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As a model for the transitions between plateaus in the fractional quantum Hall effect we study the critical
behavior of noninteracting charged particles in a static random magnetic field with finite mean value. We argue
that this model belongs to the same universality class as the integer quantum Hall effect. The universality is
proved for the limiting cases of the lowest Landau level, and slowly fluctuating magnetic fields in arbitrary
Landau levels. The conjecture that the universality holds in general is based on the study of the statistical
properties of the corresponding random matrix model.

The integer~IQHE! and fractional quantum Hall effects
~FQHE! show remarkable similarities despite the differences
in their origin. While the fundamental excitation gap is due
to the strong magnetic field in the IQHE,1 strong Coulomb
correlations are responsible for the gap in the FQHE.2 How-
ever, in both effects the localization of electrons and quasi-
particles, respectively, is believed to be responsible for the
formation of the plateaus in the Hall conductivity.2–4 At the
transitions between successive plateaus in the IQHE scaling
behavior has been observed.5,6 This has been successfully
interpreted as a disorder-induced localization-delocalization
transition for noninteracting electrons.6,7 Most remarkably, it
was found experimentally that the temperature-dependent
scaling behavior of the transition between the FQH plateaus
at filling factors 1/3 and 2/5 is described by the same scaling
exponent as the transitions between integer quantum Hall
plateaus.8 Similar agreement was obtained for the transition
from filling factor 2/3 to 1.9

A theoretical description that makes the similarity be-
tween integer and fractional QHE explicit is the ‘‘composite
fermion’’ ~CF! theory of the FQHE.10 It relates states of the
interacting electron system at filling factor

n5n8/~n8p61! ~1!

to states of noninteracting electrons at filling factorn8 by
attaching an even numberp flux quanta to each electron. The
magical filling factors of the interacting electron system are
interpreted as filled Landau levels (n85 integer) of the CF’s.
Based on this approach, Jain, Kivelson, and Trivedi argued
that transitions between two FQH plateaus fall into the uni-
versality class of the IQHE if these correspond to successive
filled Landau levels of the CF’s.11 The transitions for which
scaling behavior was observed correspond to the transitions
from n851 to n852 for p52 and both signs in Eq.~1!.10

Formally, the attachment of flux quanta can be achieved
by the introduction of a Chern-Simons vector potential.12,13

In a mean-field approximation this theory describes noninter-
acting CF’s in a uniform magnetic field corresponding to the
filling factor n8 of the CF’s. While on the mean-field level
the universality of integer and fractional QH transitions is
thus manifest, the Chern-Simons field is a dynamical gauge
field and one has to worry about the effects of its fluctua-

tions. While not much is known about the influence of the
dynamics of the gauge field on the localization properties,
the effects of static fluctuations in the magnetic field have
recently attracted a lot of attention, in particular in the con-
text of the FQH system at filling factor 1/2. Static fluctua-
tions in the Chern-Simons field are due to static fluctuations
in the electron density that are induced by a residual disorder
potential. Most discussions in the literature focused on non-
interacting charged particles in a fluctuating magnetic field
with vanishing mean value relevant to the filling factor 1/2.
The results are rather controversial. Some authors14–17claim
to present evidence for a localization-delocalization transi-
tion in contrast to the scaling theory18 according to which
states in two-dimensional systems are localized in the ab-
sence of a strong magnetic field. However, other authors,
while observing a strong enhancement of the localization
length, find no true transition.19–21We will consider the situ-
ation relevant to the transitions in the FQHE. Since the FQH
plateaus only form if the CF Landau levels are well separated
we will assume that the average magnetic field is strong
compared to the fluctuations. In this limit we will show that
the critical behavior is the same as that in the IQHE.

In this paper we treat the model of noninteracting charged
particles in a random magnetic field with a nonzero average
magnetic field. If the average magnetic field is strong com-
pared to the fluctuations this model describes the transitions
between FQH plateaus if the charged particles are thought of
as noninteracting composite fermions. We will assume that
the average magnetic field is strong enough to neglect the
coupling between different Landau levels. Then there are two
limits in which the fluctuating magnetic field is strictly
equivalent to a random electrostatic potential: first, if only
states of the lowest Landau level are occupied for arbitrary
correlation length of the fluctuating magnetic field; second, if
the correlation length of the fluctuations is large compared to
the average cyclotron radius for arbitrary Landau level index.
The latter situation corresponds to the semiclassical limit
studied previously.22 In general, a fluctuating magnetic field
is not equivalent to an electrostatic potential. However, in the
limit of well-separated Landau levels the statistics of matrix
elements of the random magnetic field Hamiltonian and a
random electrostatic potential is quite similar. While the dif-
ferences will be reflected in nonuniversal quantities like the
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density of states, we conjecture that they do not lead to dif-
ferent critical properties. This conjecture stands on the same
footing as the universality in the IQHE that has only been
demonstrated numerically for short correlation lengths in the
two lowest Landau levels and in the semiclassical limit of
large correlation length.6

Our conclusions are based on the properties of the random
matrix model generated by projecting the Hamiltonian onto
the Landau levels of the average magnetic fieldB0 . The
HamiltonianH containing the Chern-Simons vector potential
a can be expressed as a sum of the HamiltonianH0 of the
system with constant magnetic fieldB0ez5¹3A and a part
H8 due to the fluctuating Chern-Simons field,

H5
1

2m*
~p2eA2ea!2, ~2!

H5H01H8, ~3!

H05
1

2m*
~p2eA!2, ~4!

H85
1

2m*
$2e@~p2eA!a1a~p2eA!#1e2a2%. ~5!

The matrix elementŝNkuH8uN8k8& of H8 with the eigen-
statesuNk& of H0 form a random matrix. Its statistical prop-
erties can be compared to those of the random Landau matrix
^NkuVuN8k8& whereV(r ) is a random electrostatic potential.
The latter model has been extensively studied and describes
the transitions between integer QH plateaus.6 We will show
that the matrix elements ofH8 have similar statistics to those
of V(r ) in the limit of strong average magnetic fieldB0 ,
despite the rather different nature of the operatorsH8 and
V(r ). More precisely, we consider the limit in which the
fluctuations of the random magnetic fieldb(r )ez5¹3a(r )
are small compared to the average fieldB0 @we choose the
average ofb(r ) to vanish#. In this limit the term quadratic in
a can be neglected inH8 and the coupling between different
Landau levels ofH0 becomes negligible. The intra-Landau-
level matrix elements ofH8 are then given by

^NkuH8uNk8&5
\e

m* S 12 ^Nkub~r !uNk8&

1 (
n50

N21

^nkub~r !unk8& D . ~6!

This is our main result. It contains only matrix elements of
the gauge-invariant local magnetic fieldb(r ). The quantity
\vc(r )5\eb(r )/m* is the deviation of the local cyclotron
energy from the average value\V5\eB0 /m* . It follows
from Eq. ~6! that in the lowest Landau levelN50 the ran-
dom magnetic field is indistinguishable from a random elec-
trostatic potentialV(r )5\vc(r )/2, irrespective of the statis-
tical properties of the random magnetic fieldb(r ), as has
already been noted.15 When the magnetic field varies suffi-
ciently slowly on the scale of the cyclotron orbit radius
Rc5(2N11)1/2l 0 , l 0

25\/(eB0), its matrix elements be-
come independent of the Landau level index and the random
magnetic field is strictly equivalent to the random electro-

static potentialV(r )5(N11/2)\vc(r ). In both limits the
random magnetic field manifests itself only in the fluctuating
cyclotron energy in theNth Landau level. We can thus apply
all the known results for electrostatic disorder to the present
system. In particular, the critical behavior is identical and the
localization length diverges in the center of the Landau lev-
els with the same exponent as in the IQHE. It further readily
follows that the density of states for a white noise distribu-
tion of the magnetic field in the lowest Landau level is given
by Wegner’s result.23 This is in contrast to the situation in
high Landau levels where the density of states differs con-
siderably from the electrostatic disorder case.24As the charge
e entering the Hamiltonian~2! is the charge of the electrons
the critical conductivity of the CF’s is the same as that of the
electrons as has recently been seen experimentally.25

In Ref. 15 it was argued that, in general, the random
magnetic field is equivalent to the potentialV(r )
5(N11/2)\vc(r ) plus gradient corrections. We can discuss
this statement if we express Eq.~6! in terms of the Fourier
coefficients ofvc(r ), vc(r )5(GvGexp(iG•r ),

^NmuH8uNm8&5\(
G

vGe
2G2l0

2/2Gm,m8SGl0A2 D
3F12 LNSG2l 0

2

2 D 1 (
n50

N21

LnSG2l 0
2

2 D G ,
~7!

wherem,m8 are angular momentum quantum numbers in the
symmetric gaugeA(r )5B0(2yex1xey)/2 and Gm,m8(x)

5(m8!/m!) 1/2xm2m8Lm8
m2m8(x2). An effective electrostatic

potentialV(r ), V(r )5(GVGexp(iG•r ), has the same matrix
elements, if

VGLNSG2l 0
2

2 D 5\vGF12 LNSG2l 0
2

2 D 1 (
n50

N21

LnSG2l 0
2

2 D G .
~8!

We see that the effective electrostatic potential only exists if
vG50 for G2l 0

2/2 equal to the zeros ofLN(x). For arbitrary
random magnetic fields this is only fulfilled in the lowest
Landau level. In particular, there is no effective potential for
a white-noise distribution of the magnetic field in higher
Landau levels. If the magnetic field is sufficiently smooth,
such thatvG50 forG2l 0

2/2>xN
(1) , wherexN

(1) is the first zero
of LN(x), then the inverse ofLN(G

2l 0
2/2) can be expanded

into a power series inG2l 0
2/2 and the effective potential ex-

ists and can be written as a power series in2 l 0
2¹2 acting on

\vc(r ), as claimed in Ref. 15.
Since, in general, the random magnetic field is not equiva-

lent to an electrostatic potential even in the limit of strong
magnetic field it is not evident that it has the same critical
behavior. According to Eq. ~6! the random matrix
^NkuH8uNk8& is equivalent not to a single random Landau
matrix but to a superposition ofN random Landau matrices,
all containing the same electrostatic potential but different
Landau levels. This leads to differences in physical proper-
ties like the density of states. By studying the statistical prop-
erties of the matrix elements ofH8 and comparing them to
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those of an electrostatic random potential we can argue that
these differences are irrelevant for the critical behavior of the
system. To this end, we briefly review the construction of the
random Landau matrix for electrostatic potentials. For
Gaussian correlations of a scalar potentialV(r ),

V~r !V~r 8!5
V0
2

2ps2 expS 2
ur2r 8u2

2s2 D , ~9!

matrix elementŝNkuVuNk8& in Landau gauge are given in
terms of uncorrelated random numbersu(x,k),
u(x,k)u(x8,k8)5d(x2x8)dk,2k8, by

6

^Nk1uVuNk2&5
V0b l 0

A2Lyps
expS 2

k2l 0
2b2

4 D
3E dju~bj1Kl 0 ,k l 0!e

2j2FN
V~j,k l 0 ;s!,

~10!

whereK5(k11k2)/2, k5k12k2 ,

FN
V~j,x;s!5~2NN! !21E dh expS 2

l 0
21s2

s2 h D
3HNS h1

j

b
2
x

2DHNS h1
j

b
1
x

2D , ~11!

Ly is the width of the system, andb25(s21 l 0
2)/ l 0

2 . Using
this result for Gaussian correlations of the magnetic field,

b~r !b~r 8!5
b0
2l 0
2

s2 expS 2
ur2r 8u2

2s2 D , ~12!

the matrix elements ofH8 are given by

^Nk1uH8uNk2&5
V0b l 0

A2Lyps
expS 2

k2l 0
2b2

4 D
3E dju~bj1Kl 0 ,k l 0!e

2j2FN
B~j,k l 0 ;s!,

~13!

whereV0
252p\eb0

2/(m* 2B0), and

FN
B~j,x;s!5

1

2
FN
V~j,x;s!1 (

n50

N21

Fn
V~j,x;s!. ~14!

Equations~10! and ~13! differ only in the weight functions
FN
V,B . In both cases these are polynomials of degree 2N in

j andx. The critical behavior in the IQHE is universal if it is
the same for all polynomialsFN

V(j,x;s). This has been nu-
merically checked for the parameter combinations
(N,s)5(0,0), (0,l 0), and (1,l 0).

26 For all other values ofN
ands universality in the IQHE is a conjecture. The impor-
tant features of Eqs.~10! and ~13! seem to be the Gaussian
factors ofj andk that reflect the Landau quantization, while
the particular form of the polynomial weight function seems
to be rather irrelevant. We therefore conjecture that random
matrices of the form~10! and ~13! have the same critical
behavior for any weight functionFN(j,x;s) that is a poly-

nomial in j andk. This implies in particular that the model
under consideration belongs to the same universality class as
the IQHE.

We will now briefly derive the main result Eq.~6!. In a
complex notation for vectors in thex-y plane,z5x1 iy , we
can express the Hamiltonian

H852
eA2\

4m* l 0
~ â0ā1â0

†a!1
e2

4m*
aā1H.c., ~15!

where ā denotes the complex conjugate ofa, in terms of
inter-Landau-level operators

â05
l 0

A2\
~Px

01 iPy
0! and â0

†5
l 0

A2\
~Px

02 iPy
0!,

whereP05p2eA. Using a Coulomb gauge for the Chern-
Simons vector potentiala,¹•a50, we have the following
relations between the commutators:

@ â0
† ,a#1@ â0 ,ā#50, ~16!

@ â0
† ,a#2@ â0 ,ā#5A2l 0b~z!, ~17!

so thatH85H11H21H3 , with
27

H15
1

2
\
eb

m*
, ~18!

H252
e\

A2ml0
~ â0

†a1āâ0!, ~19!

H35
e2

2m*
aā. ~20!

The matrix elements ofH3 are on the average smaller by a
factor ofb0 /B0 than the matrix elements ofH1 andH2 and
can be neglected in the limitb0!B0 . Applying the Landau
level ladder operatorsâ0 we get a recursion relation for the
matrix elements ofH2 ~for clarity we suppress the depen-
dence on the intra-Landau-level quantum numbersk!

^NuH2uN&52
\e

A2m* l 0
^Nuâ0

†a1āâ0uN&

5
\e

m* ^N21ubuN21&1^N21uH2uN21&

5
\e

m* (
n50

N21

^nubun&, ~21!

thus leading to Eq.~6!.
In conclusion, we have studied charged quantum particles

in a random magnetic field in the limit that the fluctuations
are much weaker than the average magnetic field. This model
arises in an approximate treatment of the fermionic Chern-
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Simons theory of the FQHE. We have shown that the model
studied is strictly equivalent to an electrostatic disorder po-
tential in the two limits of the lowest Landau level and of
slowly varying magnetic field. A comparison of the statistical
properties of this model with known results for electrostatic
disorder led us to conjecture that these two models have the
same critical behavior. This implies that static fluctuations of
the Chern-Simons vector potential do not change the critical

behavior of ‘‘composite fermions’’ and that transitions be-
tween Landau levels of the CF’s belong to the same univer-
sality class as the IQHE.
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