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The levitation state of a large magnetic sphere held in equilibrium above a thick superconducting layer in the
Meissner state is a single temperature-independent state as long as the maximum magnetic field at the super-
conducting(SC) surface does not exceed the critical field(T). In contrast, a magnetic microsphere trapped
by a superconducting microring exhibits very different behavior. When the rédafsthe SC ring is of the
same order as the Ginzburg-Landau coherence le&@h, the system exhibits, in general, a small set of
distinct, quantized, temperature-dependent levitation and suspension states. For certain discretelvéhees of
flux in the ring is quantized, and the levitation and suspension heights are temperature independent. An abrupt
temperature induced transition in the suspension height is also found for a special set of parameters.

I. INTRODUCTION IIl. MACROSCROPIC MAGNETIC SPHERE LEVITATED
BY A THICK SUPERCONDUCTING SLAB

It has been known for a long time, from experimentation, When a magnet is lowered toward the surface of a thick
that a macroscopic magnet can be repulsively levitated abov@uperconductor, persistent currents in the superconductor are
a type-I superconductor in the Meissner state. Since the dig¢stablished which produce a magnetic field opposing that of
covery of high-temperature type-ll oxide superconductordhe magnet. The magnet depicted in Fi¢a)lis a uniformly
both repulsive levitation, based on partial flux exclusion andMagnetized sphere with saturation magnetizakibyy radius
flux pinning, and attractive levitatiofsuspensionbased on & and dens3|typ. The magnetic moment of the magnet is
flux pinning, have been observed in dramatic, popular demMo=Ms4ma*/3, and the weighw=(4m7a*/3)pg, whereg
onstrations. A very recent review of levitation phenomend$ the gravitational acceleration constant 9.8 mia mag-
and their practical applications is given by Mobypically, netic dipole can be simulated by a current loop of radius

. U . S
researchers use magnetic image methods to simulate a sup §_rr¥|ng a fictitious Sonstant curreh;—.MO/(q-ra ). When
the “magnet current” and the current in the superconductor

gzn?# (gflrlﬁ;azg '[r]h;?ﬁig;%ﬁf compared with the penetratlonﬂow in opposite directions, the current loops repel; otherwise
b 9 | they attract. Equilibrium for levitation is achieved when the

Herg we study.the equ!llbnum levitation states .Of a mac'magnetic force of repulsion equals the weight of the magnet.
roscopic and a microscopic magnet-superconducting SYSter}.is”assumed that the superconductor is mounted on a sub-

Our investigation is based on electromagnetics coupled WitQy ate \which is fixed. For lateral stability one should make
the Ginzburg-Landau theory of superconductivity which in-ihe syperconductor surface slightly concave, but this is not
cludes material properties of the superconductor. Due t@onsidered in our calculations. If the magnetic moment is
fluxoid quantization in a multiply connected superconductoryeversed, the persistent current also reverses, maintaining the
such as a ring circuit, quantization effects appear in the levifeyitation state. Assuming the superconductor is much
tation states when magnetic flux penetrates the space suficker than \(t), the temperature-dependent penetration
rounded by a superconductor. In Sec. Il we investigate th@lepth, and the levitation height>\(t), we simulate repul-
states of a macroscopic, uniformly magnetized sphere levision by an image magnet, located a distahckelow the
tated above a singly connected thick superconductor with theuperconducting surface, as depicted in Figp).1The vari-
magnetic moment oriented at an arbitrary angle to the surable t=T/T., with T the temperature, andl. the critical
face of the superconductor. Since there is a problem withemperature of the SC—normal phase transition in zero mag-
double counting in the literature, we couple the the imagenetic field.

method with a direct calculation of the force on the super- The magnetic-field components in they] plane due to
conductor and compare the result with the variation of théhe magnet shown in Fig.(d) are

dipole-dipole interaction energy to clarify the source of an

error by a factor of 2. In Sec. Ill the Ginzburg-Landau free H _3Mo Chxsi 2.1
energy of a superconductingC) microring circuit in the X_47-rr5[Xy cos— hx sina] '
presence of a very small magnetic sphere in a gravitational

field is minimized, subject to single valuedness of the com- 3M, ) 1 ) _

plex superconducting order parameter and mechanical equi- Hy:m[(y - §r cose—hy sina|, (2.2

librium. The resulting quantized levitation and suspension
states, some of which have been reported by Halase  wherer2=x2+y2+h?, anda is the tilt angle shown in Fig.
investigated in detail, and several interesting results aré(b). The total surface field due to the magnet and its image,
given here. Section IV is devoted to our conclusions. shown in Fig. 1b), is then
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The induced surface current densky(x,y,«a) is quite
complex, and it is didactic to examine it graphiacally. The
normalized current densitik=27h3K/(3M,), which is a
function only of the normalized coordinates’=x/h,
y’=y/h, and the tilt anglex defined in Fig. 1, is plotted in
Figs. da)—2(c). The surfac&(x’,y’) is shown with a cutout
to view the contours of constaktprojected on thex',y")
plane. In Fig. 2a) the tilt anglea is 90°, andk exhibits
cylindrical symmetry, with a minimum of value zero at the
origin, and a maximum of valuk,,=0.286 atp’' =0.5. The
current follows the contours, flowing clockwise. Decreasing
a breaks the symmetry, as seen in Figh)2 with a=45°,
and Fig. Zc), with «=0°. The current flow fora=0 is
depicted by the vector fiel#(x’',y’) plotted in Fig. 2d),

Y which shows a clockwise vortex and an antivortex corre-
sponding to the local minima df plotted in Fig. Za). In
contrast with Fig. 2a), the currentk does not follow the
contours in Fig. &). The contrast is most apparent on the
axis, where the current flow is parallel to the axis, but the
contour of constank is perpendicular.

The force on the magnet, which is opposite to that on the
superconductor, is

F=—,uof dx dy KXH,

—owJ —®

=28M0f0 fo dx dy(HZ+H?). (2.5

Note that the applie@external field H, acting on the current
K produces the force and not the total surface fi¢ldUsing
y Egs.(2.1) and(2.2), Eqg. (2.5 leads to

3ugM3
F;%(Hsinza). 2.6
Equation(2.6) is by a factor of 2 smaller than equations
——————————— G given by Yanget al* and Hellmaret al.® but it follows from
o the general equatiofi2-(2.4)] by Moon?! The equilibrium
levitation height is obtained from Eq(2.6) by setting
Mo F,=W, which yields

JM_OFMO(Hsin?a)

1/4

FIG. 1. (8 A magnetic source, modeled by a uniformly magne- h= > 27w 2.7
tized sphere of radiuga and momentM at tilt angle« is levitated
at heighth above a thick superconducting slap) The magnet  For ¢ =90°, for example, assume the sphere is iron with
moment and its image, located at distahckelow the SC surface, M¢=1.74x10° A/m, p=7.85x10° kg/m®. For a radius
are shown. a=0.25 cm, the magnetic momeM,=0.114 An?, the
weightW=5.04x 10" 3 N, and the resulting levitation height
is h=1.8 cm. The height is temperature independent since
Ho=2H,=2(XH, + 9Hy), (2.3 Mg .is essentially constant well belpw the Curie temperature.
At first sight Eq.(2.7) seems to be independent of the super-
whereH, is the applied horizontal component due to the realconductor. However, the magnetic field anywhere at the SC

source magnet by itself. Treating the superconductor as agurface should not exceed the thermodynamic critical field
ideal conductor, withz a unit vector perpendicular to the
surface, the sheet current dendity(A/m) is given by bo

H(t)= =
K =2X Hg=2(—XH,+ JH,). (2.4) S 2\2mueh (D)

The sheet current densit¢ flows in a layer of thickness where ¢o=h/(2|e|)=2.07x10"** Weber is the
A(t) at the surface. Sinck(t)<h we treatK as a surface fluxoid quantum, and(t) is the Ginzburg-Landau coherence
current, which gives rise to the Meissner effect. length. Equating the maximum oHg in Eg. (2.3 to

H.(0)(1-12), (2.9
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FIG. 2. The normalized, unitless surface current density magnkudeshown as a surfadgx/h,y/h) with contours of constark for
(@ a=90°, (b) a=45°, (c) a=0°. The vector field(x/h,y/h) is plotted in(d) for a=0°.

H.(0)(1-t2), with H,(0)=6.4x10* A/m for lead, gives ration, as observed experimentally for a bar mag(see

t,,=0.987. Abovet=t,,, the heighth decreases to zero. ~ Shoenberd,p. 20. The moment and weight dependences of
The result(2.7) can also be obtained from energy consid-EQ. (2.7) are different than those obtained by Orlando and

erations. The magnetic energy arising from the real magnetiPelin’ for a magnetic disk using a uniform magnetic-field

moment in the field of the image magnet is approximation which is a poor approximation for a spherical
magnet.
U=-Mgq-B. (2.9
I1l. LEVITATION AND SUSPENSION
In spherical coordinates, with=90°+a, andr=2hz the OF A SMALL MAGNETIC PARTICLE
distance from the image to the source magnet, the magnetic- BY A SUPERCONDUCTING MICRORING

flux density and moment are , o . )
The spherical magnet shown in Fig(aB is levitated

woMg . . L . above a superconducting microring of radibsand wire
B= 73 (r2cod+0sind),  Mo=Mo(rsina— fcose). cross-sectional area mounted on a fixed insulating sub-
strate. The value dlfi is positive for levitation and negative
Using the above, the enerdy reduces to for suspension. The magnet is uniformly magnetized with

magnetic momenkl =Mz, and the weight i3V, as in Sec.
2

moMg ) Il. The SC ring carries an induced currdntand has self-
U= 4—7_”3‘(14‘5'”2“)- (210 inductanceL. The SC ring material is characterized by the

temperature-dependent magnetic-field penetration depth
The force F,= —(dU/dr),_,, reproduces Eq(2.6), from  \(t) and the Ginzburg-Landa{GL) coherence lengti(t).
which follows the equilibrium levitation height, EQ.7). The heighth is determined self-consistently by minimiz-
Based on the lower energy with=0, we conjecture that ing the total free energy of the system consisting of the mag-
the moment parallel to the surface is the preferred configunet and SC ring, subject to fluxoid quantization and mechani-
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K=&2|py|?, wherep=—iV+(27/ o)A, with A the mag-
netic vector potential. The magnetic energy termL0%is
not constant, since the SC currdntaries with the magnet
height. The flux coupling energy between the magnet and the
superconductor ig,l, with ¢, the “applied” magnetic flux

N enclosed by the SC ring due M, . If one models the mag-

P netic dipole by a ring circuit of radiua, carrying a fictitious
constant current,=M,/(7a?), the coupling energy term
may be written a$, M|, whereM is the mutual inductance.
This term is positive ifl , and| flow in oppositedirections,

superconducting but negative if they flow in the same direction. Note that
loop 0.5L1%+ ¢,l comprise the height-dependent parts of the total
energy stored in the magnetic fields of the ring coupled to the
magnet. The last termWh, is the gravitational potential en-
ergy of the magnet with respect to the plane of the SC ring.
substrate 1 The normalized quantum current density is defined by

: J,= & Re(4” py)=NQ, (3.2

whereQ=¢[V 0+ (27/ ¢g)A] is usually called the normal-
ized superfluid velocity. It should be noted thah (3.1) and
superconductor (L 2 the current , are not necessarily the same. The definition of
the latter is linked to the Gibbs free ener@ One of the
equations obtained from the first variation d& is
VXVXQ—-VXH,+NQ=0 with the above defined.
Only if the applied magnetic fieldH, is curl free (which
applies to our cageand VXV X Q is replaced by—J does
one obtainJ=J,, whereJ, is defined by(3.2). Taking a
contour integral ofQ around the SC ring, requiring single-
valuedness of the complex order parameter, gives the flux
quantization constraint

(b)

b
T V2 fﬁdLQ:zwg i+n), 3.3
bo
stable
[ where the phase winding nhumbriis an integer or zero, and
: ¢ is the total flux enclosed by the contour. Explicitly
| | b= pa—Ll. (3.4

FIG. 3. (a) The magnetic sphere of radiasis levitated by a  The SC current, in Eq. (3.4), is positive for levitation and
superconducting ring of radiusand wire cross sectios, carrying ~ negative for suspension, wheregg is always positive.
an induced current. The levitation height ish. (b) Side view The gravitational force and the interaction of the SC ring
showing the regions of stability to horizontal displacement. with the magnet produces a net force on the magnet given by

cal equilibrium constraints. Since the magnetic field at the _ oAl A s
SC ring is not a controllable external variable, the Helmholtz F_'“Of doj(pHz=2H,) =2W, (3.5
free energyF is the appropriate functional to be minimiz&d.

The difference between the SC and normal-state free eneytherej is the SC current density, artd, andH, are the
gies is components of the field due to the magnet, evaluated at the

SC ring. In a stable equilibrium state the forieée-0. Since

A(t) 1 1 the net horizontal force component must be zero, the super-

AF=— f dv| —N+ §N2+ NQ2+ (£VN)2|+ LI 2 conductor must generate a restoring force that constrains the
s magnet to the axis of symmetry of the ring. Stability is dis-

+ ¢l +Wh, (3.1  cussed below. For now, assume the magnet remains as de-

picted in Fig. 3a).
whereA (t) = uoVH2(t), with V the volume of the SC ring For the uniformly magnetized sphere, depicted in Fig.
andH(t) is the thermodynamic critical magnetic field. The 3(a), the magnetic vector potential, in cylindrical coordinates
first two terms in the integrand are the normalized condenwith the origin at the center of the magnet, is
sation energy of the superconductor, with=||2, where
y=VIV,.= \/ﬁexpa ) is the normalized complex order Ap.Z)= (}lMoMo p
parameter. The last two terms comprise the kinetic energy alp A (p?+22)%%
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The applied flux¢, at the ring, calculated from the line |"=0, (3.113
integral of A (b,—h), is
or
oMo 1 WL
T (11x0)72 (3.6) — 7+¢a=0. (3.11b
a

with normalized heightx=h/b. The field components are Noting thatl=—W/¢., Eq.(3.11b is satified only for a
determined fromuoH=VxXA,. In cylindrical coordinates, syspension state| €0, x<0). To acheive an absolute mini-
the p component of the magnetic field at the superconductingnym energy for a levitation state E@.113 must hold, and
ring, and thez component anywhere in the plane of the ring gq_(3.9p) requires thaF .= —1 ¢ at equilibrium.

are The normalized free enerdy, Eq.(3.10), is a function of
the N and h. Minimizing E with respect to variation ifN

__3Mo X gives

y Mo 2x2—(plb)?
P= " G (LD

N 4?10

3.7

The wire cross sectios is assumed small so that the
transverse variations &f,Q, andH in the SC ring are small.
In this limit, the integrals in Eq93.1), (3.3), and(3.5 may
be replaced by their mean values. The fluxoid quantizatio
constraint Eq(3.3) then yields

N=1-Q? (3.12

which satisfies the absolute miniumum energy condition
N=1 andQ=0. We note that, in general, the variation of
AF(N,Q,l,h) with respect toN(r) yields the GL equation
r§2V2\/ﬁ =JN(N-1+Q?. Thus, neglecting theVZ\N
term gives a point variable form identical to E§.12).

The variation ofE with respect tdh, using Eqs(3.8) and
(3.93 with F,=0, leads to the relation

&l &
=—|—+n|, 3.8 ,
blg, 9 B [ WL-gut} ],
5 ——|1"=NQ, (3.13
i i (d)°[1-L("1d3)
whereQ is now a measure of the normalized flux enclosed a a

by the ring relative to a quantum number. Equati@?9)
links the mean value d to the current via Eq.(3.4). Q, I,
and ¢, are explicit functions of heightt and therefore our
independent variables in the free energy ldrandh. In the
same approximation, E¢3.5), noting that¢,=2muebH,,
gives the vertical components Bfand dF/oh as

where ,8=)\(t)/[\/§ch(t)]. It is seen that wherQ=0

(when the flux through the ring is quantizedEq. (3.13

requires that Egs(3.119 or (3.11b hold at equilibrium.
Equation(3.11bH is a well defined function dffi, but the only
relation involvingl’ is Eq.(3.9b in which F,, is the coef-
ficient of the linear term in an expansion Bf, about the
equilibrium value. ForQ=0, the levitation solutions that

F=—1¢i—W, (3.9 minimize E require that ' =0, and thus from Eq3.9) that
F,=—1¢,. The absolute minimum value & occurs when
Fo=—1"¢,—145. (39D  x=0.5, at which point¢,=0, and thusF,=0. The corre-

spondingQ =0 suspension solutions that minimigesatisfy
Eqg.(3.11h, and are independent bf and hencé-} . In light
of these results we expect the lowest-energy solutions will

The primes denote partial derivatives with respech oAt
equilibrium F,=0, andF,=0 as discussed after E(3.13).

Consistent with our thin wire approximation and the cylin-
drical symmetry of the system, we neglect the integral o
(&V \/N)2 in Eg. (3.1). Defining a normalized energy

ThaveQ< 1. Since the minimum value & is independent of
F, for any value ofQ, Eg.(3.13 must also be independent

of F, . Consistency requires tht =0, which is an interest-
ing result: The leading term in the restoring force is not
linear in the displacement from equilibrium. Settifg=0

E=AF/A(0), it follows from Eq.(3.1) that

1

E=Egt)+ W[Z LI2+ ¢l +Wh|, (3.10 gives|'=—I1¢2/¢., and Eq.(3.13 using Eq.(3.12 as-
(0) sumes the form
where the explicit SC contribution is J=(1-0%)Q/(1- Q). (3.14
1 The height-dependent variable is defined by
Es{t)=| —N+ =N?+NQ?|(1—-t?)2.
2 1- $adil(41)
Q(h) (3.19

- " I\37"
Before considering the general problem of minimizig 1=WLL bal(4a)"]
subject to equilibrium constraints, it is elucidating to exam-The normalized SC current densityJs 81. The variableg
ine the parts. The ternkEg. is minimum for N=1 and andQ in Eq.(3.19 are interpreted as mean values taken over
Q=0. In a levitation state,It>0, x>0), the second term in the volume of the SC ring. Equatid8.14 shows that] is
Eqg. (3.10 is always positive; thus the free enerByis an  not equal to the quantum-mechanical expressipand that
absolute minimum whemN=1, Q=0, and the bracket is the effective electron pair velocity ®/(1— () in our case.
minimized. At equilibrium, using Eq(3.99 with F,=0, the  Thus, whenQ—0, the variableQ) —1 for a finite levitation
bracket in Eq(3.10 is minimum with respect to variation in or suspension current. Neglectiflyis equivalent to starting
h when with a free energy without the mutual inductance tepgi.
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Using the fluxoid quantization equatiof3.8) and Eg. 1 - -
(3.93 with F,=0, Eq. (3.14 gives the equilibrium height ~E=—5(1-Q9)%(1-t%)

equation
N W 2b3WL (1+x2)5+<1+4 )
3 2 —+4x]|.
y(x)= AP I A PN L 6mosH0)*[3(uMo)*  X° X
®o €] \ do b4 ' 3.2
(3.16 (329
The first term in Eq(3.2]) is the normalized energy of the
with the constanC defined by SC ring, which is minimum whenQ=0. The term
(1/x+4x) arises from¢,l + Wh and the other from the self-
27 uobW (kb)? inductance. Fox>0 all terms are positive, and the bracket
C:—¢O s has an absolute minimum fox=0.5. Therefore, when

Q=0, the energ)E assumes its absolute minimum value for
wherex=\/¢. The total flux, using Eqg3.4) and(3.9a, is  levitation at heightv=0.50, consistent with Eq(3.193.
All calculations and figures are based on the following
data: The magnetic particle is an yttrium iron garfélG)
d=Pt —F. (3.17 sphere of radiusa=0.4 wum, saturation magnetization
ba M =2x10° A/m and densityp=5.2x 10° kg/m?3, with re-
sultant magnetic momenM,=5.36x10"* Am?, and
weight W=1.37x 10" * N. The SC ring has wire cross sec-
—h(t.n)/b of the levitated(or suspendedmagnet. tion s=10**m?2 and various radib. The SC ring is Al with
Before investigating the general temperature-dependen ero-temperature values of the penetration depth and gcoher-
solutions of Eq.(3.16, we analyse the important special ence length taken ag0)=0.05.m andg(O)—go—l.GLm.z
cases arising from exact flux quantization. Wh@s-0 it The temperature depzendence used)\($).=)\(0)/ 1-t
follows from Eq.(3.14 thatQ = 1. Sincet appears only as a and &(t)=£(0)/v1-t% thus «=\/¢ is temperature
coefficient of the flux in Eq(3.16), it is satisfied for any independent. The critical field for Al isi;(0)=0.79x 10"
value of £(t) when Q=0 and Q=1. [Note that in accor- A/m, and the critical current in the ring at=0 is I,
dance with Eq(3.93 at equilibriumJ cannot be zerg Thus =(2/\/2__7)[ \_/ES H:(0)]/A(0)=0.97 mA. The self-inductance
magnet heighh is temperature independent when the totalof the ring is
flux is quantized. FoQ=0, Eq.(3.8) using Eq.(3.17) gives

Equation(3.16), using Eq.(3.17), is a self-consistent equa-
tion for the temperature-dependent normalized hexghin)

L~ uob —1.75/.

8b
In(—)
¢a+W—L+n¢0:o. (3.18 Vsl m

¢/
¢ The temperature-independent, absolute minimum energy,

The conditionQ) =1 is satisfied if and only if levitation solutions requir€@=0 andx=0.5. They are de-
termined by Eq(3.18, which reads

¢,=0, (3.193

woMo AWLD* (1+x0)7]
or 2D M2 x| "
(3.22
é _WL (3.10p  With x=0.5 Eq.(3.22 yields the ordered pairs
a ’r .
ba

[n, by(zm)]:...[0,9.30, ...[—3,3.80,[—4,2.89,...
Condition (3.193 is satisfied forx=*+0.5. In this case Eq. [-9,1.30
(3.18 determines the radiub of the SC ring for a given PoTE
phase winding number. The condition(3.19h requires that  These discrete radii correspond to levitation height
x<0, i.e., suspension, and that the induced flux equal the=0.5, which is temperature independent until the current
“applied” flux. Substituting Eq.(3.19D into Eq.(3.18 gives  in the ring exceeds the critical current of the superconductor.

the half-flux quantum condition for suspension Of course levitation occurs only Ifis smaller than the criti-
cal current at absolute zero, namély=0.97 mA. If a par-
n ticular b, is used in the general equati¢d.16), only solu-
¢a:_§¢0- (320 tions for n=m are physical (N>0), and those with
n>m are weakly temperature dependent.
Together, Eqs(3.20 and (3.19b determineb and x for a The temperature-independent suspension solutions are de-
givenn. termined from the coupled Eqg&8.190H and(3.20), explicitly

To further understand the significance of the quantizediven by
flux solutions, let us examine the enerfByin more detail. ) o4
Using Eqgs.(3.6), (3.93, and (3.12, at mechanical equilib- 3(roMo)” 5 (14XT) (3.23
rium one obtains 4w X '
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and as

M
’”Lfﬁo %= —nb(1+x2)%2 (3.24 ¥

With the phase winding number and all magnet properties
fixed, assuming that the wire cross sect®is known, Egs.
(3.23 and(3.29 can be solved uniquely fdr andx. Alter-
natively, if one were to fix and leaven andx as the two
unknowns, then Eq$3.23 and(3.24) cannot be satisfieih
generalwith n an integer. Equatiof8.24) restrictsn to nega-
tive values. For our data, the ordered triplets which solve
Egs.(3.23 and(3.24) are T

Normalized Equilibrium Height h/b
N
EY
u
o

[n, b(um), x]:[—1,4.19,-1.71,[ — 2, 8.23,—-0.759,
[—3,9.42,-0.316]. e

There are no other solutions. FIG. 4. Quantized, normalized levitation heidt{t,n)/b plotted
Stability of the magnet to horizontal displacement is de-asla f““‘fﬁ;ﬁ“ ﬁt:TéTc fOftSC ring gad_luil;=3.345um f_or_tgr(tae
termined by thep component of Eq(3.5). Domains in which ~ Y&'U€s 0f the Fuxoid quantum numbenn e rangen min= =2 10
there exists a self-centering, horizontal restoring force ar(?maxz?’ for which levitation solutions exist. Each curve has a dis-
in Fi Oi - t cutoff t ture.
shown in Fig. 8b). As pointed out in Ref. 5 for o coron CMPerare

0<x< 1/\/5 the levitation solutions witH >0 are stable, rametersE, J/‘]ca andN are p|otted in F|gs 5-7. Itis seen

whereas suspension solutions witmeversed are stable for that the normalized total free energy calculated from Eq.
X< — 1/\/5. Thus all of the above absolute minimum energy,(3.10 is dominated by the condensation energy, vtk 1,
quantized flux, levitation solutions witlk=0.5, and the for n=—3; whereas fon=3 energy is extracted from the
quantized flux suspension solutions fo=—1 andn=—2  condensate to lift the magnet to a higher levitation state. For
are stable; whereas the=—3 suspension solution is not n=—3 the normalized current density exceeds], for t
stable, nor is thex=—0.5 solution which satisfies Eq. slightly less thart=t.,, but for higher values oh it does
(3.193. When Q=0 the equilibrium current density not. The behavior of the=3 current density is due to the
j=—WI(s¢,) equals the quantum-mechanical current denrelatively large value ofQ on the right side of Eq(3.14.
sity[\/EHC(t)/)\(t)]NQ, To obtain this condition, Eq3.15  The maximum ofJ occurs att=0.29, at which point
requires thatx|=1, or |x| infinite. Only the suspension so- Q=1/y/3 and J¢,=JC=2/\/2—7. The corresponding value
lution atx(t)=—1 is stable. N=2/3 also occurs at=0.29 as seen in Fig. 7.

In general, if the total flux in the SC ring is not quantized, Figure 8 shows the energly plotted as a function of
i.e., when¢+# —nd¢, which requires tha@Q # 0, then the pa- normalized heighh/b at temperaturd =0 for a SC ring of
rameterx=h/b is determined by E¢3.16. However, since radius b=1.295 um, at three fluxoid quantum numbers
all solutions which relate to the lowest stable energy have a=—7,—8,—9. Total flux is quantized only for the=—9
constant and temperature-independent levitation heightmperature-independent level. All three states are horizon-
h=0.5), and a stable levitation height cannot exceedtally stable, and lie in narrow potential wells. The higher,
h=0.707a, the height of stable levitation states are nothorizontally unstable states have shallow, overlapping energy
strongly temperature dependent and remain close o &5 wells, indicating possible vertical instability.
the temperature is varied.

We now turn our attention to the general temperature- 03 ; ' '
dependent solutions of E¢3.16. The functiony(x) has a 02___,/=3
root xqy that corresponds to the minimum valueofF. For a '
given set of parameters, there is a minimum and a maximum 4|
value of n for which the root x, exists, i.e.,
Nmins=N<n.. FOr eachn, as the temperatureincreases,
Xqo disappears at a cutoff temperatdret,,<t..

Figure 4 shows the quantized, normalized levitation
heighth(t,n)/b plotted as a function df=T/T. for SC ring
radiusb=3.345 um. This radius is the average of the dis-

o
T

Normalized Free energy
< 1<}
o

crete radii corresponding to the= -3 andn=—4 quan- -0.3

tized flux, temperature-independent solutions. Three levels

are shown from the complete set of fluxoid quantum num- ¢

bers in the rang@,j,= — 3 to n,,=3 for which levitation o5 B

solutions exist. Only the= —3 level in the complete set is © 01 02 03 o4 05 06 07 08 09 1
horizontally stable. Asn increases, the levels become in-

creasingly temperature dependent, with a decreasing cutoff FIG. 5. Normalized free enerdy as a function of. Parameters
temperaturet.,. For this “intermediate” radius, other pa- are the same as in Fig. 4.
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FIG. 6. Normalized SC current density as a functiont.oPa- FIG. 8. The normalized total free enerdy of the levitation
rameters are the same as in Fig. 4. states for fluxoid quantum numbers- —7,—8,—9 are plotted as a

function of normalized height/b at temperaturd =0 for SC ring

Figures 9 and 10 show a strong temperature-dependefﬁdiusb=1.295,um. Total flux is quantized for the=—9 level
“transition” state forb=7.28 um. For this radius a solution which is temperature independent. All states are horizontally stable.
exists only forn=—2. The suspension heightb is plotted
as a function oft, in Fig. 9, which shows a rather sharp in principle, unstable to lateral displacement. However, a
transition att,,,=0.667 between the unstable and stable re~depression” in the sheet will stabilize the lateral motion
gions. The total flux in the ring, plotted in Fig. 10, exhibits (see plate 1 in ShoenbéfgWhen the tangential component
similar behavior. Other parameters, not shown, also exhibief the surface field exceeds,(t), the thermodynamic criti-
unusual behavior. The pair densily has a small, abrupt cal field, the levitation height decreases.
decrease 4i,,,; whereas the enerdy is a smooth function Magnetic suspension states, arising from flux pinning in a
of t. The normalized current densitly has a small, abrupt macroscopic disk of a higfi; superconductor is a well es-
increase in magnitude at,,,, with J<J. for t<0.85. The tablished phenomenofsee plates 1-10 by Modn For a
superfluid velocityQ<1 for the entire temperature range. mesoscopic SC microring of radius of the coherence length
&(t) (e.g.,£21.6 um for Al) and a magnetic sphere of radius
in the same range, we find both levitation and suspension
states which depend on the fluxoid quantum number. Equa-

We have studied the levitation of a macroscopic magnetion (3.16) determines the levitation and suspension states of
over a superconducting sheet of thickness much larger tham spherical magnet with moment perpendicular to the plane
A(t). We find that the magnet with the moment parallel toOf the SC ring as a function of temperature. Stable levitation
the sheet has a levitation height which is 84% of the levitaStates occur in the range=0.5 to h=0.70. Levitation
tion height with the moment perpendicular to the stieem- ~ States abové=0.70% are unstable to lateral displacement
pare Eq.(2.7) for «=0 anda = /2]. As long as the sheetis [see Fig. 8)]. Stable suspension states are possible for
in the Meissner state, with no flux locked in, the magnet is,

IV. CONCLUSIONS
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observe unstabl@on-self-centeringstates, the magnet must
be externally constrained to the symmetry axis of the SC
ring. Ideally, it could slide down a frictionless fiber. Perhaps
the magnetic particle could be slightly charged and held on
the axis of a cylindrical capacitor, coinciding with the SC
ring axis. Levitation of a magnetic particle, or a high-
temperature SC disc with locked-in flux, above a thin type-I
superconducting film containing a periodic array of holes is
another possible experiment. Such arrays have been fabri-
cated already* As a final suggestion, one could levitate a
commensurate array of aligned magnetic dipoles frozen into
a nonmagnetic medium. Although the latter system is not
analyzed here in detail, it should exhibit behavior similar to
the single ring case.

Normalized Total Flux
»
T

1.75F

1.7 L L L L L L L L. L
0 01 02 03 04 Jp 06 07 08 09 1 APPENDIX A: LEVITATION OF A MAGNET
BY A THICK SC RING
FIG. 10. Transition state: Total flug linking the ring is plotted The current flowing around a thick SC ring of wire radius
versust.

r>\ is a surface current; thus a contour exists in the bulk of

h<-0.70m, and are horizontally unstable for :Egtrmg such tha@=0. It follows from Eqs.(3.4) and (3.9

0>h>—0.70h. For certain “quantized(discrete radii of

the ring, which depend on the fluxoid quantum number LI =+ Ny, (A1)

the levitation heighh is one-half the ring radius and tem-

perature independent. This occurs when the flux through thwhere ¢, is the applied flux, Eq(3.6), due to the magnet,

ring is quantized in units of the fluxoid quantum and theenclosed by the contour. Assuming tiee 2r, the variation

average supercurrent velocify in the ring is zero. For radii  Of the field in the surface layer around the wire cross section

in between the quantized values, E8.16) leads to slightly ~can be neglected and E(.9) is valid. At equilibrium

temperature-dependent levitation heights. Temperature- ,

independent suspension states are also found. For these W=—1d;. (A2)

states, the distance of the suspended magnet depends bothginating | from Eq. (A1) yields

fluxoid quantum number and ring size. Again, states in-

between the temperature-independent suspension distances LW+ (ot Nepg) d,=0. (A3)

are slightly temperature dependent for most values of ringE ) ) _

radii. For certain radii, we find an abrupt “transition” state in Equation(A3) determines the temperature-independent states

which the suspension distance is strongly temperature depeff @ magnet levitated, or suspended, bthigk SC ringsat-

dent. isfying A <<r <0.5h. Assuming that the flux in a thick ring is
Comparing the results of Secs. Il and 111, we find from Eq. conserved, the quantum number is determined by the initial

(2.4 for a perpendicular momeni(= 7/2) that the largest conditionngo=L1o, wherel is the persistent current in the

sheet current density occurs at distapge=0.5h from the  ing prior to the introduction of the magnet.

center of the ring. Thu&:p,,=2:1. This compares th:b

=1:2 for the ring current discussed in Sec. Ill when the flux APPENDIX B: LEVITATION OF A MAGNET

is exactly quantized. Intuitively this is consistent with the  BY A SC MICRORING: LONDON APPROXIMATION

fact that a continuum of current loops flowing parallel to

each other will give rise to a larger lift force than a single . : . . : S

loop can produce. From Figs(&2 and Zd) it is evident that Lhe SC ring, using the sign convention of FigaR is given

only the perpendicular moment configuratiam= 77/2) will y

be supported by a thin ring. In general, when the current in

In the London theory of superconductivity the current in

S
the superconductor exceeds the critical currksft) the l=sj= ——F—A, (B1)
magnet falls. Depending on the superconductor, this could mol (1)

happen well below the transition temperatdie where A is the mean value of the magnitude of the total

Experimental observation of the quantization effects in—ector potential over the wire cross section of the ring. Using
vestigated in Sec. Il is certainly a challenging problem. Thethe integral relation

SC ring radius must be in the mesoscopic domain. Using

current fabrication technology, only type-lI superconductors

satisfy the requirements. The suspension states and the = §d|'A:2WbA'
lower-lying levitation states are stable, and should be observ-

able in the mesoscopic domain. Recent advances in the dand = ¢,—LI, the current in Eq(B1) is
velopment of optical “tweezers” using laser microbeams to )
trap and manipulate micron-sized biological particles may | ¢a with Lo(t)=27 b)\ (t) (B2)
make it possible to position a magnetic microparti€ido 0 Ko

T Lo+l s
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Using Eq.(B2) to eliminatel from the equilibrium equation J.. Increasingo*W/M3 causes solutions of E4B3) to ap-
W= —1¢,, leads to the self-consistent height equation proachx, at lower values ot until finally there is no solu-
s o ) tion at any temperature. Suspension solutions of(Bg) are
4 b ) 2(@) e not possible in the Meissner states 0.
30l oM, r) 1-t° T (1) Modifying the London Eq(B1) by the gauge transforma-
(B3 tion A=A+ (¢o/27)V 6, with the contour integral oV 6
defined to be #Zrn, leads to the equation

wW

where x=h/b, r=+/s/x7 is the radius of the wire, and
L'=In(8b/r)—1.75. — = —

With the data used in Sec. lll, and with ring radius Lol =4+ ndo=da= LI+ N0, (B4

b=1 um, for example, the ratio (2/)(\/r)>=0.49: thus  which is equivalent td=Q, with J=[\/(2sH,)]l. Equa-
the London levitation height is temperature dependent. Sincéion (B4) follows from Eq. (3.14 in the limit Q<1, with
the right side of Eq(B3) has a maximum value of 0.2216 at () neglected. However, note that=Q does not admit equi-
Xo= 1/\/7 there exists a maximum value bfW/M(Z)_ Levi- librium solutions forQ=0, sinceJ cannot be zero for levi-
tation solutions exist fok>x,. For b=3.345um, the nor-  tation or suspension. At equilibrium, E(B4) is
malized heighi(t) is very similar to that shown fan=0 in ,
Fig. 4, Whicg is (ar)1 unsta)IgIe solution. Increasing the radius of [Lo() FLIW (¢a+Nebo) o =0. (B5)
the ring tob=8 um, Eq. (B3) has a strongly temperature- In contrast to Eq(B3), Eq.(B5) has suspension solutions for
dependent, stable solutiox(t) in the rangex(0)=0.7 to  n<O0. In the limit Ly(t)<<L, Eg. (B5) reduces to the thick
x(0.85)=0.375, and the current density remains less thaming result, Eq.(A3).
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