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Anisotropic scaling in threshold critical dynamics of driven directed lines
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The dynamical critical behavior of a single directed line driven in a random medium near the depinning
threshold is studied both analyticallpy renormalization groupand numerically, in the context of a flux line
in a type-Il superconductor with a bulk currehtin the absence of transverse fluctuations, the system reduces
to recently studied models of interface depinning. In most cases, the presence of transverse fluctuations is
found not to influence the critical exponents that describe longitudinal correlations. For a manifold with
d=4- € internal dimensions, longitudinal fluctuatioits an isotropic mediunare described by a roughness
exponent;;=€/3 to all orders ine, and a dynamical exponenf=2—2¢/9+ O(€?). Transverse fluctuations
have a distinct and smaller roughness expongnt {|—d/2 for an isotropic medium. Furthermore, their
relaxation is much slower, characterized by a dynamical expanentyj+1/v, wherev=1/(2—¢)) is the
correlation length exponent. The predicted exponents agree well with numerical results for a flux line in three
dimensions. As in the case of interface depinning models, anisotropy leads to additional universality classes. A
nonzero Hall angle, which has no analogue in the interface models, also affects the critical behavior.

I. INTRODUCTION AND SUMMARY in Fig. 1. The superconductor is subject to a magnetic field

B=BX along thex axis, and a bulk supercurreﬁﬁ; Jzalong

_The study of dynamical critical phenomena associateqhe 7 axis. A FL is oriented alongd on the average, but
with the pinning-depinning transition in random media hasyeyiates from a straight line due to impurities in the super-
become a subject of considerable interest in recent Ye&rgonductor, which are represented by a poterii@t,y,z).
Thiﬁ isldue t?l the importanclf]e of pinning inha widle v?rie;y ofThe conformations of the FL are described by
technologically important phenomena such as flux [iRe > o B N ”
motion in type-1l superconductors, dynamics of interfacesR(X_’t)_Xx+r()t(/'t)i WTere r_(x,t)—Iy(x,t)y+z(|xt,t)tzh IS a i
(phase boundaries, invasion fronts, cracks, surface growth, ttgvo componenvector, fying in a plane normal to the mag
name a fey, and charge-density-waveCDW) transport.
These systems are characterized by a rough energy landscape
due to the randomness in the medium. At zero temperature
there are two distinct “phases,” distinguished by an order
parametefhenceforth called velocijythat measures the dy-
namic response, such as the average velocity for a FL, or
current for a CDW. For small driving forces, the system is
trapped by one of the many available metastable stationary
states, and is “pinned” to the impurities in the medium.
Critical behavior emerges as the stationary states disappear,
and the system starts moving with a nonzero velocity, when
the driving force is increased above a threshold value. Ex-
tensive experimental theoreticaf~* and simulatio” work
has been done to understand the properties of this transition
in CDW systems. There are also numerous studies on the
depinning of driven interfacés!* A better theoretical under-
standing of this dynamical phase transition was recently
achieved, and critical exponents were calculated through an
€ expansion for both CDW systerhand driven interface&®
More recently, we performed similar calculations for the de-
pinning of an elastic line in a bulk random medium, like a
polymer in a gel network, a FL in a type-Il superconductor, \
or a screw dislocation in a crystdl.In this article, we y
present a detailed report of our study on the dynamical criti- (b)
cal behavior associated with the depinning of a FL, and in
general on the depinning of directed manifolds in random F|G. 1. Geometry of the FL in a medium with impuritie&)
media, through methods similar to those used for CDW'’s andhree-dimensional geometr§h) A cross section of the medium at
interfaces. fixed x. The average drift velocity=ve makes an angle5 with

Specifically, let us consider the geometry of the FL shownthey axis.
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netic field. The bulk currenf drives the FL along they v=A(F-F.)?, (1.9

direction through the Lorentz forde, = ®,JXB. (Pyisthe  where B is the velocity exponent and is a nonuniversal

flux quantum) If the bulk current is large enough, the FL constant. Superposed on the steady advance of the line are
drifts with an average velocity. Due to the chiral nature of rapid “jumps” as portions of the line depin from strong pin-
the supercurrents around the RLis in general not along the ning centers. Such jumps are similar to avalanches in other
y direction, but makes an angl¢ with the y axis. This is  slowly forced systems and have a power-law distribution in
usually called théHall angle, and although typically smalf,  size, cut off at a characteristic correlation lengthOn ap-

it can be significant near the depinning transition. proaching the threshold; diverges as
It is more convenient to work with components rothat
are parallel and perpendicular ¥ i.e., E~(F—Fy) 7, (1.5
rxt=r(x,H)g+r, (x,te, (1.2 defining a correlation length exponent At length scales up

to &, the interface is self-affine, with correlations satisfying

where the unit vectorg ande, are rotated byp from they the dynamic scaling form

andz axes, respectively, as shown in Figbll In Sec. Il we

show that, under very general assumptions, the equation of ([r”(x,t)—r”(O,O)]Z}:|X|2§‘\g||(t/|X|Z|‘), (1.6
motion for small deviations around a straight line, general-

ized to d-dimesional internal coordinatese kY, can be ([ (x,)=r,(0 0)]2>:|X|2Qgi(t/|x|zl) (1.7)
written as ' ’ ’

5 5 - where{, andz, are roughness and dynamic exponents, re-
nd =Ky Vir+ KoVir +F+fi(x,r(x,t)), (1.28  spectively. The scaling functiors, go to a constant as their
. arguments approach @ and ¢, are the longitudinal and

nor L =Ky Var|+KyuVar, +f,(xr(xt)), (1.2  transverse wandering exponents of an instantaneus line pro-
: . . _ . file; z; and z, characterize scaling of relaxation times of
v&/her;?ai tt?z 223%?5;?; It:rlw_ealr(])iai ?:)l?;]\/.a-tr:]ri r;r?glglre iAongitudinal and transverse modes with wave vector through

ay ~0O Za H
general nondiagonal for a sample with orientation-dependen?“(q) q *«. Beyond the length scal regions move more

core energy, or nonzero Hall andlef. Sec. 1). The random or less independently of each other and the system is no

f P th ise f hei . il K longer critical. The behavior of the moving line is described
orcest, that arise from the impurity potentiaf are takento e exponents calculated earlfel® for time-dependent
have zero mean with correlations

noise. Ignoring any potential nonlinearities leads to a regular
diffusion equation with white noise, for which the roughness
and dynamic exponents agg =¢; =(2—d)/2,z"=2. In
whereA is a function that decays rapidly for large values of the interface model, transverse fluctuations do not exist; thus,
its argument(The indicesa,y, ...={||,L}.) £, andz, are not defined.

Ignoring fluctuations of the FL transverse to the direction Equations(1.2) can be analyzed using the formalism of
of average velocity, i.e., setting =0, leads to an interface Martin, Siggia, and RoséMSR).*® A renormalization group
depinning model studied by Nattermann, Stepanow, TangRG) treatment of the “interface model,” studied by NSTL
and LeschhoriNSTL),” and by Narayan and FishélF)2  (Ref. 7 and NF(Ref. 8, indicates an upper critical dimen-
Hence, the major difference between E€k2) (henceforth sion ofd.=4, and exponents id=4— e dimensions, given
called the “vector depinning model”and the previously to one-loop order ag=e/3 andz=2—2¢/9. NSTL obtained
studied “interface model” is the existence of transverse fluc-this result by directly averaging the MSR generating func-
tuations, making the position of the limea vector instead of tional Z, and calculating the renormalization of the force-
a scalar “height” variable. The effects of such transverseforce correlation functiom\(r). NF, on the other hand, ex-
fluctuations for large driving forces and average velocitiespandedZ around a saddle-point solution corresponding to a
when the randomness in the medium can be approximated asean-field approximatidi to Egs. (1.2) which involves
uncorrelated in space and time, were sht{wito create a temporal force-force correlationsC(vt). They point out
much richer dynamical phase diagram than the correspondome of the deficiencies of conventional low-frequency
ing interface growth model, namely, the Kardar-Parisi-Zhanganalysis, and suggest that the roughness exponent is equal to
(KP2) equatior® Then, the natural questions to ask are thee/3 to all orders in perturbation theory. They also show that
following: How do these transverse fluctuations scale neafor two different classes of disordered systems, random-field
the depinning threshold, and how do they influence the critiand random-bond disorder, the zero-temperature interface
cal dynamics of longitudinal fluctuations? dynamics is essentially the same near threshold. Their argu-

In order to make these questions more quantifiable, wenent remains valid for vector depinning, and our results will
consider the exponents that characterize the critical behavidse applicable to both types of randomness. As we shall dem-
near the depinning transition. L&(v) denote the driving onstrate in Sec. lll, the longitudinal exponents of the “vec-
force required to move the FL with a velocity=ve. For  tor” model are identical to those of the depinning interface,
small values of =|F|, the line is pinned by the disorder in and given by
the medium. There is a threshold foreég, such that the line
moves with a nonzero average veloaityff F>F_.1" ForF {|=€l3, (1.8
slightly above threshold, we expect the average velocity to
scale as 2)=2-2€/9+ O(€?). (1.9

(Fax,NF(x 1)) =84 x=x) Ay (r—r"), (13
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Other exponents are determined by exact exponent identitid®G treatment of the problem in more general circumstances.
from ¢, andz as In Sec. IV, we present the MSR formalism and expand the
generating functional around a self-consistent saddle point

1 3 (1.10 solution, given by a mean-field theory. In Sec. V, we calcu-
2= - 6—€’ ' late response and connected correlation functions of the
mean-field theory, which correspond to the bare propagators

B=(zj={Prv=1—€/9+ O(€?). (1.1 and vertex functions in a perturbative expansion. In Sec. VI,

, , _ we determine critical exponents through eexpansion near
Following the formalism of NF, we employ a perturbative y— 4 dimensions, and in Sec. VIl we compare these with

expansion of the disorder-averaged MSR partition functiomymerical results obtained by directly integrating the equa-
around a mean-field solution for scalloped impurity tions of motion. Finally, in Sec. VIl we discuss the physical
potentials? We show that slightly above threshold, transversesignificance of these results, the roles of nonlinear terms and

fluctuations do not significantly affect the dynamics of lon- anisotropy, and applicability of similar methods to related
gitudinal fluctuations, apart from shifting the threshold force opjems.

F.. Specifically, the exponents and exponent identities given
in Egs.(1.8—(1.11) for d<d, are also correct for the vector
depinning model. However, transverse fluctuations turn out Il. EQUATIONS OF MOTION FOR A FL

to scale differently, with, ¢y andz, #z. In particular, in In this section we derive a phenomenological equation

anisotropic medium with Hall anglep=0 (model A in Sec. that describes the coarse-grain@u space and timeevolu-
II), the renormalization of transverse temporal force-forcetion of a single FL in a bulk type-ll superconductor. The
correlationsC, (vt) yields . . . . . =
configuration of the FL at time is described byR(s,t),
5e wheres is an arbitrary parameter which we shall later equate
=4~ 5= -2+ 5’ (112 o thex component ofR. The equations of motion are ob-

. . _ tained by balancing the “conservative” and “dynamical”
correct to all orders ir. The transverse dynamic exponent is forces. Conservative forces are derived from the energy

given by anexactexponent identity functional and depend only on the instantaneous configura-
tion Ifi(s) of the FL. They include the elastic force, random
1 Se ) . ; .
z, =7+ - =4— ?+o(6 ). (1.13 forces due to the impurity potentisl, and the Lorentz force

due to the bulk current. Dynamical forces, on the other hand,

These conclusions can also be generalized to more than ofé€Pend explicitly on the local velocity of the FL and com-
transverse direction: The results do not depend on the nuniise the dissipative and Magnus forc2s. _
ber of transverse coordinates. For the Ei=@3), the critical For notational simplicity, we set the external magnetic
exponents are then predicted to be field B along thex axis and the average velocity along

€, suppressing the possible dependence of parameters on the

relative orientation oB and g due to anisotropy in the un-
(1.149  derlying material. Such complications will be taken up later
p~13, {i=12, z,~7I3. in Sec. VIII. An important consideration is the requirement
This implies that in a type-Il superconductor driven slightly that the equation of motion be invariant under an arbitrary
above threshold, flux lines are contained mostly in the planeeparametrizatiorR(s)— R(s’) of the curve. One such re-
normal to the current, up to the correlation length scale parametrization invariant quantity is the infinitesimal arc

This may have a noticeable effect on the dynamics of enfengthdi=ds\/g, whereg=d.R- JR is the metric. The only

tanglement of flux lines near depinning. These results alsphysically observable motions of the FL are orthogonal to
rationalize the use of a “planar approximation” in numerical the |ocal unit tangent vector
simulations of FL depinning®

Another important consideration is the role of anisotropy
in the bulk material. It was recently shown that anisotropy = ia B

. . . . . - S .

leads to new universality classes in interface depinAtiwye Jg
show that this happens as well for FL depinning, in an even

richer fashion. The presence of a nonzero Hall angle affectisgyming that the FL motion is overdamped, the conserva-
the critical behavior in a manner similar to anisotropy. Theset. = S . .
ive force F1, which is derived below, is balanced by dy-

issues are discussed in more detail in Sec. VIll. namical forces that are proportional to the local normal ve-
The rest of the paper is organized as follows: In Sec. I, prop

we derive the general form of the equation of motion for alocity vn=7"dR=4R—(4R-1)t. (Here, 7};=5;—tit
single FL, starting from a reparametrization invarigRi) ~ Projects any vector onto the local normal plarigynamical
description of the FL dynamics. In Sec. I, we first establishforces are not necessarily paralleldg: In general, there is
the connection of Eq€1.2) to the interface depinning prob- an angle¢ (called the Hall anglebetween the applied force
lem for the simple case of an isotropic medium with zeroand the velocity of the FL. Physically, this is due to the
Hall angle. We then examine the linear response of the sysvlagnus force which is orthogonal to the velocity, and the
tem to derive the exponent identitig€4.10, (1.11), and Hall effect in the normal core of the F. The equation of
(1.13, which are later shown to be consistent with a formalmotion can then be written as

é’HZ 1, Z||~4/3, V= 1,
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n%-{co&bé’tﬁJr sin¢(at§)><f}: |fT_ (2.1)  the FLis also subject to a Lorentz for€@=®ojxf, where
d, is the flux quantum. Thus, the total conservative force
To determine the conservative forée, consider the en- acting on a section of the FL is given as
ergy cost associated with a particular coarse-grained configu-

o . : 20-7-9’R—(1-0-1)0?R
R f the FL in th f Ik hich 2 _ TR 7
ir;’:mon (s) of the FL in the absence of a bulk current, whic Ei=7 s 5 S b ddxi+fl.
- - (2.5
JsR-0- IR 3 For an isotropic sample in the extreme type-ll limit, the
+V(R(s))[. (2.2 .
g Bardeen-Stephen model gi?s

ElR(s)1- | ds\g

In the above equation, the symmetric teneogives the core
energy per unit length of the FL, and can be nondiagonal for
an anisotropic sampléAnharmonic contributions to the core
energy can be ignored in a coarse-grained description and we
will systematically keep only the leading order elastic teyms. tang~ p,/p"
The restoring forcde is given by the energy cost of an _ " n _

infinitesimal virtual displacemensR(s). After some rear- WheréXs is the LondSn penetration deptf is the coher-
rangement, we arrive at ence length, ang,,p,, are normal and Hall resistivities of
the nonsuperconducting core region, respectively. More gen-
eral expressions for these phenomenological parameters can
be derived from a mesoscopic model based on a time-
dependent Ginzburg-Landau thedry.

i)~ 5 (P /AN ) ?IN(£/Ns),

n~®3(2mEc?p,),

SE=— f dsVgoR-7- {20 k—(t- o)k

+V(F§)§—V,§V(I§)} Equation(2.1) is highly nonlinear and generalizes those
of Ref. 26 to the three-dimensional and anisotropic case.
E_J dsyVgsR-Fg, (2.3 We now_pick{f(,qhei} as our coordina?e axes, andas
the arbitrary parameters, representing the FL as

wherex=g~17. 42R is the local curvature vector. To lead- R(x,t)=xx+2r“(x,t)q‘+2rl(xlt)ei. In this representation,
ing order, the random potentis(R) that multipliesc canbe  9=1+ (o) +(ar)%  JI=Jg+Jdie, f=fx+fig
approximated by its spatial average, and eliminated without™ f1 €., and
loss of generality by choosing/)=0. f=—VzV(R) acts as

a random force on each segment of the FL, whose correla-

tions in general satisfy o=\ Ox I 0Ox

Oy, Ox O]

Ox Oy Oxv

(fo(RIf(R))=A,,(R-R"). (2.9 T :
After some rearrangement, and elimination of higher-order
For now, we do not restrict the form &, apart from the terms coming from the elastic energy of the FL, we obtain
reasonable expectation that it decay quickly beyond a chathe following evolution equations for the componentsnd
acteristic impurity sizea. When a bulk currend is present, r,:

n
EatrH:[(zau— o) — 20 tang 1931 |+ [ 20« — (20, — oy tang]dir |

()]
+ I [1+ (e 2= Loy 0T L —tand g}
Vo

+f||

1+ %ﬁxr&xril —f, %[l-i—(o”xr”)z]—fx{ = %ﬁxril, (2.69

n
E(QJL:[ZO'X +(20'”—O'X)tar@]a)z(r“-i-[(ZO'l—O'X)+O'><tan¢]8)2(ri

+ %{JL[ﬁeraxri +tang gl —J|[1+ (0,1 )2}
Vg

+f‘|@[1+(&xrl)2]+fl

Vo

tang 1 { tang 1
1— ——=0urdyr | | — Tyl Oyr | + —=3dxr|. (2.6b
\/6 19x" L 1 \/a I
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These equations are clearly too complicated for an exhaustive analysis. However, it is possible to perform a gradient expasion
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of the right-hand sidéRHS) of Eqgs.(2.6) when the fluctuations around the straight line are small, io’erﬂxz,(axrl)2< 1. In

that case, Eq92.6) simplify to

7

@8tr“= [(ZUH— oy)— 20'><tal’l(,{)]o"§l'u+ [20x— (20, — O'X)tand)]ﬂirl +Dy(J, +J“tan¢) + f”— f, tang, (2.79
7

—— o, =[20«+ (20— o )tand]dzr |+ [ (20, — 0y) + o xtang]dir, + do(J tang—J)) +f, —fitang,  (2.7b

Cosp

neglecting all terms 0©((dyr )2 (dxr )% or higher.
So far, we have not enforced the condition teapoints

along the average velocity of the FL. This is satisfied by th

self-consistency relation
(o )=0. (2.9

In the small fluctuation limit where Eq$2.7) are valid, this
condition is satisfied simply by settiny=J, tang. In order

Ill. VECTOR DEPINNING MODEL

e In this section, we study some properties of the system
described by Eqg2.9) and(2.10 in detail. Due to statistical
translational symmetry in time and internal coordinates,
we use the real X;t) and Fourier §,0) domains inter-
changeably when dealing with statistical averages.

The vector depinning model differs from the CDW or
interface problems due to the presence of transverse fluctua-

to study the scaling properties of this system in the frametionsr, (x,t). It is sometimes useful to recast the equations
work of a field theory, we generalize the FL to a manifold such thatr, appears as a function of rather thant. The

with d-dimensional internal coordinatess %Y. Further re-

asymmetry inrj andr, occurs because; almost always

arrangements, and addition of an infinitesimal external forcenoves in the forward directioff,and therefore is a monoto-

g(x,t) in order to study response functions, lead to

o =Ky V2r|+ KaV2r +F+F(x,r(x,0)+e1(xt),

(2.9
natrL=K21V§r||+K22V>2(rl+?l(x,r(x,t))+82(x,t),
(2.9b
whereF =®,Jf +J7 =®,J, and
Kll KlZ CO&{) _Sind) (Z(TI_(TX 20'><
KZl K22 B S|n¢ CO&ﬁ 20'>< ZU'L_(TX '
?H cosp —sing f”
f,] \sing cosp [\f )
The correlations of the random forces satisfy
(Fax,D)F (1)) =8%x=X") A (r=1"). (290

(Note that while bothr andx are represented by bold char-

acters,r remains two dimensional, whilg has been pro-
moted to ad-dimensional vector.

In the special case of an isotropic medium wgk- 0, the
equations further reduce to

nar | =KV +F+fi(x,r(x,t)+ei(xt), (2.108

7o =KV2r +f, (x,r(x,t))+ey(x,t), (2.10h

where the correlations of the random forces satisfy

(FaX )T UX, 1)) = 80y O (X=X )A(Ir=1"]).
(2.100

We shall henceforth refer to Eq®.10 as model A. Anisot-

nous function ot. Thus, for any particular realization of the
random forcef (x,r), there is a unique point, (x,r) that is
visited by the line for given coordinates, (). The evolu-
tion of r, (x,r|) can be obtained schematically, by dividing
Eq. (2.9b by (2.939, as

(')'r_l_ KZlV)%r”‘l‘ K22V>2(rl+’ﬂ
ar| K11V§TH+K12V§I’L+¥H+F.

(3.9

We shall see that in most cases the scaling properties iof
relation tor can be obtained heuristically by inspecting Eq.
(3.9).

A. Model A

First of all, we establish the connection between Eq.
(2.10 and the interface depinning model for the special case
of an isotropic system witlp=0 (model A). For a particular
realization of randomned¢x,r), Eq.(2.103 can be written
as

o= KViI’H'f‘ f '(X,TH(X,t))"f' F+eq.(xt), (3.2

where f'(x,r))="f(x,ry,r . (x,r))) and r (x,r)) is deter-
mined by Eq.(3.1). It is quite plausible that, after averaging
over allf, the correlations irf’ will also be short ranged,
albeit different from those df, since the dissipative dynam-
ics will avoid maxima of the random potential, effectively
reducing the average forces. In that case, the equation re-
duces exactly to the model studied by NSTL and NF. Thus,
the scaling of longitudinal fluctuations of the FL near thresh-
old will not change upon taking into account transverse com-
ponents, and the exponent relatiofis8—(1.11) hold for

ropy and/or a nonzero Hall angle changes the scaling propnodel A as well. We expect this argument to hold even for
erties of the critical region, and we shall refer to this moremodel B [Egs. (2.9)] as long asz(rL<V)2(r”, or when

general case, described by E¢2.9), as model B.

{<{.
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For the interface model, it is possible to show théf) is F dF
a single-valued function using the “no passing rule” of = === - I
Middleton and Fishet.The rule states that no interfacer v dv,

CDW) can overtake another, if initially every point on the
first interface is behind the second one. This rule does not
apply to the vector model: It is in principle possible to have
coexisten f moving and stationery FL's, allowing for th

oexistence of moving and stationery FLS, allowing fo e(:hamges are in the magnitué¢v). For a transverse forc&, does

pOSSIbI.|Ity of a d|slcont.|nuouémuItlple-valugd V.( F). How- . _not change to linear order idF, , butv changes direction to re-
ever, since a moving line samples an arbitrarily large region___.
. . . . . main parallel toF.
in the medium, it is plausible that the velocity self-averages
at long times, resulting in a single-valug(F) (i.e., no hys-
teresig. However, finite-size systems do suffer from such
hysteresis which adversely affects numerical simulations o
the model. These issues are further discussed in Sec. VII.
Several exponent identities can be deduced from the for

of the linear response,

FIG. 2. A graphical demonstration of E¢8.7) and(3.8). When
a longitudinal force is applied, the direction is not changed and all

These two derivatives clearly scale differently in the-0
Emit, which causes a separation of relaxation time scales, as
hown below.
Now consider the response to a spatially uniform
quO), but time-dependent, external foreét). The leading
term in the dynamic response is intricately connected to

ar (o) Vv(F): When a slowly varying uniform external foregt) is
Xay(q!w):<L>! (3.3 applied, the FL responds as if the instantaneous external
de (0, ) force F+ ¢ is a constant; i.e., it moves with the average ve-

in the (g, @) — (0,0) limit. Due to the statistical symmetry of l0City
Egs. (2.10 under the transformation, ——r, , the linear
response is diagonal. Let us first se&=0 and examine the (0 )=V o(F+&)~v(F)+ £y (3.9
static response: An additional static foreéq) with zero dFy

spatial averagénog=0 componentcan be exactly compen- Therefore, near the depinning transition,
sated by the coordinate change

v,

ro(a,)=r,(a,t)+(Ka?) e (q). X)(q=0,0)= —iw(dF/dlv)+0(w2)’ (3.10
The distribution off d_oe; not change in the primed coordi- 1
nates. Thus, the static linear response has the form ¥, (q=0,0)= o F ) T0wD (3.11)
Xay(q,0=0)= 6a'yKiqZ' (3.4 Equation(3.4) can be combined with the above to yield a

Taylor expansion of the inverse linear response around
Sinceg| scales like the applied force, the form of the linear (d,w)=(0,0) that reads
response at the correlation lengttyives the exponent iden-

tity x| (9,0)=Kq?—iw(dF/dv)+ higher-order terms,
(3.12
§H+1/V:2. (3.5 1 ] .
I - . X1 '(g,w)=Kg?—iw(F./v)+higher-order terms.
Considering the transverse linear response seems to imply (3.13

{1 ={|- However, as will be shown below, the static part of 1 )
the transverse linear response becomes irrelevant at the cri '€ Z&ro ofy~ in the complexw plane for a given value of
cal RG fixed point, since, >z. This is consistent with the e wave vectom gives the relaxation time of the corre-
expectation that the dynamics is responsible for the distincSPonding mode. Thus, the relaxation times of fluctuations
tion between longitudinal and transverse modes. with wavelength¢ are
Why are the relaxational dynamics different in the two do !\ ~1

fluctuation d'irections near depinning? The answer can be T(q:é—l)w(qu_F) ~ g2 B-Dlv_gz (3,14
traced to a simple symmetry argument, which requitesd
v to remain parallel, i.e., 1

. (=g H~|?e| ~& g, (319
F(v)=F(v)v, (3.6 L Fe ' '
wherev =v/v, andF is some(scalay function which de-  which in turn yield
pends on only the magnitude of velocity. For small devia-

tions aroundv=ve, we thus obtair(see Fig. 2 B=1+(z)=2)v, (3.16
(9F” B dF 3.7 ZJ_=2H+1/V. (3.17
du| dv’ ' Thus,z, >z as noted earlier. This difference arises entirely

from the different scaling properties ofdv/dF
ok, _F (3.9 [~(F—F.)# 1] andv/F [~ (F—F.)*] near the depinning
v, v’ ' transition, as noted earlier.



3526 DENIZ ERTASAND MEHRAN KARDAR 53
B. Model B Clearly, this coarse-grained continuum picture of the sys-
A similar linear response analysis can be made for thdem breaks down at length scales shorter than the core radius

more general case of model B. The leading contributions t&' the FL. Therefore, there is a natural cutaffin g space
the static and dynamic part of the inverse linear response af@' the functional integrals in Eq4.2). Z can be used to

given by generate response and correlation functions, dfince inte-
grating overr gives é functions that impose the solution to

X;yl(q,w:o):}(ayq{ (3.18 the equation of motionf4.1). The JacobianZ[r] fixes the

renormalization ofZ such that thed functions integrate to

X;yl(q=0,w)= —iw(ava/aFy)*l. (3.19  unity, and will be suppressed henceforth. Sizcel inde-

) ) _ pendent of the realization of randomness, response and cor-
The relation between the external force and the drift velocityg|ation functions can also be generated using the disorder-

can in general be written as averaged generating functiod= f[dr][df](exp®). For

F(v)=F(v,0)[cosh(v,0)0 +sind(v, 0)XXD]. example, the two-point correlation function is given by

(3.20
Both F and ¢ in general depend on the orientation wof <ra(X,t)r«/(X’,t')>=f [dr][dr]r (x,t)r (X" ,t"){exp(S)),
parametrized by an angkin theyz plane. Then, for small

deviations around=ve, and the linear response is
A. 1 81 (X,1) ) .
dF Ty [y o =—if[dr][dr]ra(x,t)r (X', )(exp(S)).
. de.(X',t") Y
- 1 ) (32]) Y
dF, Az ;Azz dv, In order to proceed, we discretize ix space:
r(x,t)—r;i(t). Introducing two conjugate fields
where R;(t),Ri(t), Z can be rewritten as
A11=9,(F cosp), _ - -
sz [dR][dR]expS), (4.9
Az1=3,(F sing),
A1=F sing—d,(F cosp), ~s=; |nZ,-(Rj,|ij)—if dtiEJ Ri(t)- 35 Ry(1),

The scaling of diagonal elements in the linear response is th@herefj(Rj ﬁj) is given by
same as in model A. Therefore, exponent identiti@4.6
and(3.17 hold in the more general case of model B as well. _

Zj:f[drj][dfj]<expf dt[i Ry () (1) +iF; (1) - {7ayr; (1)

IV MSR FORMALISM —R,—(t)+r,—(t)—fj(rj(t))—F—sj(t)}]>- (4.6

We use the formalism of MSRRef. 18 to compute re-

sponse and correlation functions for the dynamical systemyote that this factorization of the disorder-dependent part of
described by Eqd2.9.. After some rearranging, we obtain the action to local functionalg; is possible only if the ran-

ar (x,1) dom force§f~j are independent at each sjteas assumed in
/— =J A% J 4y (X= X1 (X', 1) =1 (X, 1) Eq. (1.3). Z; can be evaluated by an expansion around the
saddle-point approximation. The integrand of the exponential
+F 06T (X, 1)+ F +e (X)), (4.1 is a maximum when, for each

where the tensod is given by its Fourier transform as 2o e
Jay(q)=5a7.—Kayq2.. Intro.duc.ing an auxiliary field (x,t), —E_ Ji Ry =(rj)me=0,
the generating functional is given by !

z- [ [arier) Airlexes), @2 -3 0RO =0,

where . .o~ . .
which has a solutiorR)=0, RY=vt for all j. Here,v is

determined self-consistently as a functionFoby requiring
Szif d9x dt T,(x,t){ natry—vairy— F. (rp)me=Vvt, where the averages(-(--)yr) are generated
. from Z; evaluated at the saddle point, which is identical for
—f (61 (X,1))— g (X,1)}. (4.3 eachj:
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Zyre can be identified as the MRS generating function for a mean-fidke) approximation to Eq(4.1), obtained by setting
Jay(X=X') =8, N7t whereN=[d%. [The first term in the RHS of4.1) is then self-consistently equal {@)ye=Vt.]
Redefining the field variables &— R+ vt,iR—R (for notational simplicity, the expansion for B(R;,R;) is given by

— - - 1 e = ki ! ! ~ 1
Iz R Rp)= 2> |1 —— f IT { IT dtes Rialtas) IT dt,o Ria(tio)t 7im, iny({tas }i{tlg D)
{ma’na},o a ma.na. o 501_1 S/:l a a a

4.9

The vertex functions”” are obtained by evaluating derivatives ofzjlrwith respect to the fieldat the saddle pointand are
given precisely by connected correlation and response functions of the MF system decribed4y)Eq.

n

! 3 (9 ma
W%ma'na}({tasa};{tas;})z[H —]<H leja(tasa)> : (4.9
MF,c

’
a Sz/x:]' 38]a(tasé) a S,=

@

Thus, once the mean-field system is solved, correlation funcsides of the hyperparaboloid. At this moment, the particle
tions of R,R can be studied through a momentum space RGJuickly moves to a new local minimurR’, after which it
treatment to obtain the scaling exponents of the fields in thetarts following the slow motion oP’, as shown in Fig. 3.
long-time, large wavelengtthydrodynamig limit. R andR For scalloped random potentials with discontinuous deriva-
are like Coarse-grained forms of the 0rigina| fiedsind r tives at the saddle points, the particle starts moving with a
since all correlation functions off are equal to correspond- Velocity of O(1) (i.e., independent of asv—0) as soon as
ing correlation functions oR,R in the hydrodynamic limi¢. P disappears, and reaches the vicinityRfin O(1) time,

Therefore, it is sufficient to find the scaling behavior of 9iving the resuligye=1. (In contrast, for smooth potentials,
R R to deduce the desired critical exponents. there is av-dependent acceleration time just afferdisap-

pears, which contributes to the critical dynamics and gives
Bue=23/2.2% We have also numerically integrated E§.1)
(for model A to verify that Bye= 1.

Next, we proceed to compute vertex functions
In this section, we calculate response and correlatioﬁfma,na}({tasa};{t;s,}) in the perturbative expansion &

functions of the.local. system descrlbeQDMF, wh|ph~g|ves which correspond to response and connected correlation
the vertex functions in the diagrammatic expansio®ofVe  fynctions of the MF theory, in increasing order in the field

will only need to calculate the leading terms as higher-orde{ 5 iaplesR R. Erom now on. we sem=mi+m. . and
vertices will turn out to be irrelevant in the critical region. n=n;+n T ' | -
I

Due to the averagingZye is identical at all site§, and

it is sufficient to examine a single point. Setting
Wt)zr,-(t)—vt, and g(t)=g(t), the equation of motion
becomes

V. MEAN-FIELD THEORY

dr, — z e
n(mﬂa =Tt F T (vt+T(t)+e,(t).

(5.7

F is determined as a function fself-consistently by requir-
ing that (r)ye=0. The scaling behavior ofy(v) near
threshold can be determined from the following argument:
Forv<#~'F, the particle follows a local minimur® of the
effective potential

(b

r(l?

Ver(r 1) =V (X, vt+r(t))+ >

—F-r(t). . .
(t) FIG. 3. (a) The effective potentiaV.;. The random partnot

) ) ) shown superimposed on the paraboloid slides with velogity.
A representative snapshot d, which consists of a pa- (p) A cross section o¥/.;. The particle stays in a local minimuf
raboloid centered at=F with a superimposed random po- for a time ofO(v 1), after which the minimum disappears and the
tential, is shown in Fig. 3. The position of the local minimum particle finds another local minimui’ within a finite time. Time
P shifts with a velocity ofO(v) as time progresses. Eventu- averages are dominated by the slow portion of the motion as
ally, P disappears at a saddle point as it is pushed up the—o0.
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A. Average position(m=1,n=0)

By construction(r)y,== 0, but we prefer to expand around
the trueF(v) instead of the mean-field value of the force
Fue(V). Since the effect of an additional uniform static force

F—Fue(Vv) can be fully counteracted by a shiftinthis does

DENIZ ERTASAND MEHRAN KARDAR

J"F 4(V)

q ~
surary X T — R, (X
ntng! J' [a”lv”a”im a(X1)

V=g

X (GR)MIR,)™. (5.6

not affect connected correlation or response functions. Thus,

the only effect of this shift is to produce an additional term

Zi[F=Fue(V)]-R; in S, which only has ag=0 component

These terms are irrelevant at the RG fixed point, as we shall
show later.

and does not directly enter the renormalization of higher-

order terms.
B. Linear response(m=1,n=1)
The linear response is given by the rank-2 tensor,

. ] BTt
Xayf(t=t")= 5o, (U) "

D. Two-point correlation functions (m=2, n=0)

At low velocities, the particle spends most of the time
near a local minimum, jumping abruptly to the next one
when this minimum disappears. Therefore, the time scale
associated with the correlation functions is given by the tem-
poral separation between two consecutive jumps, which
scales as 1/ In thev—0 limit, the correlation functions
depend ort only through the rescaled time variahle=vt,

We are only interested in the low-frequency form of the Fou-since the positions of successive minima near threshold are

rier transformed linear respongéw), i.e., whene is slowly
varying in time. In this case, we can writgt)~ g5+ &4t
neglecting terms proportional t6. To find the response
14(1), let us define

T(t)=r(t)— go— &1t — Fye(V) + Fye(V+ £1).
Taking a time derivative and using E¢.1), we obtain
D(rT+V+e1) = — T+ Fye(V+ &) +H((V+ et +T1—F,),
(5.2
Where FEZ FMF(V+ 31) - FMF(V) —&p 3 But now, <K> = 0 by
definition of Fye. (The random forcé is evaluated at points
shifted by a constant amouft, but this has no significance
upon averaging over randomngsghis gives
(re(t))=&(t) + Fye(v) — Fyp(v+ (1)) + O(£).

ExpandingFy(v+ &) for smalle, we obtain

(5.3

IFMEa(V)
Jv

} +0(w?). (5.9

Y V:U%\

Xay(@)=8p,Fiw

determined by energetic considerations, and do not depend
onv. (The correlation functions may also depend on the drift
directiono. We shall suppress this dependence for notational
brevity) Let us define

(ro(O1 (")) M, c=Cyw(t—t")). (5.7

Since successive positions of the local minima are uncorre-
lated, we expect tha€,,,(u) decay quickly as a function of
u=vt for |u|>1. By definition,

Cj(u)=Cyy(u)=Cyy(—u),

C(u)=Cyu)=Cy—u),

1
ECX(U)ECH(U):CH(_U)-

As a result of the abrupt jumps from one minimum to an-
other,C,,(vt) have a discontinuous derivative at the origin,
rounded at a scale @(v). In model A,C,(u)=0 due to

Since Bye=1, the linear response tensor will have the formsymmetry.

1
An - Az
x(w)=1+iw 1 , (5.5
A —Ay

whereA ., approach constants as-0 [cf. Eq.(3.21)]. For
model A, y(w) is diagonal due to symmetry, and
A12:A21:0.

C. Nonlinear response(m=1, n>1)

Assuming thatFye(v) has a Taylor expansion around

v=veg for v>0, we can expand the RHS of E(5.3) to

The only other important terms in the effective acti®n
involve the seriesn=2,n=n>0,n, =0. All vertex func-
tions associated with this series are given by the response of
connected correlation functions kengitudinal forces. These
response functions are intimately related to the two-point
correlation functionsC,,(u) by the following argument:
Static forces only change linear response, and do not affect
connected correlation functions. For a slowly varying exter-
nal forcee(t)g, however, the system will respond as if the
instantaneous velocity io(-¢)g. Neglecting terms propor-
tional to &,

[(ra(OF,(t")) mecle=Cay(v+&)(t—t))+O(&)
~Cov(t—t")+e(t)—e(t)).

obtain the nonlinear response of the model. The leading term

in the low-frequency limit is proportional t@", and it is

Now, Taylor expanding,,, aroundv (t—t") and taking suc-

straightforward to show that the contribution of these termscessive functional derivatives with respectep we finally

toSis

obtain the contribution of this series ®as
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o]

W= ﬂ%f d% dt dt' Ry(%,)R,(X,t')U 4y n(w (t—t")NIRY(X,1) = Ry(x,t)1", (5.8

whereU ., ,(u) is thenth derivative ofC,,(u).
The vertices wittm=2, n, >0, andm>3 are all irrelevant, as shown in the next section.

VI. SCALING AND RG

The terms inS that are up to second order in the fields are

g ——fdtdd F—FueW)]-R t)_lf Rea-ol [ o) I M)~ (w) |
So= X[ me(V) - R(X, 2)qw R(—q,— w) I Y- (o) 0 R(q.0)

fe(q,an]

6.9

where J,7(q)=(8,,~K,,0%) '~8,,+K,,0q*> for small g. For notational brevity, we usefq, to denote
[ [d%/(2m)(dw/27) . Using Eq.(5.5), the quadratic form in the action can be written as

" R(-g-w) 17 [ Ri@0) ]
Lo | Ra-o) R.(q.0)
_Ef R(—0g,—w) | -2(q0)| R(qw) |, (6.2
q,w
1R 1R
-; L( qv (1))- -; L(q,ﬂ))-
where
- 1 , , -
—C”(w) —ECX(Q)) Kllq _|0)A11 vKqu +|(.UA12
l 2 . 2 .
—5Cx(—w) —Ci(w) Ko —iwhAy vKyg —1wAy,
Aqo)=| 2 :
K11q2+iwA11 K21q2+iwA21 0 0
1% Klzqz_ i a)Alz 1% K22q2+ i wA22 0 0

Neglecting all higher-order terms in the action, we arrivez, =2+d/2=z+ 1/v, as shown previously by the exponent
at a Gaussian theory, in which different Fourier modes arédentity (1.13. The exponents related to longitudinal fluctua-
decoupled, and which can be solved by inverting the matrixtions, not surprisingly, are identical to corresponding expo-
in Eq. (6.2). (See Appendix A. The quadratic actiori6.1) nents in the interface problefrHowever, we have also cal-

remains invariant under the scale transformation culated new exponents characterizing transverse fluctuations.
We see that even the simple Gaussian theory exhibits aniso-
X— bX, t—b?t, tropic exponents.
At d=d.=4 dimensions, the scaling dimension Bf
R||—>b2*d’2R”, R, —»b? IR, changes_ sign ar_ld we cannot negl_ect_ its_, higher powers any-
more. Simple dimensional analysis indicates that the only
fq”_,bfzfdlzﬁg”’ R, —b 27d2R | higher-order terms irS which become marginal al=d,
involve vertex functiondJ ., ,, given in Eq.(5.8). This se-
v—b- 92 F—Fye—b Y%F—F ), (6.3 riescanbe summed up over together with thex=0 term

C,, included in the Gaussian theory, to yield

except for terms proportional t§,, andK,, which vanish at

the depinning_transition as—0". For d>4, all higher-

order terms irS decay away upon rescaling,_and we recover EJ d% dt dt’ Ieea(x,t)li (%t )C o (v (t—t")

an asymptotically quadratic theory with critical exponents 2 ’ Y
B=1,z=2,v=2/, {=(4—-d)/2, {, =2—d. The remain-

ing exponentz, can be found by comparing the static and

dynamic parts of the transverse linear response. This gives +R|(X,t) —Ry(x,t")). (6.4
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All higher-order terms irs are formally irrelevant since they
involve additional powers oR, R, , or R, , whose scaling
exponents are less than zero.

Gaussian actioréo, in powers of 2. A renormalization
transformation is then constructed as follow$) Perform
the averages only over short-wavelength fluctuations

Ford<d;, the vertex functiond) ,, , become more and R> R> with wave numbers\/b<|q|<A, whereb=e"".
more relevant for increasing under the rescalin6.3), and  The resulting coarse-grained action is perturbatively given
the fixed point moves away from the Gaussian theory. Iny
d=4- e dimensions, we look for new fixed points with dif-
ferent scaling properties:

. 1
<= < ‘/j)> ~ O/2> ";,/,3. .

x— bx, t—b?lt, ST=SH{#ot 2<// Yoo O(77) ©.8

R\\*bg”RH* R, —biR,, (2) Apply the rescaling transformations given(#.5), bring-

ing back the short-distance cutaff to its original value(3)
|i”_>bﬁufd|iu, R, —b% R, The exponents are then determined from the fixed points
associated with the RG flows of the action. Since models A
F—Fur—b Y(F—Fyp), v—b . (6.5 and B are characterized by distinct fixed points, we shall

discuss them separately.
To calculate the new exponents to first ordee jrwe employ
a one-loop momentum shell RG scheme, treating all non-
Gaussian terms in the actigne., 77 in Eq. (5.8)], as a per-
turbation. Perturbative calculations proceed by expanding In the low-frequency, small-wave-vector limit, the effec-
(e”)o, where(- - -), denotes averaging with respect to the tive action for model A is

A. Model A

é<A>=—f dt d[F = Fye(0) IRy (x,t)
—fq {RI(—0,— 0)R)(4,0)(KG2—iwA1) +R, (=0, — ©)R, (4, 0)(KG2—i wAz/v)}
1 . .
+§f d dt dt’ Ri(x,t)Ry(x,t")Cj(v(t—t") +Ry(x,H) —R|(x,t"))

+%f d dt dt’ I?{L(x,t)lii(x,t’)Cl(v(t—t’)+RH(x,t)—R”(x,t’)). (6.7

The Gaussian part has the correlation functions general(and nonperturbatiyearguments. The renormalized
vertex functions are then obtained from successive deriva-

tives of C(vt) as

. 1
(Ri(—a,— w)Ru(q,w))o:m, (6.89

Ugn(u)=C(u). (6.9

- 1
(R(—0,~ )R (qw))o=po—F5—, (6.8D
) : ° Ka*—iwAg/v This ensures that the form of E@6.7) is retained under

renormalization, albeit with renormalized parameters. Equa-

_ Cj(w) tions (6.80 and (6.809 suggest thaC,(vt) may be inter-
(Ri(=a. = @)Ry(a,0))o K?q*+ (wA1)?’ (689 preted agemporalcorrelation functions of an effective force
generated by the quenched disorder.
C. (o) The renormalization of some terms in E.7) do not get
<Ri(_q'_‘”)Ri(q"")>0:K2q4+(wA22/v)2' any contribution from the momentum shell averaging step,
(6.80  giving rise to additional exponent relations that are correct to

The vertex functiond) ., ,=0 for «# vy, and these terms are
not generated by the RG transformation. The renormalizatio
of remaining vertex function)| ,, andU, , for n>0 can
be recast into a functional renormalization Gf(vt) and
C, (vt), provided thavt andR scale in the same way, i.e.,
{y=z—Blv. This relation can be independently obtained
from Egs. (3.5 and (3.16), derived in Sec. Il from more

all orders in thee expansion. The first relation is due to the

fact thatF never appears explicitly in any of the contractions
Br higher-order vertex functions. Thus, the renormalization
of the term proportional té¢ — F\,= can be written as

d(F—Fungp)

7 (6.10

=(z)+ 6))(F—Fyg) +const,
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where “const” refers to an expression that does not involvetial between consecutive local minima, where the line

F. This RG flow equation can be rewritten as moves quickly. There are other fixed points wific* =
HE—Fo) but they are irrelevant for our discussion. Thus, from Egs.
— c —(z+ O)(F—Fy), (6.11) (3.5 and(6.12), we obtain
with a suitable choice df .. Hence, higher-order corrections §=el3, (6.18
may shift the threshold force, but do not influence the scaling
— is impli 3
of F—F.. This implies that v=o. 6.19
ZH+ 0“—1/1/:0 (6.12
Furthermore, there are no contractions that contribute to thBlF prove that these results are correcatoordersin e, by
renormalization oK or A,,. Thus, showing that the contributions to the renormalization of
Cy(u) from higher-order terms is a complete derivative with
0)+z+¢{—2=0, (6.13 respect tou. Upon integration ovewu, such higher-order
terms do not alter Eq(6.17), leaving the exponents un-
0,+¢, +Blv=0, (6.149  changed.

respectively. As a result, all critical exponents are determined Using )= /3, an implicit solution forC (u) is obtained

in terms of{, {,, andz. These exponents can be com-
puted by constructing RG flow equations for the remaining

parameters. *(u)>:C*(O) i)z
Ci(u)—Cf(0)—Cj(0)In (C*(O) 2 g

1. Renormalization of G,

After performing the momentum shell integration and re-where u,=y3K4C*(0)/e. Cj(0) is arbitrary, and can be
scaling, details of which are given in Appendix B, we arrive changed by a rescaling of the fiel@s. Expanding the loga-
at the recursion relations for the renormalized functiongithm for smallu, we see that there is a kink at the origin, as

C,(u):

aCy(u) Crw _flul _(_ T+ oquug). 20
S =le+26)+2(2~2)1Cy(u) + uCi (u) Cr(0) o 3lug o
—Kd{[CH'(U)]ZJr[CH(U) C(0)IC] (W)}, For |u|>u,, the fixed point solution behaves like a Gauss-
ian, and
615 ian, an
JC ) * * U2
;/( =[e+26, +2(zj~2)]C, (u)+ £{uC/(u) Ci (W=Cj (O)ex’{_z_ug}'
—Kg{[C(u)—Cy(0)ICT (u)}. (6.16 We next examine the fixed-point solutia@¥ (u), which

The constank 4= SyA%~%/[ (277)9K?2], whereS, is the total is the new element of our computation. Settir@} /9, =0
L . - - + .
solid angle ind dimensions. Primes denote derivatives with a'ld |f°k'”g at the limitu—0", we get[assuming that
respect tou. Terms proportional taiC.(u) arise from the Ci(07)#0]
rescaling ofu. We look for fixed-point solution€? (u) that

decay to 0 wheru| is large, since they are related to corre- [e+26, +2(z—2)]CT(07)=0. (6.2
lation functions of the system, which are expected to vanish
for large time differences. Combined with Eqs(3.5), (3.16), and(6.14), this result im-

Not surprisingly, the functional recursion relation for Plies
Cy(u) is identical to the one obtained in Ref. 8. In fact, all

higher-loop corrections are identical as well. This is in ex- d Y3

cellent harmony with the argument presented in Sec. Ill, and a=4- 5~ 2+ 6 (6.22
allows us to use the results of NF. Settia@ﬁ‘/a/= 0, and

integrating Eq.(6.15 from u= —« to «, we get In Appendix C, we show that this result is in fact correct to

. all orders ine since there are no contributions @¥ (0™)
[€+2‘9H+2(ZII_2)_§IIJJ Cr(u)du=0. (6.17 from momentum-shell integration. The fixed point solution
oo (for u>0) satisfies the equation

Provided that the RG flows go to a fixed-point solution with
JC*#0, this implies that{j=e—2[2—(z+6)]. The 9 et = 2
mean-field correlation function satisfies this integral condi- uj| C
tion for both random-field and random-bond disorder, since
C is essentially insentitive to the value of the random potenUpon integrating twice, E(6.23 leads to

C (W)
(0

-1 (6.23
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u/u0

FIG. 4. Fixed-point functionsCjf (u) (solid ling) and C¥ (u)
(dotted ling, normalized to yield 1 at the origin. Their values for
u<0 (not shown are found fromC* (u) = C* (—u).

CI<u>=—CI’<0*)J du’
u

whereC? '(0%) is arbitrary in the same sense@§(0). For
|u|>ug, Eq.(6.23 gives

1
2

o U"
— | du” ;
uofo+ “ 1—[c*<u">/c*(0>]]
(6.29

u3 u?
Cj(u)wciex ——|, (6.25

2ug

where C is a constant related t@j’(0+). The numerical
solutions for the fixed-point function€% (u) are shown in
Fig. 4. The qualitative features @} and CT are similar:

Both have a discontinuous derivative at the origin, and deca&

as a Gaussian for large values |of. However, note that
their scaling dimensions differ bg; .

The exponent = €/3 can also be obtained by naive di-
mensional arguments: In dimensiahs 4, the random force
can be expanded ad(x,ry,r;)="f;(x,0,0)0+O(r,r.).
Since bothr; and r, have negative scaling dimensions
(£),¢.<0), the correction terms can be ignored. The ran
dom force scales as %2 under a scaling— bx, leading to
the Gaussian roughness §f=2—d/2. A similar scaling ar-
gument applied to Ed3.1) leads to, = {|—d/2=2—d. For
d<4, the scaling dimension of; is positive, and higher
powers ofr in an expansion of (x,r;,r,) are more rel-

evant. It is then reasonable to assume that in this case thcgr),

statistical properties of; at larger are crucial. If uncorre-
lated at large separatiorfy(x,r;,0) scales as™(@*4)"2,
When equated tb¢l~2 for the scaling ofvzr |, this leads to

DENIZ ERTASAND MEHRAN KARDAR

2. Propagator renormalization

The only one remaining exponent &, which can be
obtained by examining the renormalizationfof; . One-loop
contributions arise from tha=2 term in(%%)g , which is

1 * » . .
Zf ddxf,xdtf,xdt, Ri(X,HR (Xt )[Ry(X,t)

—Ry(x,t)]*C{ (v(t—t")).

Replacing[ Rj(x,t")]? with [Rj(x,t)]* does not change the
integral. Thus, upon further manipulation, this term in the
action can be written as

0 t ~ ~
J ddxf_xdtf_wdt’ Ri(x, DR (X,t )R (X, [ Ry(X,1)

— R”(X,t,)] C‘/‘/(U(t—t')).

Since a contraction forcasandt’ to be withinO(1) of each
other, and we are only interested in the first time derivative,
we can substitute R(x,t) = Ry(x,t")~(t—=t") g;R|(x,t).
Now, contractingR(x,t") with Rj(x,t) and integrating over
the momentum shell, we obtain a contributior®g equal to

SdAd © z ~

—5/—[ dt te *A"Auc(vt).  (6.26
(2m) %A Jo

The minus sign comes from the opposite overall signs of
m=1 andm=2 terms in Eq(6.7). Forv— 0, we can set the
argument ofC"" to zero. However, this causes a problem:

ﬂ’ has a term proportional té(vt) in the low-frequency
nalysis; this term diverges asylfor vt—0. This apparent
divergence cannot be avoided within the low-frequency
analysis we have used so far. The propagator is sensitive to
high-frequency behavior of the vertex functions. Careful
analysis of the high-frequency structureGif shows that the
terms that contribute to the diverging part @W(O) do not

enter the renormalization of the propagat@ee Appendix

D.) This is essentially due to the causal nature of the re-
sponse: Perturbations right after a jump do not influence the
motion before the jump. The correct way to avoid these di-
vergent terms within the low-frequency analysis is to
use C(0") instead ofC{(0). Near the fixed point, this
be calculated toO(e) from Eg. (6.20 as

Ci (07)=2¢/(9Ky), resulting in

A=Ay~ 8/ AiKCl (07) =Ay[1- 8/ (2€l9)].

= €/3 in agreement with the RG treatment. Essentially, the

statement regarding the nonrenormalization fafuC(u)
justifies the above “naive” scaling. However, a similar rea-
soning from Eq. (3.1) would have concluded
=g =—(d+ )72, in disagreement with Eq6.22. In
this case,/ du C, (u) is renormalized, buiC, (0) is not,

Finally, after performing the rescaling, we obtain the recur-
sion relation

A
A p L 0+ ¢ 26191, (6.27)

suggesting that despite the presence of relevant higher-order

powers in the expansion df, (x,rj,r,) aroundr=0, the
scaling properties are still controlled iy (x,0,0). We have
no physical motivation for this rather curious conclusion.

which yields

2j=2—2€/9+0(€?). (6.28
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B. Model B angle[cf. Eq.(3.2))], and« is in general strongly related to

The presence of off-diagonal terms in the action change’® macroscopic Hall angle. Thue<1 when the system is
the critical scaling properties of model B. The nonzero con-2lmost modelA-like, and its nonrenormalization determines

tractions that appear in the momentum-shell integration ifhe crossover behavior to the model B fixed point: Under
this case arécf. Appendix A renormalization with model A exponents, the system remains

near the model A fixed point until the rat©, /C; increases
to O(x~?), as the model B fixed point is approached. Iso-

(Ri(=0,~@)Ry(g,0))o= (6.299 tropic effective exponents appear in this crossover regime.

——,
Kia“—iwpj : ,
The length scal€ at which the behavior crosses over to the
. K model B is roughly given by
R (-0, 0)R(q,w))g=————, (6.29
(Ri(—q,—®)R|(q,w))o K @2 wp) (6.290 R
P=&
6(0’) (with model A exponents fot,); i.e., the anisotropy is no-
(Ri(=0, = ©0)R(q,®))o= KZH qt+ a)zplzl » (6:299 ticeable when the angular spread in the direction of a typical
where avalanche is of the order @. Thus, for the FL,
-2
KEA12/A22, §>< ¢ 1
which diverges agh— 0. Whené< ¢, the anisotropic fixed
Kj=Kait kKa, point is never approached. Thus, the true critical region can

be very small and difficult to observe for small Hall angle.
p =A1t kAz,

C(w)EC”(w)-I- k RCy(w)]+ chl(w)_ VII. NUMERICAL WORK

In this section, we present and discuss the results obtained
by numerically integrating Eq$1.2), providing a test of the
analytical results presented so far. There are several difficul-

In addition to the nonrenormalization relatiof8.12—
(6.14), the nonrenormalization df,; or A,, dictates that

0=0, (6.30 ties associated with numerically studying critical behavior in

a finite system slightly above threshold. In order to obtain
This immediately implies the exponent identity meaningful statistical averages one must wait for the system
to reach a stationary state. However, for any reasonably

(=4 (6.3 broad distribution of pinning forces, the system always gets

The naive scaling argument based on E8.1) gives an pinned after a time-e(F~Fo"L wherelL is the linear exten-
equivalent result when the scaling dimension af, /dr sion. Therefore, in order to probe the critical region, it is
(£ —¢)) is equated to the scaling dimension fof(x,r|,0) necessary to go to very large system sizes.

[—(d+¢))/2]. The naive argument works this time, since  The necessity of integrating big systems, and the large
JSdu C, (u) remains finite at the fixed poirisee below computational cost of implementing quenched disorder,
Under this rescalingx and K; remain unrenormalized, forced us to restrict numerical simulations de-=1, in any
and the renormalizations @ff andC determine the remain- case the most physically relevant dimensionality. We were
ing exponents| andz,. The recursion relations of vertex further motivated by the expectatlon that some exponents

functionsC,, are more complicated, but there is a relatively were calculated to all orders & and thus could be checked

simple fixed-point solution with even ate=3.
Integrations were carried out as follows: Coordinaxes

é*(u)=4Cﬁ‘(u)=2KC’;(u):4KZCj(u). (6.32  andt were discretized, but the positiorwas left continuous.
For eachx, the value of the random potential at pointvas

Furthermore C(u) satisfies a recursion relation identical t0 jetermined from a superposition of attractive impurity poten-
that of Cy(u) given in Eq.(6.195. This result once more ijgis

shows that longitudinal fluctuations, whose correlations are
given by Eq.(6.299, are not altered by the introduction of 1
transverse fluctuations even in the more general case of Ui(r’)=ESi(r'z—rg)(ﬂ(ro—r’),
model B.
The renormalization opy also gives results very similar where® is the step function and’ is the distance from the
to that of model A, with the substitution@ﬁ’—@” and  center of the impurity. The impurity centers were randomly
Ai1—p|. Thus, the RG analysis gives the same exponentplaced with a density; their strengthss; were randomly
{|=€l3 andzj=2—2¢€/9+ O(€?). Further details appear in drawn from a uniform distributiofi0,S,,,). The range , of
Appendix E. the impurity potential was kept constant. This construction
If the Hall angle ¢ is sufficiently small, the FL cannot creates a random scalloped potential landscape, eliminating
distinguish between zero and nonzero angles. Therefore, ttey additional crossover effects that could arise from a
effective roughness and dynamic exponents at small lengttmooth potential.
and time scales should be given by the model A fixed point. Unless noted otherwise, all presented results were ob-
Note thatk=tang in an isotropic system with nonzero Hall tained using a grid sizAx=1, and a time ste@t=0.02, in
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FIG. 5. A plot of average velocity versus external force for a  FIG. 6. A plot of equal-time correlation functions versus sepa-
system of size 2048. Statistical errors are smaller than symbol sizegation, for a system of size 2048 kt=0.95. The observed rough-
Both fits have three adjustable parameters: the threshold force, thtess exponents are close to the theoretical predictions of
exponent, and an overall multiplicative constant. ¢)=1,¢,=0.5, which are shown as solid lines for comparison.

order to optimize computational constraintSmaller values ~that the critical region is much smaller for transverse fluc-
of Ax or At did not lead to significant improvementgree  tuations compared to longitudinal ones. .
boundary conditions were preferred over periodic ones since In order to obtain an mdependent estlmgte of _the dynami-
scaling was observed over a larger range of length scales fff! €xponeng), we also examined fluctuations in the spa-
the former case. Other simulation parameters wirel, tially averaged velocity as a function of time. The_resultmg
W=1,ro=1, S,.=2. We expected a threshold force close toMmeasurements were related to the previously defined expo-
1 for these parameters. A summary of our findings is pre—nents bY the foIIow!ng argumert:Slightly above thresh_o_ld,
sented below. the motion of the !me can be thought as a superposmon of
The velocity exponenB can be extracted from a plot of avalanches 0df+2/ar|ous sizés with an average I|fe.t|mézl\
velocity versus external force. Such a plot is given in Fig. 531d moment="<l. Such a\éillganc'hes occur if a portion of the
for a system of sizé =2048. Each data point was obtained In€ finds a region of siz€" "¢l with weak impurities. Thus,
by a time average over @ime units and took about 30 h of ignoring all powerjlaw prefactors, the probability of such an
CPU time on a Silicon Graphics R4000 workstation. The2valanche fof>¢ is
best power-law fit gives an exponeft=0.31, but a weaker P()~exp{— (1/¢)4+4)
logarithmic dependence, which correspond®3te0, seems '
to provide a better fit to the data. The conclusion is thatVelocities at two separate times are correlated if there is an
higher-order terms irv give very large corrections to the avalanche that is active at both times. Therefore, it is reason-
scaling ofv, since either8 is very small or exactly zero. able to assume that at large times, the contribution of an
=0 would imply thatzj=1, a possibility discussed by NF avalanche of sizé to (v (t)v(0)), is proportional toe ™",
for interfaces in 31 dimenSiong.The threshold fOfC@C is once again neg|ecting power-|aw prefactors that depend, for

between 0.93 and 0.94. example, on the typical number of active sites at a given time
~ The roughness exponenfs,{, are extracted from equal- during the avalanche. The total contribution of all avalanches
time correlation functions is given by an integral over all sizéswith the probability
measureP(1)dl. The leading-order time dependence of the
([F (D) =1 o(X D)D) ~ [ x— X' 2. exponent can be qlete_rmined by a saddle-point evaluation of
the integral, resulting in
Results for a system of size 2048, at a driving force of 0.95 (v(H)v(0))¢ Ly
[(F—F.)/F,~10"2], are shown in Fig. 6. The averages CMFTME“ o,
Cc

were taken over a time interval of 90after waiting for all
correlations to reach steady state. The results are in overallherey=(d+ {))/(z+d+¢)), suggesting a stretched expo-
agreement with the predicted values of the exponents, evamential. The numerical results and the fit to a stretched expo-
at e=3. The slightly smaller value of; is expected, since nential are shown in Fig. It should be noted that a com-
determination of the roughness exponent from equal-timgarable fit can also be achieved by a sum of two
correlations becomes unreliable as the exponent approachesponentialg. Assuming that{;=1, we arrive atz~1.3,
unity, and is inappropriate if it exceed$AThe deviations of ~ which is consistent with the value gf~0.31 found from the
transverse correlations from the scaling form are likely to bevelocity-force relation. Unfortunately, the data become noisy
due to crossover effects: The analysis of transverse fluctuat larger values df, due to the finite size of the time window
tions in the critical region is correct only wherdF<1, be-  used to extract the correlation function. The small value of
cause then the static part of the transverse propagator can bé~10) makes it hard to predict the reliability of this esti-
neglected. However, in our simulations~~0.4, suggesting mate, since the power-law prefactors may be large and non-
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1.0 . . . . A. Nonlinear terms
e Numerical data The leading-order nonlinearities in EQ.6) can be exam-
0.8 g ined by a gradient expansion, being careful to treat terms of
— Fit to exp{-(t/1)"}, O((a4r)2,(4r)26,r) accurately. After some rearrangement,
06 L | we arrive at
v=0.61

Cv(t)

Yyl 2 2 Ny o A,
T / 2:Kllﬁxrll+K12&xr¢+ SH+ ST+ A1xS|S,
1+SH
o2} -
+F+fi(x,r,5),8.), (8.13
00 or A
0 10 20 30 40 notL 2 2 2H 2, N2t o
time t \/mf_Kzﬁer"'Kzzaer"' SH+ ST T A2xS|S,
FIG. 7. Velocity correlations versus time, for the same system in +? (X1 5 s) 8.1b

Fig. 6. A stretched exponential is a good fit to the data.
wheres|=d,r,s, =dyr, , and the random forces are

negligible for such moderate values tofUnfortunately, im-

. : . i . o ~ (f
proving on this simple estimate is difficult as the fi= M
determination of power-law prefactors requires a number of \/1+SH

additional assumptions that are hard to test. Nevertheless,

2 2
based on the accumulated numerical evidence it can be rea- siSufy—[1+sj/2—s/2]f, +s, fy

sonably argued that; is between 1 and 4/3, th@(e) RG \/1+sﬁ ’
prediction.

Computed longitudinal exponents are also in good agree- ~ (f,—s,fy
ment with results from 41 dimensional interface depinning fy :W co
models. Numerical integration of E¢R.109 for an elastic L
interfacé® (no transverse componéras yielded critical ex- [1—s%/2+2/2]f —s;s, f, —s/f
ponents 7=0.97+0.05 and »=1.05+0.1. Similarly, the 2 LR W Sing,
force vs velocity data have been adequately described by \/1+SL

both a velocity exponenf=0.24=0.1 and a logarithmic 1,4 remaining parameters are given by
dependencev ~ 1/In(F—F;), which corresponds tq3=0.

These results provide strong support for our prediction that F=dyJ,
longitudinal exponents are unchanged when transverse fluc-

tuations are introduced. However, it should also be noted that \yj=—F sirfe,
experiments and various discrete models of interface growth

have resulted in scaling behaviors that differ from system to A, =—F cog¢,
system. A number of different experiments on fluid invasion

in porous medi¥ gives roughness exponents of around 0.8, N1x=—F sirt¢,
while imbibition experiment&*2 have resulted inf~0.6.

Some of these results can be explained by the effect of an- Ay =F sing cosp,
isotropy, which will be discussed in the next section. On the

other hand, a discrete model studied by Leschffagives a N2, = —F sing cosp,
roughness exponent of 1.25 at threshold. Since the expansion

leading to Egs(1.2) breaks down wheij approaches 1, it is Aoy =F cog¢.

not clear how to reconcile the results of Leschhhorn’s nu-
merical worke with the coarse-grained description of the RG These equations of motion, and their generalizations to
calculation, especially since any model with>1 cannot e MY, have thus been complicated by two factors: There are
have a coarse-grained description based on gradient expa@fientation-c dependent terms, and the mean square of the ran-
sions. dom forcesh,, (f ) also depends on the local orientation of
the FL. By naive dimensional counting, it can be immedi-
ately seen thaky and )\, are relevant with respect to the
VIII. DISCUSSION AND CONCLUSIONS fixed points we have discussed fibx<4. In the case of model
A (isotropic disorder withp=0), Eq.(8.1) further simplifies
In order to put the results we have found so far in bettetg
perspective, it is useful to discuss the effect of nonlinear
terms that were ignored earlier, aspects of universality, and

or
possible generalizations to other systems. These issues are n—tHZ
discussed below. Vit

fi=fs

\/1+—s”' (8.28

=
=K(9>2<r||— ESJ2_+F+
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TABLE |. Critical exponents corresponding to some of the universality classes associated with vector
depinning. Entries in the first two rows are from Ref. 21: Transverse exponents are not known and these cases
may correspond to more than one universality class identified by digtinat, .

Situation g v z B . zZ,
Anisotropic medium, Kap# 0 0.5 2 1 1 ? ?
generic direction
Anisotropic, FL Kap=0 0.63 1.73 1 0.64 ? ?
along symmetry axis Ay #0
FL along symmetry Kap=0 1 1 1.3 0.3 0 23
axis, linear terms ¢#0
only (model B
Isotropic medium, Kap=0 1 1 1.3 0.3 0.5 2.3
»=0 (model A Ay =0

7o | 2 fL—fys, A||%<fﬁ>+(<f>2<>_<fﬁ>)s\\2'
=Kagr +Fsis, + —— (8.2b
V1+s] VitSs) For interfaces, the depinning force is known to scale with the

Note that the two relevant nonlinearities vanish, and thagtrength of the @sordér? €., l:c”A_Zl(l_l_d)- Thus, A cre-
A, does not depend on orientation up to and including?eS @n orientation-dependent depinning ffce,
O(s?). Dimensional counting suggests that the remaining 2 5
nonlinear terms are irrelevant and model A exponents are __A2i4—d)__ i <fX>_<fH> 2
. i . FC(SH) AH FC 1+ — 5 S” . (83)
valid for d>1. Many more nonlinear terms become marginal 4—d (f”>
atd=1, and the gradient expansion breaks down. It is un-_ ) ) ]
likely for the critical exponents to change their value discon-This leads to a nonzeno,; when the nonlinear corrections in
tinuously atd= 1, although logarithmic corrections to scaling Ed- (8-2) are taken into account. For interfaces, the depinning
exponents are quite possible. tr_ansmon with a nonzer&_lu is thought _to be equivalent to
The fixed point investigated here is unstable and only apdirected percolation depmmr‘?@.Agsummg that transverse
proached at the depinning force. Away from the threshold]‘“{‘?tuat'ons still do not affect longitudinal ones, fbe 1 thg
critical scaling laws are observed at scales smaller than thgfitical exponentsfy and » are related to the correlation
correlation length scalé. Beyond this critical regime, the length exponentsy{®® and »{°" of directed percolation
behavior of Eq.(8.1) is similar to regular diffusion with —through v=2{®?~1.73 and {;= »{°"/1[°P~0.63, while
white noise[a multicomponent Edwards-WilkinsofEW)  the dynamical exponent igj=1. This in turn gives
equatiort, or the generalized KPZ equatiért>*}. Anon-  g=(z—¢)v=r{""—»{°"~0.64.
zeroh of O(v) is generated kinetically in this regime even  Using the connection to interface depinning further, we
if the system is initially isotropic withp=0, due to the terms next consider tilting the FL away from the symmetry agis
on the left-hand side of Eq8.1a. Ford=2, this nonlinear- In this case{f,f) and(f,f,) are nonzero, ané depends
ity is relevant, while ford>2, a critical value\. separates a linearly ons;, leading to terms proportional t&r in the
weak-coupling region described by the EW equation from aquation of motion. These further suppress the roughness
strong-coupling region described by thgeneralized KPZ  exponent ta)= 1/2.2 The analysis of transverse fluctuations
equation-+15-%% for these two situations and many other possible ones is
When ¢#0, even in a fully isotropic medium, the rel- complicated by the absence of a suitable perturbative treat-
evant nonlinearities are nonzero, and the system is drivement. Different types of anisotropy may lead to distinct
away from the “linear” fixed points. We discuss this and transverse exponents even while the longitudinal ones re-

other possibilities next. main identical.(Similar to the difference between models A
and B, although the latter is unstable to the inclusion of
B. Anisotropy and universality nonlinear terms. To systematically search for universality

We noted earlier that anisotro lays an important role i classes, we may start with the most general equation of mo-
e : olropy plays an imp ; n[ion, which has the gradient expansion
determining scaling properties near depinning, even in the

absence of nonlinear terms. To fully understand the effects of

; : . : . 1
anisotropy,ncluding nonlinear termslet us start by consid- O 0= HagF g+ Kopdxl gt Ka,et?ifg +5 N g g, 0xT gOxT
ering the simplest prototype of a FL oriented alongdhaxis 2"
of a highT. superconducting single crystal, such as Y-Ba- IR RN S N 8.4

a 1T ¥Xh ’ .

Cu-0O. For simplicity, assume that the system is completely
isotropic in they-z plane, with¢=0. Then, the motion of and with force-force correlations that depend @m. De-

the FL is governed by Eqg8.2), and the only important pending on the presence or absence of various terms allowed
source of anisotropy is due (cf@:(ff)#(f)z(). This causes by symmetries, these equations encompass many distinct
the mean-square magnitude fgfto depend on the local ori- universality classes. The cases that were discussed so far are
entation as summarized in Table I.
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C. Generalizations voltages generated by FL motion. Very recently, there have
In many systems, the dynamics involves a wide range 0‘ae_en §L_Jccessful experim_ents that detected_thg thermal motion
relaxation times. It is sometimes possible to average ovef! Individual FL's at nominally zero magnetic field and bulk
“fast” degrees of freedom to obtain an effective equation ofCurrent using superconducting quantum mterferfance device
motion for “slow” variables. For example, the motion of (SQUID) probes, and analyzed the noise correlation between

8 . .
atoms in a metal can be described by an effective theory th4f® two ends of the FEZ A refinement of such techniques
involves only positions of the ions, assuming that the elecM&Y eventually enable a direct comparison of theoretical re-

tronic wave function always adjusts to the instantaneou$UltS With experiments. For example, it is known that the
ionic coordinates. Similarly, the critical dynamics of a slowly Ml angle changes sign as a function of temperature in cer-

moving solid-liquid-vapor contact line can be described bytam superconductors. It would be particularly interesting to

assuming that the liquid-vapor interface instantaneoushPPSe€rve the increase in transverse roughrigsass the Hall

finds the minimum energy surface dictated by the position of/©/tage noisgas the Hall angle approaches zero. Ultlmately’,
the contact liné® The elimination of these additional degrees 't IS Very desirable to understand the properties of many FL's
of freedom may cause effective nonlocal interactions be{solld or glasgnear depinning, especially since this situation

tween the remaining modes, which in turn acquire a differenfi@ much more experimental and technological relevance.
dispersion law. One should then start from a coarse-grained theory for the

For example, in contact line dynamics, the elastic energglisPlacementsi(x,t) of the FL's with respect to their equi-

associated with a mode of wave vectpis proportional to ibrium positions in the Abrikosov lattice and hope to estab-
|| instead ofg?. In general, one may consider a situation lish @ similar RG scheme. However, there are certainly addi-

where the elastic energy is proportional [g“ for some tional complications, such as entanglerﬁ%m?d plasticityf*
value ofo. The scaling analysis can be easily generalized t&Te€Cts, which are difficult to incorporate in such an ap-

such cases; the most important change is the modification &02ch:

the upper critical dimension td.=2c¢. The exponents can ACKNOWLEDGMENTS

be easily calculated for genera| as was done by us for the
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APPENDIX A: THE GAUSSIAN THEORY

_ In this appendix, we compute all nonzero expectation values for the Gaussian theory, described by the effective action
S, in Eq. (6.1). This is accomplished by inverting the quadratic form: as

(R(Q,0)R"(—0,~®))c (R(Q,0)RT(—0,~®))c -C(0) G Yqw)
(R(ART(~d-0))e (R@oRT(~q-w)e| |G Haw) 0

[0 G'(q.0)

| G(a.0) G(q,0)C(w)G'(g,0)

For the case of model A, the individual matrices are diagonal and the correlation functions can be calculated easily, as given
in Egs.(6.9). For the more general case of model B, let us first consideo th@ limit. SinceR, occurs in the combination
R, /v, expectation value$R,R,) and(R,R,) contribute at mosO(v) at the momentum-shell integration step. Thus, the
contractions that are important for the momentum-shell integratio{Ry|) and(RR). Settinguv=0 and inverting the
matrix yields

K11q2_iwA11 +iwA12 -1 1 1 K
= . . = , Al
G(a.@) Kyud?—iwAy —iwAy, Kja®=iwpy] - - Ay
GCG'(q,w) ! Cl) ' (A2)
W)= =5 7 5 5 y
Kﬁq4+w2pﬁ

which leads to Eqg6.29. To determine the full form of the correlation functions in a renormalized Gaussian theory, we need
to perform a full matrix inversion. In the small limit we obtain
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1 ~
(I RH(q,w)|2) = W{AgzwzC(w) —vQPw(K 1A%+ KapA1) IM[Cy(w)]
+0°q*K3,Ci(@) — KoK 1 RECx (@) + KILC ()]},
where
|delG_l|2%[Kﬁq4+ Pﬁwz][02q4([K11K22_ Ko1K 12/K )2+ AZw].
Similarly,

2
(IR.(q,0)%)= wef)?qz{m%lc”(w)—K21K11Re[cx(w>]+KﬁCAw))q“—qu(KnAn— K21A1)Im[Cy ()]

+w2(A3,C|() — AA1RE Cy (0)]+AZ.C (w))}.

At the fixed point found for model B, Eq$6.32 are satisfied, and the correlation functions simplify to

é(w) ( K, o? )
R/(q,0)[%)= 7 ’ ~
(IRy(q,)[%) K?q*+ pfw?” W (wlv)p, ()
C(w) (anz)
R.(q,0)|?%)= i ' "
(IR.(q,@)[%) A[K2 g%+ p2 (wlv)?]” | wpy o
where
_(KuKamKalKag - (Kaat kK
+ K11— &Ky Kaa— K>

(K22_K12/K)K” )2 1, X<1
T(x)=|1+x? 1+x%]=
10 2(K 11K 25— K21K15) [ ] const, x>1,
1 [ Kyt kKop Ap— kAg | 2 1] [const, x<1,
Z0=|14 5 11 21 A1l 21 1+ | =
X Kll_ KKZl A11+ KAZ]. X 1, x>1.

The functions¥ , describe crossovers of the overall amplitudes of the correlations, due to the coupling between longitudinal
and transverse modes.

APPENDIX B: VERTEX RENORMALIZATION

In this appendix, we derive recursion relations for the renormalized vertex fugdﬂngu)AECS‘)(u). Let us start by
consideringU, ,(u) for a givenn. As usual, we split the fieldR=R~+R~ and R=R~+R~, where fields with the
superscript “>" correspond to fluctuations within the momentum shie~%” <q< A, which are averaged over. In evaluating
(e”)s , we encounter two types of nonzero contractions,

D> > 1 qu(tl_t) 1
(R (a,OR (—q,t"))= AL T T AL Ot —t)~ =7 d(t—t"),

1
<R”>(q't)RH>(_q’t,)>% WUQ,O(U(t_t,))i

within the momentum shelle™ % <q<A, and for time scales—t’ ~O(1/v). (From now on, we suppress the subscript O for
notational simplicity. Contributions to the renormalization &f, , come from both(7%7)~ and(#/?); as

1 - -
(7)7=2 mf d% dty dtz U ne2(1-2)(R(DRG(2[RY(D - R()] )7+ -

1

n+2
:E 21(n+2)!

2

)J d¥ dt; dt, U, nso(1-2)R5 (DRS (2)[R] (1)~ Ry () 1[R (1) —R ()13 + - -,

with obvious abbreviations for the argumentsulﬂ?,li. Evaluating the expectation values, we get
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> dd
(IR7 (1) -R7 @)1= | s (R (@RT (-0t} + (R (@R (-0~ 2R (@ WR7 (- )

d
=25/(2—ﬂ[_\)d%[u|,o(0)_U|,0(U(t1_t2))], (B1)
where [~ denotes integration over the momentum shell 8pék the surface area of a unit spheredimlimensions. Thus, the
correction toU ; ,(u) from (%)~ is equal to
8/ KgU g nr2(W)[U)o(0) = Uy o(u)],
whereK=A9%"4S,/[(27)9K?]. The contributions fron{#/2)_ are similarly calculated as

n+1
1
P2 d dy 7 ’ ’ _ [,Y
(227 = a}y‘, )} 2!m!2!(n+2—m)!f ddx dt, dtzf A9’ dt] dtjU, m(1-2)U , neoom(1'—2)

X<I’:\2a(1)|§2a(2)éy(1,)|’:\27(2,)[RH(1)— RH(Z)]m[RH(l’)_Rll(zl)]n+2—m>>+

n+1

1
:mzzl 2I(m—1)121(n+1—m)!

fddx dt dtzf d%’ dt; dty Uy m(1=2)Uj nea-m(1' = 2[R} (1)

— R (1™ R (1) =R (2)1™ T ™R(DRI(2)R)(1)R(2IR (L) =R ()[R (1) =R (2')1)”

n
1 n+2-m
d dy 7 ’ ’ _ (Y
+2§ mE:l 2!m!2!(n+2—m)!( ) ”d X dtldtzf d%’ dt} dty U, m(1=2)U) pieo-m(1' —2')

XR5(1)R; (2[RI (1) =R (2)1MRI (1) =R (2)]" ™R (DR ()[R} (1) —R[(2/)1)+---.  (B2)

The evaluations of the expectation values are tedious but straightforward. As an example, let us evaluate the second half of
Eq. (B2) explicitly. First of all,

(RT(DRT (2[R (1) =Ry (213 =(R7 (DR (1)XRT ()R] (1) +(R7 (LR (2))(R] ()R (2"))
—2(R7 (DR} (1R} (2R} (2)~ 2R} (DR} (2))(R] (R} (2)).

The first two terms do not contribute o (u), since they are proportional #(t; —t;) 5(t,—t;) and 8(t;—t5) 8(t,—t5),
respectively[ Theses functions forcet; to be equal td,. Since the expectation value is multiplied [b%qf(l)— RH<(2)]m, the
final contribution is zerd.The last two terms are equal to

> d'%’ expi(a+a’)- (x=x)}
f ( W[5(t1 tl)ﬁ(tZ t)+5(t1 t2)5(t2 tl)J (KqZ)(KqIZ)

Integrating ovety, t5, x’ [which yields 8% q+q’)] and subsequently ovey, the second half of EqB2) becomes

n

1
22 _( )fddthld‘2R<(1>R<<2>[R (DR} ( Z)M 2m)? qu4{ua,m<1—2>uu,n+27m<1—2>

@ m=12!n!

(D" m(1=2)U) pi2-m(2—- D}
The first half of Eq.(B2) can be evaluated similarly. The full contribution tb; n(u) from (//Z)C is thus equal to

n+1

: 1
— 8/Kd[ 5a'HmE:1 (mE]_) (_1)n+2_mUH,m(u)U||,n+2—m(_U)+m2:1 ( rr:]) E[Ua,m(u)u\\,n+2—m(u)

+(_1)n+27mua,m(u)u\|,n+27m(_u)]}-

(In the expansion ofe”)_ , there is a factor of 1/2 in front gf22?)_ .) Adding all contributions, the effective vertex function
Uj () is found to be

n+1

< , n+1
Un(w)=Uj h(u)+ 5/Kd[ U\|,n+z(U)U||,o(0)—rnE:0 ( m )U||,m(u)U,n+2—m(u)]: (B3)
provided that

Uam(W)=(=1)"U, m(—u). (B4)
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Under the scale transformatio6.5), which brings the momentum cutoff to its original value, we see that
u—(1+¢ 67 )u. Thus, the renormalized vertex function is given by

Ujn(u)
o/

Keeping only terms linear i/, and identifyingU; ,(u) with the nth derivative ofC;(u), we finally obtain the differential
recursion relation foC(u):

UH a(u)= UH a(u)+ 5/ _UH<,n((1+§||5/)u){1+ 5/[d+22”+2(0“_d)+n§H]}. (B5)

(9C||(U)
a’

Note that the identification ot)| ,(u) with the nth derivative of C\(u) is self-consistent, since recursion relations for
U,n(u) are correctly recovered by taking derivatives of Eq.(B6). Also, Eq. (B4) is automatically satisfied when this
identification is made sinc€(u) =C;(—u).

A similar computation can be performed fGr, (u), yielding

=[e+26+2(z/=2)]Cy(u) + juCj (u) = K{[ C[ (u) ]*+[C(u) — C|(0)]C] (u)}. (B6)

n
Uf,n(u):UL,n(u)+ 5/K UL n+2 U)UH 0(0 mE:O ( )UL n+2— m(u)UH m(u) (87)
Upon rescaling, the renormalized vertex function is
(u)
0, p(W=U, o)+t ;/0 UT o((1+ )8/ )u){1+ 8/Td+22+2(6, —d)+n| ]} (B8)
Thus, we obtain the recursion relation
dC, (u) ”
EYa —[E+29L+2(Z” 2)]CL(U)+§”UC (u)— Kd{[C”(U) CH(O)]C (u)}. (B9)

APPENDIX C: HIGHER-ORDER DIAGRAMS

In this appendix, we show that the sum of all contributions to the renormalizati®) @f) from the momentum-shell
integration step vanishes in the limit-0*. This was already explicitly demonstrated for the leading-order contributions that
come from( 7). and(7/?).. Since the only nonzero contractions invoRgandR;, all contributions to the renormalization
of C, (v(t—t")) due to(%™). arise from terms of the form

QM d 4 < < d !
(7™ ngz dx dt dt Sini R (t)R t)f{H d; dt; dt; 2In;!

m—1
X < [RF (6= Ry (t)]" LT RY O )R (06 ADIRT 06,6) = Ry (x ,t{)]“i> +

The expectation value clearly goes to zero &st()" in  to the renormalization of;;. Indeed, an external impulse of
the t—t’* limit. This gives us the desired result that magnitudees right before a “jump” (the fast motion between
C, (0) is unrenormalized to all orders in perturbation theory.consequent local minimashifts the jump time bye/#% and

creates a response Of 1/v) right after the jump takes place.
APPENDIX D: HIGH-FREQUENCY STRUCTURE OF U, However, an impulse right after a jump does not affect the
jump time and creates a response of 0Blfl). Thus a sin-
Jlz)ular response is seen if all times are in the vicinity of a
jump, say, at timet;. Ujo(t1,t;;t;,t5) can be as large as
O(v~?) if t; andt) are both slightly less thaiy, andt; and
t, are both slightly greater thaty. Considering that the
<9z<r_u(t1)f_u(tz)>mp,c propability of 'being close to a jump is, this term can po-
dey(t))de (L) tgzntlally contribute gs_muc.h B Y to the renormaliza- _
IRt/ 9% 2 tion of A;; upon statistical time averaging. A careful analysis
The low-frequency analysis of this vertex function gives aand explicit evaluation of this vertex in the case of a periodic
result proportional to 1/ when all times are withitD(1) of  potentiaf? show that this is the only way a singularity may
each other. This may potentially give &{1/v) contribution  occur in the RG contributions. However, when the times

In this appendix, we shall demonstrate that there are n
v ! divergences in the renormalization &f,, at least to
O(e€). In order to do this, we examine the full form of the
bare vertex functiotJ; , obtained from MF theory,

Uj oty toitg,t5) =
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t;,t; of fields R are smaller than the times,t, of fields 7 ,(u)=cC” A(u)[C(u) C (07)]+ClA (u)C’(u)
Ry, the contractiofR(t;)R|(t{))o which appears in the RG

contribution is identically zero due to the causality of the +41{C[(u)C[(07)=C{(0")C] (u)}—Clg(u)
propagator. Therefore, the singular part@jf (0) does not X{C[(0")+KkCl(u)—k*C[(0")}. (E5)
enter the renormalization @&, (or p| in the case of model
B) to one-loop order. Thus, the renormalization (ﬁ(u) is given by
~< e _ Sy 11 ~ e + ~' 2
APPENDIX E: RENORMALIZATION OF MODEL B C™(U)=C(u) = /K C"(W)[C(u) = C(OT)]+[C (“)(]E}é)
Details of the RG calculation for model B are presented in,ich leads to the functional recursion relation
this appendix. For the sake of brevity, we shall only consider
the renormalization of the parameters in the Gaussian theory,  5C(u) . -
i.e., the propagator, and the two-point correlation functions a—/=[6+20||+2(2\\—2)]C(u)+§HUC'(U)
Ujo(u), Uy o(u), Uy o(u). The renormalization of higher- )
order vertex functions is again related to derivativesCgf —KI[C' (W) 2+ [C(u)—C(0)]C"(u)}.
throughU , ,(u)=C"(u). .
Nonzero contractions involved in the calculation are (E7

given in Egs.(6.29. The parameterf\;,,A,; (thusk), and ~ This is identical to Eg. (B6), with the substitution
Kqy (thusK),K, , andp,) do not get contributions from the C;(u)— C(u). Itis straightforward to verify that there exists
momentum-shell integration, and give rise to exponent idena fixed point where individual matrix elemer@s,(u) satisfy
tities discussed in the text. On the other haAg, and A, Eq. (6.32. (Cxa(u)=0 at this fixed poin.

(thuspy), as well as the function€ ,(u), are renormalized. Let us next examine the renormahzaﬂon;qf Leading-
Let us start by looking at the renormalization of two- order contributions come fron§7/),, and a calculation

point correlation functions C,(u). By definition,  along the lines presented in Sec. VI gives
C(u)=Cy(—u) and C,(u)=C,(—u), but Cy(u)

#Cx(—u) in general. It is convenient to writ€, (u) in <_ A _ KiAZion| ~irs 7
terms of its even and odd pai®s, g(u) andC, 4(u), respec- An=Au 5/ ) piJo dt te MM C Cjj(vt)
tively, and follow their renormalization separately.
The momentum-shell integration procedure is similar to KC” ~
the one presented in Appendix B, albeit more cumbersome + 2 (b1,
due to many more nonzero contractions. Nevertheless, carry-
ing out the computation yields SeAY [ > 1 -
AS=Ay— 5/—)(,— dt te KiAp| EC’;(—vt)
C2(U)=Co(u)— 6/KgTu(u), (E1) (2m)"py
for u>0, where +1C" (vD)],
u CuCu C(0%)]+C{(u)C'(u
Z=Cwicu)=cOm)] H( e which can be combined to yield
= k*{C[(u)C] (u) —[CLg(u)/2]?+[CL A(u)/2]%}
/ SeA ¢
+KC><A(U){CH(O +K[C A(O+)/2]} (EZ) ” =p|— 5/W_H dt te KjA T/p”CH(Ut) (EB)

7L (W) =Cl(W[C(u)~C(0")]+C ()C'(u) )
The fixed-point functionC*(u) is identical to that of

—{C[(W)CL(u)—~[Cls(u)/2]*+[C a(u)/2]%} #(u) in model A, and its behavior near=0 is also given

+Cou AW CLA(0)/2]— kC! (01, (E3) by Eq.(6.20. Thus, we obtain
Ts()=Clg(W[C(u)—~C(0")]+Clg(u)C' (u) P =p|= 8/ pKaC"(0")=p|[ 1~ 8/ (2€l9)],

+21{C[(u)C] (u)—[ClLg(w)/2]? which leads to the recursion relation

+[CLa(U)/2]% = Cua(U{C[(07) + kCLA(07) 01

—k%C|(07)}, (E4) 37~ PILo+ ¢ —2€/9]. (E9)
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