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The dynamical critical behavior of a single directed line driven in a random medium near the depinning
threshold is studied both analytically~by renormalization group! and numerically, in the context of a flux line

in a type-II superconductor with a bulk currentJW . In the absence of transverse fluctuations, the system reduces
to recently studied models of interface depinning. In most cases, the presence of transverse fluctuations is
found not to influence the critical exponents that describe longitudinal correlations. For a manifold with
d542e internal dimensions, longitudinal fluctuationsin an isotropic mediumare described by a roughness
exponentz i5e/3 to all orders ine, and a dynamical exponentzi5222e/91O(e2). Transverse fluctuations
have a distinct and smaller roughness exponentz'5z i2d/2 for an isotropic medium. Furthermore, their
relaxation is much slower, characterized by a dynamical exponentz'5zi11/n, wheren51/(22z i) is the
correlation length exponent. The predicted exponents agree well with numerical results for a flux line in three
dimensions. As in the case of interface depinning models, anisotropy leads to additional universality classes. A
nonzero Hall angle, which has no analogue in the interface models, also affects the critical behavior.

I. INTRODUCTION AND SUMMARY

The study of dynamical critical phenomena associated
with the pinning-depinning transition in random media has
become a subject of considerable interest in recent years.
This is due to the importance of pinning in a wide variety of
technologically important phenomena such as flux line~FL!
motion in type-II superconductors, dynamics of interfaces
~phase boundaries, invasion fronts, cracks, surface growth, to
name a few!, and charge-density-wave~CDW! transport.
These systems are characterized by a rough energy landscape
due to the randomness in the medium. At zero temperature
there are two distinct ‘‘phases,’’ distinguished by an order
parameter~henceforth called velocity! that measures the dy-
namic response, such as the average velocity for a FL, or
current for a CDW. For small driving forces, the system is
trapped by one of the many available metastable stationary
states, and is ‘‘pinned’’ to the impurities in the medium.
Critical behavior emerges as the stationary states disappear,
and the system starts moving with a nonzero velocity, when
the driving force is increased above a threshold value. Ex-
tensive experimental,1 theoretical,2–4 and simulation5 work
has been done to understand the properties of this transition
in CDW systems. There are also numerous studies on the
depinning of driven interfaces.6–11A better theoretical under-
standing of this dynamical phase transition was recently
achieved, and critical exponents were calculated through an
e expansion for both CDW systems3 and driven interfaces.7,8

More recently, we performed similar calculations for the de-
pinning of an elastic line in a bulk random medium, like a
polymer in a gel network, a FL in a type-II superconductor,
or a screw dislocation in a crystal.12 In this article, we
present a detailed report of our study on the dynamical criti-
cal behavior associated with the depinning of a FL, and in
general on the depinning of directed manifolds in random
media, through methods similar to those used for CDW’s and
interfaces.

Specifically, let us consider the geometry of the FL shown

in Fig. 1. The superconductor is subject to a magnetic field
BW 5Bx̂ along thex axis, and a bulk supercurrentJW5Jẑ along
the z axis. A FL is oriented alongBW on the average, but
deviates from a straight line due to impurities in the super-
conductor, which are represented by a potentialV(x,y,z).
The conformations of the FL are described by
RW (x,t)5xx̂1r (x,t), where r (x,t)5y(x,t) ŷ1z(x,t) ẑ is a
two-componentvector, lying in a plane normal to the mag-

FIG. 1. Geometry of the FL in a medium with impurities:~a!
Three-dimensional geometry.~b! A cross section of the medium at
fixed x. The average drift velocityv5vei makes an anglef with
the y axis.
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netic field. The bulk currentJW drives the FL along they

direction through the Lorentz forceFW L5F0JW3BW . (F0 is the
flux quantum.! If the bulk current is large enough, the FL
drifts with an average velocityv. Due to the chiral nature of
the supercurrents around the FL,v is in general not along the
y direction, but makes an anglef with the y axis. This is
usually called theHall angle, and although typically small,13

it can be significant near the depinning transition.
It is more convenient to work with components ofr that

are parallel and perpendicular tov, i.e.,

r ~x,t !5r i~x,t !ei1r'~x,t !e', ~1.1!

where the unit vectorsei ande' are rotated byf from they
andz axes, respectively, as shown in Fig. 1~b!. In Sec. II we
show that, under very general assumptions, the equation of
motion for small deviations around a straight line, general-
ized to d-dimesional internal coordinatesxPRd, can be
written as

h] tr i5K11¹x
2r i1K12¹x

2r'1F1 f̃ i„x,r ~x,t !…, ~1.2a!

h] tr'5K21¹x
2r i1K22¹x

2r'1 f̃'„x,r ~x,t !…, ~1.2b!

whereh is the viscosity of the FL andF5F0J. The moduli
Kag relate the elastic force to the local curvature and are in
general nondiagonal for a sample with orientation-dependent
core energy, or nonzero Hall angle~cf. Sec. II!. The random
forcesf̃ a that arise from the impurity potentialV are taken to
have zero mean with correlations

^ f̃ a~x,r ! f̃ g~x8,r 8!&5dd~x2x8!D̃ag~r2r 8!, ~1.3!

whereD̃ is a function that decays rapidly for large values of
its argument.~The indicesa,g, . . .5$i ,'%.)

Ignoring fluctuations of the FL transverse to the direction
of average velocity, i.e., settingr'50, leads to an interface
depinning model studied by Nattermann, Stepanow, Tang,
and Leschhorn~NSTL!,7 and by Narayan and Fisher~NF!.8

Hence, the major difference between Eqs.~1.2! ~henceforth
called the ‘‘vector depinning model’’! and the previously
studied ‘‘interface model’’ is the existence of transverse fluc-
tuations, making the position of the liner a vector instead of
a scalar ‘‘height’’ variable. The effects of such transverse
fluctuations for large driving forces and average velocities,
when the randomness in the medium can be approximated as
uncorrelated in space and time, were shown14,15 to create a
much richer dynamical phase diagram than the correspond-
ing interface growth model, namely, the Kardar-Parisi-Zhang
~KPZ! equation.16 Then, the natural questions to ask are the
following: How do these transverse fluctuations scale near
the depinning threshold, and how do they influence the criti-
cal dynamics of longitudinal fluctuations?

In order to make these questions more quantifiable, we
consider the exponents that characterize the critical behavior
near the depinning transition. LetF(v) denote the driving
force required to move the FL with a velocityv5vei. For
small values ofF5uFu, the line is pinned by the disorder in
the medium. There is a threshold forceFc , such that the line
moves with a nonzero average velocityv iff F.Fc .

17 ForF
slightly above threshold, we expect the average velocity to
scale as

v5A~F2Fc!
b, ~1.4!

whereb is the velocity exponent andA is a nonuniversal
constant. Superposed on the steady advance of the line are
rapid ‘‘jumps’’ as portions of the line depin from strong pin-
ning centers. Such jumps are similar to avalanches in other
slowly forced systems and have a power-law distribution in
size, cut off at a characteristic correlation lengthj. On ap-
proaching the threshold,j diverges as

j;~F2Fc!
2n, ~1.5!

defining a correlation length exponentn. At length scales up
to j, the interface is self-affine, with correlations satisfying
the dynamic scaling form

^@r i~x,t !2r i~0,0!#2&5uxu2z igi~ t/uxuzi!, ~1.6!

^@r'~x,t !2r'~0,0!#2&5uxu2z'g'~ t/uxuz'!, ~1.7!

whereza andza are roughness and dynamic exponents, re-
spectively. The scaling functionsga go to a constant as their
arguments approach 0;z i and z' are the longitudinal and
transverse wandering exponents of an instantaneus line pro-
file; zi and z' characterize scaling of relaxation times of
longitudinal and transverse modes with wave vector through
ta(q);q2za. Beyond the length scalej, regions move more
or less independently of each other and the system is no
longer critical. The behavior of the moving line is described
by the exponents calculated earlier14,15 for time-dependent
noise. Ignoring any potential nonlinearities leads to a regular
diffusion equation with white noise, for which the roughness
and dynamic exponents arez i

15z'
15(22d)/2, z152. In

the interface model, transverse fluctuations do not exist; thus,
z' andz' are not defined.

Equations~1.2! can be analyzed using the formalism of
Martin, Siggia, and Rose~MSR!.18 A renormalization group
~RG! treatment of the ‘‘interface model,’’ studied by NSTL
~Ref. 7! and NF~Ref. 8!, indicates an upper critical dimen-
sion ofdc54, and exponents ind542e dimensions, given
to one-loop order asz5e/3 andz5222e/9. NSTL obtained
this result by directly averaging the MSR generating func-
tional Z, and calculating the renormalization of the force-
force correlation functionD̃(r ). NF, on the other hand, ex-
pandedZ around a saddle-point solution corresponding to a
mean-field approximation19 to Eqs. ~1.2! which involves
temporal force-force correlationsC(vt). They point out
some of the deficiencies of conventional low-frequency
analysis, and suggest that the roughness exponent is equal to
e/3 to all orders in perturbation theory. They also show that
for two different classes of disordered systems, random-field
and random-bond disorder, the zero-temperature interface
dynamics is essentially the same near threshold. Their argu-
ment remains valid for vector depinning, and our results will
be applicable to both types of randomness. As we shall dem-
onstrate in Sec. III, the longitudinal exponents of the ‘‘vec-
tor’’ model are identical to those of the depinning interface,
and given by

z i5e/3, ~1.8!

zi5222e/91O~e2!. ~1.9!
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Other exponents are determined by exact exponent identities
from z i andzi as

n5
1

22z i
5

3

62e
, ~1.10!

b5~zi2z i!n512e/91O~e2!. ~1.11!

Following the formalism of NF, we employ a perturbative
expansion of the disorder-averaged MSR partition function
around a mean-field solution for scalloped impurity
potentials.8 We show that slightly above threshold, transverse
fluctuations do not significantly affect the dynamics of lon-
gitudinal fluctuations, apart from shifting the threshold force
Fc . Specifically, the exponents and exponent identities given
in Eqs.~1.8!–~1.11! for d,dc are also correct for the vector
depinning model. However, transverse fluctuations turn out
to scale differently, withz'Þz i andz'Þzi . In particular, in
an isotropicmedium with Hall anglef50 ~model A in Sec.
II !, the renormalization of transverse temporal force-force
correlationsC'(vt) yields

z'5z i2
d

2
5221

5e

6
, ~1.12!

correct to all orders ine. The transverse dynamic exponent is
given by anexactexponent identity

z'5zi1
1

n
542

5e

9
1O~e2!. ~1.13!

These conclusions can also be generalized to more than one
transverse direction: The results do not depend on the num-
ber of transverse coordinates. For the FL (e53), the critical
exponents are then predicted to be

z i51, zi'4/3, n51,
~1.14!

b'1/3, z'51/2, z''7/3.

This implies that in a type-II superconductor driven slightly
above threshold, flux lines are contained mostly in the plane
normal to the current, up to the correlation length scalej.
This may have a noticeable effect on the dynamics of en-
tanglement of flux lines near depinning. These results also
rationalize the use of a ‘‘planar approximation’’ in numerical
simulations of FL depinning.20

Another important consideration is the role of anisotropy
in the bulk material. It was recently shown that anisotropy
leads to new universality classes in interface depinning.21We
show that this happens as well for FL depinning, in an even
richer fashion. The presence of a nonzero Hall angle affects
the critical behavior in a manner similar to anisotropy. These
issues are discussed in more detail in Sec. VIII.

The rest of the paper is organized as follows: In Sec. II,
we derive the general form of the equation of motion for a
single FL, starting from a reparametrization invariant~RI!
description of the FL dynamics. In Sec. III, we first establish
the connection of Eqs.~1.2! to the interface depinning prob-
lem for the simple case of an isotropic medium with zero
Hall angle. We then examine the linear response of the sys-
tem to derive the exponent identities~1.10!, ~1.11!, and
~1.13!, which are later shown to be consistent with a formal

RG treatment of the problem in more general circumstances.
In Sec. IV, we present the MSR formalism and expand the
generating functional around a self-consistent saddle point
solution, given by a mean-field theory. In Sec. V, we calcu-
late response and connected correlation functions of the
mean-field theory, which correspond to the bare propagators
and vertex functions in a perturbative expansion. In Sec. VI,
we determine critical exponents through ane expansion near
d54 dimensions, and in Sec. VII we compare these with
numerical results obtained by directly integrating the equa-
tions of motion. Finally, in Sec. VIII we discuss the physical
significance of these results, the roles of nonlinear terms and
anisotropy, and applicability of similar methods to related
problems.

II. EQUATIONS OF MOTION FOR A FL

In this section we derive a phenomenological equation
that describes the coarse-grained~in space and time! evolu-
tion of a single FL in a bulk type-II superconductor. The
configuration of the FL at timet is described byRW (s,t),
wheres is an arbitrary parameter which we shall later equate
to the x component ofRW . The equations of motion are ob-
tained by balancing the ‘‘conservative’’ and ‘‘dynamical’’
forces. Conservative forces are derived from the energy
functional and depend only on the instantaneous configura-
tion RW (s) of the FL. They include the elastic force, random
forces due to the impurity potentialV, and the Lorentz force
due to the bulk current. Dynamical forces, on the other hand,
depend explicitly on the local velocity of the FL and com-
prise the dissipative and Magnus forces.22

For notational simplicity, we set the external magnetic
field BW along thex axis and the average velocityvW along
ei, suppressing the possible dependence of parameters on the
relative orientation ofBW andei due to anisotropy in the un-
derlying material. Such complications will be taken up later
in Sec. VIII. An important consideration is the requirement
that the equation of motion be invariant under an arbitrary
reparametrizationRW (s)→RW (s8) of the curve. One such re-
parametrization invariant quantity is the infinitesimal arc
lengthdl5dsAg, whereg[]sRW •]sRW is the metric. The only
physically observable motions of the FL are orthogonal to
the local unit tangent vector

t̂5
1

Ag
]sRW .

Assuming that the FL motion is overdamped, the conserva-
tive force FW T , which is derived below, is balanced by dy-
namical forces that are proportional to the local normal ve-
locity vW n5P •] tRW 5] tRW 2(] tRW • t̂) t̂. ~Here, P i j[d i j2 t̂ i t̂ j
projects any vector onto the local normal plane.! Dynamical
forces are not necessarily parallel tovW n : In general, there is
an anglef ~called the Hall angle! between the applied force
and the velocity of the FL. Physically, this is due to the
Magnus force which is orthogonal to the velocity, and the
Hall effect in the normal core of the FL.23 The equation of
motion can then be written as

3522 53DENIZ ERTAŞAND MEHRAN KARDAR



hP •$cosf] tRW 1sinf~] tRW !3 t̂%5FW T . ~2.1!

To determine the conservative forceFW T , consider the en-
ergy cost associated with a particular coarse-grained configu-
rationRW (s) of the FL in the absence of a bulk current, which
is

E@RW ~s!#5E dsAgH ]sRW –s•]sRW

g
1V„RW ~s!…J . ~2.2!

In the above equation, the symmetric tensors gives the core
energy per unit length of the FL, and can be nondiagonal for
an anisotropic sample.~Anharmonic contributions to the core
energy can be ignored in a coarse-grained description and we
will systematically keep only the leading order elastic terms.!

The restoring forceFW B is given by the energy cost of an
infinitesimal virtual displacementdRW (s). After some rear-
rangement, we arrive at

dE52E dsAgdRW •P •$2s•kW 2~ t̂•s• t̂ !kW

1V~RW !kW 2¹RWV~RW !%

[2E dsAgdRW •FW B , ~2.3!

wherekW 5g21P •]s
2RW is the local curvature vector. To lead-

ing order, the random potentialV(RW ) that multiplieskW can be
approximated by its spatial average, and eliminated without
loss of generality by choosinĝV&50. fW52¹RWV(RW ) acts as
a random force on each segment of the FL, whose correla-
tions in general satisfy

^ f a~RW ! f g~RW 8!&5Dag~RW 2RW 8!. ~2.4!

For now, we do not restrict the form ofD, apart from the
reasonable expectation that it decay quickly beyond a char-
acteristic impurity sizea. When a bulk currentJW is present,

the FL is also subject to a Lorentz forceFW L5F0JW3 t̂, where
F0 is the flux quantum. Thus, the total conservative force
acting on a section of the FL is given as

FW T5P •H 2s•P •]s
2RW 2~ t̂•s• t̂ !]s

2RW

g
1F0JW3 t̂1 fWJ .

~2.5!

For an isotropic sample in the extreme type-II limit, the
Bardeen-Stephen model gives23

s i j'd i j ~F0/4pls!
2ln~js /ls!,

h'F0
2/~2pjs

2c2rn!,

tanf'rn /rn
H ,

wherels is the London penetration depth,js is the coher-
ence length, andrn ,rn

H are normal and Hall resistivities of
the nonsuperconducting core region, respectively. More gen-
eral expressions for these phenomenological parameters can
be derived from a mesoscopic model based on a time-
dependent Ginzburg-Landau theory.25

Equation~2.1! is highly nonlinear and generalizes those
of Ref. 26 to the three-dimensional and anisotropic case.
We now pick $x̂,ei,e'% as our coordinate axes, andx as
the arbitrary parameters, representing the FL as
RW (x,t)5xx̂1r i(x,t)ei1r'(x,t)e'. In this representation,
g511(]xr i)

21(]xr')
2, JW5Jiei1J'e', fW5 f xx̂1 f iei

1 f'e', and

s5S sx sxi sx'

sxi s i s3

sx' s3 s'

D .
After some rearrangement, and elimination of higher-order
terms coming from the elastic energy of the FL, we obtain
the following evolution equations for the componentsr i and
r' :

h

cosf
] tr i5@~2s i2sx!22s3tanf#]x

2r i1@2s32~2s'2sx!tanf#]x
2r'

1
F0

Ag
$J'@11~]xr i!

2#2Ji@]xr i]xr'2tanfAg#%

1 f iF11
tanf

Ag
]xr i]xr'G2 f'

tanf

Ag
@11~]xr i!

2#2 f xF ]xr i2
tanf

Ag
]xr'G , ~2.6a!

h

cosf
] tr'5@2s31~2s i2sx!tanf#]x

2r i1@~2s'2sx!1s3tanf#]x
2r'

1
F0

Ag
$J'@]xr i]xr'1tanfAg#2Ji@11~]xr'!2#%

1 f i
tanf

Ag
@11~]xr'!2#1 f'F12

tanf

Ag
]xr i]xr'G2 f xF ]xr'1

tanf

Ag
]xr iG . ~2.6b!
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These equations are clearly too complicated for an exhaustive analysis. However, it is possible to perform a gradient expasion
of the right-hand side~RHS! of Eqs.~2.6! when the fluctuations around the straight line are small, i.e., (]xr i)

2,(]xr')
2!1. In

that case, Eqs.~2.6! simplify to

h

cosf
] tr i5@~2s i2sx!22s3tanf#]x

2r i1@2s32~2s'2sx!tanf#]x
2r'1F0~J'1Jitanf!1 f i2 f'tanf, ~2.7a!

h

cosf
] tr'5@2s31~2s i2sx!tanf#]x

2r i1@~2s'2sx!1s3tanf#]x
2r'1F0~J'tanf2Ji!1 f'2 f itanf, ~2.7b!

neglecting all terms ofO„(]xr i)
2,(]xr')

2
… or higher.

So far, we have not enforced the condition thatei points
along the average velocity of the FL. This is satisfied by the
self-consistency relation

^] tr'&50. ~2.8!

In the small fluctuation limit where Eqs.~2.7! are valid, this
condition is satisfied simply by settingJi5J'tanf. In order
to study the scaling properties of this system in the frame-
work of a field theory, we generalize the FL to a manifold
with d-dimensional internal coordinatesxPRd. Further re-
arrangements, and addition of an infinitesimal external force
«(x,t) in order to study response functions, lead to

h] tr i5K11¹x
2r i1K12¹x

2r'1F1 f̃ i„x,r ~x,t !…1«1~x,t !,
~2.9a!

h] tr'5K21¹x
2r i1K22¹x

2r'1 f̃'„x,r ~x,t !…1«2~x,t !,
~2.9b!

whereF5F0AJi
21J'

25F0J, and

SK11 K12

K21 K22
D 5S cosf 2sinf

sinf cosf D S 2s i2sx 2s3

2s3 2s'2sx
D ,

S f̃ i

f̃'
D 5S cosf 2sinf

sinf cosf D S f i

f'
D .

The correlations of the random forces satisfy

^ f̃ a~x,r ! f̃ g~x,r 8!&5dd~x2x8!D̃ag~r2r 8!. ~2.9c!

~Note that while bothr andx are represented by bold char-
acters,r remains two dimensional, whilex has been pro-
moted to ad-dimensional vector.!

In the special case of an isotropic medium withf50, the
equations further reduce to

h] tr i5K¹x
2r i1F1 f i„x,r ~x,t !…1«1~x,t !, ~2.10a!

h] tr'5K¹x
2r'1 f'„x,r ~x,t !…1«2~x,t !, ~2.10b!

where the correlations of the random forces satisfy

^ f a~x,r ! f g~x,r 8!&5dagdd~x2x8!D~ ur2r 8u!.
~2.10c!

We shall henceforth refer to Eqs.~2.10! as model A. Anisot-
ropy and/or a nonzero Hall angle changes the scaling prop-
erties of the critical region, and we shall refer to this more
general case, described by Eqs.~2.9!, as model B.

III. VECTOR DEPINNING MODEL

In this section, we study some properties of the system
described by Eqs.~2.9! and~2.10! in detail. Due to statistical
translational symmetry in timet and internal coordinatesx,
we use the real (x,t) and Fourier (q,v) domains inter-
changeably when dealing with statistical averages.

The vector depinning model differs from the CDW or
interface problems due to the presence of transverse fluctua-
tions r'(x,t). It is sometimes useful to recast the equations
such thatr' appears as a function ofr i rather thant. The
asymmetry inr i and r' occurs becauser i almost always
moves in the forward direction,24 and therefore is a monoto-
nous function oft. Thus, for any particular realization of the
random forcef (x,r ), there is a unique pointr'(x,r i) that is
visited by the line for given coordinates (x,r i). The evolu-
tion of r'(x,r i) can be obtained schematically, by dividing
Eq. ~2.9b! by ~2.9a!, as

]r'
]r i

5
K21¹x

2r i1K22¹x
2r'1 f̃'

K11¹x
2r i1K12¹x

2r'1 f̃ i1F
. ~3.1!

We shall see that in most cases the scaling properties ofr' in
relation tor i can be obtained heuristically by inspecting Eq.
~3.1!.

A. Model A

First of all, we establish the connection between Eq.
~2.10! and the interface depinning model for the special case
of an isotropic system withf50 ~model A!. For a particular
realization of randomnessf(x,r ), Eq. ~2.10a! can be written
as

h] tr i5K¹x
2r i1 f 8„x,r i~x,t !…1F1«1~x,t !, ~3.2!

where f 8(x,r i)5 f i„x,r i ,r'(x,r i)… and r'(x,r i) is deter-
mined by Eq.~3.1!. It is quite plausible that, after averaging
over all f, the correlations inf 8 will also be short ranged,
albeit different from those off, since the dissipative dynam-
ics will avoid maxima of the random potential, effectively
reducing the average forces. In that case, the equation re-
duces exactly to the model studied by NSTL and NF. Thus,
the scaling of longitudinal fluctuations of the FL near thresh-
old will not change upon taking into account transverse com-
ponents, and the exponent relations~1.8!–~1.11! hold for
model A as well. We expect this argument to hold even for
model B @Eqs. ~2.9!# as long as¹x

2r'!¹x
2r i , or when

z',z i .
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For the interface model, it is possible to show thatv(F) is
a single-valued function using the ‘‘no passing rule’’ of
Middleton and Fisher.4 The rule states that no interface~or
CDW! can overtake another, if initially every point on the
first interface is behind the second one. This rule does not
apply to the vector model: It is in principle possible to have
coexistence of moving and stationery FL’s, allowing for the
possibility of a discontinuous~multiple-valued! v(F). How-
ever, since a moving line samples an arbitrarily large region
in the medium, it is plausible that the velocity self-averages
at long times, resulting in a single-valuedv(F) ~i.e., no hys-
teresis!. However, finite-size systems do suffer from such
hysteresis which adversely affects numerical simulations of
the model. These issues are further discussed in Sec. VII.

Several exponent identities can be deduced from the form
of the linear response,

xag~q,v!5 K ]r a~q,v!

]«g~q,v! L , ~3.3!

in the (q,v)→(0,0) limit. Due to the statistical symmetry of
Eqs. ~2.10! under the transformationr'→2r' , the linear
response is diagonal. Let us first setv50 and examine the
static response: An additional static force«(q) with zero
spatial average~noq50 component! can be exactly compen-
sated by the coordinate change

ra8 ~q,t !5ra~q,t !1~Kq2!21«a~q!.

The distribution off does not change in the primed coordi-
nates. Thus, the static linear response has the form

xag~q,v50!5dag

1

Kq2
. ~3.4!

Since« i scales like the applied force, the form of the linear
response at the correlation lengthj gives the exponent iden-
tity

z i11/n52. ~3.5!

Considering the transverse linear response seems to imply
z'5z i . However, as will be shown below, the static part of
the transverse linear response becomes irrelevant at the criti-
cal RG fixed point, sincez'.zi . This is consistent with the
expectation that the dynamics is responsible for the distinc-
tion between longitudinal and transverse modes.

Why are the relaxational dynamics different in the two
fluctuation directions near depinning? The answer can be
traced to a simple symmetry argument, which requiresF and
v to remain parallel, i.e.,

F~v!5F~v !v̂, ~3.6!

where v̂5v/v, andF is some~scalar! function which de-
pends on only the magnitudev, of velocity. For small devia-
tions aroundv5vei, we thus obtain~see Fig. 2!

]F i

]v i
5
dF

dv
, ~3.7!

]F'

]v'

5
F

v
. ~3.8!

These two derivatives clearly scale differently in thev→0
limit, which causes a separation of relaxation time scales, as
shown below.

Now consider the response to a spatially uniform
(q50), but time-dependent, external force«(t). The leading
term in the dynamic response is intricately connected to
v(F): When a slowly varying uniform external force«(t) is
applied, the FL responds as if the instantaneous external
forceF1« is a constant; i.e., it moves with the average ve-
locity

^] tr a&5va~F1«!'va~F!1
]va

]Fg
«g . ~3.9!

Therefore, near the depinning transition,

x i~q50,v!.
1

2 iv~dF/dv !1O~v2!
, ~3.10!

x'~q50,v!.
1

2 iv~Fc /v !1O~v2!
. ~3.11!

Equation~3.4! can be combined with the above to yield a
Taylor expansion of the inverse linear response around
(q,v)5(0,0) that reads

x i
21~q,v!.Kq22 iv~dF/dv !1higher-order terms,

~3.12!

x'
21~q,v!.Kq22 iv~Fc /v !1higher-order terms.

~3.13!

The zero ofx21 in the complexv plane for a given value of
the wave vectorq gives the relaxation time of the corre-
sponding mode. Thus, the relaxation times of fluctuations
with wavelengthj are

t i~q5j21!;S q2 dvdFD 21

;j21~b21!/n;jzi, ~3.14!

t'~q5j21!;S q2 vFc
D 21

;j21b/n;jz', ~3.15!

which in turn yield

b511~zi22!n, ~3.16!

z'5zi11/n. ~3.17!

Thus,z'.zi as noted earlier. This difference arises entirely
from the different scaling properties ofdv/dF
@;(F2Fc)

b21# andv/F @;(F2Fc)
b# near the depinning

transition, as noted earlier.

FIG. 2. A graphical demonstration of Eqs.~3.7! and~3.8!. When
a longitudinal force is applied, the direction is not changed and all
changes are in the magnitudeF(v). For a transverse force,F does
not change to linear order indF' , but v changes direction to re-
main parallel toF.
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B. Model B

A similar linear response analysis can be made for the
more general case of model B. The leading contributions to
the static and dynamic part of the inverse linear response are
given by

xag
21~q,v50!5Kagq

2, ~3.18!

xag
21~q50,v!52 iv~]va /]Fg!21. ~3.19!

The relation between the external force and the drift velocity
can in general be written as

F~v!5F~v,u!@cosf~v,u!v̂1sinf~v,u!x̂3 v̂#.
~3.20!

Both F and f in general depend on the orientation ofv̂,
parametrized by an angleu in the yz plane. Then, for small
deviations aroundv5vei,

S dFi

dF'

D 5S A11 2
1

v
A12

A21
1

v
A22

D S dv i

dv'

D , ~3.21!

where

A115]v~F cosf!,

A215]v~F sinf!,

A125F sinf2]u~F cosf!,

A225F cosf1]u~F sinf!.

The scaling of diagonal elements in the linear response is the
same as in model A. Therefore, exponent identities~3.16!
and~3.17! hold in the more general case of model B as well.

IV. MSR FORMALISM

We use the formalism of MSR~Ref. 18! to compute re-
sponse and correlation functions for the dynamical system
described by Eqs.~2.9!. After some rearranging, we obtain

h
]r a~x,t !

]t
5E ddx8Jag~x2x8!r g~x8,t !2r a~x,t !

1 f̃ a„x,r ~x,t !…1Fa1«a~x,t !, ~4.1!

where the tensorJ is given by its Fourier transform as
Jag(q)5dag2Kagq

2. Introducing an auxiliary fieldr̂ (x,t),
the generating functionalZ is given by

Z5E @dr #@dr̂ #J @r #exp~S!, ~4.2!

where

S5 i E ddx dt r̂a~x,t !$h] tr g2Kag¹x
2r g2Fa

2 f̃ a„x,r ~x,t !…2«a„x,t…%. ~4.3!

Clearly, this coarse-grained continuum picture of the sys-
tem breaks down at length scales shorter than the core radius
of the FL. Therefore, there is a natural cutoffL in q space
for the functional integrals in Eq.~4.2!. Z can be used to
generate response and correlation functions ofr , since inte-
grating overr̂ givesd functions that impose the solution to
the equation of motion~4.1!. The JacobianJ @r # fixes the
renormalization ofZ such that thed functions integrate to
unity, and will be suppressed henceforth. SinceZ51 inde-
pendent of the realization of randomness, response and cor-
relation functions can also be generated using the disorder-
averaged generating functionZ̄5*@dr #@dr̂ #^exp(S)&. For
example, the two-point correlation function is given by

^r a~x,t !r g~x8,t8!&5E @dr #@dr̂ #r a~x,t !r g~x8,t8!^exp~S!&,

and the linear response is

K dr a~x,t !

d«g~x8,t8! L 52 i E @dr #@dr̂ #r a~x,t ! r̂ g~x8,t8!^exp~S!&.

In order to proceed, we discretize inx space:
r (x,t)→r i(t). Introducing two conjugate fields
Ri(t),R̂i(t), Z̄ can be rewritten as

Z̄5E @dR#@dR̂#exp~S̃!, ~4.4!

S̃5(
j
lnZ̄j~Rj ,R̂j !2 i E dt(

i , j
R̂i~ t !•Ji j

21
•Rj~ t !,

~4.5!

whereZ̄j (Rj ,R̂j ) is given by

Z̄j5E @dr j #@dr̂ j # K expE dt@ i R̂j~ t !•r j~ t !1 i r̂ j~ t !•$h] tr j~ t !

2Rj~ t !1r j~ t !2 f̃ j„r j~ t !…2F2«j~ t !%# L . ~4.6!

Note that this factorization of the disorder-dependent part of
the action to local functionalsZ̄j is possible only if the ran-
dom forcesf̃ j are independent at each sitej , as assumed in
Eq. ~1.3!. Z̄j can be evaluated by an expansion around the
saddle-point approximation. The integrand of the exponential
is a maximum when, for eachj ,

2(
i
Ji j

21
•R̂i

02^ r̂ j&MF50,

2(
i
Ji j

21
•Ri

01^r j& MF50,

which has a solutionR̂j
050, Rj

05vt for all j . Here, v is
determined self-consistently as a function ofF by requiring
^r j&MF5vt, where the averages (^•••&MF) are generated
from Z̄j evaluated at the saddle point, which is identical for
eachj :

3526 53DENIZ ERTAŞAND MEHRAN KARDAR



ZMF5E @dr j #@dr̂ j # K expi E dt r̂ j~ t !$h] tr j~ t !2vt1r j~ t !2 f̃ j„r j~ t !…2F2«j~ t !%L . ~4.7!

ZMF can be identified as the MRS generating function for a mean-field~MF! approximation to Eq.~4.1!, obtained by setting
Jag(x2x8)5dagN

21, whereN5*ddx. @The first term in the RHS of~4.1! is then self-consistently equal tôr &MF5vt.#
Redefining the field variables asR→R1vt,i R̂→R̂ ~for notational simplicity!, the expansion for lnZ̄j(Rj ,R̂j ) is given by

lnZ̄j~Rj ,R̂j !5 (
$ma ,na%50

` S )a

1

ma!na! D E )
a H )

sa51

ma

dtasa
R̂ja~ tasa

! )
sa851

na

dtas
a8

8 Rja~ tas
a8

8 !J V $ma ,na%~$tasa
%;$tas

a8
8 %!.

~4.8!

The vertex functionsV are obtained by evaluating derivatives of lnZ̄j with respect to the fieldsat the saddle point, and are
given precisely by connected correlation and response functions of the MF system decribed by Eq.~4.7!:

V $ma ,na%~$tasa
%;$tas

a8
8 %!5F)a

)
sa851

na ]

]« ja~ tas
a8

8 !G K )
a

)
sa51

ma

r ja~ tasa
!L

MF,c

. ~4.9!

Thus, once the mean-field system is solved, correlation func-
tions ofR,R̂ can be studied through a momentum space RG
treatment to obtain the scaling exponents of the fields in the
long-time, large wavelength~hydrodynamic! limit. R and R̂
are like coarse-grained forms of the original fieldsr and r̂
since all correlation functions ofr , r̂ are equal to correspond-
ing correlation functions ofR,R̂ in the hydrodynamic limit.3

Therefore, it is sufficient to find the scaling behavior of
R,R̂ to deduce the desired critical exponents.

V. MEAN-FIELD THEORY

In this section, we calculate response and correlation
functions of the local system described byZMF , which gives
the vertex functions in the diagrammatic expansion ofS̃. We
will only need to calculate the leading terms as higher-order
vertices will turn out to be irrelevant in the critical region.
Due to the averaging,ZMF is identical at all sitesj , and
it is sufficient to examine a single point. Setting
r̄ (t)[r j (t)2vt, and «(t)[«j (t), the equation of motion
becomes

hS dr̄a

dt
1vaD52 r̄ a1Fa1 f̃ a„vt1 r̄ ~ t !…1«a~ t !.

~5.1!

F is determined as a function ofv self-consistently by requir-
ing that ^ r̄ &MF50. The scaling behavior ofFMF(v) near
threshold can be determined from the following argument:
For v!h21F, the particle follows a local minimumP of the
effective potential

Veff~ r̄ ,t !5V„x,vt1 r̄ ~ t !…1
u r̄ ~ t !u2

2
2F• r̄ ~ t !.

A representative snapshot ofVeff , which consists of a pa-
raboloid centered atr̄5F with a superimposed random po-
tential, is shown in Fig. 3. The position of the local minimum
P shifts with a velocity ofO(v) as time progresses. Eventu-
ally, P disappears at a saddle point as it is pushed up the

sides of the hyperparaboloid. At this moment, the particle
quickly moves to a new local minimumP8, after which it
starts following the slow motion ofP8, as shown in Fig. 3.
For scalloped random potentials with discontinuous deriva-
tives at the saddle points, the particle starts moving with a
velocity ofO(1) ~i.e., independent ofv asv→0) as soon as
P disappears, and reaches the vicinity ofP8 in O(1) time,
giving the resultbMF51. ~In contrast, for smooth potentials,
there is av-dependent acceleration time just afterP disap-
pears, which contributes to the critical dynamics and gives
bMF53/2.2,4! We have also numerically integrated Eq.~5.1!
~for model A! to verify thatbMF51.

Next, we proceed to compute vertex functions
V $ma ,na%($tasa

%;$tas
a8

8 %) in the perturbative expansion ofS̃,

which correspond to response and connected correlation
functions of the MF theory, in increasing order in the field
variablesR,R̂. From now on, we setm5mi1m' , and
n5ni1n' .

FIG. 3. ~a! The effective potentialVeff . The random part~not
shown! superimposed on the paraboloid slides with velocity2v.
~b! A cross section ofVeff . The particle stays in a local minimumP
for a time ofO(v21), after which the minimum disappears and the
particle finds another local minimumP8 within a finite time. Time
averages are dominated by the slow portion of the motion as
v→0.
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A. Average position „m51,n50…

By construction̂ r̄ &MF50, but we prefer to expand around
the trueF(v) instead of the mean-field value of the force
FMF(v). Since the effect of an additional uniform static force
F2FMF(v) can be fully counteracted by a shift inr̄ , this does
not affect connected correlation or response functions. Thus,
the only effect of this shift is to produce an additional term
( i@F2FMF(v)#•R̂i in S̃, which only has aq50 component
and does not directly enter the renormalization of higher-
order terms.

B. Linear response„m51,n51…

The linear response is given by the rank-2 tensor,

x̃ag~ t2t8!5 K d r̄ a~ t !

d«g~ t8! L
MF

.

We are only interested in the low-frequency form of the Fou-
rier transformed linear responsex̃(v), i.e., when« is slowly
varying in time. In this case, we can write«(t)'«01«1t,
neglecting terms proportional to«̈. To find the response
r̄«(t), let us define

r̄«8~ t !5 r̄«~ t !2«02«1t2FMF~v!1FMF~v1«1!.

Taking a time derivative and using Eq.~5.1!, we obtain

h~ r̄«81v1«1!52 r̄«81FMF~v1«1!1 f̃~~v1«1!t1 r̄«82F«!,
~5.2!

whereF«5FMF(v1«1)2FMF(v)2«0 . But now, ^ r̄«8&50 by
definition ofFMF . ~The random forcef̃ is evaluated at points
shifted by a constant amountF« , but this has no significance
upon averaging over randomness.! This gives

^ r̄«~ t !&5«~ t !1FMF~v!2FMF„v1 «̇~ t !…1O~ «̈ !. ~5.3!

ExpandingFMF(v1 «̇) for small «̇, we obtain

x̃ag~v!5dag1 ivF]FMFa~v!

]vg
G
v5vei

1O~v2!. ~5.4!

SincebMF51, the linear response tensor will have the form

x̃~v!511 ivS A11 2
1

v
A12

A21
1

v
A22

D , ~5.5!

whereAag approach constants asv→0 @cf. Eq. ~3.21!#. For
model A, x̃(v) is diagonal due to symmetry, and
A125A2150.

C. Nonlinear response„m51, n>1…

Assuming thatFMF(v) has a Taylor expansion around
v5vei for v.0, we can expand the RHS of Eq.~5.3! to
obtain the nonlinear response of the model. The leading term
in the low-frequency limit is proportional tovn, and it is
straightforward to show that the contribution of these terms
to S̃ is

2
1

ni!n'!
E ddx dtF ]nFa~v!

]niv i]
n'v'

G
v5vei

R̂a~x,t !

3~] tRi!
ni~] tR'!n'. ~5.6!

These terms are irrelevant at the RG fixed point, as we shall
show later.

D. Two-point correlation functions „m52, n>0…

At low velocities, the particle spends most of the time
near a local minimum, jumping abruptly to the next one
when this minimum disappears. Therefore, the time scale
associated with the correlation functions is given by the tem-
poral separation between two consecutive jumps, which
scales as 1/v. In the v→0 limit, the correlation functions
depend ont only through the rescaled time variableu[vt,
since the positions of successive minima near threshold are
determined by energetic considerations, and do not depend
onv. ~The correlation functions may also depend on the drift
directionv̂. We shall suppress this dependence for notational
brevity.! Let us define

^ r̄ a~ t ! r̄ g~ t8!&MF,c[Cag„v~ t2t8!…. ~5.7!

Since successive positions of the local minima are uncorre-
lated, we expect thatCag(u) decay quickly as a function of
u[vt for uuu.1. By definition,

Ci~u![C11~u!5C11~2u!,

C'~u![C22~u!5C22~2u!,

1

2
C3~u![C12~u!5C21~2u!.

As a result of the abrupt jumps from one minimum to an-
other,Cag(vt) have a discontinuous derivative at the origin,
rounded at a scale ofO(v). In model A,C3(u)50 due to
symmetry.

The only other important terms in the effective actionS̃
involve the seriesm52,n5ni.0,n'50. All vertex func-
tions associated with this series are given by the response of
connected correlation functions tolongitudinal forces. These
response functions are intimately related to the two-point
correlation functionsCag(u) by the following argument:
Static forces only change linear response, and do not affect
connected correlation functions. For a slowly varying exter-
nal force«(t)ei, however, the system will respond as if the
instantaneous velocity is (v1 «̇)ei. Neglecting terms propor-
tional to «̈,

@^ r̄ a~ t ! r̄ g~ t8!& MF,c#«5Cag„~v1 «̇ !~ t2t8!…1O~ «̈ !

'Cag„v~ t2t8!1«~ t !2«~ t8!….

Now, Taylor expandingCag aroundv(t2t8) and taking suc-
cessive functional derivatives with respect to«, we finally
obtain the contribution of this series toS̃ as
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U5 (
n51

`
1

2!n! E ddx dt dt8 R̂a~x,t !R̂g~x,t8!Uag,n„v~ t2t8!…@Ri~x,t !2Ri~x,t8!#n, ~5.8!

whereUag,n(u) is thenth derivative ofCag(u).
The vertices withm52, n'.0, andm.3 are all irrelevant, as shown in the next section.

VI. SCALING AND RG

The terms inS̃ that are up to second order in the fields are

S̃052E dtddx@F2FMF~v!#•R̂~x,t !2
1

2Eq,vF R̂~2q,2v!

R~2q,2v!G T•F 2C~v! J21~q!2x̃~v!

J21~2q!2x̃~2v! 0 G •F R̂~q,v!

R~q,v!G ,
~6.1!

where Jag
21(q)5(dag2Kagq

2)21'dag1Kagq
2 for small q. For notational brevity, we use*q,v to denote

* @ddq/(2p)d#(dv/2p) . Using Eq.~5.5!, the quadratic form in the action can be written as

2
1

2 E
q,vF R̂i~2q,2v!

R̂'~2q,2v!

Ri~2q,2v!

1

v
R'~2q,2v!

G T

•Q~q,v!•F R̂i~q,v!

R̂'~q,v!

Ri~q,v!

1

v
R'~q,v!

G , ~6.2!

where

Q~q,v!53
2Ci~v! 2

1

2
C3~v! K11q

22 ivA11 vK12q
21 ivA12

2
1

2
C3~2v! 2C'~v! K21q

22 ivA21 vK22q
22 ivA22

K11q
21 ivA11 K21q

21 ivA21 0 0

vK12q
22 ivA12 vK22q

21 ivA22 0 0

4 .
Neglecting all higher-order terms in the action, we arrive

at a Gaussian theory, in which different Fourier modes are
decoupled, and which can be solved by inverting the matrix
in Eq. ~6.2!. ~See Appendix A.! The quadratic action~6.1!
remains invariant under the scale transformation

x→bx, t→b2t,

Ri→b22d/2Ri , R'→b22dR' ,

R̂i→b222d/2R̂i , R̂'→b222d/2R̂' ,

v→b2d/2v, F2FMF→b2d/2~F2F MF!, ~6.3!

except for terms proportional toK12 andK22 which vanish at
the depinning transition asv→01. For d.4, all higher-
order terms inS̃ decay away upon rescaling, and we recover
an asymptotically quadratic theory with critical exponents
b51, zi52, n52/d, z i5(42d)/2, z'522d. The remain-
ing exponentz' can be found by comparing the static and
dynamic parts of the transverse linear response. This gives

z'521d/25zi11/n, as shown previously by the exponent
identity ~1.13!. The exponents related to longitudinal fluctua-
tions, not surprisingly, are identical to corresponding expo-
nents in the interface problem.8 However, we have also cal-
culated new exponents characterizing transverse fluctuations.
We see that even the simple Gaussian theory exhibits aniso-
tropic exponents.

At d5dc54 dimensions, the scaling dimension ofRi
changes sign and we cannot neglect its higher powers any-
more. Simple dimensional analysis indicates that the only
higher-order terms inS̃ which become marginal atd5dc
involve vertex functionsUag,n , given in Eq.~5.8!. This se-
ries can be summed up overn, together with then50 term
Cag included in the Gaussian theory, to yield

1

2E ddx dt dt8 R̂a~x,t !R̂g~x,t8!Cag„v~ t2t8!

1Ri~x,t !2Ri~x,t8!…. ~6.4!
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All higher-order terms inS̃ are formally irrelevant since they
involve additional powers ofR̂i , R̂' , or R' , whose scaling
exponents are less than zero.

For d,dc , the vertex functionsUag,n become more and
more relevant for increasingn under the rescaling~6.3!, and
the fixed point moves away from the Gaussian theory. In
d542e dimensions, we look for new fixed points with dif-
ferent scaling properties:

x→bx, t→bzit,

Ri→bz iRi , R'→bz'R' ,

R̂i→bu i2dR̂i , R̂'→bu'2dR̂' ,

F2FMF→b21/n~F2FMF!, v→b2b/nv. ~6.5!

To calculate the new exponents to first order ine, we employ
a one-loop momentum shell RG scheme, treating all non-
Gaussian terms in the action@i.e.,U in Eq. ~5.8!#, as a per-
turbation. Perturbative calculations proceed by expanding
^eU&0 , where^•••&0 denotes averaging with respect to the

Gaussian actionS̃0 , in powers ofU. A renormalization
transformation is then constructed as follows:~1! Perform
the averages only over short-wavelength fluctuations
R̂.,R. with wave numbersL/b,uqu,L, whereb5edl .
The resulting coarse-grained action is perturbatively given
by

S̃,5S̃0
,1^U&0

.1
1

2
^U2&0,c

. 1O~U3!. ~6.6!

~2! Apply the rescaling transformations given in~6.5!, bring-
ing back the short-distance cutoffL to its original value.~3!
The exponents are then determined from the fixed points
associated with the RG flows of the action. Since models A
and B are characterized by distinct fixed points, we shall
discuss them separately.

A. Model A

In the low-frequency, small-wave-vector limit, the effec-
tive action for model A is

S̃~A!52E dt ddx@F2FMF~v !#R̂i~x,t !

2E
q,v

$R̂i~2q,2v!Ri~q,v!~Kq22 ivA11!1R̂'~2q,2v!R'~q,v!~Kq22 ivA22/v !%

1
1

2E ddx dt dt8 R̂i~x,t !R̂i~x,t8!Ci„v~ t2t8!1Ri~x,t !2Ri~x,t8!…

1
1

2E ddx dt dt8 R̂'~x,t !R̂'~x,t8!C'„v~ t2t8!1Ri~x,t !2Ri~x,t8!…. ~6.7!

The Gaussian part has the correlation functions

^R̂i~2q,2v!Ri~q,v!&05
1

Kq22 ivA11
, ~6.8a!

^R̂'~2q,2v!R'~q,v!&05
1

Kq22 ivA22/v
, ~6.8b!

^Ri~2q,2v!Ri~q,v!&05
Ci~v!

K2q41~vA11!
2 , ~6.8c!

^R'~2q,2v!R'~q,v!&05
C'~v!

K2q41~vA22/v !2
.

~6.8d!

The vertex functionsUag,n50 for aÞg, and these terms are
not generated by the RG transformation. The renormalization
of remaining vertex functionsU i ,n , andU',n for n.0 can
be recast into a functional renormalization ofCi(vt) and
C'(vt), provided thatvt andRi scale in the same way, i.e.,
z i5zi2b/n. This relation can be independently obtained
from Eqs. ~3.5! and ~3.16!, derived in Sec. III from more

general~and nonperturbative! arguments. The renormalized
vertex functions are then obtained from successive deriva-
tives ofC(vt) as

Ua,n~u!5Ca
~n!~u!. ~6.9!

This ensures that the form of Eq.~6.7! is retained under
renormalization, albeit with renormalized parameters. Equa-
tions ~6.8c! and ~6.8d! suggest thatCa(vt) may be inter-
preted astemporalcorrelation functions of an effective force
generated by the quenched disorder.

The renormalization of some terms in Eq.~6.7! do not get
any contribution from the momentum shell averaging step,
giving rise to additional exponent relations that are correct to
all orders in thee expansion. The first relation is due to the
fact thatF never appears explicitly in any of the contractions
or higher-order vertex functions. Thus, the renormalization
of the term proportional toF2FMF can be written as

]~F2FMF!

]l
5~zi1u i!~F2FMF!1const, ~6.10!
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where ‘‘const’’ refers to an expression that does not involve
F. This RG flow equation can be rewritten as

]~F2Fc!

]l
5~zi1u i!~F2Fc!, ~6.11!

with a suitable choice ofFc . Hence, higher-order corrections
may shift the threshold force, but do not influence the scaling
of F2Fc . This implies that

zi1u i21/n50. ~6.12!

Furthermore, there are no contractions that contribute to the
renormalization ofK or A22. Thus,

u i1zi1z i2250, ~6.13!

u'1z'1b/n50, ~6.14!

respectively. As a result, all critical exponents are determined
in terms ofz i , z' , and zi . These exponents can be com-
puted by constructing RG flow equations for the remaining
parameters.

1. Renormalization of Ca

After performing the momentum shell integration and re-
scaling, details of which are given in Appendix B, we arrive
at the recursion relations for the renormalized functions
Ca(u):

]Ci~u!

]l
5@e12u i12~zi22!#Ci~u!1z iuCi8~u!

2Kd$@Ci8~u!#21@Ci~u!2Ci~0!#Ci9~u!%,

~6.15!

]C'~u!

]l
5@e12u'12~zi22!#C'~u!1z iuC'8 ~u!

2Kd$@Ci~u!2Ci~0!#C'9 ~u!%. ~6.16!

The constantKd[SdL
d24/@(2p)dK2#, whereSd is the total

solid angle ind dimensions. Primes denote derivatives with
respect tou. Terms proportional touCa8 (u) arise from the
rescaling ofu. We look for fixed-point solutionsCa* (u) that
decay to 0 whenuuu is large, since they are related to corre-
lation functions of the system, which are expected to vanish
for large time differences.

Not surprisingly, the functional recursion relation for
Ci(u) is identical to the one obtained in Ref. 8. In fact, all
higher-loop corrections are identical as well. This is in ex-
cellent harmony with the argument presented in Sec. III, and
allows us to use the results of NF. Setting]Ci* /]l 50, and
integrating Eq.~6.15! from u52` to `, we get

@e12u i12~zi22!2z i#E
2`

`

Ci* ~u!du50. ~6.17!

Provided that the RG flows go to a fixed-point solution with
*C*Þ0, this implies that z i5e22@22(zi1u i)#. The
mean-field correlation function satisfies this integral condi-
tion for both random-field and random-bond disorder, since
C is essentially insentitive to the value of the random poten-

tial between consecutive local minimaP, where the line
moves quickly. There are other fixed points with*C*50,
but they are irrelevant for our discussion. Thus, from Eqs.
~3.5! and ~6.12!, we obtain

z i5e/3, ~6.18!

n5
3

62e
. ~6.19!

NF prove that these results are correct toall orders in e, by
showing that the contributions to the renormalization of
Ci(u) from higher-order terms is a complete derivative with
respect tou. Upon integration overu, such higher-order
terms do not alter Eq.~6.17!, leaving the exponents un-
changed.

Usingz i5e/3, an implicit solution forCi* (u) is obtained
as

Ci* ~u!2Ci* ~0!2Ci* ~0!lnSCi* ~u!

Ci* ~0!
D 5

C* ~0!

2 S uu0D
2

,

whereu0[A3KdC*(0)/ e. Ci* (0) is arbitrary, and can be
changed by a rescaling of the fieldsRi . Expanding the loga-
rithm for smallu, we see that there is a kink at the origin, as

Ci* ~u!

Ci* ~0!
5F12

uuu
u0

1
1

3 S uu0D
2G1O~ uu/u0u3!. ~6.20!

For uuu@u0 , the fixed point solution behaves like a Gauss-
ian, and

Ci* ~u!'Ci* ~0!expF2
u2

2u0
2G .

We next examine the fixed-point solutionC'
* (u), which

is the new element of our computation. Setting]C'
* /]l 50

and looking at the limitu→01, we get @assuming that
C'
* (01)Þ0#

@e12u'12~zi22!#C'
* ~01!50. ~6.21!

Combined with Eqs.~3.5!, ~3.16!, and~6.14!, this result im-
plies

z'5z i2
d

2
5221

5e

6
. ~6.22!

In Appendix C, we show that this result is in fact correct to
all orders ine since there are no contributions toC'

* (01)
from momentum-shell integration. The fixed point solution
~for u.0! satisfies the equation

d

du
lnuC'

* 8~u!u5
u

u0
2 FCi* ~u!

Ci* ~0!
21G21

. ~6.23!

Upon integrating twice, Eq.~6.23! leads to
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C'
* ~u!52C'

* 8~01!E
u

`

du8

3expH 2
1

u0
2E

01

u8
du9

u9

12@Ci* ~u9!/Ci* ~0!# J ,
~6.24!

whereC'
* 8(01) is arbitrary in the same sense asCi* (0). For

uuu@u0 , Eq. ~6.23! gives

C'
* ~u!'C

u0
2

u
expF2

u2

2u0
2G , ~6.25!

whereC is a constant related toC'
* 8(01). The numerical

solutions for the fixed-point functionsCa* (u) are shown in
Fig. 4. The qualitative features ofCi* andC'

* are similar:
Both have a discontinuous derivative at the origin, and decay
as a Gaussian for large values ofuuu. However, note that
their scaling dimensions differ byz i .

The exponentz i5e/3 can also be obtained by naive di-
mensional arguments: In dimensionsd.4, the random force
can be expanded asf i(x,r i ,r')5 f i(x,0,0)1O(r i ,r').
Since both r i and r' have negative scaling dimensions
(z i ,z',0), the correction terms can be ignored. The ran-
dom force scales asb2d/2 under a scalingx→bx, leading to
the Gaussian roughness ofz i522d/2. A similar scaling ar-
gument applied to Eq.~3.1! leads toz'5z i2d/2522d. For
d,4, the scaling dimension ofr i is positive, and higher
powers ofr i in an expansion off i(x,r i ,r') are more rel-
evant. It is then reasonable to assume that in this case the
statistical properties off i at larger i are crucial. If uncorre-
lated at large separation,f i(x,r i,0) scales asb2(d1z i)/2.
When equated tobz i22 for the scaling of¹x

2r i , this leads to
z i5e/3 in agreement with the RG treatment. Essentially, the
statement regarding the nonrenormalization of*duCi(u)
justifies the above ‘‘naive’’ scaling. However, a similar rea-
soning from Eq. ~3.1! would have concluded
z'2z i52(d1z i)/2, in disagreement with Eq.~6.22!. In
this case,* du C'(u) is renormalized, butC'(0) is not,
suggesting that despite the presence of relevant higher-order
powers in the expansion off'(x,r i ,r') around r50, the
scaling properties are still controlled byf'(x,0,0). We have
no physical motivation for this rather curious conclusion.

2. Propagator renormalization

The only one remaining exponent iszi , which can be
obtained by examining the renormalization ofA11. One-loop
contributions arise from then52 term in ^U&0

. , which is

1

4E ddxE
2`

`

dtE
2`

`

dt8 R̂i~x,t !R̂i~x,t8!@Ri~x,t !

2Ri~x,t8!] 2Ci9„v~ t2t8!….

Replacing@Ri(x,t8)#
2 with @Ri(x,t)#

2 does not change the
integral. Thus, upon further manipulation, this term in the
action can be written as

E ddxE
2`

`

dtE
2`

t

dt8 R̂i~x,t !R̂i~x,t8!Ri~x,t !@Ri~x,t !

2Ri~x,t8!]Ci9„v~ t2t8!….

Since a contraction forcest andt8 to be withinO(1) of each
other, and we are only interested in the first time derivative,
we can substitute Ri(x,t)2Ri(x,t8)'(t2t8)] tRi(x,t).
Now, contractingR̂i(x,t8) with Ri(x,t) and integrating over
the momentum shell, we obtain a contribution toA11 equal to

2dl
SdL

d

~2p!dA11
E
0

`

dt̃ t̃e2KL2t̃/A11Ci9~v t̃ !. ~6.26!

The minus sign comes from the opposite overall signs of
m51 andm52 terms in Eq.~6.7!. Forv→0, we can set the
argument ofCi9 to zero. However, this causes a problem:
Ci9 has a term proportional tod(vt) in the low-frequency
analysis; this term diverges as 1/v for vt→0. This apparent
divergence cannot be avoided within the low-frequency
analysis we have used so far. The propagator is sensitive to
high-frequency behavior of the vertex functions. Careful
analysis of the high-frequency structure ofCi9 shows that the
terms that contribute to the diverging part ofCi9(0) do not
enter the renormalization of the propagator.~See Appendix
D.! This is essentially due to the causal nature of the re-
sponse: Perturbations right after a jump do not influence the
motion before the jump. The correct way to avoid these di-
vergent terms within the low-frequency analysis is to
use Ci9(0

1) instead ofCi9(0). Near the fixed point, this
can be calculated toO(e) from Eq. ~6.20! as

Ci*
9(01)52e/(9Kd), resulting in

A11
, 5A112dl A11KdCi*

9~01!5A11@12dl ~2e/9!#.

Finally, after performing the rescaling, we obtain the recur-
sion relation

]A11

]l
5A11@u i1z i22e/9#, ~6.27!

which yields

zi5222e/91O~e2!. ~6.28!

FIG. 4. Fixed-point functionsCi* (u) ~solid line! and C'
* (u)

~dotted line!, normalized to yield 1 at the origin. Their values for
u,0 ~not shown! are found fromCa* (u)5Ca* (2u).
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B. Model B

The presence of off-diagonal terms in the action changes
the critical scaling properties of model B. The nonzero con-
tractions that appear in the momentum-shell integration in
this case are~cf. Appendix A!

^R̂i~2q,2v!Ri~q,v!&05
1

K iq
22 ivr i

, ~6.29a!

^R̂'~2q,2v!Ri~q,v!&05
k

K iq
22 ivr i

, ~6.29b!

^Ri~2q,2v!Ri~q,v!&05
C̃~v!

K i
2q41v2r i

2 , ~6.29c!

where

k[A12/A22,

K i[K111kK21,

r i[A111kA21,

C̃~v![Ci~v!1k Re@C3~v!#1k2C'~v!.

In addition to the nonrenormalization relations~6.12!–
~6.14!, the nonrenormalization ofK21 or A12 dictates that

u i5u' . ~6.30!

This immediately implies the exponent identity

z'5z i21/n. ~6.31!

The naive scaling argument based on Eq.~3.1! gives an
equivalent result when the scaling dimension of]r' /]r i
(z'2z i) is equated to the scaling dimension off'(x,r i ,0)
@2(d1z i)/2#. The naive argument works this time, since
*du C'(u) remains finite at the fixed point~see below!.

Under this rescaling,k and K i remain unrenormalized,
and the renormalizations ofr i andC̃ determine the remain-
ing exponentsz i and zi . The recursion relations of vertex
functionsCa are more complicated, but there is a relatively
simple fixed-point solution with

C̃* ~u!54Ci* ~u!52kC3* ~u!54k2C'
* ~u!. ~6.32!

Furthermore,C̃(u) satisfies a recursion relation identical to
that of Ci(u) given in Eq. ~6.15!. This result once more
shows that longitudinal fluctuations, whose correlations are
given by Eq.~6.29c!, are not altered by the introduction of
transverse fluctuations even in the more general case of
model B.

The renormalization ofr i also gives results very similar
to that of model A, with the substitutionsCi9→C̃9 and
A11→r i . Thus, the RG analysis gives the same exponents
z i5e/3 andzi5222e/91O(e2). Further details appear in
Appendix E.

If the Hall anglef is sufficiently small, the FL cannot
distinguish between zero and nonzero angles. Therefore, the
effective roughness and dynamic exponents at small length
and time scales should be given by the model A fixed point.
Note thatk5tanf in an isotropic system with nonzero Hall

angle@cf. Eq. ~3.21!#, andk is in general strongly related to
the macroscopic Hall angle. Thus,k!1 when the system is
almost model-A-like, and its nonrenormalization determines
the crossover behavior to the model B fixed point: Under
renormalization with model A exponents, the system remains
near the model A fixed point until the ratioC' /Ci increases
to O(k22), as the model B fixed point is approached. Iso-
tropic effective exponents appear in this crossover regime.
The length scalej3 at which the behavior crosses over to the
model B is roughly given by

f'j
3

z'2z i

~with model A exponents forza); i.e., the anisotropy is no-
ticeable when the angular spread in the direction of a typical
avalanche is of the order off. Thus, for the FL,

j3;f22,

which diverges asf→0. Whenj,j3 , the anisotropic fixed
point is never approached. Thus, the true critical region can
be very small and difficult to observe for small Hall angle.

VII. NUMERICAL WORK

In this section, we present and discuss the results obtained
by numerically integrating Eqs.~1.2!, providing a test of the
analytical results presented so far. There are several difficul-
ties associated with numerically studying critical behavior in
a finite system slightly above threshold. In order to obtain
meaningful statistical averages one must wait for the system
to reach a stationary state. However, for any reasonably
broad distribution of pinning forces, the system always gets
pinned after a time;e(F2Fc)

nL, whereL is the linear exten-
sion. Therefore, in order to probe the critical region, it is
necessary to go to very large system sizes.

The necessity of integrating big systems, and the large
computational cost of implementing quenched disorder,
forced us to restrict numerical simulations tod51, in any
case the most physically relevant dimensionality. We were
further motivated by the expectation that some exponents
were calculated to all orders ine, and thus could be checked
even ate53.

Integrations were carried out as follows: Coordinatesx
andt were discretized, but the positionr was left continuous.
For eachx, the value of the random potential at pointr was
determined from a superposition of attractive impurity poten-
tials

Ui~r 8!5
1

2
si~r 8

22r 0
2!Q~r 02r 8!,

whereQ is the step function andr 8 is the distance from the
center of the impurity. The impurity centers were randomly
placed with a densityw; their strengthssi were randomly
drawn from a uniform distribution@0,smax). The ranger 0 , of
the impurity potential was kept constant. This construction
creates a random scalloped potential landscape, eliminating
any additional crossover effects that could arise from a
smooth potential.

Unless noted otherwise, all presented results were ob-
tained using a grid sizeDx51, and a time stepDt50.02, in
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order to optimize computational constraints.~Smaller values
of Dx or Dt did not lead to significant improvements.! Free
boundary conditions were preferred over periodic ones since
scaling was observed over a larger range of length scales in
the former case. Other simulation parameters wereK51,
w51, r 051, smax52. We expected a threshold force close to
1 for these parameters. A summary of our findings is pre-
sented below.

The velocity exponentb can be extracted from a plot of
velocity versus external force. Such a plot is given in Fig. 5
for a system of sizeL52048. Each data point was obtained
by a time average over 105 time units and took about 30 h of
CPU time on a Silicon Graphics R4000 workstation. The
best power-law fit gives an exponentb'0.31, but a weaker
logarithmic dependence, which corresponds tob50, seems
to provide a better fit to the data. The conclusion is that
higher-order terms inv give very large corrections to the
scaling ofv, since eitherb is very small or exactly zero.
b50 would imply thatzi51, a possibility discussed by NF
for interfaces in 111 dimensions.8 The threshold forceFc is
between 0.93 and 0.94.

The roughness exponentsz i ,z' are extracted from equal-
time correlation functions

^@r a~x,t !2r a~x8,t !#2&;ux2x8u2za.

Results for a system of size 2048, at a driving force of 0.95
@(F2Fc)/Fc'1022#, are shown in Fig. 6. The averages
were taken over a time interval of 105, after waiting for all
correlations to reach steady state. The results are in overall
agreement with the predicted values of the exponents, even
at e53. The slightly smaller value ofz i is expected, since
determination of the roughness exponent from equal-time
correlations becomes unreliable as the exponent approaches
unity, and is inappropriate if it exceeds 1.27 The deviations of
transverse correlations from the scaling form are likely to be
due to crossover effects: The analysis of transverse fluctua-
tions in the critical region is correct only whenv/F!1, be-
cause then the static part of the transverse propagator can be
neglected. However, in our simulationsv/F'0.4, suggesting

that the critical region is much smaller for transverse fluc-
tuations compared to longitudinal ones.

In order to obtain an independent estimate of the dynami-
cal exponentzi , we also examined fluctuations in the spa-
tially averaged velocity as a function of time. The resulting
measurements were related to the previously defined expo-
nents by the following argument:28 Slightly above threshold,
the motion of the line can be thought as a superposition of
avalanches of various sizesl , with an average lifetimel zi

and momentl d1z i. Such avalanches occur if a portion of the
line finds a region of sizel d1z i with weak impurities. Thus,
ignoring all power-law prefactors, the probability of such an
avalanche forl@j is

P~ l !;exp$2~ l /j!d1z i%.

Velocities at two separate times are correlated if there is an
avalanche that is active at both times. Therefore, it is reason-
able to assume that at large times, the contribution of an
avalanche of sizel to ^v(t)v(0)&c is proportional toe

2t/ l zi,
once again neglecting power-law prefactors that depend, for
example, on the typical number of active sites at a given time
during the avalanche. The total contribution of all avalanches
is given by an integral over all sizesl with the probability
measureP( l )dl. The leading-order time dependence of the
exponent can be determined by a saddle-point evaluation of
the integral, resulting in

Cv~ t !5
^v~ t !v~0!&c

^v2&c
;e2~ t/t!g

,

whereg5(d1z i)/(zi1d1z i), suggesting a stretched expo-
nential. The numerical results and the fit to a stretched expo-
nential are shown in Fig. 7.~It should be noted that a com-
parable fit can also be achieved by a sum of two
exponentials.! Assuming thatz i51, we arrive atz'1.3,
which is consistent with the value ofb'0.31 found from the
velocity-force relation. Unfortunately, the data become noisy
at larger values oft, due to the finite size of the time window
used to extract the correlation function. The small value of
t('10) makes it hard to predict the reliability of this esti-
mate, since the power-law prefactors may be large and non-

FIG. 5. A plot of average velocity versus external force for a
system of size 2048. Statistical errors are smaller than symbol sizes.
Both fits have three adjustable parameters: the threshold force, the
exponent, and an overall multiplicative constant.

FIG. 6. A plot of equal-time correlation functions versus sepa-
ration, for a system of size 2048 atF50.95. The observed rough-
ness exponents are close to the theoretical predictions of
z i51, z'50.5, which are shown as solid lines for comparison.
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negligible for such moderate values oft. Unfortunately, im-
proving on this simple estimate is difficult as the
determination of power-law prefactors requires a number of
additional assumptions that are hard to test. Nevertheless,
based on the accumulated numerical evidence it can be rea-
sonably argued thatzi is between 1 and 4/3, theO(e) RG
prediction.

Computed longitudinal exponents are also in good agree-
ment with results from 111 dimensional interface depinning
models. Numerical integration of Eq.~2.10a! for an elastic
interface29 ~no transverse component! has yielded critical ex-
ponents z50.9760.05 and n51.0560.1. Similarly, the
force vs velocity data have been adequately described by
both a velocity exponentb50.2460.1 and a logarithmic
dependencev;1/ln(F2Fc), which corresponds tob50.
These results provide strong support for our prediction that
longitudinal exponents are unchanged when transverse fluc-
tuations are introduced. However, it should also be noted that
experiments and various discrete models of interface growth
have resulted in scaling behaviors that differ from system to
system. A number of different experiments on fluid invasion
in porous media30 gives roughness exponents of around 0.8,
while imbibition experiments31,32 have resulted inz'0.6.
Some of these results can be explained by the effect of an-
isotropy, which will be discussed in the next section. On the
other hand, a discrete model studied by Leschhorn33 gives a
roughness exponent of 1.25 at threshold. Since the expansion
leading to Eqs.~1.2! breaks down whenz approaches 1, it is
not clear how to reconcile the results of Leschhhorn’s nu-
merical work33 with the coarse-grained description of the RG
calculation, especially since any model withz.1 cannot
have a coarse-grained description based on gradient expan-
sions.

VIII. DISCUSSION AND CONCLUSIONS

In order to put the results we have found so far in better
perspective, it is useful to discuss the effect of nonlinear
terms that were ignored earlier, aspects of universality, and
possible generalizations to other systems. These issues are
discussed below.

A. Nonlinear terms

The leading-order nonlinearities in Eq.~2.6! can be exam-
ined by a gradient expansion, being careful to treat terms of
O„(]xr )

2,(]xr )
2] tr … accurately. After some rearrangement,

we arrive at

h] tr i

A11si
2

5K11]x
2r i1K12]x

2r'1
l1i

2
si
21

l1'

2
s'
21l13sis'

1F1 f̃ i~x,r ,si ,s'!, ~8.1a!

h] tr'

A11s'
2

5K21]x
2r i1K22]x

2r'1
l2i

2
si
21

l2'

2
s'
21l23sis'

1 f̃'~x,r ,si ,s'!, ~8.1b!

wheresi[]xr i ,s'[]xr' , and the random forces are

f̃ i5
~ f i2si f x!

A11si
2

cosf

1
sis' f i2@11si

2/22s'
2 /2# f'1s' f x

A11si
2

sinf,

f̃'5
~ f'2s' f x!

A11s'
2

cosf

1
@12si

2/21s'
2 /2# f i2sis' f'2si f x

A11s'
2

sinf.

The remaining parameters are given by

F5F0J,

l1i52F sin2f,

l1'52F cos2f,

l1352F sin2f,

l2i5F sinf cosf,

l2'52F sinf cosf,

l235F cos2f.

These equations of motion, and their generalizations tox
PRd, have thus been complicated by two factors: There are
orientation-dependent terms, and the mean square of the ran-
dom forcesD̃a[^ f̃ a

2& also depends on the local orientation of
the FL. By naive dimensional counting, it can be immedi-
ately seen thatl1i andl2i are relevant with respect to the
fixed points we have discussed ford,4. In the case of model
A ~isotropic disorder withf50), Eq.~8.1! further simplifies
to

h] tr i

A11si
2

5K]x
2r i2

F

2
s'
21F1

f i2 f xsi

A11si
2
, ~8.2a!

FIG. 7. Velocity correlations versus time, for the same system in
Fig. 6. A stretched exponential is a good fit to the data.
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h] tr'

A11s'
2

5K]x
2r'1Fsis'1

f'2 f xs'

A11s'
2
. ~8.2b!

Note that the two relevant nonlinearities vanish, and that
D̃a does not depend on orientation up to and including
O(s2). Dimensional counting suggests that the remaining
nonlinear terms are irrelevant and model A exponents are
valid for d.1. Many more nonlinear terms become marginal
at d51, and the gradient expansion breaks down. It is un-
likely for the critical exponents to change their value discon-
tinuously atd51, although logarithmic corrections to scaling
exponents are quite possible.

The fixed point investigated here is unstable and only ap-
proached at the depinning force. Away from the threshold,
critical scaling laws are observed at scales smaller than the
correlation length scalej. Beyond this critical regime, the
behavior of Eq.~8.1! is similar to regular diffusion with
white noise @a multicomponent Edwards-Wilkinson~EW!
equation34, or the generalized KPZ equation14,15,35#. A non-
zerol1i of O(v) is generated kinetically in this regime even
if the system is initially isotropic withf50, due to the terms
on the left-hand side of Eq.~8.1a!. For d<2, this nonlinear-
ity is relevant, while ford.2, a critical valuelc separates a
weak-coupling region described by the EW equation from a
strong-coupling region described by the~generalized! KPZ
equation.14,15,35

When fÞ0, even in a fully isotropic medium, the rel-
evant nonlinearities are nonzero, and the system is driven
away from the ‘‘linear’’ fixed points. We discuss this and
other possibilities next.

B. Anisotropy and universality

We noted earlier that anisotropy plays an important role in
determining scaling properties near depinning, even in the
absence of nonlinear terms. To fully understand the effects of
anisotropy,including nonlinear terms, let us start by consid-
ering the simplest prototype of a FL oriented along thec axis
of a high-Tc superconducting single crystal, such as Y-Ba-
Cu-O. For simplicity, assume that the system is completely
isotropic in they-z plane, withf50. Then, the motion of
the FL is governed by Eqs.~8.2!, and the only important
source of anisotropy is due to^ f i

2&5^ f'
2 &Þ^ f x

2&. This causes
the mean-square magnitude off̃ i to depend on the local ori-
entation as

D̃i'^ f i
2&1~^ f x

2&2^ f i
2&!si

2 .

For interfaces, the depinning force is known to scale with the
strength of the disorder,6,7 i.e., F̃c;D2/(42d). Thus, D̃i cre-
ates an orientation-dependent depinning force,21

Fc~si!;D̃i
2/~42d!;FcS 11

2

42d

^ f x
2&2^ f i

2&

^ f i
2&

si
2D . ~8.3!

This leads to a nonzerol1i when the nonlinear corrections in
Eq. ~8.2! are taken into account. For interfaces, the depinning
transition with a nonzerol1i is thought to be equivalent to
directed percolation depinning.21 Assuming that transverse
fluctuations still do not affect longitudinal ones, ford51 the
critical exponentsz i and n are related to the correlation
length exponentsn i

(DP) and n'
(DP) of directed percolation

through n5n i
(DP)'1.73 and z i5n'

(DP)/n i
(DP)'0.63, while

the dynamical exponent iszi51. This in turn gives
b5(zi2z i)n5n'

(DP)2n i
(DP)'0.64.

Using the connection to interface depinning further, we
next consider tilting the FL away from the symmetry axisc.
In this case,̂ f xf i& and ^ f xf'& are nonzero, andFc depends
linearly on si , leading to terms proportional to]xr i in the
equation of motion. These further suppress the roughness
exponent toz i51/2.21 The analysis of transverse fluctuations
for these two situations and many other possible ones is
complicated by the absence of a suitable perturbative treat-
ment. Different types of anisotropy may lead to distinct
transverse exponents even while the longitudinal ones re-
main identical.~Similar to the difference between models A
and B, although the latter is unstable to the inclusion of
nonlinear terms.! To systematically search for universality
classes, we may start with the most general equation of mo-
tion, which has the gradient expansion

] tr a5mabFb1kab]xr b1Kab]x
2r b 1

1

2
la,bg]xr b]xr g

1 f̃ a~x,r ,]xr ,••• !1•••, ~8.4!

and with force-force correlations that depend on]xr . De-
pending on the presence or absence of various terms allowed
by symmetries, these equations encompass many distinct
universality classes. The cases that were discussed so far are
summarized in Table I.

TABLE I. Critical exponents corresponding to some of the universality classes associated with vector
depinning. Entries in the first two rows are from Ref. 21: Transverse exponents are not known and these cases
may correspond to more than one universality class identified by distinctz' ,z' .

Situation z i n z b z' z'

Anisotropic medium, kabÞ0 0.5 2 1 1 ? ?
generic direction
Anisotropic, FL kab50 0.63 1.73 1 0.64 ? ?
along symmetry axis l1iÞ0
FL along symmetry kab50 1 1 1.3 0.3 0 2.3
axis, linear terms fÞ0
only ~model B!
Isotropic medium, kab50 1 1 1.3 0.3 0.5 2.3
f50 ~model A! l1i50
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C. Generalizations

In many systems, the dynamics involves a wide range of
relaxation times. It is sometimes possible to average over
‘‘fast’’ degrees of freedom to obtain an effective equation of
motion for ‘‘slow’’ variables. For example, the motion of
atoms in a metal can be described by an effective theory that
involves only positions of the ions, assuming that the elec-
tronic wave function always adjusts to the instantaneous
ionic coordinates. Similarly, the critical dynamics of a slowly
moving solid-liquid-vapor contact line can be described by
assuming that the liquid-vapor interface instantaneously
finds the minimum energy surface dictated by the position of
the contact line.36 The elimination of these additional degrees
of freedom may cause effective nonlocal interactions be-
tween the remaining modes, which in turn acquire a different
dispersion law.

For example, in contact line dynamics, the elastic energy
associated with a mode of wave vectorq is proportional to
uqu instead ofq2. In general, one may consider a situation
where the elastic energy is proportional touqus for some
value ofs. The scaling analysis can be easily generalized to
such cases; the most important change is the modification of
the upper critical dimension todc52s. The exponents can
be easily calculated for generals, as was done by us for the
critical dynamics of a contact line37 (s51).

The possibility of experimental verification of our results
lies in the ability to accurately measure the motion of indi-
vidual FL’s and the noise spectra~for both normal and Hall

voltages! generated by FL motion. Very recently, there have
been successful experiments that detected the thermal motion
of individual FL’s at nominally zero magnetic field and bulk
current using superconducting quantum interference device
~SQUID! probes, and analyzed the noise correlation between
the two ends of the FL.38 A refinement of such techniques
may eventually enable a direct comparison of theoretical re-
sults with experiments. For example, it is known that the
Hall angle changes sign as a function of temperature in cer-
tain superconductors.39 It would be particularly interesting to
observe the increase in transverse roughness~thus the Hall
voltage noise! as the Hall angle approaches zero. Ultimately,
it is very desirable to understand the properties of many FL’s
~solid or glass! near depinning, especially since this situation
has much more experimental and technological relevance.
One should then start from a coarse-grained theory for the
displacementsu(x,t) of the FL’s with respect to their equi-
librium positions in the Abrikosov lattice and hope to estab-
lish a similar RG scheme. However, there are certainly addi-
tional complications, such as entanglement40 and plasticity41

effects, which are difficult to incorporate in such an ap-
proach.
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APPENDIX A: THE GAUSSIAN THEORY

In this appendix, we compute all nonzero expectation values for the Gaussian theory, described by the effective action
S̃0 in Eq. ~6.1!. This is accomplished by inverting the quadratic form: as

F ^R̂~q,v!R̂T~2q,2v!&c ^R̂~q,v!RT~2q,2v!&c

^R~q,v!R̂T~2q,2v!&c ^R~q,v!RT~2q,2v!&c
G5F 2C~v! G21~q,v!

G†21~q,v! 0 G 21

5F 0 G†~q,v!

G~q,v! G~q,v!C~v!G†~q,v!G .
For the case of model A, the individual matrices are diagonal and the correlation functions can be calculated easily, as given

in Eqs.~6.8!. For the more general case of model B, let us first consider thev→0 limit. SinceR' occurs in the combination
R' /v, expectation valueŝR̂aR'& and ^RaR'& contribute at mostO(v) at the momentum-shell integration step. Thus, the
contractions that are important for the momentum-shell integration are^R̂iRi& and ^RiRi&. Settingv50 and inverting the
matrix yields

G~q,v!5FK11q
22 ivA11 1 ivA12

K21q
22 ivA21 2 ivA22

G21

5
1

K iq
22 ivr i

F 1 k

••• •••

G , ~A1!

GCG†~q,v!5
1

K i
2q41v2r i

2 F C̃~v! •••

••• •••

G , ~A2!

which leads to Eqs.~6.29!. To determine the full form of the correlation functions in a renormalized Gaussian theory, we need
to perform a full matrix inversion. In the smallv limit we obtain
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^uRi~q,v!u2&5
1

udetG21u2 $A22
2 v2C̃~v!2vq2v~K12A221K22A12!Im@C3~v!#

1v2q4@K22
2 Ci~v!2K22K12ReC3~v!1K12

2 C'~v!#%,

where

udetG21u2'@K i
2q41r i

2v2#@v2q4~@K11K222K21K12#/K i!
21A22

2 v2#.

Similarly,

^uR'~q,v!u2&5
v2

udetG21u2 $~K21
2 Ci~v!2K21K11Re@C3~v!#1K11

2 C'~v!!q42vq2~K11A212K21A11!Im@C3~v!#

1v2
„A21

2 Ci~v!2A21A11Re@C3~v!#1A11
2 C'~v!…%.

At the fixed point found for model B, Eqs.~6.32! are satisfied, and the correlation functions simplify to

^uRi~q,v!u2&5
C̃~v!

K i
2q41r i

2v2F iS K'q
2

~v/v !r'
D , ~A3!

^uR'~q,v!u2&5
C̃~v!

4@K'
2q41r'

2 ~v/v !2#
F 'SK iq

2

vr i
D , ~A4!

where

K'5UK11K222K21K12

K112kK21
U, r'5UK111kK21

K112kK21
UA22,

F i~x!5F11x2S ~K222K12/k!K i

2~K11K222K21K12!
D 2G Y@11x2#5H 1, x!1

const, x@1,

F '~x!5F11
1

x2 SK111kK21

K112kK21

A112kA21

A111kA21
D 2G YF11

1

x2G5H const, x!1,

1, x@1.

The functionsF a describe crossovers of the overall amplitudes of the correlations, due to the coupling between longitudinal
and transverse modes.

APPENDIX B: VERTEX RENORMALIZATION

In this appendix, we derive recursion relations for the renormalized vertex functionsUa,n(u)[Ca
(n)(u). Let us start by

consideringUa,n(u) for a given n. As usual, we split the fieldsR5R,1R. and R̂5R̂,1R̂., where fields with the
superscript ‘‘. ’’ correspond to fluctuations within the momentum shellLe2dl ,q,L, which are averaged over. In evaluating
^eU&0

. , we encounter two types of nonzero contractions,

^R̂i
.~q,t !Ri

.~2q,t8!&5
1

A11
expF2

Kq2~ t82t !

A11
GQ~ t82t !'

1

KL2 d~ t2t8!,

^Ri
.~q,t !Ri

.~2q,t8!&'
1

K2L4Ua,0„v~ t2t8!…,

within the momentum shellLe2dl ,q,L, and for time scalest2t8;O(1/v). ~From now on, we suppress the subscript 0 for
notational simplicity.! Contributions to the renormalization ofUa,n come from botĥU&. and ^U2&c

. as

^U&.5(
a

1

2!~n12!! E ddx dt1 dt2 Ua,n12~122!^R̂a~1!R̂a~2!@Ri~1!2Ri~2!#n12&.1•••

5(
a

1

2!~n12!! S n12
2 D E ddx dt1 dt2 Ua,n12~122!R̂a

,~1!R̂a
,~2!@Ri

,~1!2Ri
,~2!#n^@Ri

.~1!2Ri
.~2!#2&1•••,

with obvious abbreviations for the arguments ofU,R,R̂. Evaluating the expectation values, we get
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^@Ri
.~1!2Ri

.~2!#2&5E. ddq

~2p!d
$^Ri

.~q,t1!Ri
.~2q,t1!&1^Ri

.~q,t2!Ri
.~2q,t2!&22^Ri

.~q,t1!Ri
.~2q,t2!&%

52dl
LdSd

~2p!dK2L4 @U i ,0~0!2U i ,0„v~ t12t2!…#, ~B1!

where*. denotes integration over the momentum shell andSd is the surface area of a unit sphere ind dimensions. Thus, the
correction toUa,n

, (u) from ^U&. is equal to

dl KdUa,n12~u!@U i ,0~0!2U i ,0~u!#,

whereKd[Ld24Sd /@(2p)dK2#. The contributions from̂U2&c
. are similarly calculated as

^U2&c
.5(

a,g
(
m51

n11
1

2!m!2! ~n122m!! E ddx dt1 dt2E ddx8 dt18 dt28Ua,m~122!Ug,n122m~18228!

3^R̂a~1!R̂a~2!R̂g~18!R̂g~28!@Ri~1!2Ri~2!#m@Ri~18!2Ri~28!#n122m&.1•••

5 (
m51

n11
1

2!~m21!!2! ~n112m!! E ddx dt1 dt2E ddx8 dt18 dt28 U i ,m~122!U i ,n122m~18228!@Ri
,~1!

2Ri
,~2!#m21@Ri

,~18!2Ri
,~28!#n112m^R̂i~1!R̂i~2!R̂i~18!R̂i~28!@Ri

.~1!2Ri
.~2!#@Ri

.~18!2Ri
.~28!#&.

12(
a

(
m51

n
1

2!m!2! ~n122m!! S n122m
2 D E ddx dt1 dt2E ddx8 dt18 dt28 Ua,m~122!U i ,n122m~18228!

3R̂a
,~18!R̂a

,~28!@Ri
,~1!2Ri

,~2!#m@Ri
,~18!2Ri

,~28!#n2m^R̂i
.~1!R̂i

.~2!@Ri
.~18!2Ri

.~28!#2&1•••. ~B2!

The evaluations of the expectation values are tedious but straightforward. As an example, let us evaluate the second half of
Eq. ~B2! explicitly. First of all,

^R̂i
.~1!R̂i

.~2!@Ri
.~18!2Ri

.~28!#2&5^R̂i
.~1!Ri

.~18!&^R̂i
.~2!Ri

.~18!&1^R̂i
.~1!Ri

.~28!&^R̂i
.~2!Ri

.~28!&

22^R̂i
.~1!Ri

.~18!&^R̂i
.~2!Ri

.~28!&22^R̂i
.~1!Ri

.~28!&^R̂i
.~2!Ri

.~28!&.

The first two terms do not contribute toUa,n
, (u), since they are proportional tod(t12t18)d(t22t18) andd(t12t28)d(t22t28),

respectively.@Thesed functions forcet1 to be equal tot2 . Since the expectation value is multiplied by@Ri
,(1)2Ri

,(2)#m, the
final contribution is zero.# The last two terms are equal to

22E. ddq

~2p!d
E. ddq8

~2p!d
@d~ t12t18!d~ t22t28!1d~ t12t28!d~ t22t18!#

exp$ i ~q1q8!•~x2x8!%

~Kq2!~Kq82!
.

Integrating overt18 , t28 , x8 @which yieldsdd(q1q8)# and subsequently overq8, the second half of Eq.~B2! becomes

2(
a

(
m51

n
1

2!n! S nmD E ddxdt1dt2R̂a
,~1!R̂a

,~2!@Ri
,~1!2Ri

,~2!#nE. ddq

~2p!d
1

K2q4
$Ua,m~122!U i ,n122m~122!

1~21!n2mUa,m~122!U i ,n122m~221!%.

The first half of Eq.~B2! can be evaluated similarly. The full contribution toUa,n
, (u) from ^U2&c

. is thus equal to

2dl KdH da,i (
m51

n11 S n
m21D ~21!n122mU i ,m~u!U i ,n122m~2u!1 (

m51

n S nmD 12 @Ua,m~u!U i ,n122m~u!

1~21!n122mUa,m~u!U i ,n122m~2u!] %.

~In the expansion of̂eU&c
. , there is a factor of 1/2 in front of̂U2&c

. .) Adding all contributions, the effective vertex function
U i ,n

, (u) is found to be

U i ,n
, ~u!5U i ,n~u!1dl KdHU i ,n12~u!U i ,0~0!2 (

m50

n11 S n11
m DU i ,m~u!U i ,n122m~u!J , ~B3!

provided that

Ua,m~u!5~21!mUa,m~2u!. ~B4!
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Under the scale transformation~6.5!, which brings the momentum cutoff to its original value, we see that
u→(11z idl )u. Thus, the renormalized vertex function is given by

Ũ i ,n~u![U i ,n~u!1dl
]U i ,n~u!

]l
5U i ,n

,
„~11z idl !u…$11dl @d12zi12~u i2d!1nz i#%. ~B5!

Keeping only terms linear indl , and identifyingU i ,n(u) with thenth derivative ofCi(u), we finally obtain the differential
recursion relation forCi(u):

]Ci~u!

]l
5@e12u i12~zi22!#Ci~u!1z iuCi8~u!2Kd$@Ci8~u!#21@Ci~u!2Ci~0!#Ci9~u!%. ~B6!

Note that the identification ofU i ,n(u) with the nth derivative ofCi(u) is self-consistent, since recursion relations for
U i ,n(u) are correctly recovered by takingn derivatives of Eq.~B6!. Also, Eq. ~B4! is automatically satisfied when this
identification is made sinceCi(u)5Ci(2u).

A similar computation can be performed forC'(u), yielding

U',n
, ~u!5U',n~u!1dl KdHU',n12~u!U i ,0~0!2 (

m50

n S nmDU',n122m~u!U i ,m~u!J . ~B7!

Upon rescaling, the renormalized vertex function is

Ũ',n~u![U',n~u!1dl
]U',0~u!

]l
5U',n

,
„~11z idl !u…$11dl @d12zi12~u'2d!1nz i#%. ~B8!

Thus, we obtain the recursion relation

]C'~u!

]l
5@e12u'12~zi22!#C'~u!1z iuC'8 ~u!2Kd$@Ci~u!2Ci~0!#C'9 ~u!%. ~B9!

APPENDIX C: HIGHER-ORDER DIAGRAMS

In this appendix, we show that the sum of all contributions to the renormalization ofC'(u) from the momentum-shell
integration step vanishes in the limitu→01. This was already explicitly demonstrated for the leading-order contributions that
come from^U&c and^U2&c . Since the only nonzero contractions involveRi andR̂i , all contributions to the renormalization
of C'„v(t2t8)… due to^Um&c arise from terms of the form

^Um&c5 (
n52

` E ddx dt dt8
U',n„v~ t2t8!…

2!n!
R̂'

,~ t !R̂'
,~ t8!E F )

i51

m21

ddxi dti dti8
U i ,ni

„v~ t i2t i8!…

2!ni !
G

3K @Ri
.~x,t !2Ri

.~x,t8!#n)
i51

m21

R̂i
.~xi ,t i !R̂i

.~xi ,t i8!@Ri
.~xi ,t i !2Ri

.~xi ,t i8!#niL
c

1•••.

The expectation value clearly goes to zero as (t2t8)n in
the t→t81 limit. This gives us the desired result that
C'(0) is unrenormalized to all orders in perturbation theory.

APPENDIX D: HIGH-FREQUENCY STRUCTURE OF U i ,2

In this appendix, we shall demonstrate that there are no
v21 divergences in the renormalization ofA11, at least to
O(e). In order to do this, we examine the full form of the
bare vertex functionU i ,2 obtained from MF theory,

U i ,2~ t1 ,t2 ;t18 ,t28!5
]2^ r̄ i~ t1! r̄ i~ t2!&MF,c

]« i~ t18!]« i~ t28!
.

The low-frequency analysis of this vertex function gives a
result proportional to 1/v when all times are withinO(1) of
each other. This may potentially give anO(1/v) contribution

to the renormalization ofA11. Indeed, an external impulse of
magnitude« right before a ‘‘jump’’~the fast motion between
consequent local minima! shifts the jump time by«/h and
creates a response ofO(1/v) right after the jump takes place.
However, an impulse right after a jump does not affect the
jump time and creates a response of onlyO(1). Thus a sin-
gular response is seen if all times are in the vicinity of a
jump, say, at timetJ . U i ,2(t1 ,t2 ;t18 ,t28) can be as large as
O(v22) if t18 andt28 are both slightly less thantJ , andt1 and
t2 are both slightly greater thantJ . Considering that the
probability of being close to a jump isv, this term can po-
tentially contribute as much asO(v21) to the renormaliza-
tion of A11 upon statistical time averaging. A careful analysis
and explicit evaluation of this vertex in the case of a periodic
potential42 show that this is the only way a singularity may
occur in the RG contributions. However, when the times
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t18 ,t28 of fields Ri are smaller than the timest1 ,t2 of fields
R̂i , the contraction̂ R̂i(t i)Ri(t j8)&0 which appears in the RG
contribution is identically zero due to the causality of the

propagator. Therefore, the singular part ofCi*
9(0) does not

enter the renormalization ofA11 ~or r i in the case of model
B! to one-loop order.

APPENDIX E: RENORMALIZATION OF MODEL B

Details of the RG calculation for model B are presented in
this appendix. For the sake of brevity, we shall only consider
the renormalization of the parameters in the Gaussian theory,
i.e., the propagator, and the two-point correlation functions
U i ,0(u), U',0(u), U3,0(u). The renormalization of higher-
order vertex functions is again related to derivatives ofCa

throughUa,n(u)[Ca
(n)(u).

Nonzero contractions involved in the calculation are
given in Eqs.~6.29!. The parametersA12,A22 ~thusk), and
Kag ~thusK i ,K' , andr') do not get contributions from the
momentum-shell integration, and give rise to exponent iden-
tities discussed in the text. On the other hand,A11 andA21
~thusr i), as well as the functionsCa(u), are renormalized.
Let us start by looking at the renormalization of two-
point correlation functions Ca(u). By definition,
Ci(u)5Ci(2u) and C'(u)5C'(2u), but C3(u)
ÞC3(2u) in general. It is convenient to writeC3(u) in
terms of its even and odd partsC3S(u) andC3A(u), respec-
tively, and follow their renormalization separately.

The momentum-shell integration procedure is similar to
the one presented in Appendix B, albeit more cumbersome
due to many more nonzero contractions. Nevertheless, carry-
ing out the computation yields

Ca
,~u!5Ca~u!2dl KdI a~u!, ~E1!

for u.0, where

I i~u!5Ci9~u!@C̃~u!2C̃~01!#1Ci8~u!C̃8~u!

2k2$Ci8~u!C'8 ~u!2@C3S8 ~u!/2#21@C3A8 ~u!/2#2%

1kC3A~u!$Ci8~0
1!1k@C3A8 ~01!/2#%, ~E2!

I'~u!5C'9 ~u!@C̃~u!2C̃~01!#1C'8 ~u!C̃8~u!

2$Ci8~u!C'8 ~u!2@C3S8 ~u!/2#21@C3A8 ~u!/2#2%

1C3A~u!$@C3A8 ~01!/2#2kC'8 ~01!%, ~E3!

I 3S~u!5C3S9 ~u!@C̃~u!2C̃~01!#1C3S8 ~u!C̃8~u!

12k$Ci8~u!C'8 ~u!2@C3S8 ~u!/2#2

1@C3A8 ~u!/2#2%2C3A~u!$Ci8~0
1!1kC3A8 ~01!

2k2C'8 ~01!%, ~E4!

I 3A~u!5C3A9 ~u!@C̃~u!2C̃~01!#1C3A8 ~u!C̃8~u!

14k$Ci8~u!C'8 ~01!2Ci8~0
1!C'8 ~u!%2C3S8 ~u!

3$Ci8~0
1!1kC3A8 ~u!2k2C'8 ~01!%. ~E5!

Thus, the renormalization ofC̃(u) is given by

C̃,~u!5C̃~u!2dl Kd$C̃9~u!@C̃~u!2C̃~01!#1@C̃8~u!#2%,
~E6!

which leads to the functional recursion relation

]C̃~u!

]l
5@e12u i12~zi22!#C̃~u!1z iuC̃8~u!

2Kd$@C̃8~u!#21@C̃~u!2C̃~0!#C̃9~u!%.

~E7!

This is identical to Eq. ~B6!, with the substitution
Ci(u)→C̃(u). It is straightforward to verify that there exists
a fixed point where individual matrix elementsCa(u) satisfy
Eq. ~6.32!. (C3A(u)50 at this fixed point.!

Let us next examine the renormalization ofr i . Leading-
order contributions come from̂U&0

. , and a calculation
along the lines presented in Sec. VI gives

A11
, 5A112dl

SdL
d

~2p!dr i
E
0

`

dt̃ t̃e2K iL
2t̃/r iFCi9~v t̃ !

1
k

2
C39 ~v t̃ !G ,

A21
, 5A212dl

SdL
d

~2p!dr i
E
0

`

dt̃ t̃e2K iL
2t̃/r iF12C39 ~2v t̃ !

1kC'9 ~v t̃ !G ,
which can be combined to yield

r i
,5r i2dl

SdL
d

~2p!dr i
E
0

`

dt̃ t̃e2K iL
2t̃/r iC̃9~v t̃ !. ~E8!

The fixed-point function C̃* (u) is identical to that of
Ci* (u) in model A, and its behavior nearu50 is also given
by Eq. ~6.20!. Thus, we obtain

r i
,5r i2dl r iKdC̃9~01!5r i@12dl ~2e/9!#,

which leads to the recursion relation

]r i

]l
5r i@u i1z i22e/9#. ~E9!

*Present address: Lyman Laboratory of Physics, Harvard Univer-
sity, Cambridge, MA 02138.
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37D. Ertaşand M. Kardar, Phys. Rev. E49, R2532~1994!.
38T.S. Leeet al., Phys. Rev. Lett.74, 2796~1995!.
39S.J. Hagenet al., Phys. Rev. B47, 1064~1993!.
40D.R. Nelson, Phys. Rev. Lett.60, 1973~1988!.
41S. Bhattacharya and M.J. Higgins, Phys. Rev. B49, 10 005

~1994!.
42See Appendix B in Ref. 3.

3542 53DENIZ ERTAŞAND MEHRAN KARDAR


