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We map out the phase diagram of the one-dimensional Anderson lattice by studying the ground-state
magnetization as a function of band filling using the density matrix renormalization group technique. For
strong coupling, we find that the quarter-filled system haSa® ground state with strong antiferromagnetic
correlations. As additional electrons are put in, we find first a ferromagnetic phase, as reportétieinyaivb
Wolfle, and then a phase in which the ground state has total Spif.. Within this S=0 phase, we find
Ruderman-Kittel-Kasuya-Yosida oscillations in the spin-spin correlation functions.

I. INTRODUCTION Moller and Wdfle® used the Kotliar and Ruckenstein
slave boson treatment to study the one-dimensional Ander-
In recent years, heavy fermion materials have attracted son lattice. They concentrated on the symmetric tase
lot of interest, from both the experimental and theoreticalwhich the energy of the localized orbitat is —U/2, and
points of view. These systems, usually rare earth or actinidallowed for the possibility of nonuniform magnetic states.
compounds, show a variety of unusual properties. At highThey found that in the strong-coupling cadarge U) near
temperaturesT= 100 K), they behave as metals with weakly quarter-filling there is a very narrow antiferromagnetic re-
interacting magnetic moments. When the temperature is lowgion. As they increased the filling they found a transition to a
ered, their behavior is consistent with the development of derromagnetic state, and for even larger fillings they found a
narrow band of conduction electrons with very large effec-ground-state magnetization with an incommensurate wave
tive massesn*, up to two or three orders of magnitude vector q. The wave vectorg increases with filing and
larger than the bare electron mass. reachesr for the half-filled system, corresponding to anti-
The Anderson lattice Hamiltonian is believed to containferromagnetic order.
the essential physics needed to describe the low temperature There are also some rigorous results regarding certain
properties of heavy fermion materials. It considers a localspecial cases. It has been shown that the ground state of the
ized orbital at each lattice site that hybridizes with an ex-symmetric Anderson lattice Hamiltonian is a singlet in the
tended band of conduction electrons. Double occupation dfalf-filled casé and has short-range antiferromagnetic
the localized orbital is penalized by a strong Coulomb repul<orrelation€ Also, when the number of electrons is equal to
sion U. the number of sites plus orfguarter-filling with one addi-
Heavy fermions systems exhibit different kinds of groundtional electron, the ground state was shown to be ferromag-
states: antiferromagnetic, superconducting, paramagnetic, oetic for sufficiently largeJ in Ref. 9.
semiconducting.Therefore, it is important to investigate the  All the methods described above rely on some approxi-
magnetism of the ground state of the Anderson lattice as eation scheme to solve the Hamiltonian. For example, in the
function of the band filling. slave boson techniques, a set of auxiliary bosons is intro-
Previous studies of this model have shown somewhat corduced, in addition to the original fermions. In order to elimi-
tradictory results regarding the magnetism of the groundhate the nonphysical states of the enlarged Fock space, it is
state. Using the Gutzwiller approach, Rice and Jeladied necessary to impose constraints on the boson operators.
the U= case in which doubly occupied states of the local-However, within a mean-field treatment, the constraints are
ized orbital are forbidden. They found that when the energynot satisfied at each lattice site but only on average for the
of the localized orbital is well below the Fermi surface, theresystem as a whole. In the Gutzwiller approximation, the
is always a ferromagnetic instabilittassuming no orbital strong correlations are taken into account by renormalizing
degeneracy However, they only considered uniform mag- the hybridization matrix element by a factor that depends on
netic states in their solution. In contrast, the standard mearthe spin and on the average numberf aflectrons per site.
field slave boson treatment of the probfegives a paramag- In this work we use the density matrix renormalization
netic solution for any filling in theU= case. Reynolds, group(DMRG) method® to study the phase diagram of the
Edwards, and Hews8nreformulated the Gutzwiller ap- one-dimensional Anderson lattice model. The method gives
proach using the Kotliar and Ruckenstein slave boson treajuite accurately the properties of the exact ground state and
ment. They also found that a large region of the parametdow-lying excited states on a finite cluster, but for larger
space has a ferromagnetic ground state, but they concluddattice sizes than, for example, Lanczos exact diagonalization
that the Gutzwiller solution may be too biased towards thecalculations. The advantage over the analytic studies men-
magnetic state. tioned above is that the DMRG takes into account quantum
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fluctuations, whereas the analytic methods described abowgherea is the lattice constant. Therefore, when the number
treat the system within mean-field approximations. In theof electrons is between quarter-filling and half-filling, the
past, most numerical studies of the one-dimensional Andefower band is occupied but the upper band is always empty,
son lattice have been limited to the symmetric half-filledand the ground state is paramagnetic for any filling.

case. Here we consider fillings between quarter-filling and Now consider the case when thdevel is well below the
half-filling. We investigate the symmetric case using chainsgonduction band and the Coulomb repulsidris large. With

of 8 and 16 sites and thd = case with lattices of 8 sites. g hybridization ¥=0), the ground state at quarter-filling
Our results in the strong-coupling regime are in good agreens one electron at eaérsite and there is degeneracy in the
ment with Ref. 5. Near quarterilling we find a8=0 iy configurations. Whel=>0, exchange interactions re-
$nove this degeneracy. It can be shown using perturbation
theory that the effective interaction between neighboring
sites favors antiferromagnetic ordering of neighborihg
electrons?®® The relevant exchange process is sixth order
and involves arf electron hopping to the conduction band,

scribed above and also with the phase diagram obtained in €M t0 @ nearest-neighbor conduction site and then intb the
numerical study of the Kondo lattice mod@ISince the sym- orbital on that_ site. Iq thg mtermedlat_e stz_ite, fherk_ntal is
metric Anderson Hamiltonian can be mapped into the Kondgoubly occupied, which is only possible if the spins of the
Hamiltoniart? when the hybridization between tHeband electrons are opposite. This leads to an effective antiferro-
and the conduction band is small comparedJtothe phase Magnetic interaction.
diagrams should be similar in this regime. When the filling is increased slightly, the additional elec-
This work is organized as follows. We briefly describe thetrons go into the conduction orbitals because of the strong
one-dimensional Anderson lattice Hamiltonian and discus§€oulomb repulsiorl in the f orbitals. In this case, there is
some of its properties in Sec. Il In Sec. lll we present thean on-site antiferromagnetic correlation between the electron
numerical results. We study chains of 8 and 16 sites for thén the conduction orbital and the one in theorbital, favor-
case in whiche;=—U/2 in Sec. Ill A, and draw a phase ing a local singlet. To optimize the kinetic energy of the
diagram based on the total spin of the ground state and theonduction electrons, it is favorable for tHeelectrons to
nature of the spin-spin correlation functions. In Sec. lll B wehave their spins oriented in the same direcfidherefore,
construct the phase diagram f&f=c using results on if there areN, conduction electrons compensating the
chains of 8 sites. Our conclusions are giVen in Sec. IV. SpinS, one expects a ferromagnetic ground state with
S=(N—N_.)/2. When this value 0§ is realized, we will call
Il. THE PERIODIC ANDERSON HAMILTONIAN it completeferromagnetism. If the value o6 we find is
We consider the standard periodic Anderson Hamiltoniansma.Iller than the complete val_ue, but St”.l grgater than the
in one dimension: minimum (0O or 1/2, thgn we will refer to it asncomplete
ferromagnetism, meaning that not all the uncompenséted
electrons are aligned. These two effects give rise to a com-
H=-t E (ciT(,ciH(,Jr CL 16Cio) T €¢ E nif,, petition between ferromagnetic and antiferromagnetic order-
7 7 ing near quarter-filling.
On the other hand, when the filling is further increased in
+U 2 nfinf +V X (¢l fi,+1,ci,), (1) the strong-coupling case, the interaction betwketectrons,

' 7 mediated by the Fermi sea, starts to play an important role.
wherec! andc;, create and annihilate conduction electronsThis is the well-known Ruderman-Kittel-Kasuya-Yositia
with spin o at lattice sitei, andf] andf;,, create and anni- (RKKY)) interaction that induces correlations with wave vec-
hilate localf electrons. Heré is the hopping matrix element tor q=2kg between thef electrons, wherd is the Fermi
for conduction electrons between neighboring sitgds the =~ wave vector of the noninteractingy &0) Fermi sea of con-
energy of the localized orbital, U is the on-site Coulomb duction electrons.
repulsion of thef electrons, and/ is the on-site hybridiza- For simplicity, we concentrate here on two particular
tion matrix element between electrons in therbitals and cases of the Anderson Hamiltonian: the symmetric tase
the conduction band. For simplicity, we neglect orbital de-which e;=—U/2 and theU = case. This reduces the num-
generacy. We denote the number of electrondNby andN ber of independent Hamiltonian parameters by one. In the
is the number of sites in the lattice. Since there are twaymmetric case, strong couplirfirge U) means that thé
electronic orbitals in each site, the quarter-filled case corretevel is far below the conduction band. Therefore we expect
sponds toNg=N and the half-filled case ha$¢=2N. to find a competition between antiferromagnetic and ferro-

ForU=0 this Hamiltonian can be exactly diagonalized in magnetic correlations near quarter-filling and to find RKKY
momentum space, yielding two hybridized bands with enercorrelations for larger fillings. For small, we expect a
gleshy paramagnetic ground state. In thle=c~ case we set thé

L level ¢ to be less than or equal to 0. Again, whenfalls
+ below the conduction band, we expect competition between
Nk :E[[Sf_Zt cogtka)]= [ s1+2t cos(ka)]2+4V2J, antiferromagnetic and ferromaggetic coFr)reIations near
(2 quarter-filling, and RKKY interactions near half-filling.

netic region, and then once again &0 ground state for
still larger fillings. In order to determine the nature of the
magnetic correlations in the phases w8k 0, we examine
the spin-spin correlation function.

Our results are consistent with the rigorous results de
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Ill. RESULTS

32 312

A. The symmetric case

32 172

We first consider the symmetric casg= —U/2. We fix
t=0.5,V=0.375 and varyJ from 0 to 6(all energies are in U T
units of 2, which is half the bandwidth This choice of
parameters allows us to do a quantitative comparison with
Ref. 5. We use the DMRG technigifeo find the energies
and equal-time correlation functions of the ground state and
low-lying states on finite lattices. While this technique gives
energies that are, in principle, variational, it has proven to
give quite accurate results for one-dimensiofiD) quan-
tum lattice systems. The method provides a controlled way
of numerically diagonalizing a finite system within a trun-
cated Hilbert space. One can increase the accuracy by in-
creasing the number of states kept, and can examine the con- FIG. 1. Values of the spifs for different values otJ andN, in
vergence with the number of states. Here we typically keeghe ground state for 8 site chains. Parameters sre—U/2,
up to 150 to 200 states per block, although in the numerically=0-3, adV=0.375. There is a narrow ferromagnetic region near
more difficult cases, such as the calculation of the correlatioquarter-filling (enclosed by a solid line Complete ferromagnetic
functions for the 16 site chains, we keep up to 400 stateStates are circled.

Truncation errors, gi\_/en by the sum of the dgr;sity matrixenergysz=2, 3, 4, and 5 states, and obtaj8?)=26.39,
eigenvalues of the_dlscarded states, vary l_‘rom 10 the .. 28.35, 29.97, and 30.00, respectively. The energies in all
worse cases to 10 in the best cases. This discarded density; ageq’ are degenerate to within the estimated accuracy of the
matrix weight is directly correlated with the absolute error in 5|y 1ation. Therefore, we conclude tt&&5 for this case.
the energy. Since the method is most accurate for a given |, Fig. 1 we present our results for the sgnof the
amount of computational effort when the system has opeground state of the 8 site chain, showing the number of elec-
boundary conditiong(i.e., no nearest-neighbor connection trons on the horizontal axis arld on the vertical axis. At
between site 1 and sitdl), we apply open boundary condi- quarter-filling (Ng=N=8), we find the ground state always
tions here. hasS=0. Also, forU=0 orU small, we find that the ground
Within the DMRG method, we fix the number of electrons state is paramagnetic at all fillings, as predicted by the quali-
N and thez component of the total spin of the systéSp  tative picture given in Sec. Il. Fdo=2, we find a narrow
and find the ground state within this subspace. In order tderromagnetic region slightly above quarter-filliggnclosed
determine the nature of the ground state, we would like tayith a solid line as a guide to the ey&\Ve circle the cases of
determine the total spirs. For a ground state of a given completeferromagnetism as defined in the preceding section.
S,, there are several possible values of the total spin For larger fillings, we find ar6=0 ground state for all
(S;=S=Ng/2). In order to establish the value 8f we cal-  couplingsU. However, when the number of electrons is odd
culate the mean value of the opera&Srin the ground state we obtainS=3/2 and notS=1/2 as one would expect. We
with the lowest possibl&, (0 or 1/2 according to whether attribute this to a finite size effect for the following reason: if
Ng is even or odd In this way we can be sure that we are we consider chains with 16 sites with the same density of
considering all the possible values ofs. Since electrongfor exampleU=4 with 22, 26, 30 electronswe
(S?)=S[S+1) (settingzi=1), we can deduce the value of find S=0 in the ground state. This alternation 0 and
S. For example, for 8 sites with=4 andNg=9, we obtain  S=3/2 states was also observed in Ref. 13 in the context of
(S?)=15.748 for the S,=1/2 ground state, implying the phase diagram of the Kondo lattice model. Bve3/2
S=7/2. state appears when there is an odd number of electrons in the
In some cases, states with different valuesSofan be conduction band, so that one of the conduction energy levels
close in energy. When this happens, the wave function obhas a single electron. Thé electrons will then interact
tained for the ground state with a giv&h can be composed mainly with the single unpaired electron and will tend to
of a mixture of states with two or moi®@values, rather than align ferromagnetically* Roughly speaking, for arfi elec-
having a definite value 08. This occurs mainly for longer tron to interact with one electron of the doubly occupied
chains (N=16), for which the numerical accuracy is lower conduction band and produce a spin flip with energy gain
and the states are closer together in energy. In these casdgi, one conduction electron needs to hop to a higher energy
although we cannot immediately determine the valu&sof level. When the effective Kondo couplinde (given by the
we can conclude that it is not the smallest possible value. W&chrieffer-Wolff transformatiolf), is less than the spacing of
can then study states with higher valuesSpf for which the  the conduction electron energy levels, theelectrons can
Hilbert space is smalldithere are fewer values &allowed only couple with the unpaired conduction electron. In fact, as
and therefore there is less mixing. Also, since we keep thd.; decreases, this effect becomes more important and, pre-
same number of states in a smaller Hilbert space, the numersumably forJ.; small enough, the ground state should have
cal accuracy is higher. For example, on a 16 site lattice witlthe maximum valueS=(N—1)/2. However, in the infinite
U=2 and Ng=22, we obtain(S*)=25.38 for the lowest system there is no finite separation between conduction en-
S,=0 state. This indicates tHeis likely to be higher than 3 ergy levels, and the ground state should be paramagnetic for
but it could be either 4 or 5. We then consider the lowestany value oflq.
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FIG. 3. The phase diagram for the 1D Anderson lattice combin-
FIG. 2. Thef-spin—f-spin correlation functions a versus dis- ing results of chains of 8 and 16 sites. Parameters: are—U/2,
tance R apart at quarter-filling fore;=—-U/2, t=0.5, and t=0.5, V=0.375, anch=N 4/N. Here “C” denotescompletefer-
V=0.375 and different values &f. Antiferromagnetic correlations romagnetism and I incompleteferromagnetism as defined in the
develop adJ increases. text.

In order to better understand the nature of the correlations ) ) ,
in the antiferromagnetic phase at quarter-filling and the tran?/€ c&n establish tha& is greater than 1/2 and that is smaller
sition to the ferromagnetic phase as the filling is increasednan N—Nc)/2, so we list these points as incomplete ferro-
we have also carried out calculations on a 16 site lattice. Afnagnetism.
quarter-filling, the ground state B=0 for all theU values By comparing the results of 8 and 16 site chains for the
we considered, but dd increases there is an onset of short-same density of electrons=N/N, one can see that the
range antiferromagnetic correlations. In Fig. 2 we plot thecases of complete ferromagnetism are always consistent. The
f-spin—f-spin correlation function at quarter-filling for dif- incomplete ferromagnetism is systematic in the sense that for
ferent values obJ. ForU=0, the correlations are very small @ given electron density, the incomplete ferromagnetism ap-
and always negative. A increases, they alternate in sign Pears in both 8 and 16 site chains. However, the valug of
and increase in amplitude. This result is consistent with Refdoes not necessarily scale with the number of sites. For ex-
5 which found a narrow antiferromagnetic region near@mple, forU=3 andn=1.125 we findS= 3/2 for 8 sites and
quarter-filling. For the fully interacting system in 1D, treated S=5 for 16 sites.
exactly by the DMRG, quantum fluctuations destroy the ForU=4 andN=16, we examine the spin-spin correla-
long-range antiferromagnetic correlations found in the meantion functions at larger fillingsNg= 24, 28, 32. We calcu-
field slave boson calculations, but short-range antiferromagate C(q), the Fourier transform ofS(R)S}(0)), whereR
netic correlations remain. is the distance in units of the lattice const&htfor

ForU=2, 3, 4, and 6, we map out the extent of the fer-Ng=24, 28, and 32. The continuous Fourier transform is
romagnetic phase by increasimdy until the ground state calculated by zero-padding the functigli(R) SH(0)) for
becomes paramagnetic. We plot the resulting phase diagraR>N. In order to reduce spurious high frequency oscilla-
in Fig. 3. Here ‘C” denotes the states with complete ferro- tions introduced by cutting off the real-space correlation
magnetism S=(Ng— N,)/2] and “I” denotes the states with function at the open boundaries, we window the data using a
incomplete ferromagnetisiS< (Ng— N.)/2 but larger than  Bartlett windowing functiof® over the interval & R<N be-
the lowest possible valleThe states of incomplete ferro- fore transforming.
magnetism in the boundary region between the ferromag- We plotC(q) in Fig. 4 and we see that for each case there
netic and antiferromagnetic phases suggest that the ferris a peak inC(q) at q=2kg, wherekg is the Fermi wave
magnetic order parameter may go to zero continuouslyector of the noninteracting M\=0) conduction band
implying a second order phase transition. (ke=ml4, 37/8, and /2 for Ng=24, 28, and 32, respec-

For theU=6 andU=4 points withNg=20, theU=3, tively). This form is characteristic of RKKY oscillations
Ng=22, and thdU=2, Ng=18 points in Fig. 3, the differ- which are important in thisS=0 regime.(The peaks for
ence in energy between ti&=0 andS=1 states is of the Ng=24 and 28 are slightly shifted from the exact value of
order of the numerical accuracy, making it hard to determinek ; the shift is roughly 2%.
the total spin of the ground state. However, we include these We can compare our results with those of Ref. 5 in which
points in the paramagnetic region becauseSanl ground the symmetric one-dimensional Anderson lattice was studied
state, although still ferromagnetic, indicates a very strondor the strong-coupling case using the Kotliar and Rucken-
suppression of the ferromagnetism, and because the groumstein slave boson techniquéhe results forU=2.5 are in
state is paramagnetic at the same parameters and averabeir Fig. 9. In their antiferromagnetic region we find an
fillings in the 8 site chain. Also, fotJ=2, Ng=19, and S=0 ground state with short-range antiferromagnetic corre-
Ng =23 the states are also very close in energy and it is verlations that increase in magnitude and rangé&Jascreases.
hard to establish the value &fin the ground state. However, The parameter regimes in which we find complete ferromag-
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FIG. 4. The Fourier transform of thiespin—f-spin correlation FIG. 5. Values of the spir§ for different values ofle;| and
f_ur_mtions fore;=—U/2, t=0.5, V=0.375, U=4, and different N, in the ground state fot)=o, t=0.5, V=0.375, and chains
fillings. The peaks appear gt 2kg . with 8 sites. There is a narrow ferromagnetic region near quarter-

filling.

netism and incomplete ferromagnetism fall within the limits

of their ferromagnetic region with the exception of our point (mixed-valence regime we find a paramagnetic state at all
at U=6, Ng=19 which lies in their paramagnetic region. fillings. This is in contradiction with the Gutzwiller result
We find incomplete ferromagnetism in the ground state athat predicts that there will always be a ferromagnetic insta-
this point. This discrepancy could be due to the finite sizebility at any filling. At quarter-filling, antiferromagnetic cor-
effect described earlier in which there is a tendency towardselations prevail, and at larger fillings, there is a region in
a ferromagnetic state in the cases with an odd number ofhich the ground state h&=0. In this region, RKKY in-
electrons in the conduction band. The ferromagnetism is alteractions presumably dominate the magnetic correlations, as
ways complete in Ref. 5, presumably due to the mean-fieldh the symmetric case. In a previous study, it was shown that
nature of their calculation. In contrast, we find a region offor the half-filled system, RKKY correlations are important
incomplete ferromagnetism in the boundary between the arin the Kondo regime but are strongly suppressed in the
tiferromagnetic and ferromagnetic regions that suggests thamixed-valence regim¥.

the phase transition may be second order. At half-filling they In the mixed-valence region there is no ferromagnetism at
find an antiferromagnetic ground statgn the strong- any filling, in agreement with the slave boson mean-field
coupling regime As they decrease the filling, the magnetic approach. However, the slave boson treatment predicts a
wave vector decreases linearly with the doping concentratioparamagnetic state for any value of. This suggests that
from its valueg= = at half-filling. We associate this with the the slave boson description is appropriate for the mixed-
RKKY correlations with wave vector i that we find in a  valence case, but breaks down in the Kondo regime.

wide region below half-filling, sinc&g is proportional to the

electron density in one dimension. We therefore find that our IV. CONCLUSIONS
phase diagram is in good overall agreement with that ot Mo '
ler and Wdfle.® We constructed the phase diagram of the one-dimensional

Anderson lattice using the density matrix renormalization
group technique. The results are summarized in Fig. 3. We
considered the symmetric case with=—U/2 and the

We also study the asymmetric Anderson model atasymmetric case with =<. In the symmetric case for large
U=, again fixingV=0.375. We vary the position of the U we found anS=0 ground state with short-range antifer-
level e; from O to — 2.5 and study 8 site chains, keeping 100romagnetic correlations at quarter-filling that increasdJas
states per block for the smal;| cases and up to 250 states increases. At slightly larger fillings, there is a transition to a
per block for the largefs;|. In Fig. 5, we tabulate the total ferromagnetic state. The presence of a small region of in-
spin S of the ground state as a function of the number ofcomplete ferromagnetism in the boundary suggests a second
electronsN, (horizontal axig and the absolute value ef;  order transition. For small values bf in the symmetric case
(vertical axig. We consider <0 only. we find, as expected, a paramagnetic state at all fillings. For

There is a clear resemblance between Figs. 5 and 1. Asmall values ofe;|, the phase diagram of tHé=cc, asym-
before, at exactly quarter-filling the ground state $as0 metric case is quite similar.
and there are increasing antiferromagnetic correlations as the In the strong-coupling limit in the symmetric case, we
f level falls below the bottom of the conduction band. Therecompared our results with Ref. 5 which studied the one-
is a narrow ferromagnetic region near quarter-filling and therdimensional Anderson lattice using the Kotliar-Ruckenstein
a paramagnetic region at larger fillings. The ferromagnetislave boson approach. We found good qualitative agreement
region starts roughly where thfelevel falls below the con- with their results. The ferromagnetic region is the same in
duction band (Kondo regimé. For small values ofe; both cases. However, we find incomplete ferromagnetism in

B. The asymmetricU=c case
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the boundary with theS=0 region near quarter-filling, in |e¢|, the standard slave boson technique fails to predict fer-
contrast to the sharp transition found in'Néo and Wdfle's  romagnetism and RKKY correlations.

work. Also, where they find long-range antiferromagnetic or-
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