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We map out the phase diagram of the one-dimensional Anderson lattice by studying the ground-state
magnetization as a function of band filling using the density matrix renormalization group technique. For
strong coupling, we find that the quarter-filled system has anS50 ground state with strong antiferromagnetic
correlations. As additional electrons are put in, we find first a ferromagnetic phase, as reported by Mo¨ller and
Wölfle, and then a phase in which the ground state has total spinS50. Within this S50 phase, we find
Ruderman-Kittel-Kasuya-Yosida oscillations in the spin-spin correlation functions.

I. INTRODUCTION

In recent years, heavy fermion materials have attracted a
lot of interest, from both the experimental and theoretical
points of view. These systems, usually rare earth or actinide
compounds, show a variety of unusual properties. At high
temperatures (T5100 K!, they behave as metals with weakly
interacting magnetic moments. When the temperature is low-
ered, their behavior is consistent with the development of a
narrow band of conduction electrons with very large effec-
tive massesm* , up to two or three orders of magnitude
larger than the bare electron mass.1

The Anderson lattice Hamiltonian is believed to contain
the essential physics needed to describe the low temperature
properties of heavy fermion materials. It considers a local-
ized orbital at each lattice site that hybridizes with an ex-
tended band of conduction electrons. Double occupation of
the localized orbital is penalized by a strong Coulomb repul-
sionU.

Heavy fermions systems exhibit different kinds of ground
states: antiferromagnetic, superconducting, paramagnetic, or
semiconducting.1 Therefore, it is important to investigate the
magnetism of the ground state of the Anderson lattice as a
function of the band filling.

Previous studies of this model have shown somewhat con-
tradictory results regarding the magnetism of the ground
state. Using the Gutzwiller approach, Rice and Ueda2 studied
theU5` case in which doubly occupied states of the local-
ized orbital are forbidden. They found that when the energy
of the localized orbital is well below the Fermi surface, there
is always a ferromagnetic instability~assuming no orbital
degeneracy!. However, they only considered uniform mag-
netic states in their solution. In contrast, the standard mean-
field slave boson treatment of the problem3 gives a paramag-
netic solution for any filling in theU5` case. Reynolds,
Edwards, and Hewson4 reformulated the Gutzwiller ap-
proach using the Kotliar and Ruckenstein slave boson treat-
ment. They also found that a large region of the parameter
space has a ferromagnetic ground state, but they concluded
that the Gutzwiller solution may be too biased towards the
magnetic state.

Möller and Wölfle5 used the Kotliar and Ruckenstein
slave boson treatment to study the one-dimensional Ander-
son lattice. They concentrated on the symmetric case6 in
which the energy of the localized orbital« f is 2U/2, and
allowed for the possibility of nonuniform magnetic states.
They found that in the strong-coupling case~largeU! near
quarter-filling there is a very narrow antiferromagnetic re-
gion. As they increased the filling they found a transition to a
ferromagnetic state, and for even larger fillings they found a
ground-state magnetization with an incommensurate wave
vector q. The wave vectorq increases with filling and
reachesp for the half-filled system, corresponding to anti-
ferromagnetic order.

There are also some rigorous results regarding certain
special cases. It has been shown that the ground state of the
symmetric Anderson lattice Hamiltonian is a singlet in the
half-filled case7 and has short-range antiferromagnetic
correlations.8 Also, when the number of electrons is equal to
the number of sites plus one~quarter-filling with one addi-
tional electron!, the ground state was shown to be ferromag-
netic for sufficiently largeU in Ref. 9.

All the methods described above rely on some approxi-
mation scheme to solve the Hamiltonian. For example, in the
slave boson techniques, a set of auxiliary bosons is intro-
duced, in addition to the original fermions. In order to elimi-
nate the nonphysical states of the enlarged Fock space, it is
necessary to impose constraints on the boson operators.
However, within a mean-field treatment, the constraints are
not satisfied at each lattice site but only on average for the
system as a whole. In the Gutzwiller approximation, the
strong correlations are taken into account by renormalizing
the hybridization matrix element by a factor that depends on
the spin and on the average number off electrons per site.

In this work we use the density matrix renormalization
group ~DMRG! method10 to study the phase diagram of the
one-dimensional Anderson lattice model. The method gives
quite accurately the properties of the exact ground state and
low-lying excited states on a finite cluster, but for larger
lattice sizes than, for example, Lanczos exact diagonalization
calculations. The advantage over the analytic studies men-
tioned above is that the DMRG takes into account quantum
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fluctuations, whereas the analytic methods described above
treat the system within mean-field approximations. In the
past, most numerical studies of the one-dimensional Ander-
son lattice have been limited to the symmetric half-filled
case. Here we consider fillings between quarter-filling and
half-filling. We investigate the symmetric case using chains
of 8 and 16 sites and theU5` case with lattices of 8 sites.
Our results in the strong-coupling regime are in good agree-
ment with Ref. 5. Near quarter-filling we find anS50
ground state. As electrons are added we find first a ferromag-
netic region, and then once again anS50 ground state for
still larger fillings. In order to determine the nature of the
magnetic correlations in the phases withS50, we examine
the spin-spin correlation function.

Our results are consistent with the rigorous results de-
scribed above and also with the phase diagram obtained in a
numerical study of the Kondo lattice model.11 Since the sym-
metric Anderson Hamiltonian can be mapped into the Kondo
Hamiltonian12 when the hybridization between thef band
and the conduction band is small compared toU, the phase
diagrams should be similar in this regime.

This work is organized as follows. We briefly describe the
one-dimensional Anderson lattice Hamiltonian and discuss
some of its properties in Sec. II In Sec. III we present the
numerical results. We study chains of 8 and 16 sites for the
case in which« f52U/2 in Sec. III A, and draw a phase
diagram based on the total spin of the ground state and the
nature of the spin-spin correlation functions. In Sec. III B we
construct the phase diagram forU5` using results on
chains of 8 sites. Our conclusions are given in Sec. IV.

II. THE PERIODIC ANDERSON HAMILTONIAN

We consider the standard periodic Anderson Hamiltonian
in one dimension:
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wherea is the lattice constant. Therefore, when the number
of electrons is between quarter-filling and half-filling, the
lower band is occupied but the upper band is always empty,
and the ground state is paramagnetic for any filling.

Now consider the case when thef level is well below the
conduction band and the Coulomb repulsionU is large. With
no hybridization (V50), the ground state at quarter-filling
has one electron at eachf site and there is degeneracy in the
spin configurations. WhenV.0, exchange interactions re-
move this degeneracy. It can be shown using perturbation
theory that the effective interaction between neighboring
sites favors antiferromagnetic ordering of neighboringf
electrons.5,13 The relevant exchange process is sixth order
and involves anf electron hopping to the conduction band,
then to a nearest-neighbor conduction site and then into thef
orbital on that site. In the intermediate state, thef orbital is
doubly occupied, which is only possible if the spins of the
electrons are opposite. This leads to an effective antiferro-
magnetic interaction.

When the filling is increased slightly, the additional elec-
trons go into the conduction orbitals because of the strong
Coulomb repulsionU in the f orbitals. In this case, there is
an on-site antiferromagnetic correlation between the electron
in the conduction orbital and the one in thef orbital, favor-
ing a local singlet. To optimize the kinetic energy of the
conduction electrons, it is favorable for thef electrons to
have their spins oriented in the same direction.5,9 Therefore,
if there areNc conduction electrons compensating thef
spins, one expects a ferromagnetic ground state with
S5(N2Nc)/2. When this value ofS is realized, we will call
it completeferromagnetism. If the value ofS we find is
smaller than the complete value, but still greater than the
minimum ~0 or 1/2!, then we will refer to it asincomplete
ferromagnetism, meaning that not all the uncompensatedf
electrons are aligned. These two effects give rise to a com-
petition between ferromagnetic and antiferromagnetic order-
ing near quarter-filling.5

On the other hand, when the filling is further increased in
the strong-coupling case, the interaction betweenf electrons,
mediated by the Fermi sea, starts to play an important role.
This is the well-known Ruderman-Kittel-Kasuya-Yosida14

~RKKY ! interaction that induces correlations with wave vec-
tor q52kF between thef electrons, wherekF is the Fermi
wave vector of the noninteracting (V50) Fermi sea of con-
duction electrons.

For simplicity, we concentrate here on two particular
cases of the Anderson Hamiltonian: the symmetric case6 in
which « f52U/2 and theU5` case. This reduces the num-
ber of independent Hamiltonian parameters by one. In the
symmetric case, strong coupling~largeU! means that thef
level is far below the conduction band. Therefore we expect
to find a competition between antiferromagnetic and ferro-
magnetic correlations near quarter-filling and to find RKKY
correlations for larger fillings. For smallU, we expect a
paramagnetic ground state. In theU5` case we set thef
level « f to be less than or equal to 0. Again, when« f falls
below the conduction band, we expect competition between
antiferromagnetic and ferromagnetic correlations near
quarter-filling, and RKKY interactions near half-filling.
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III. RESULTS

A. The symmetric case

We first consider the symmetric case,« f52U/2. We fix
t50.5, V50.375 and varyU from 0 to 6~all energies are in
units of 2t, which is half the bandwidth!. This choice of
parameters allows us to do a quantitative comparison with
Ref. 5. We use the DMRG technique10 to find the energies
and equal-time correlation functions of the ground state and
low-lying states on finite lattices. While this technique gives
energies that are, in principle, variational, it has proven to
give quite accurate results for one-dimensional~1D! quan-
tum lattice systems. The method provides a controlled way
of numerically diagonalizing a finite system within a trun-
cated Hilbert space. One can increase the accuracy by in-
creasing the number of states kept, and can examine the con-
vergence with the number of states. Here we typically keep
up to 150 to 200 states per block, although in the numerically
more difficult cases, such as the calculation of the correlation
functions for the 16 site chains, we keep up to 400 states.
Truncation errors, given by the sum of the density matrix
eigenvalues of the discarded states, vary from 1025 in the
worse cases to 1029 in the best cases. This discarded density
matrix weight is directly correlated with the absolute error in
the energy. Since the method is most accurate for a given
amount of computational effort when the system has open
boundary conditions~i.e., no nearest-neighbor connection
between site 1 and siteN!, we apply open boundary condi-
tions here.

Within the DMRG method, we fix the number of electrons
Nel and thez component of the total spin of the systemSz
and find the ground state within this subspace. In order to
determine the nature of the ground state, we would like to
determine the total spin,S. For a ground state of a given
Sz , there are several possible values of the total spinS
(Sz<S<Nel/2). In order to establish the value ofS, we cal-
culate the mean value of the operatorS2 in the ground state
with the lowest possibleSz ~0 or 1/2 according to whether
Nel is even or odd!. In this way we can be sure that we are
considering all the possible values ofS. Since
^S2&5S(̇S11) ~setting\51), we can deduce the value of
S. For example, for 8 sites withU54 andNel59, we obtain
^S2&515.748 for the Sz51/2 ground state, implying
S57/2.

In some cases, states with different values ofS can be
close in energy. When this happens, the wave function ob-
tained for the ground state with a givenSz can be composed
of a mixture of states with two or moreS values, rather than
having a definite value ofS. This occurs mainly for longer
chains (N>16), for which the numerical accuracy is lower
and the states are closer together in energy. In these cases,
although we cannot immediately determine the value ofS,
we can conclude that it is not the smallest possible value. We
can then study states with higher values ofSz , for which the
Hilbert space is smaller~there are fewer values ofS allowed!
and therefore there is less mixing. Also, since we keep the
same number of states in a smaller Hilbert space, the numeri-
cal accuracy is higher. For example, on a 16 site lattice with
U52 andNel522, we obtain^S2&525.38 for the lowest
Sz50 state. This indicates theS is likely to be higher than 3
but it could be either 4 or 5. We then consider the lowest

energySz52, 3, 4, and 5 states, and obtain^S2&526.39,
28.35, 29.97, and 30.00, respectively. The energies in all
cases are degenerate to within the estimated accuracy of the
calculation. Therefore, we conclude thatS55 for this case.

In Fig. 1 we present our results for the spinS of the
ground state of the 8 site chain, showing the number of elec-
trons on the horizontal axis andU on the vertical axis. At
quarter-filling (Nel5N58), we find the ground state always
hasS50. Also, forU50 orU small, we find that the ground
state is paramagnetic at all fillings, as predicted by the quali-
tative picture given in Sec. II. ForU>2, we find a narrow
ferromagnetic region slightly above quarter-filling~enclosed
with a solid line as a guide to the eye!. We circle the cases of
completeferromagnetism as defined in the preceding section.

For larger fillings, we find anS50 ground state for all
couplingsU. However, when the number of electrons is odd
we obtainS53/2 and notS51/2 as one would expect. We
attribute this to a finite size effect for the following reason: if
we consider chains with 16 sites with the same density of
electrons~for example,U54 with 22, 26, 30 electrons!, we
find S50 in the ground state. This alternation ofS50 and
S53/2 states was also observed in Ref. 13 in the context of
the phase diagram of the Kondo lattice model. TheS53/2
state appears when there is an odd number of electrons in the
conduction band, so that one of the conduction energy levels
has a single electron. Thef electrons will then interact
mainly with the single unpaired electron and will tend to
align ferromagnetically.11 Roughly speaking, for anf elec-
tron to interact with one electron of the doubly occupied
conduction band and produce a spin flip with energy gain
Jeff , one conduction electron needs to hop to a higher energy
level. When the effective Kondo coupling,Jeff ~given by the
Schrieffer-Wolff transformation12!, is less than the spacing of
the conduction electron energy levels, thef electrons can
only couple with the unpaired conduction electron. In fact, as
Jeff decreases, this effect becomes more important and, pre-
sumably forJeff small enough, the ground state should have
the maximum value,S5(N21)/2. However, in the infinite
system there is no finite separation between conduction en-
ergy levels, and the ground state should be paramagnetic for
any value ofJeff .

FIG. 1. Values of the spinS for different values ofU andNel in
the ground state for 8 site chains. Parameters are« f52U/2,
t50.5, andV50.375. There is a narrow ferromagnetic region near
quarter-filling ~enclosed by a solid line!. Complete ferromagnetic
states are circled.
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In order to better understand the nature of the correlations
in the antiferromagnetic phase at quarter-filling and the tran-
sition to the ferromagnetic phase as the filling is increased,
we have also carried out calculations on a 16 site lattice. At
quarter-filling, the ground state isS50 for all theU values
we considered, but asU increases there is an onset of short-
range antiferromagnetic correlations. In Fig. 2 we plot the
f -spin–f -spin correlation function at quarter-filling for dif-
ferent values ofU. ForU50, the correlations are very small
and always negative. AsU increases, they alternate in sign
and increase in amplitude. This result is consistent with Ref.
5 which found a narrow antiferromagnetic region near
quarter-filling. For the fully interacting system in 1D, treated
exactly by the DMRG, quantum fluctuations destroy the
long-range antiferromagnetic correlations found in the mean-
field slave boson calculations, but short-range antiferromag-
netic correlations remain.

For U52, 3, 4, and 6, we map out the extent of the fer-
romagnetic phase by increasingNel until the ground state
becomes paramagnetic. We plot the resulting phase diagram
in Fig. 3. Here ‘‘C’’ denotes the states with complete ferro-
magnetism@S5(Nel2Nc)/2# and ‘‘I ’’ denotes the states with
incomplete ferromagnetism@S,(Nel2Nc)/2 but larger than
the lowest possible value#. The states of incomplete ferro-
magnetism in the boundary region between the ferromag-
netic and antiferromagnetic phases suggest that the ferro-
magnetic order parameter may go to zero continuously,
implying a second order phase transition.

For theU56 andU54 points withNel520, theU53,
Nel522, and theU52, Nel518 points in Fig. 3, the differ-
ence in energy between theS50 andS51 states is of the
order of the numerical accuracy, making it hard to determine
the total spin of the ground state. However, we include these
points in the paramagnetic region because anS51 ground
state, although still ferromagnetic, indicates a very strong
suppression of the ferromagnetism, and because the ground
state is paramagnetic at the same parameters and average
fillings in the 8 site chain. Also, forU52, Nel519, and
Nel523 the states are also very close in energy and it is very
hard to establish the value ofS in the ground state. However,

we can establish thatS is greater than 1/2 and that is smaller
than (N2Nc)/2, so we list these points as incomplete ferro-
magnetism.

By comparing the results of 8 and 16 site chains for the
same density of electronsn5Nel /N, one can see that the
cases of complete ferromagnetism are always consistent. The
incomplete ferromagnetism is systematic in the sense that for
a given electron density, the incomplete ferromagnetism ap-
pears in both 8 and 16 site chains. However, the value ofS
does not necessarily scale with the number of sites. For ex-
ample, forU53 andn51.125 we findS53/2 for 8 sites and
S55 for 16 sites.

For U54 andN516, we examine the spin-spin correla-
tion functions at larger fillings (Nel524, 28, 32!. We calcu-
lateC(q), the Fourier transform of̂Sz

f(R)Sz
f(0)&, whereR

is the distance in units of the lattice constant,15 for
Nel524, 28, and 32. The continuous Fourier transform is
calculated by zero-padding the function^Sz

f(R)Sz
f(0)& for

R.N. In order to reduce spurious high frequency oscilla-
tions introduced by cutting off the real-space correlation
function at the open boundaries, we window the data using a
Bartlett windowing function16 over the interval 0,R,N be-
fore transforming.

We plotC(q) in Fig. 4 and we see that for each case there
is a peak inC(q) at q52kF , wherekF is the Fermi wave
vector of the noninteracting (V50) conduction band
(kF5p/4, 3p/8, andp/2 for Nel524, 28, and 32, respec-
tively!. This form is characteristic of RKKY oscillations
which are important in thisS50 regime. ~The peaks for
Nel524 and 28 are slightly shifted from the exact value of
2kF ; the shift is roughly 2%.!

We can compare our results with those of Ref. 5 in which
the symmetric one-dimensional Anderson lattice was studied
for the strong-coupling case using the Kotliar and Rucken-
stein slave boson technique~the results forU>2.5 are in
their Fig. 9!. In their antiferromagnetic region we find an
S50 ground state with short-range antiferromagnetic corre-
lations that increase in magnitude and range asU increases.
The parameter regimes in which we find complete ferromag-

FIG. 2. The f -spin–f -spin correlation functions a versus dis-
tance R apart at quarter-filling for « f52U/2, t50.5, and
V50.375 and different values ofU. Antiferromagnetic correlations
develop asU increases.

FIG. 3. The phase diagram for the 1D Anderson lattice combin-
ing results of chains of 8 and 16 sites. Parameters are« f52U/2,
t50.5, V50.375, andn5N el /N. Here ‘‘C’’ denotescompletefer-
romagnetism and ‘‘I ’’ incompleteferromagnetism as defined in the
text.
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netism and incomplete ferromagnetism fall within the limits
of their ferromagnetic region with the exception of our point
at U56, Nel519 which lies in their paramagnetic region.
We find incomplete ferromagnetism in the ground state at
this point. This discrepancy could be due to the finite size
effect described earlier in which there is a tendency towards
a ferromagnetic state in the cases with an odd number of
electrons in the conduction band. The ferromagnetism is al-
ways complete in Ref. 5, presumably due to the mean-field
nature of their calculation. In contrast, we find a region of
incomplete ferromagnetism in the boundary between the an-
tiferromagnetic and ferromagnetic regions that suggests that
the phase transition may be second order. At half-filling they
find an antiferromagnetic ground state~in the strong-
coupling regime!. As they decrease the filling, the magnetic
wave vector decreases linearly with the doping concentration
from its valueq5p at half-filling. We associate this with the
RKKY correlations with wave vector 2kF that we find in a
wide region below half-filling, sincekF is proportional to the
electron density in one dimension. We therefore find that our
phase diagram is in good overall agreement with that of Mo¨l-
ler and Wölfle.5

B. The asymmetricU5` case

We also study the asymmetric Anderson model at
U5`, again fixingV50.375. We vary the position of thef
level « f from 0 to22.5 and study 8 site chains, keeping 100
states per block for the smallu« f u cases and up to 250 states
per block for the largeru« f u. In Fig. 5, we tabulate the total
spin S of the ground state as a function of the number of
electronsNel ~horizontal axis! and the absolute value of« f
~vertical axis!. We consider« f<0 only.

There is a clear resemblance between Figs. 5 and 1. As
before, at exactly quarter-filling the ground state hasS50
and there are increasing antiferromagnetic correlations as the
f level falls below the bottom of the conduction band. There
is a narrow ferromagnetic region near quarter-filling and then
a paramagnetic region at larger fillings. The ferromagnetic
region starts roughly where thef level falls below the con-
duction band ~Kondo regime!. For small values of« f

~mixed-valence regime!, we find a paramagnetic state at all
fillings. This is in contradiction with the Gutzwiller result
that predicts that there will always be a ferromagnetic insta-
bility at any filling. At quarter-filling, antiferromagnetic cor-
relations prevail, and at larger fillings, there is a region in
which the ground state hasS50. In this region, RKKY in-
teractions presumably dominate the magnetic correlations, as
in the symmetric case. In a previous study, it was shown that
for the half-filled system, RKKY correlations are important
in the Kondo regime but are strongly suppressed in the
mixed-valence regime.17

In the mixed-valence region there is no ferromagnetism at
any filling, in agreement with the slave boson mean-field
approach. However, the slave boson treatment predicts a
paramagnetic state for any value of« f . This suggests that
the slave boson description is appropriate for the mixed-
valence case, but breaks down in the Kondo regime.

IV. CONCLUSIONS

We constructed the phase diagram of the one-dimensional
Anderson lattice using the density matrix renormalization
group technique. The results are summarized in Fig. 3. We
considered the symmetric case with« f52U/2 and the
asymmetric case withU5`. In the symmetric case for large
U we found anS50 ground state with short-range antifer-
romagnetic correlations at quarter-filling that increase asU
increases. At slightly larger fillings, there is a transition to a
ferromagnetic state. The presence of a small region of in-
complete ferromagnetism in the boundary suggests a second
order transition. For small values ofU in the symmetric case
we find, as expected, a paramagnetic state at all fillings. For
small values ofu« f u, the phase diagram of theU5`, asym-
metric case is quite similar.

In the strong-coupling limit in the symmetric case, we
compared our results with Ref. 5 which studied the one-
dimensional Anderson lattice using the Kotliar-Ruckenstein
slave boson approach. We found good qualitative agreement
with their results. The ferromagnetic region is the same in
both cases. However, we find incomplete ferromagnetism in

FIG. 4. The Fourier transform of thef -spin–f -spin correlation
functions for « f52U/2, t50.5, V50.375, U54, and different
fillings. The peaks appear atq52kF .

FIG. 5. Values of the spinS for different values ofu« f u and
Nel in the ground state forU5`, t50.5, V50.375, and chains
with 8 sites. There is a narrow ferromagnetic region near quarter-
filling.
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the boundary with theS50 region near quarter-filling, in
contrast to the sharp transition found in Mo¨ller and Wölfle’s
work. Also, where they find long-range antiferromagnetic or-
der, we obtain short-range antiferromagnetic correlations.
This can be attributed to the presence of quantum fluctua-
tions that are not taken into account in their treatment. In the
strong-coupling case, our phase diagram is consistent with
the phase diagram of the Kondo lattice Hamiltonian11 in the
small J region.

In theU5` case, our results agree with the predictions of
the standard slave boson mean-field approach3 only for small
values ofu« f u ~the mixed-valence case!. For larger values of

u« f u, the standard slave boson technique fails to predict fer-
romagnetism and RKKY correlations.
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