dj

j22e1
2 , ~3.9!

wheree15e1 i0 and the band edgeD is to be found from
the normalization condition. We will discuss separately the
two cases of a power-law and logarithmic potential.

1. Power-law confinement, V(e)5A/2zeza

The integral equation for̂r(e)&MF becomes

rMF~e!5
Aa

p2AD22e2 ReE
0

D ja

AD22j2
dj

j22e1
2 .

~3.10!

We need to distinguish further between the casesa>1 and
a,1. Fora>1, the integral in Eq.~3.10! is divergent in the
thermodynamic limitN→`, when the band edgeD also
goes to infinity. The main contribution to the integral is made
by the regionj;D and, therefore, for any fixede!D, one
can neglect thee dependence in the integrand of Eq.~3.10!.
Then the mean level density tends to aconstant,
r→N121/a. Thus, we reach the important conclusion that,
for a>1, there exists translational invariance in thee space
in the N→` limit, exactly as in the case of the Gaussian
ensemble. Therefore, fora>1, we have a condition of strong
confinement, and the corresponding local statistics belong to
the WD universality class, in agreement with Refs. 26 and
27. On the other hand, fora,1, the integral in Eq.~3.10! is
convergent even in the limitD→`. For finiteN ~and, there-
fore, finiteD!, the integral can be calculated by transforming
the original contour of integration into a sum of two pieces,
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G5G1øG2 , whereG1 is the negative imaginary axis, and
G2 is a part of the positive real axis@D:`#. Since we are
interested only in the real part contribution, the integral over
G2 does not contribute and we end up with

rMF~e!5
Aa

p2 sinS pa

2 DAD22e2E
0

D ja

AD21j2
dj

j21e2
~3.11!

5
Aa2

pD
Ca/2SD2 D a A12z2

uzu12a FS 12 , 11a

2
;
3

2
;12z2D ,

~3.12!

Ca5
G~2a!

G~a!G~11a!
5
1

2
1O~a2!, ~3.13!

wherez5e/D andF(a,b;c;x) is a hypergeometric function.
The band edge is found from the normalization condition to
be

D52SNG2~a/2!

2AG~a! D 1/a. ~3.14!

The limiting function rMF
` (e)5 limN→`r MF(e) is immedi-

ately obtained from Eq. ~3.12! by taking the limit
z5e/D→0:

rMF
` ~e!5

Aa

2p
tanS ap

2 D 1

ueu12a . ~3.15!

Therefore, fora,1, the mean density in the thermodynamic
limit, rMF

` (e), does not scale as a power ofN and, especially,
is not translational invariant.rMF

` is divergent ate50. How-
ever, as we will show in Sec. V, this is an artifact of the MFT
solution and the exact density is sharply peaked, but finite at
the center. We can say that the system undergoes a ‘‘phase
transition’’ at a51 and the symmetry that is broken is the
translational invariance of the problem in the limitN→`.

2. Squared logarithmic confinement, V(e)5A/2 ln2(zez)

In order to solve the integral equation for the MFT den-
sity, it is convenient to represent this potential as a limit of
combinations of the power-law potential:38

V~e!5 ln2ueu5 lim
a→0

@a22~ ueua21!2#. ~3.16!

The MFT density in this case is

rMF~e!5
4A

pD
A12z2F SD2 D 2a

Ca

FS 12 , 121a;
3

2
;12z2D

z122a

2
1

2 SD2 D a

Ca/2

FS 12 , 11a

2
;
3

2
;12z2D

z12a
G , ~3.17!

whereD satisfies the equation

N5
2A

a FCaSD2 D 2a

2Ca/2SD2 D aG . ~3.18!

The expression for the MFT density forN finite takes a
simpler expression after the limita→0 is taken,

rMF~e!5A
arcsinA12e2/D2

pueu
. ~3.19!

The band edge is now an exponential function ofN:

D52 exp~N/A!. ~3.20!

The singularity ate50 is again an artifact of the MFT solu-
tion. On the other hand, we will see that in the bulk of the
spectrum, the mean density is accurately described by Eq.
~3.19!.

IV. THE TWO-LEVEL CORRELATION FUNCTION

In this section, we study the two-level correlation function
using the MFT developed in the previous section. Some of
these results have been already derived forb52, using the
different method of the orthogonal polynomials.28,31 MFT
will allow us to generalize these results to any value ofb.

A. MFT integral equation for the two-level
correlation function

Within the continuous formalism of the previous section,
let us consider the following definition of the density-density
correlation functionR2(e,e8):

R2~e,e8!5
^r~e!r~e8!&

^r~e!&^r~e8!&
21. ~4.1!

Using the definition ofr(e), one sees thatR2(e,e8) differs
from the two-levelcluster functionY2(e,e8) defined in Eq.
~2.9! of Sec. I by the singular self-correlation,

Y2~e,e8!5
1

^r~e!&
d~e2e8!2R2~e,e8!. ~4.2!

The correlation functionR2(e,e8) can be easily expressed in
terms of a functional derivative of̂r(e)& with respect to
V(e) in Eq. ~3.3!. By using the relationdV/dV(e)5r(e),
one obtains39

R2~e,e8!52
b21

r~e!r~e8!

d^r~e!&
dV~e!

. ~4.3!

Within the MFT, it is possible to write down an integral
equation for the two-particle correlation function.39 By tak-
ing the functional derivatived/dV(e) in Eq. ~3.5! and using
Eq. ~4.3!, one obtains

E
2`

1`

de9r~e9!MFr~e!MFR2~e,e9!lnue82e9u

52b21d~e2e8!1b21dm/dV~e!. ~4.4!

This important equation is sometimes used to claim and jus-
tify, within the approximation of MFT, the universality of the
correlations in RMT, or rather their independence of the po-
tential V(e). The argument is usually the following. In the
large N limit, one implicitly assumes that, at least in the
region of interest, the average density scales likeN and goes
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to a constant,̂r(e)&5r0 . In this case, since the two-body
interaction is translational invariant, the two-particle correla-
tion function must be translational invariant as well. In par-
ticular, the variational derivative of the chemical potential,
which is the only term that depends explicitly on the confin-
ing potential and is not translationally invariant, must
vanish.40 If we now introduce dimensionless variables
s5e/D, rescaled by the mean level spacingD5r21, one
obtains an equation completely independent ofV(e),

bE
2`

1`

dsR2~s2s9!lnus82s9u52d~s2s8!. ~4.5!

From this one concludes that the limiting correlation func-
tionR2(e2e8) cannot depend on the choice ofV(e) and it is
universal. Its asymptotic behavior is easily found by solving
Eq. ~4.5! by Fourier transformation. The result is of course
the universal WD behavior of the Gaussian ensembles,

R2~s2s8!;2
1

p2b

1

~s2s8!2
. ~4.6!

This reasoning is crucially based on the assumption that the
average density tends to a constant in the thermodynamic
limit, so that it can be simply rescaled away. But we have
seen that there are cases in which, if the potential is weak
enough, the density is not at all a constant in theN→` limit
and, in fact, it decreases steeply withe. The system is not
translationally invariant and we cannot carry out the same
simple rescaling as before. Thus, the proof of the universality
of the correlations is not applicable, and one may expect
R2(e,e8) to be different from the WD form. It is often said
that in this case, MFT breaks down and its equations become
invalid. This statement is not completely correct. The MFT
still gives reasonable and, in fact, accurate results for the
particle density in the bulk of the spectrum~as the compari-
son with numerical simulations will show!. Therefore, this
theory should work also for the correlations, when properly
applied. Of course, we can no longer disregard the presence
of a nonconstant density, which is responsible for the devia-
tions from universality. Below we suggest a simple way out
of this problem through the notion ofspectrum unfolding.

B. Spectrum unfolding. Modified MFT equation
for weak confinement

On comparing the correlation functions of different en-
sembles, it is necessary to choose energy units such that the
mean level spacing is equal to one. This is trivial when the
average density is a constantr, since in that case,D5r21

and the convenient variable iss5e/D5er. The presence of
a nonuniform density in the thermodynamic limit makes this
linear rescaling impossible, even locally if the density is a
rapidly varying function of the energy, as in the case of the
logarithmic confinement. This is a common situation in the
study of complex energy spectra, where one needs to subtract
off the unwanted effects of a nonconstant average density, in
order to analyze the fluctuations around the average density
itself. This difficulty is handled by the so-called ‘‘unfolding
procedure,’’ namely, the introduction of the variable

s5s(e), in terms of which the density becomes a constant.
The variable that serves this purpose is the integrated density
of states,

s~e!5E
0

e

^r~e!&de. ~4.7!

By particle conservation,

^r~e!&de5^r̃~s!&ds, ~4.8!

where^r̃(s)& is the average density in the variables. From
Eqs.~4.7! and ~4.8!, it follows that

^r̃~s!&51 , ^s&51 . ~4.9!

The definition of the two-particle correlation function in
the unfolding variables becomes

R2~s,s8!5
^r~es!r~es8!&

^r~es!&^r~es8!&
21 , ~4.10!

wherees is the inverse function ofs(e). Using these defini-
tions in Eq.~4.4!, the integral equation forR2(s,s8) is

41

E
2`

1`

ds9R2~s,s9!lnues92es8u52b21d~s2s8!.

~4.11!

The MFT equation for̂ r̃(s)& reads

E
2`

1`

ds8^r̃~s8!& lnues2es8u5V~es!2m. ~4.12!

Equations~4.11! and~4.12! together mean thatbR2(s,s8) is
the solving kernel of39

E
2`

1`

dsc~s8!lnues2es8u5w~s!1const, ~4.13!

that is,

c~s!5E
2`

1`

dsbR2~s,s8!w~s8!. ~4.14!

The additive constant in Eq.~4.13! has to be chosen such that
*2`

1` dsc(s)50, since the variations in̂r̃(s)& must occur at
constantN.39

Equation~4.11! is the integral equation for the correlation
function R2(s,s8) in case ofweak confinement. From this
equation we can see that, in contrast with Eq.~4.4! valid for
strong confinement, nowR2(s,s8) depends implicitly on the
original confining potential through the unfolding variable
s(e). Thus it will not, in general, be universal.

C. Solution of the MFT integral equation

The solving kernel of the integral equation~4.13! must be
found separately for each unfolding functione(s), which in
turn depends on the confining potential. We are interested in
the correlations in the bulk of the spectrum, where MFT
works and, thus, we can use the MFT expression for the
density in order to obtain the unfolding function.

We first consider the case of the power-law potential with
0,a,1, which is the simplest case of weak confinement
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where, in principle, nonclassical correlations can arise. Using
Eqs~3.15! and~4.7!, the unfolding function in the bulk of the
spectrum in the largeN limit is

s~e!5l sgn~e!E
0

ueu
de8

1

e8~12a! 5lueuasgn~e!,

l5
A

2p
tanS ap

2 D , ~4.15!

or

e~s!5l21/ausu1/asgn~s!. ~4.16!

In order to simplify the derivation, we choose
a51/(2k11), k51,2, . . . . Inthis case,

e~s!5S sl D ~2k11!

. ~4.17!

The integral equation Eq.~4.13! is now

E
2`

1`

dsc~s8!lnus~2k11!2s8~2k11!u5w~s!1const.

~4.18!

We change variabless(2k11)5x,sx5x1/(2k11), and we define

c̃~x!5
1

2k11
c~sx!x

2k/~2k11!, ~4.19!

w̃~x!5w~sx!, ~4.20!

R̃2~x,x8!5
1

~2k11!2
~xx8!22k/~2k11!R2~sx ,sx8!,

~4.21!

in terms of which Eqs.~4.13! and ~4.14! become

E
2`

1`

dx8c̃~x8!lnux2x8u5w̃~x!, ~4.22!

c̃~x!5E
2`

1`

dx8bR̃2~x,x8!,w̃~x8!, ~4.23!

and the condition onc̃(x) is now *2`
1` dxc̃(x)50. This is

exactly the familiar case of pure logarithmic interaction with
strong confinement considered above@see Eq.~4.5!#. The
solution for the solving kernelR̃2(x,x8) is the WD universal
correlation given in Eq.~4.6!. Using the relation between
R̃2(x,x8) andR2(x,x8) and going back to the original vari-
ables,s ands8, we obtain

R2~s,s8!5
~2k11!2

p2b

~ss8!2k

~s2k112s82k11!2
. ~4.24!

This correlation function is not translational invariant. How-
ever, we restrict ourselves to the case in which boths and
s8 are in the bulk andDs5us2s8u!s. In this limit, we can
expand the previous expression in power ofDs/s. The cor-
relation becomes translationally invariant, but what is even
more important is that we get back exactly Eq.~4.6!, namely,
the universal WD correlation function. Thus we conclude
that, at the MFT level, the power-law ensemble has com-

pletely classical statistics, even when the translational invari-
ance is broken in the thermodynamic limit and the unfolding
procedure is necessary.

We now consider the case of the double logarithmic po-
tential. The unfolding function in the bulk of the spectrum,
ueu@1 is now

s~e!5
A

2
sgn~e!E

0

ueu
de8

1

e8
5
A

2
lnueusgn~e!, ~4.25!

or

e~s!5e2usu/Asgn~s!'2 sinhS 2sA D . ~4.26!

We plug this function into Eq.~4.13! and we perform the
change of variable, sinh(2s/A)5x, with the corresponding re-
definition of c, w, andR2 . Following the same procedure
used for the power-law potential, we arrive at

R2~s,s8!52
1

p2A2b

coshS 2sA D coshS 2s8A D
sinh2S s2s8

A D cosh2S s1s8

A D .
~4.27!

Again, the correlation function is not translational invariant.
If s and s8 are both in the bulk,us8u,usu@1 and have the
same sign, we obtain the translational invariant expression,

R2~n!~s,s8!52
1

p2A2b

1

sinh2S s2s8

A D , ~4.28!

where the subscript (n) stands for ‘‘normal’’ part. If
us2s8u.A, the argument of sinh cannot be expanded andA
does not scale away. Thus the correlations for the double
logarithmic potential are no longer universal and in contrast
with the power-law behavior of the WD class, they decrease
exponentially in agreement with the exact solution for
b52 by Muttalibet al.28

However, there is one more great surprise, pointed out in
Ref. 31 forb52, which is the reappearance of strong corre-
lations ats8'2s. In fact, whens ands8 are in the bulk but
have different sign,s852s1Ds, we obtain

R2~a!~s,s8!52
1

p2A2b

1

cosh2S s1s8

A D , ~4.29!

where the subscript (a) stands for ‘‘anomalous’’ part. This
anomalous part of the correlation function breaks dramati-
cally the translational invariance. Its remarkable property is a
narrow correlation hole ats8'2s with a depth, controlled
by A, that does not decrease whenus2s8u.2usu→` . No-
tice also that the two regions, whereR2(n)(s,s8) and
R2(a)(s,s8) are nonzero, are separated by a very large dis-
tance whens ands8 are in the bulk of the spectrum andN is
large.
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In Ref. 31, a simplified application of the method of the
orthogonal polynomials, valid forq5e2p2A!1, was used to
derive the two-level cluster function for the caseb52, yield-
ing the result:

Y2~s,s8!5
1

p2A2 @sinp~s2s8!#2

3

coshS 2sA D coshS 2s8A D
sinh2S s2s8

A D cosh2S s1s8

A D . ~4.30!

The normal part ofY2(s,s8),

Y2~n!~s,s8!5
1

p2A2 F sinp~s2s8!

sinhS s2s8

A D G 2, ~4.31!

is identical to the exact solution of Muttalibet al.,28 for the
same small values ofq, and it is also identical to the exact
solution of Mosheet al.,24 for the case of a RME with a
symmetry breaking term.

Here, using the MFT theory, we have generalized this
result to anyb. As in all other MFT calculations, only the
asymptotic form of theR2 is obtainable within the MFT
treatment. In particular, the oscillatory function that vanishes
as us2s8u→0, and thus gives rise to a residual level repul-
sion, is totally out of reach. In its place we have 1/b, which
is the average of the oscillations. Thus, MFT and the method
of orthogonal polynomials~which is exact! are completely
consistent even in the case of weak confinement, where de-
viations from WD occur.

The appearance of anomalous correlations ats8'2s is
the result of the system trying to develop Poissonian-like
correlations ats8's, while, at the same time, complying
with theU(N) invariance, which forces a normalization sum
rule onR2 to be satisfied even in the largeN limit.31 The sum
rule reads

E
2`

1`

R2~s,s8!ds850 , ~4.32!

or, in terms ofY2(s,s8),

E
2`

1`

Y2~s,s8!ds851 , ~4.33!

and it must be satisfied in the case of aU(N) invariant RME,
because of the long-range nature of the universal logarithmic
interaction always present in such ensembles.31 The normal
part alone ofY2(s,s8), given in Eq.~4.31!, does not satisfy
Eq. ~4.32!. But the sum rule deficiency

h512E
2`

1`

Y2~n!~s!ds, ~4.34!

is taken care of by the anomalous correlations:42

E
2`

1`

Y2~a!~s!ds5h. ~4.35!

However, no matter how this is realized in practice, what is
important is first the fact that theU(N) invariant RME with
soft confinement manages to develop the exponentially de-
caying two-level correlation function of Eq.~4.31! in an in-
finitely large energy region in the bulk of the spectrum,
where the anomalous correlations are irrelevant. Second, the
normal part of correlation function is exactly equal to the
expression obtained for the RME~1.1!, where the symmetry
is explicitly broken. This occurrence has been interpreted in
Ref. 31 as a signal of the spontaneous breakdown of the
U(N) invariance in the case of soft confinement, with the
parameterh playing the role of the order parameter.

The physical interpretation of the anomalous correlations
at s85'2s in terms of Coulomb plasma is very simple if
one looks at how the logarithmic pairwise interaction is
transformed in the unfolded variables,

f ~s,s8!52 lnusinh~2s/A!2sinh~2s8/A!u. ~4.36!

In the unfolded variables, the interaction is no longer trans-
lational invariant. We can try to rewrite it in a form that looks
more translationally invariant in the following way:

f ~s,s8!52 lnU2 sinhS s2s8

A D coshS s1s8

A D U
52 lnU2 sinhS s2s8

A D U2 ln coshFs82~2s!

A G .
~4.37!

We see that the interaction splits into two terms: the first
is an ordinary, translationally invariant, repulsion between
two particles located ats8 ands; the second, however, rep-
resents the interaction between a particle at positions8 with
the image chargeat 2s of a particle at positions. In other
words, a particle at positions will repel particles around it.
But its image, with respect to the origin, will also repel par-
ticles around the position2s. Notice that the image charge
term depends onA—it increases whenA decreases—but it is
less singular than the direct term, because of the functional
dependence on cosh(s1s8).

So far, we have always restricted ourselves to bulk prop-
erties of the correlations. As we will show in more detail in
the next section, there are some interesting effects in the
correlation function in the center of the spectrum. There,
even the power-law potential fora,1 displays deviations
from the universal WD behavior.

V. MONTE CARLO SIMULATIONS

The statistical properties of the one-dimensional classical
system43 in thermodynamical equilibrium, the probability
distribution of which is given by Eqs.~2.3a! and~2.3b!, can
be conveniently studied by carrying out Monte Carlo~MC!
simulations. The MC method is useful, because it is not re-
stricted to a particular value ofb, as for the method of or-
thogonal polynomials, and it is very accurate in all the re-
gions of the spectrum, in contrast with MFT, which is good
only in the bulk. It also allows the evaluation of important
statistical quantities like the level spacing distribution func-
tion ~LSDF! and the number variance in a straightforward
way. Finally, it can be used to study level statistics, where the
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‘‘particle’’ interaction is more general than the simple loga-
rithmic interaction considered in RMT. These more compli-
cated interactions have been shown to play an important role
in some disordered systems.39

The nature of MC simulations is best illustrated with an
example. Suppose that we want to calculate the mean par-
ticle densityr(e) as a function of the positione. According
to Eq.~2.5!, we need to perform a multidimensional integral,
which up to an overall normalization is equivalent to a ‘‘ther-
mal’’ average over an ensemble of particle configurations.
The MC method replaces this ensemble average with a
‘‘time’’ average, but the time evolution is determined by
equations that are artificial and chosen for convenience. To
calculater(e), one partitions the real axis into bins with
boundariesen determined by

en5nDe, n561,2,3, . . . , ~5.1!

whereDe is the width of the bins. At the end of each time
step~to be defined below!, we obtain an updated configura-
tion $e i%, i51, . . . ,N, and we add one to a bin if a particle
in this configuration lies in it. As ‘‘time’’ progresses, the
number of particles in a bin will become proportional to the
mean density at the position where the bin is centered. For
the evolution density, we have taken a simple Metropolis
algorithm, which works in the following way. At each time
step or sweep, we scan through the particles and attempt to
move each one. Actually, in each sweep, we pickN times
one particle at random in the system, so it is possible that in
one particular sweep, one particle is chosen more than once
and another is not touched. The moving attempt involves
picking at random any position between the particle that pro-
ceeds and the one that follows the particle that we are trying
to move and taking this position as the new attempted posi-
tion. The attempted move is chosen in this particular way
simply to optimize the convergence rate of the algorithm. It
has the important property that if we start with an order
sequence of particles,e1,e2, . . . eN , the sequence remains
ordered in the time evolution. To decide whether or not to
accept the move, we calculate the changeDE to the system’s
energy that would occur if the particle were moved to the
new position. IfDE is negative the move is accepted, and the
particle is given the new position. IfDE is positive, the
move is accepted conditionally. One picks a random number
between 0 and 1 and accepts the move if this number is
smaller than exp(2bDE). Before measuring any quantity, the
system must reach equilibrium and this is obtained by a cer-
tain number of ‘‘warming-up’’ sweeps that reach a ‘‘typi-
cally’’ sampled configuration.

We have carried out simulations over systems with up to
200 particles. We noticed that the simulations are in all cases
very stable even for smallerN, and, therefore, we have typi-
cally worked with systems ofN5100 particles. Equilibration
is usually reached very fast and we have typically used 105

sweeps to warm up the system. The averages are taken over
106 sweeps and the statistics that we are able to obtain are
usually excellent.

To make sure that the method works and is able to give
numerically accurate results we have first studied the density,
two-particle correlation function, spacing distribution, and
particle variance of the three Gaussian ensembles that are

exactly known.3 For these ensembles the MC simulations
reproduce the known result very accurately. For example, in
the calculation ofP(s), the method is able to detect the
small deviation that there is between the exact result and the
Wigner surmise. We now proceed to discuss in detail the
results for the different quantities of interest for the case of
power-law and double logarithmic ensemble.

A. The density of states

The MC evaluation of the average density of statesr(e)
is carried out, as explained in the example above. In Fig. 1,
we plot this quantity for the logarithmic potential, for
A50.5 andb51,2. The case of weak power-law potential,
with 0<a,1, is qualitatively the same.30 The agreement
between the MC result and the MF expressionrMF given in
Eq. ~3.19! is very good, except around the origin, where in
contrast to MFT, the simulations give a sharply picked, but
finite density ate50. For b52, the MC result coincides
with the value obtained by the method of orthogonal
polynomials.44 The first hundred of these for the power-law
potential can be easily generated numerically44 and the den-
sity at e50 obtained from them converges very fast. This
fast N independence of the center of the spectrum is also
seen very well with the simulations and it is an important
property of the particle density for weak confinement. We
refer to it as the ‘‘incompressibility’’ of the core of the
particle-density distribution. In contrast to the case of strong
confinement,V(e);ueua,a>1, where the density at the cen-
ter of the spectrum scales withNa21, for a,1 the confining
potential is too weak to ‘‘compress’’ the particle in the core
region near the origin. After the initial formation of the sharp
but finite peak ate50 ~which happens forN!100), on add-
ing more particles to the system, these always go to the ends
of the distribution instead of spreading homogeneously
throughout the spectrum. The particle density in the core of
the spectrum is almost independent ofN, but depends on the
inverse temperatureb. In the bulk of the spectrum, the den-

FIG. 1. Density of states for the logarithmic potential for
A50.5. The MC results forb51,2 are plotted in a small region
around the origine50 with the MFT density, which corresponds to
b5` and diverges ate50. For b51,2, and 4~not shown!, the
density is finite ate50. All the curves rapidly collapse on top of
each other away from the origin.
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sity decreases like 1/e12a in the N→` limit. Therefore,
translational invariance is broken in the thermodynamic
limit, in agreement with the MFT.

B. The two-level correlation function

The MC evaluation of the two-point correlation function
R2(s,s8), as for any other correlation function, faces the
complication of the breakdown of translational invariance.
Therefore, we need to carry out a numerical unfolding of the
spectrum in order to compare with the classical statistics. We
have considered three different unfolding procedures that can
be used in different circumstances. In the simplest case, we
are interested in thebulkcorrelations. Therefore, the simplest
unfolding scheme consists in carrying out, for each MC con-
figuration generated at ‘‘time’’t, $e i%

t, i51, . . . ,N, the
mapping

$e i%
t→$si%

t, si5sgn~e!E
0

ueu
der~e!MF . ~5.2!

The unfolded configurations$si%
t generated in this way are

then used to measure the correlations, which will be auto-
matically in the right units.

The second method, which turns out to be particularly
useful for the logarithmic potential, consists in performing
the change of variablee→s5s(e) directly in the joint prob-
ability density function,

P ~$e i%!→P̃ ~$si%!}exp@2bH̃~$si%!#, ~5.3!

H̃~$si%!52(
i , j

lnuesi2esj u1(
i
V~esi !

2
1

b(
i
exp$ ln@1/r~esi !#%. ~5.4!

Notice that the one-body confining potential is modified by a
b-dependent term coming from the Jacobian of the transfor-
mation.

Both these two unfolding schemes make use of the MFT
particle density and, therefore, can only be used to study
properties in the bulk. In order to study the correlation func-
tion around the origin, we need a more precise expression for
r(e). Therefore, we carry out the following procedure. The
unfolded two-level correlation function ats50 can be ex-
pressed as

R2~0,s8!5R2~0,es8!. ~5.5!

The functione(s) is now obtained by numerically inverting
s(e)5*0

e^r(e8)&de8, with the densitŷ r(e)& evaluated di-
rectly by the MC simulations.

Once we have taken care of the unfolding, the evaluation
of the two-level correlation functionR2(s,s8) by MC is very
simple: we fix a reference particle ats and then we compute
the ‘‘conditional’’ particle densityr(s8)us of all the remain-
ing particles, with respect to the reference point, using a
partition in bins as explained before.45 In studying bulk prop-
erties, the reference particle can be let free to move, since in
the unfolded coordinates the density is constant. In this case,
s in R2(s,s8) must be interpreted aŝs&. Because of the
particular way of choosing the trial moves adopted here, the

standard deviation from̂s& turns out to be small once the
system has reached equilibrium.

For the power-law potential, the Monte Carlo simulations
show that the two-level correlation functionR2(s,s8) is per-
fectly equal to the WD expression for anya when the refer-
ence particle is in the bulk of the spectrum, in agreement
with the MFT and orthogonal polynomial results. However,
this universality is broken around the origin. In Fig. 2, we
plot R2(0,s) for a50.2 andb52 ~the d function is not
included!. For smalls, R2(0,s) does not follow the classical
universal behaviorsb, but rather starts out likesb/a. Thus,
we have a sort of ‘‘super-Wigner’’ behavior, with stronger
level repulsion at short separation the smallera is. Since the
cluster function must satisfy the normalization sum rule, this
implies a faster decay ofR2(0,s) at large s. Using the
method of orthogonal polynomials, one can show that this
decay goes like 1/s(111/a).44

We now discuss the bulk properties ofR2(s,s8) for the
logarithmic potential. As shown in Fig. 3, the MC simula-
tions confirm fully the surprising result of the bulk break-
down of the translational invariance inR2(s,s8) and the ap-
pearance of the ‘‘ghost’’ correlation hole ats52s8. The
reference particle was let free to move in the positive part of
the spectrum around̂s&524 ~in unfolded coordinates!. Be-
sides the usual correlation hole around this position, another
one appears symmetrically with respect tos50, as if there
was an image of the reference particle, the ‘‘ghost,’’ located
around^s&5224. The contribution of the anomalous part
increases upon decreasingA. For values of the parameterA
not too small, both parts of the cluster functions obtained
numerically are in good agreement with the analytical results
given in Eqs.~4.28! and ~4.29!, as seen in Fig. 4, where the
normal part ofR2 is plotted. However, as one can also see
from the same figure, already forA50.2 the MC result for
the normal part starts to deviate from the analytical formula,
which in fact becomes invalid forA,1/p2'0.1. In this re-
gime, the MC simulations show that the cluster function in-
stead of decaying exponentially at very smalls starts out
more and more flat and in the limit of very smallA, it con-
verges to a box or ‘‘well’’ of width 1/2 and depth (21). A

FIG. 2. The MC two-level correlation functionR2(s850,s) vs s
for the power-law potential, witha50.2, b52. The solid line is
the result of the GUE,R2(r )52@sin(pr)/pr#2. ~We have omitted
the d function at the origin.!
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similar behavior occurs for the anomalous part as well.
Therefore, in theA→0 limit, the cluster function is com-
posed of two rectangular wells centered ats and2s. This
result can also be obtained from the exact solution by Mut-
talib et al.,28 plotting their general expression forR2 , which
remains valid in the regime of very smallA. We conclude
that the correlation functionR(s,s8) of the double logarith-
mic ensemble displays a crossover from WD toward a Pois-
sonic behavior forintermediate A, i.e., 1/p2,A,1, but
never really becomes exactly equal tod(s2s8) as in the
Poisson distribution.

C. The level spacing distribution function

Let us consider a sequence of successive levels
e1<e2< . . . and let S1 ,S2 , . . . be their distance apart,
Si5e i112e i . The average value ofSi is the mean level
spacingD. We suppose for the moment that the average
density and, therefore,D5r215const. We further define the
relative spacingss i5Si /D. The nearest neighbor LSDF,
P(s), is defined by the condition thatP(s)ds is the prob-
ability that any s i will have a value betweens and
s1ds.

If the energy levels are completely uncorrelated, one can
immediately prove that the LSDF is the Poisson distribution,

Pp~s!5exp~2s!. ~5.6!

In contrast, for a large class of chaotic or disorder systems
where the energy levels are correlated,P(s) is very well
described by the so-called Wigner surmise,46

Pw~s!5
ps

2
expS 2

p

4
s2D . ~5.7!

The Wigner surmise vanishes at short separations, show-
ing the phenomenon of level repulsion, typical, for example,
for extended wave functions of a disordered conductor. The
Poisson distribution, in contrast, allows level degeneracy, as
in the case of an Anderson insulator, where the wave func-
tions are localized and do not overlap. Notice thatPw(s)
falls down faster at larges thanPp(s). This is again due to
level repulsion which, in a finite energy window, prevents
the appearance of large energy gaps with no levels in them.

For the Gaussian ensembles one can derive exact expres-
sions for P(s), which turn out to be very close but not
identical to the Wigner surmise.3 All the RME’s with loga-
rithmic interaction and strong confinement belong to the GE
~or WD! universality class and thus theirP(s) is also very
close to the Wigner surmise.

The analytical determination of the LSDF is not straight-
forward. Forb52, the functionP(s) can be expressed in
terms of a determinant of the two-level cluster function,3

which, in general, must be evaluated numerically.28 Alterna-
tively, one can use MFT,36,40,47but this method has not been
extended yet to the potential~2.12!. On the other hand, the
LSDF is easily calculated by MC. In terms of the plasma
model,P(s) is defined, once the system has been unfolded,
as the probability density of finding the nearest adjacent par-
ticle at a distances from a given reference particle. The
LSDF obviously coincides with the two-level correlation for
very smalls.

From the results of the two-level correlation function, we
expect the LSDF for the power-law potential to be identical
to the Wigner surmise in the bulk, with possible deviations at
the origin. The MC simulations confirm fully these expecta-
tions. To calculate the unfolded spacing around the origin,
we fix a particle ate50 and we perform the unfolding by
computing

P~s!5F P~e!

^r~e!&G
e5e~s!

, ~5.8!

where the functione(s) is again obtained by numerically
inverting s(e)5*0

e^r(e8)&de8. The result is shown in Fig.
5, where we plot the LSDF fora50.2 andb52. The clas-
sical spacing for the Gaussian orthogonal ensemble~GOE!
(a52) is also plotted. The figure clearly shows the devia-

FIG. 3. MC result for the two-level correlation function for the
logarithmic confinement, Eq.~2.12!, showing the existence of a
‘‘ghost’’ hole at s852s. The simulations are performed forb52
andA50.5, withN5101 particles. The reference particle is mobile
around s'24.4. The solid line in the inset corresponds to Eq.
~4.29!.

FIG. 4. MC results for the normal part ofR2(n)(s,s8) b52,
plotted together with the corresponding exact expressions, Eq.
~4.28!, and with the GUE curve as a comparison. Notice the good
agreement at smallus2s8u between numerical and exact results for
A50.5, which becomes worse forA<0.2. The fluctuations at
us2s8u.1, more visible forA50.2, are due to finite-size fluctua-
tions of the exact density, which the unfolding procedure via the
MFT density cannot cure. These fluctuations are much smaller for
b51.
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tions of P(s) from the classical result. In particular, for
small s, the LSDF does not follow the universal behavior
sb of the Wigner surmise, but starts out likesb/a. This is the
same ‘‘super-Wigner’’ behavior already found for the two-
point correlation function.

In Fig. 6, we show thebulkLSDF for the double logarith-
mic potential in the case of the orthogonal ensemble. We plot
P(s) for several values of the parameterA, together with
the distribution of the Gaussian orthogonal ensemble and
Poisson distribution for comparison. We see that, for those
values ofA,1 for which the two-particle correlation func-
tion displayed a deviation from the classical GOE behavior,
we have a corresponding deviation from the classical LSDF
toward a more Poisson-like behavior.P(s) still starts out
linearly at smalls, but the initial slope increases upon de-
creasingA, as a result of a smaller level repulsion. The peak

of the distribution shifts froms'1 to smaller values'A.
For large separations, the decay is also slower than the GOE
result. In fact, as we show in the inset, plotting lnP(s) vs
s@1, we can fit rather well the curves with straight lines,

lnP~s!;2a~A,b!s, s@1 , ~5.9!

where the constanta(A,b).1 decreases with increasingA.
Notice that all curves cross at the same point ats'2. Simi-
lar features and deviations from the Gaussian ensemble are
obtained also from the other two symmetries, unitary and
symplectic.

The crossover toward the Poisson distribution stops, how-
ever, at aroundA'0.2. We have shown that forA,0.2 the
correlation function, instead of becoming closer and closer to
a d function whenA is further decreased, turns around and
for very smallA it approaches instead a square well of width
1/2. Something similar happens for the LSDF. We can al-
ready see in Fig. 6 that forA50.1 the initial slope of the
distribution has stopped increasing, and the height of the
peak is getting close to one. For yet smaller values ofA ~not
shown in the picture!, the initial slope startsdecreasingand
the LSDF, instead of approaching the Poisson distribution,
will tend eventually to a single narrow peak of height@1,
centered ats'1.

D. The number variance

So far, we have considered the correlation functions that
probe essentially the local fluctuations of a small number
n.1 of energy levels. We now turn to the variance
var(^n&)5Š(n2^n&)2‹5^n2&2^n&2 of the number of levels
in an energy window that contains 1!^n&!N on the aver-
age. The number variance is a statistical quantity that pro-
vides a quantitative measure of the long-range rigidity of the
energy spectrum.

For the Poisson distribution, the levels are uncorrelated
and there are large level-number fluctuations, leading to a
linear variance,

varp~^n&!5^n&. ~5.10!

On the other hand, the level correlations in the WD statistics
make the spectrum more rigid and the number variance
grows onlylogarithmically,

varw~^n&!5
2

p2b
ln^n&1Cb1O~1/̂ n&!, ~5.11!

whereCb is a constant of order 1, which depends on the
symmetry.

The MC results for the power-law confinement show that
Eq. ~5.11! is perfectly satisfied, for everya, in the bulk,
namely, when the energy windows do not contain the origin
with its nonuniversal correlations. On the other end when the
energy windows are centered at the origin, the ‘‘super-
Wigner’’ correlations present ate50 for a,1 manifest
themselves making the constantCb in the number variance
a dependent. As we show in Fig. 7, forb51, C1 decreases
with a, whena,1, because there is more level repulsion in
the area of the origin and, therefore, more level rigidity in the
overall spectrum. Fora>1, the universal value of the
Gaussian ensembleC1'0.4420 is recovered. Thea depen-

FIG. 5. MC result for the LSDF in the middle of the spectrum of
the power-law potential witha50.2 andb52. For s→0, P(s)
vanishes likesb/a5s10. The exact GUE distribution is also plot-
ted.

FIG. 6. MC results for the bulk LSDF of the logarithmic poten-
tial with b51 and different values ofA showing a crossover be-
tween the GOE and the Poisson distributions, also plotted. For
A,0.2, the LSDF stops approaching the Poisson function and tends
to a singled function peak ats'1. Shown in the inset is the large
s behavior ofP(s). Notice the logarithmic scale for they axis.
The two dashed straight lines are fitting functions of the form
exp„2a(A,b)s….
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dence ofCb is, however, the only deviation from universality
in the number variance, the logarithmic dependence being
unchanged for the power-law confinement.

We now come to the case of the logarithmic potential. We
have seen that the presence of the ‘‘ghost’’ correlations break
translational invariance in the two-point correlation function.
It was shown in Ref. 31 that, due to such a breakdown of
translational invariance, the number variance for the loga-
rithmic confinement depends on the position of the energy
window in a very essential way. If the energy window does
not contain the origin, then the effect of the ghost peak is not
felt and the system is Poisson-like, with translationally in-
variant correlations~in the energy range considered! given
by Eq. ~4.28!. In this case, the number variance is also
Poisson-like and increaseslinearly, as one expects in the
presence of exponentially decaying correlations. The coeffi-
cient of the linear termh is less than 1, and it is given by Eq.
~4.34!. Here,h is nonzero, because the normal part alone of
the correlation function fails to satisfy the normalization sum
rule. It increases upon decreasingA, because the ‘‘spectral
weight’’ of the normal part of the cluster function~4.31!
decreases. However, if the energy windows are symmetric
with respect to the origin, the ghost correlations become ef-
fective and their contribution allows the sum rule to be sat-
isfied. Therefore, the coefficient of linear termh in the vari-
ance vanishes in this case.

Indeed, the Monte Carlo simulations show a dramatic dif-
ference in the level-number variance in these two cases. In
Fig. 8, we show the number variance for an energy window
centered at a point in the bulk, excluding the origin. The
variance grows linearly and the coefficient of the linear term
is in good agreement with Eq.~4.34! and with the result
obtained for the exactly soluble models by Bleckenet al.29

On the other hand, Fig. 9 shows the variance calculated for
symmetric energy windows, containing the origin. The linear
term is absent and the variance isconstantfor all integers
^n&@1. Thus, despite the smaller level repulsion, the overall
‘‘level’’ rigidity is even higher than for the classical RMT.

VI. DISCUSSION AND CONNECTION WITH THE
CRITICAL LEVEL STATISTICS
OF THE ANDERSON MODEL

Let us first summarize the main results of our analysis of
the generalized RMT with soft confinement. We have seen
that for the very weak logarithmic potential,
V(e);A ln2ueu, the local level fluctuations in the bulk of the
spectrum display a crossover from the WD to a more
Poisson-like behavior, when the parameterA is decreased. In
particular, the two-level correlation function, in the bulk of
the spectrum far from the origin, decays exponentially at
large distances. The spacing distribution function still van-
ishes like sb at short separation, but the initial slope is
steeper, implying less level repulsion. The tail of the distri-
bution decays like exp„2a(A,b)s… with a(A,b).1, inter-
mediate between the WD surmise and the Poisson function.
The level-number variance, when calculated within energy

FIG. 7. The MC level-number variance vs^n& for the power-law
potential, forb51 and different values ofa<2. The dashed curve
is the GOE result given in Eq.~5.11!. The energy windows contain-
ing ^N& particles are centered at the origine50. The nonuniversal
‘‘super-Wigner’’ behavior of the correlations ate50 is responsible
for thea dependence of the constant term in the variance, which is
otherwise equal to the one of GOE.

FIG. 8. The relative variance var(^n&)/^n& vs ^n& for the loga-
rithmic potential for different values ofA andb. The energy win-
dows are centered in the bulk of the spectrum and the variance is
linear with ^n&. The constant straight lines are the slopes of the
linear term of the exact solution of Ref. 29, forb52 and corre-
spondingA.

FIG. 9. The MC variance vŝn& for the logarithmic potential for
the three symmetries andA50.5. The energy windows are now
centered at the origin. Since the sum rule Eq.~4.32! is satisfied, the
linear term in the variance~see Fig. 8! vanishes and the system
becomes even more rigid than the GE.

3726 53C. M. CANALI



windows in the bulk of the spectrum that exclude the origin,
is also Poissonian, increasing linearly with the average num-
ber of levels^n&. We saw, however, that the Poisson limit
cannot be reached fully within this ensemble. The nonuniver-
sal behavior of the RME with logarithmic confining potential
has been attributed to a spontaneous breaking of theU(N)
invariance. For steeper confining potentials,V(e)5ueua, no
deviation from the WD statistics occurs in the bulk of the
spectrum, the only small deviations from universality occur-
ring at the center.30

The question that we now want to address is as follows:
does the nonclassical~namely, non-WD! behavior of the
RME with double logarithmic confinement have anything to
do with the universal energy-level statistics of the Anderson
model at the critical point? The first point that needs address-
ing, before any comparison of the different statistical prop-
erties is attempted, is the way in which nonuniversality
comes about in the invariant RMT with weak confinement.
We have seen that the essential ingredient for obtaining a
deviation from the WD statistics is the strong energy depen-
dence of the averaged level density: even in theN→` limit,
^r(e)& is a rapidly varying function ofe everywhere in the
spectrum. In fact, one cannot even define a constantlocal
density, since the relative variation of^r(e)& over an energy
range equal to the mean level spacing is of order 1. This is at
odds with the well-known result for the density of states in
the Anderson model: in that case,r(e) is constant over a
large energy region around the center, and, moreover, it is a
noncritical quantity, that is, it does not exhibit any drastic
change at the critical point. One can reply to this serious
objection by recalling the similarly well-known fact that
quite often complex systems with differentglobal statistical
properties~such as the density of levels! have the samelocal
level fluctuations34 and vice versa. The most famous example
is the GE itself: its semicircle law for the density of states is
certainly not obeyed by any of the spectra of the heavy nu-
clei or other complex systems; yet, its correlations are very
universal and describe accurately the local statistical proper-
ties of these systems. Something of this sort might happen in
our case. In this respect, the existence of another ensemble
@namely the broken symmetry model of Eq.~1.1!#, where the
level density is constant in the thermodynamic limit and nev-
ertheless the local level correlations are the same as the RME
with weak confinement, is of great importance. Thus, there
exist at least two RME’s, having very different global statis-
tics, the local statistics of which belong to the same univer-
sality class. We also must emphasize again that the asymp-
totic logarithmic behavior for the confining potential of the
invariant RME has been suggested by studies on transfer
matrix models of disordered conductors through the maxi-
mum entropy principle.25,32,33In the transfer matrix formal-
ism, one can express the conductanceg in terms of the ei-
genvaluesxi of the matrixX5TT†1(TT†)2122I , whereT
is the transfer matrix andI the unit matrix

g5(
i51

N
1

11xi
. ~6.1!

Localization appears in the presence of exponentially large
eigenvaluesxi . Therefore, a simple maximum entropy prin-
ciple can provide, through the average densityr(x), infor-

mation about the localization of the wave functions, in con-
trast to what happens to the Hamiltonian matrix. Here, we
have assumed that aU(N) invariant RMT for the Hamil-
tonian matrix can be constructed from the confining potential
derived from the corresponding transfer matrix. The hope is
that such a RMT will generate the correct local energy-level
statistics, despite the average energy density itself not being
well represented.48 This procedure is probably too naive, but
it is clearly the simplest and we will discuss its implications.

The conjecture of the existence of universal statistical
properties at the metal-insulator transition was put forward
by Shklovskii et al.,13 on the basis of numerical studies of
the spacing distribution function~LSDF!, which turned out
to be scale invariant at the critical point. In a recent work,
Kravtsovet al.21,22have carried out an analytical study of the
critical statistics of the Anderson model. By using the ana-
lytical properties of the diffusion propagator and certain scal-
ing relations valid at the mobility edge, they have proved that
the two-level correlation function has the following asymp-
totic behavior:

R~s,s8!5Cb21us2s8u221g, us2s8u@1 , ~6.2a!

g512~nd!21,1 , ~6.2b!

whereC is a positive constant, whileg is a universal critical
exponent related to the critical exponentn of the correlation
lengthj.

However, the level-number variance at the critical point
contains two terms,49–51

var~^n&!5h^n&1b^n&g, ~6.3!

whereh,1 andb are some universal positive constants. The
power-law term originates directly from the asymptotic
power-law tail in the critical two-level correlator and, thus,
reflects the critical dynamics. But there is also alinear
term,49–51 which had been already predicted by Altshuler
et al.52 Formally the origin of this term is again due to the
violation of the sum rule,~4.34!, by the critical two-level
correlation function.49–51The physical meaning of this term
is not yet understood. Its existence, however, implies that the
dominant term in the variance at the critical point is still
Poissonian, albeit with coefficient less than 1. Notice that the
knowledge of the two-level correlation function is not suffi-
cient to develop a complete statistical description of the en-
ergy level at the transition. For example, the LSDF cannot be
found without further statistical assumptions. By mapping
the critical energy levels into a plasma model andassuming
the existence of a particular pairwise interaction,53 one can
use the analytical result of Eq.~6.2a! for the two-level cor-
relation function to derive explicitly the effective repulsive
interaction among the levels.40 Once the resulting interaction
is known, the asymptotic form of the LSDF can be evalu-
ated, obtaining the result40

P~s!;exp~2hgs22g!, ~6.4!

where hg is a positive constant. Despite some numerical
simulations that seem to support this finding~but see below!,
this approach has the serious drawback that it gives rise only
to the second term of Eq.~6.3! for the level-number variance,
the linear term being absent and totally unexplained.
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Following the work by Shklovskiiet al., several other
groups have studied numerically the energy-level statistics at
the critical point. In all cases, the statistical fluctuation prop-
erty that is easiest to study numerically, namely, the LSDF,
shows scale invariance and a behavior intermediate between
the WD surmise and the Poisson function. There seems to be
agreement also on the linear start ofP(s) at smalls, with a
slope steeper than the WD function for the metallic regime.
However, the larges tail behavior is more controversial. Ref-
erences 13 and 18 claim thatP(s) has a Poissonian decay at
larges,

P~s!;exp~2as!, s@1 , ~6.5!

with a'1.9, whereas Refs. 16 and 15 suggest a behavior in
agreement with the plasma model result of Eq.~6.4!. We
would like to emphasize that the numerical results published
in Ref. 18 explicitly show good statistics for large values of
s, and, therefore, we believe that they are reliable to extract
the asymptotic behavior ofP(s).

The second important result provided by the numerical
simulations is the existence of a linear term in the variance,
as in Eq.~6.3!. These calculations do not exclude the pres-
ence of a power-law term of the kindh^n&g, which is, how-
ever, difficult to detect and quantify because of the presence
of the dominant linear term.17 The coefficient of the linear
term is shown to beh'0.27 in Ref. 18 and 0.30 in Ref. 17.

The RME with weak confinement that we have consid-
ered in this paper is able to reproduce two of the main fea-
tures seen in the numerical simulations of the critical statis-
tics: the overall behavior ofP(s)—with the linear rise at
s!1 and the exponential decay ats@1—and the linear
dependence of the number variance. In Fig. 10, we plot the
LSDF of the RME with logarithmic potential for
A50.4,b51, together with the critical LSDF of the Ander-
son model from Ref. 18. The agreement between the two
curves is spectacular in a very large energy range, where
P(s) varies by five orders of magnitude. Notice in the inset
of the figure the behavior for larges of the tail of
ln@P(s)#, which has apparently a linear slope. The parameter

Ac'0.4 identifies, among all the possible members of the
family of RME with logarithmic confinement, the ensemble
which has the closest LSDF to the critical statistics.

If we now compute the coefficienth of the linear term in
the variance for the RME withAc'0.4 ~see Fig. 8!, we ob-
tain h'0.32, which is consistent with the numerical results
from the exact diagonalizations.17,18 Thus, the RME with
logarithmic confinement is able to reproduce quantitatively
the shape of the critical LSDF whenA5Ac and at the same
time provides an accurate estimate of the leading order term
of the number variance. In some sense, the ‘‘residual Pois-
sonian’’ properties of the critical statistics are well repro-
duced by this generalized RMT. The RMT does not provide
the asymptotic power-law behavior~6.2a! of the two-level
correlation function found analytically, which, on the other
hand, is also difficult to extract by direct numerical diagonal-
izations with reliable accuracy.20 Clearly more work is nec-
essary to determine if the good agreement shown here be-
tween the RME with weak confinement and the critical
statistics is more than a furtuitous coincidence. It is, how-
ever, interesting and important that some of the properties of
the correlations at the mobility edge can be correctly repro-
duced by such a simple ensemble.

VII. CONCLUSIONS

In this paper, we have studied in detail the properties of
families of RME that are invariant under similarity transfor-
mations, but are characterized by a generalized level confine-
ment. We have shown that the level statistics are affected by
the confining potential when this is very soft. In particular,
for a squared logarithmic potential, the statistical bulk prop-
erties are nonuniversal and deviate significantly from the
Wigner-Dyson statistics of the Gaussian ensembles, exhibit-
ing a crossover toward a more Poissonian behavior when an
internal parameter is decreased. TheU(N) invariant RME
with logarithmic confining potential belongs, together the
RME with a symmetry breaking term@see Eq.~1.1!#, to a
new universality class, distinct from Wigner-Dyson univer-
sality of classical RMT.

We have shown that the nonuniversal behavior of the two-
level correlation function for these RME’s can still be ob-
tained within Dyson’s mean-field theory, generalized to the
case of weak confinement. We have performed Monte Carlo
simulations to calculate several important statistical proper-
ties of the generalized RME that probe both short- and long-
range correlations.

The statistical properties of the RME with logarithmic
confinement have strong similarities with the universal
energy-level statistics of disordered conductors at the metal-
insulator transition. In particular, the probability distribution
of the level spacings for a three-dimensional Anderson
model at the critical point can be very well fitted, throughout
a wide energy range, by the corresponding RME function for
one particular choice of the internal parameter. Then for the
samevalue of the parameter, this RME predicts a linear be-
havior for the level-number variance, with a coefficient of
proportionality close to the value obtained from numerical
diagonalizations of the Anderson model at the critical point.

FIG. 10. LSDF of the RME with logarithmic confinement for
b51, A50.4, plotted together with the energy LSDF of the three-
dimensional Anderson model at the metal-insulator transition, taken
from Ref. 18. The inset shows the larges behavior in logarithmic
scale for they axis. A straight line is the best fit for both curves.
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