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We consider a two-dimensional~2D! isotropic Fermi liquid with attraction in boths andd channels and
examine the possibility of a superconducting state with mixeds andd symmetry of the gap function. We show
that both in the weak-coupling limit and at strong coupling, a mixeds1 id symmetry state is realized in a
certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second
order. We also show that there is no stable mixeds1d symmetry state at any coupling.

I. INTRODUCTION

The question of the order parameter symmetry is one of
the central issues of high-temperature superconductivity.
There is a general consensus that the superconducting gap is
highly anisotropic, but whether the gap has a particular sym-
metry under rotations is still a matter of debate. A number of
experiments on YBa2Cu3O61x ~YBCO! are roughly consis-
tent with thed-wave symmetry1 for which the most natural
source is the exchange of magnetic fluctuations,2 but
some experiments, e.g., photoemission studies on
Bi2Sr2CaCu2O81x ~BSCCO-2212!,3,4 as well asc-axis Jo-
sephson tunneling experiments on YBCO,5 are inconsistent
with the pured wave but more consistent with ans1d state.
In principle, the presence of orthorhombic distortion in, e.g.,
BSCCO-2212~Ref. 6! in itself guarantees that an otherwise
d-wave superconducting gap will have an admixture of the
s-wave.7 However, the superconducting state may be a mix-
ture ofs andd components even in the absence of an ortho-
rhombic distortion.

A superconducting state with a mixeds1d symmetry of
the gap was first discussed in Ref. 8 and thes1 id state in
Ref. 9. The mixed symmetry state at intermediate doping
levels was also found in variational Monte Carlo studies of
the t-J model.10 An alternative possibility of symmetry mix-
ing caused by interplane coupling was proposed in Ref. 11.
More exotic mixed symmetry states have also been
suggested.12,13

Very recent work has shown14 that the extent ofs-wave
admixture is a strong function oft8, the second-neighbor
hopping, which varies a good deal from one high-Tc material
to another. This strongly suggests that the question ofs-d
mixing should be looked at as a function of hole doping, and
that this must be done in each high-Tc material separately.

The variational Monte Carlo calculations indicate that at
the doping levels, which favor mixed symmetry states, the
ground-state energy is roughly independent of the relative
phaseu of s- andd-wave components. This relative phase is
of great importance, since onlyu50 andp states can have
gap nodes. The experiments on combinations of Josephson
junctions on YBCO~Ref. 15! appear to rule out a relative
phase ofp/2 if the s-wave amplitude is more than about
10% of thed wave. Recent photoemission work as a function
of hole doping,3,16 indicates thatu50 and that the relative
amplitude ofs wave andd wave depends on temperature and
the hole doping level.

In view of both the experimental situation, which appears

to indicate thats-d mixing is possible in some systems, and
the theoretical situation where the relative phase is not well
determined, additional understanding of the physics of this
phase is needed. In this paper, we address the issue of
whether one can obtain thes1d mixed state in calculations
on a simple but fairly general model. The answer we obtain
is negative—we found that for any coupling, the only pos-
sible mixed symmetry in this model iss1 id.

We consider a model of an isotropic two-dimensional
Fermi liquid with attractive interaction in boths andd chan-
nels. We assume that both interactions are frequency-
independent in a frequency range bounded by the cutoff fre-
quencyvc , and are zero foruvu.vc . Obviously, when only
one of the two interaction channels is present, the ground
state is described by the corresponding pure symmetry gap
function. When both interaction channels are present, their
competition will lead to either one of the two pure symmetry
superconducting states, or a mixed state, where the gap func-
tion contains both thes and thed harmonics.

In the next section we will consider the weak-coupling
case, where one can use the BCS formalism. We will show
that the transition betweens andd symmetries occurs via an
intermediate phase with mixeds1 id symmetry. The two
phase transitions between the pure and the mixed states are
second order. In Sec. III we consider the case of arbitrary
coupling in the framework of the Eliashberg theory. We will
show that there always exists a range of relative strengths of
the s andd interactions where ans1 id solution exists. The
analysis of thes1d mixed state is more complicated. How-
ever, we can show that at least in both the weak and the
strong coupling limits thes1d mixed state does not occur.
Our conclusions are summarized in Sec. IV. As an aside, in
the Appendix we also present few simple results for the ther-
modynamics of ad-wave superconductor in the weak-
coupling limit, which, to the best of our knowledge, have not
been published anywhere else. The main feature is that the
ratio of the superconducting gap to the transition tempera-
ture, 2D/Tc , for thed wave is 4.28, larger than 3.53 for the
s wave.

II. WEAK COUPLING

In this section we will consider the case when the cou-
pling is weak in both interaction channels. In this case the
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BCS theory is valid, and the gap equation assumes the fol-
lowing form:17

D~kW !52(
k8W

VkWk8W
D~k8W !

2Ek8W
, ~1!

where

EkW5AS \2k2

2m
2m D 21uD~kW !u25A«kW

2
1uD~kW !u2, ~2!

and

VkWk8W5Vs~kW ,kW8!1Vd~kW ,kW8!cos@2~f2f8!# ~3!

is the interaction, which contains boths and d harmonics.
The anglef is defined in our two-dimensional model as
f5tan21(ky /kx). Consider now a trial mixed state with ar-
bitrary phase difference between thes-wave and thed-wave
components of the order parameter:

D~f!5Ds1eiuDdcos2f, ~4!

Separating the real and imaginary parts of this equation, and
also thes andd components, we obtain a set of three inde-
pendent equations

Ds52(
k8W

Vs~Ds1cosuDdcos2f8!

2Ae
k8W
2

1uD~k8W !u2
, ~5!

Ddcosu52(
k8W

Vdcos2f8~Ds1cosuDdcos2f8!

2Ae
k8W
2

1uD~k8W !u2
, ~6!

cos2fsinu52(
k8W

sinucos2f8~Vs1Vdcos2fcos2f8!

2Ae
k8W
2

1uD~k8W !u2
,

~7!

whereVs5Vs(kF ,kF) andVd5Vd(kF ,kF). It is straightfor-
ward to see that if bothDs andDd are finite, the set~5–7!
can be simultaneously satisfied in only two cases,u50 or
u5p/2, leading tos1d or s1 id, respectively. Thus the
weak-coupling theory gives the same restricted set of possi-
bilities for the internal phase angle that Ginzburg-Landau
theory offers.16 Below we consider these two cases sepa-
rately.

A. s1d state

In this caseu50, and Eqs.~5! and ~6! become

Ds52E
0

2pdf8

2p E
2vc

vc
deN~0!Vs

Ds1Ddcos2f8

4Ae21Ds
212DsDdcos2f1Dd

2cos22f
, ~8!

Dd52E
0

2fdf8

2p E
2vc

vc
deN~0!Vd

cos2f8~Ds1Ddcos2f8!

4Ae21Ds
212DsDdcos2f1Dd

2cos22f
. ~9!

Performing the integration over the frequency and doing
standard manipulations, we obtain

S 12
2gs
gd

Da5gsf ~a!, ~10!

wheregs52VsN(0)/4, gd52VdN(0)/4, a[Ds /Dd , and
the functionf (a) is given by

f ~a!5E
0

p dx

2p
~2acosx21!~cosx1a!ln~a1cosx!2.

~11!

The graphical solution of Eq.~10! is shown in Fig. 1. It is
easy to see that in the limit ofa→`, f (a);a, while in the
limit of a→0, f (a);2a/2. If we start out withgs50, then,
naturally, the only solution isa50, i.e., pured wave. As
gs increases, the slope of the straight line on Fig. 1 de-
creases, and at

gs
~1!5

gd
21gd

~12!

the lines first cross ata5`. However, the pured-wave so-
lution does not become unstable at this point. If we increase

gs even further, we find three solutions: ata50 ~pure d
wave!, a5` ~pure s wave!, and at some finiteam , which
corresponds to a mixed state. Asgs increases further,am
decreases and becomes zero at

gs
~2!5

gd
22gd/2

. ~13!

For largergs , there exists only one solution:a5`, which
corresponds to a pures-wave state.

We see therefore that thed-wave solution exists at
0,gs,gs

(2) , while thes-wave solution exists atgs.gs
(1) .

The key point is thatgs
(2).gs

(1) , such that there is an inter-
mediate regiongs

(1),gs,gs
(2) , where both pure solutions

exist together with thes1d solution ~see Fig. 2!. To verify
which solutions are stable, we computed the second deriva-
tives of the energy and found that the two pure solutions are
stable in the intermediate region, while thes1d state actu-
ally corresponds to a maximum rather than a minimum of
energy. Clearly then, thes1d state is unstable; if it was the
only mixed state allowed, then the system would simply un-
dergo a first-order transition between the two pure states with
a region where hysteresis is possible betweengs

(1) andgs
(2).
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B. s1 id state

In the case ofu5p/2, we follow the same procedure.
Now the coupled gap equations have the following form:

Dd5E
0

2pdf8

2p E
2vc

vc
degd

Ddcos
22f8

Ae21Ds
21Dd

2cos22f
, ~14!

Ds5E
0

2pdf8

2p E
2vc

vc
degs

Ds

Ae21Ds
21Dd

2cos22f
. ~15!

Integrating over frequency and doing standard manipula-
tions, we obtain that the mixed state exists if

12
2gs
gd

5gsS 121a22aA11a2D . ~16!

As before,a5Ds /Dd .
As we start out withgs50, Eq.~16! has no solution, and

the gap has pured symmetry (a[0). However, contrary to
the previous case, here a solution of~16! first appears at

gs
~1i !5

gd
21gd/2

, ~17!

for the samea50. As we increasegs from gs
(1i ) , a and,

therefore,Ds increases continuously, satisfying

a5
gs/212gs /gd21

A2gs~122gs /gd!
, ~18!

and becomes infinite atgs
(2i )5gd/2. Clearly, in this situation,

we have a second-order phase transition from pured to a
mixeds1 id symmetry state atgs5gs

(1i ) , and a second-order
transition from a mixed state to pures state at
gs5gs

(2i ).gs
(1i ) . In other words, the two pure states, which

are stable with respect tos1d mixture, are in fact unstable
~for correspondinggs) with respect tos1 id mixture, and in
betweengs

(1i ) and gs
(2i ) the s1 id state is the equilibrium

state of a system~see Fig. 3!.

III. STRONG COUPLING

In order to be certain that our results are not an artifact of
the weak-coupling approximation, we perform the calcula-
tions in the strong-coupling regime. We follow the Eliash-
berg formalism18,19 at zero temperature. We assume that the
frequency cutoffvc!eF , so that vertex corrections can be
neglected according to Migdal theorem.20

In the Eliashberg approach, one preserves the frequency
dependence of the gap and substitutes the full quasiparticle
Green’s function in the gap equation. In explicit form, the
equations are

D̃~kW ,v!

52E dv8

2p (
k8W

VkWk8W
D̃~k8W ,v8!

V2~k8W ,v8!1D̃2~k8W ,v8!1j2~k8W !
,

FIG. 1. Graphical solution of Eq.~10! is given by the intersec-
tion of the curvef (a) and the straight line.

FIG. 2. The location of the phase boundaries for the trials1d
state. The critical point of the transition froms1d to s occurs
inside thed phase and vice versa, meaning that there is no region of
s1d mixed phase.

FIG. 3. The phase diagram of the superconductor at zero tem-
perature depending on the ratio of coupling strengths in the two
channels.
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V~kW ,v!

5v2E dv8

2p (
k8W

VkWk8W
V~k8W ,v8!

V2~k8W ,v8!1D̃2~k8W ,v8!1j2~k8W !
,

~19!

where j(qW ) is the renormalized single-particle energy,
j(q)5vF(q2pF),D̃(qW ,v) is the anomalous part of the self-
energy, andV(qW ,v) is the antisymmetric inv part of the
normal self-energy. Asvc!eF , the integration overukW8u is
confined to a region near the Fermi surface and can be sub-
stituted by the integration overj, as in BCS theory. This
integration is straightforward and yields

D̃~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

~gs1gdcos2f!D̃~v8,f!

AuV~v8,f!u21uD̃~v8,f!u2

V~v,f!5v1E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

3
~gs1gdcos2f!V~v8,f!

AuV~v8,f!u21uD̃~v8,f!u2
. ~20!

We now again consider the two mixed states separately.

A. s1 id state

Consider first a mixeds1 id state. For this symmetry, the
angular decomposition of the self-energy functions yields

D̃~v,f!5D̃s~v!1 i D̃d~v!cos~2f!, ~21!

V~v,f!5Vs~v!1 iVd~v!cos~2f!. ~22!

Accordingly, Eqs.~20! can be broken down into four equa-
tions

D̃d~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gdD̃d~v8!cos22f

AVs
2~v8!1Vd

2~v8!1D̃s
2~v8!1D̃d

2~v8!cos22f
, ~23!

D̃s~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gsD̃
s~v8!

AVs
2~v8!1Vd

2~v8!1D̃s
2~v8!1D̃d

2~v8!cos22f
, ~24!

Vd~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gdVd~v8!cos22f

AVs
2~v8!1Vd

2~v8!1D̃s
2~v8!1D̃d

2~v8!cos22f
, ~25!

Vs~v!5v1E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gsVs~v8!

AVs
2~v8!1Vd

2~v8!1D̃s
2~v8!1D̃d

2~v8!cos22f
. ~26!

Equation~25! is homogeneous inVd . For weak coupling its only solution wasVd[0. In principle, at strong coupling, there
is a chance that above some threshold there exists a solution with a nonzeroVd . We will not consider this rather exotic
possibility and will instead assume that the stable solution of Eq.~25! corresponds toVd50 for all couplings.

We now follow the same approach as at weak coupling and look for the transition points between pures and mixeds1 id,
and pured and mixeds1 id states. In the former case, we linearize the above set of equations aroundD̃d50 and obtain

D̃d~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gdD̃d~v8!cos22f

AVs
2~v8!1D̃s

2~v8!
,

D̃s~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gsD̃s~v8!

AVs
2~v8!1D̃s

2~v8!
. ~27!

Equations~27! are obviously satisfied whengs
(2i )5gd/2, the same as for weak coupling.

Now consider the transition from thed-wave state into the mixed state. Linearizing Eqs.~23!–~26! with respect toD̃s , we
get

D̃d~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gdD̃d~v8!

2AVs
2~v8!1D̃d

2~v8!cos22f
1E

v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gdD̃d~v8!cos4f

2AVs
2~v8!1D̃d

2~v8!cos22f
, ~28!

D̃s~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gsD̃s~v8!

AVs
2~v8!1D̃d

2~v8!cos22f
. ~29!
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We first observe that if the second term in Eq.~28! were
absent, thed-wave solution would become unstable at
gs
(1i )5gd/25gs

(2i ) . We now show that this second term
yields a negative correction to the first term, independent of
what D̃d(v8) andVs(v8) are. Indeed, let us perform angular
integration first. For the first term in~28!, the integrand
@apart fromgd D̃d(v8)# is positive, and the integration yields
a positive result. For the second term, we have to evaluate

I5E
0

p cosfdf

Aa1bcosf
, ~30!

wherea.b.0. Doing simple manipulations, we obtain

I5E
0

p/2

dfS cosf

Aa1bcosf
2

cosf

Aa2bcosf
D . ~31!

Since cosf is positive when 0,f,p/2, thenI is negative.
This simple argument shows that the second term in~28!
effectively reduces the value ofgd to gd

eff,gd . Clearly then,
the critical valuegs

(1i )5gd
eff/2 for the transition between the

pured state and thes1 id mixed state will besmaller than
gd/2[g(2i ).

The above consideration shows that for arbitrary interac-
tion strength there exists a range ofgs /gd , where neither of
the pure states is stable. We further expanded near each of
the transition points up to cubic terms in eitherDs or Dd and
indeed found a nonzero solution for this intermediate range
of couplings, which implies that in the intermediate region
the gap has ans1 id symmetry. It turns out therefore that the
phase diagram at weak and strong couplings is essentially the
same. It is nevertheless interesting that the strong-coupling
corrections tend make the mixing of thes wave into a pre-
dominantlyd wave more favorable.

B. s1d state

Now we study whether it is possible to obtain thes1d
mixed symmetry state in equilibrium. This case is signifi-
cantly more complicated because, unlike thes1 id case, the
square of the gap function now contains a term that is linear
in both s andd components.

However, we will show that at least in the limit of very
strong coupling there is no region ofs1d symmetry. Indeed,
consider the transition, atgs5gs

(1) , between the pures and
the mixed s1d states. Eliashberg equations linearized in
D̃d andVd read

D̃s~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gdD̃s~v8!

AVs
2~v8!1D̃d

2~v8!
, ~32!

Vs~v!5v1E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gsVs~v8!

AVs
2~v8!1D̃d

2~v8!
, ~33!

D̃d~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gdD̃d~v8!cos22f

AVs
2~v8!1D̃d

2~v8!cos22f
2
gdD̃d~v8!@D̃d~v8!D̃s~v8!1Vd~v8!Vs~v8!#cos22f

2@Vs
2~v8!1D̃s

2~v8!#3/2
, ~34!

Vd~v!5E
v2v0/2

v1v0/2

dv8E
0

2pdf

2p

gdVd~v8!

AVs
2~v!1D̃d

2~v!cos22f
2
gdD̃d~v8!@D̃d~v8!D̃s~v8!1Vd~v8!Vs~v8!#cos22f

2@Vs
2~v8!1D̃s

2~v8!#3/2
. ~35!

We now show that forgs@1 andv<v0 , D̃s(v)@Vs(v).
Indeed, suppose that this is true. Then it is easy to see that in
the region of frequencies we are interested in,D̃s(v) is fre-
quency independent and equal togsv0 , while Vs(v) is lin-
ear inv. LettingVs(v)5lv, we can rewrite the inequality
asgs5gs

(1)@l. Then, Eq.~33! becomes

l511
gs

~1!l

v E
v2v0/2

v1v0/2 v8dv8

Al2v821D̃s
2
. ~36!

Solving ~36!, we obtain forgs
(1)@1

l52~gs
~1!!2/3!gs

~1! , ~37!

thus justifying the assumption thatD̃(v)@Vs(v). Further-
more, in this limit, Eq.~34! reduces to

15
gd
2 E2v0/2

v0/2 l2v2dv

~D̃s
21l2v2!3/2

. ~38!

Using ~37! we finally obtain that

gs
~1!5S gd6 D 3/5!gd . ~39!

We see, therefore, that in the strong-coupling limit the hypo-
thetical transition between a mixeds1d and a pures state
occurs atgs5gs

(1)!gd . However, for this ratio of couplings,
both the pures wave and the mixed state clearly must be
unstable with respect to the pured-wave state. A similar
analysis shows that the transition between the pured and the
mixed state occurs atgs5gs

(2);gd . As a result, we again
havegs

(2).gs
(1) , which, just as in the weak-coupling case,

implies that there is no region of mixeds1d symmetry.
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IV. SUMMARY

We have studied in this paper a two-dimensional isotropic
Fermi liquid with attractive interaction in boths andd chan-
nels. We considered the weak-coupling limit and also applied
the Eliashberg formalism at strong coupling.

The phase diagram of the superconductor turns out to be
the same at weak and strong coupling. It displays a region
with a mixed s1 id symmetry gap when the coupling
strengths in the two channels are of the same order of mag-
nitude. The phase transitions between the mixed state and the
pures andd states are second order.

We have shown that in the weak- and strong-coupling
limits a mixeds1d state does not occur. Intuitively, this can
be interpreted as the propensity of the system to choose the
state in which the amplitude of the gap function has the
largest value. This is also in agreement with the Ginsburg-
Landau considerations,11,16 which suggests that in the ab-
sence of orthorhombic distortion thes1 id state has lower
energy than thes1d state.

Indeed, the model we considered is oversimplified: the
two-dimensional isotropic Fermi liquid captures some of fea-
tures of the high-Tc materials; however, the isotropic system
is never close to a magnetic or a metal-insulator transition.
Our analysis of thes1d versuss1 id question, therefore,
does not include such effects. In this sense, what we have
shown here is that if thes1d state is realized in real mate-
rials, some nontrivial physical effect of the proximity to
these phase transitions is likely to be the cause.
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APPENDIX

In this appendix, we present weak-coupling calculations
for the thermodynamics of a pured-wave superconductor.
The gap equation at zero temperature is

15gdE
2v0/2

v0/2

deE
0

2pdf

2p

cos22f

Ae21Dd
2cos22f

. ~A1!

After simple manipulations we arrive at

Dd5
2v0

Ae
expS 2

1

gd
D . ~A2!

At the same time, the transition temperature is given by17

Tc5
gv0

p
expS 2

1

gd
D , ~A3!

where lng5C'0.577 is Euler’s constant. Then

2Dd

Tc
5

4p

Aeg
'4.28. ~A4!

Note, this ratio for thes wave is 3.53. Finally, starting with
the gap equation at finite temperature

15gdE
2v0/2

v0/2

deE
0

2pdf

2p

cos22f

Ae21Dd
2

51, ~A5!

and performing standard expansions atT!Tc and
Tc2T!Tc

17 we find the following expressions for the tem-
perature dependence of the superconducting gap:

Dd~T!5Dd~0!F120.37S TTcD
3G , T!Tc

Dd~T!51.65Dd~0!A12T/Tc, Tc2T!Tc . ~A6!
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