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The levitation state of a large magnetic sphere held in equilibrium above a thick superconducting layer in the
Meissner state is a single temperature-independent state as long as the maximum magnetic field at the super-
conducting~SC! surface does not exceed the critical fieldHc(T). In contrast, a magnetic microsphere trapped
by a superconducting microring exhibits very different behavior. When the radiusb of the SC ring is of the
same order as the Ginzburg-Landau coherence lengthj(T), the system exhibits, in general, a small set of
distinct, quantized, temperature-dependent levitation and suspension states. For certain discrete values ofb the
flux in the ring is quantized, and the levitation and suspension heights are temperature independent. An abrupt
temperature induced transition in the suspension height is also found for a special set of parameters.

I. INTRODUCTION

It has been known for a long time, from experimentation,
that a macroscopic magnet can be repulsively levitated above
a type-I superconductor in the Meissner state. Since the dis-
covery of high-temperature type-II oxide superconductors
both repulsive levitation, based on partial flux exclusion and
flux pinning, and attractive levitation~suspension! based on
flux pinning, have been observed in dramatic, popular dem-
onstrations. A very recent review of levitation phenomena
and their practical applications is given by Moon.1 Typically,
researchers use magnetic image methods to simulate a super-
conducting layer that is thick compared with the penetration
depth of the magnetic field.2–4

Here we study the equilibrium levitation states of a mac-
roscopic and a microscopic magnet-superconducting system.
Our investigation is based on electromagnetics coupled with
the Ginzburg-Landau theory of superconductivity which in-
cludes material properties of the superconductor. Due to
fluxoid quantization in a multiply connected superconductor,
such as a ring circuit, quantization effects appear in the levi-
tation states when magnetic flux penetrates the space sur-
rounded by a superconductor. In Sec. II we investigate the
states of a macroscopic, uniformly magnetized sphere levi-
tated above a singly connected thick superconductor with the
magnetic moment oriented at an arbitrary angle to the sur-
face of the superconductor. Since there is a problem with
double counting in the literature, we couple the the image
method with a direct calculation of the force on the super-
conductor and compare the result with the variation of the
dipole-dipole interaction energy to clarify the source of an
error by a factor of 2. In Sec. III the Ginzburg-Landau free
energy of a superconducting~SC! microring circuit in the
presence of a very small magnetic sphere in a gravitational
field is minimized, subject to single valuedness of the com-
plex superconducting order parameter and mechanical equi-
librium. The resulting quantized levitation and suspension
states, some of which have been reported by Haley,5 are
investigated in detail, and several interesting results are
given here. Section IV is devoted to our conclusions.

II. MACROSCROPIC MAGNETIC SPHERE LEVITATED
BY A THICK SUPERCONDUCTING SLAB

When a magnet is lowered toward the surface of a thick
superconductor, persistent currents in the superconductor are
established which produce a magnetic field opposing that of
the magnet. The magnet depicted in Fig. 1~a! is a uniformly
magnetized sphere with saturation magnetizationMs , radius
a, and densityr. The magnetic moment of the magnet is
M05Ms4pa3/3, and the weightW5(4pa3/3)rg, whereg
is the gravitational acceleration constant 9.8 m/s2. A mag-
netic dipole can be simulated by a current loop of radiusa,
carrying a fictitious constant currentI a5M0 /(pa

2). When
the ‘‘magnet current’’ and the current in the superconductor
flow in opposite directions, the current loops repel; otherwise
they attract. Equilibrium for levitation is achieved when the
magnetic force of repulsion equals the weight of the magnet.
It is assumed that the superconductor is mounted on a sub-
strate which is fixed. For lateral stability one should make
the superconductor surface slightly concave, but this is not
considered in our calculations. If the magnetic moment is
reversed, the persistent current also reverses, maintaining the
levitation state. Assuming the superconductor is much
thicker than l(t), the temperature-dependent penetration
depth, and the levitation heighth@l(t), we simulate repul-
sion by an image magnet, located a distanceh below the
superconducting surface, as depicted in Fig. 1~b!. The vari-
able t5T/Tc , with T the temperature, andTc the critical
temperature of the SC–normal phase transition in zero mag-
netic field.

The magnetic-field components in the (xy) plane due to
the magnet shown in Fig. 1~a! are

Hx5
3M0

4pr 5
@xy cosa2hx sina# ~2.1!

Hy5
3M0

4pr 5 F S y22 1

3
r 2D cosa2hy sinaG , ~2.2!

wherer 25x21y21h2, anda is the tilt angle shown in Fig.
1~b!. The total surface field due to the magnet and its image,
shown in Fig. 1~b!, is then
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Hs52Ha52~ x̂Hx1 ŷHy!, ~2.3!

whereHa is the applied horizontal component due to the real,
source magnet by itself. Treating the superconductor as an
ideal conductor, withẑ a unit vector perpendicular to the
surface, the sheet current densityK ~A/m! is given by

K5 ẑ3Hs52~2 x̂Hy1 ŷHx!. ~2.4!

The sheet current densityK flows in a layer of thickness
l(t) at the surface. Sincel(t)!h we treatK as a surface
current, which gives rise to the Meissner effect.

The induced surface current densityK (x,y,a) is quite
complex, and it is didactic to examine it graphiacally. The
normalized current densityk52ph3K /(3M0), which is a
function only of the normalized coordinatesx85x/h,
y85y/h, and the tilt anglea defined in Fig. 1, is plotted in
Figs. 2~a!–2~c!. The surfacek(x8,y8) is shown with a cutout
to view the contours of constantk projected on the (x8,y8)
plane. In Fig. 2~a! the tilt anglea is 90°, andk exhibits
cylindrical symmetry, with a minimum of value zero at the
origin, and a maximum of valuekm50.286 atr850.5. The
current follows the contours, flowing clockwise. Decreasing
a breaks the symmetry, as seen in Fig. 2~b!, with a545°,
and Fig. 2~c!, with a50°. The current flow fora50 is
depicted by the vector fieldk(x8,y8) plotted in Fig. 2~d!,
which shows a clockwise vortex and an antivortex corre-
sponding to the local minima ofk plotted in Fig. 2~a!. In
contrast with Fig. 2~a!, the currentk does not follow the
contours in Fig. 2~c!. The contrast is most apparent on thex
axis, where the current flow is parallel to the axis, but the
contour of constantk is perpendicular.

The force on the magnet, which is opposite to that on the
superconductor, is

F52m0E
2`

` E
2`

`

dx dy K3Ha

5 ẑ8m0E
0

`E
0

`

dx dy~Hx
21Hy

2!. ~2.5!

Note that the applied~external! fieldHa acting on the current
K produces the force and not the total surface fieldHs. Using
Eqs.~2.1! and ~2.2!, Eq. ~2.5! leads to

Fz5
3m0M0

2

64ph4
~11sin2a!. ~2.6!

Equation~2.6! is by a factor of 2 smaller than equations
given by Yanget al.4 and Hellmanet al.,3 but it follows from
the general equation@2-~2.4!# by Moon.1 The equilibrium
levitation height is obtained from Eq.~2.6! by setting
Fz5W, which yields

h5
AM0

2 F3m0~11sin2a!

4pW G1/4. ~2.7!

For a590°, for example, assume the sphere is iron with
Ms51.743106 A/m, r57.853103 kg/m3. For a radius
a50.25 cm, the magnetic momentM050.114 A m2, the
weightW55.0431023 N, and the resulting levitation height
is h51.8 cm. The height is temperature independent since
M0 is essentially constant well below the Curie temperature.
At first sight Eq.~2.7! seems to be independent of the super-
conductor. However, the magnetic field anywhere at the SC
surface should not exceed the thermodynamic critical field

Hc~ t !5
f0

2A2pm0l~ t !j~ t !
5Hc~0!~12t2!, ~2.8!

where f05h/(2ueu)52.07310215 Weber is the
fluxoid quantum, andj(t) is the Ginzburg-Landau coherence
length. Equating the maximum ofHs in Eq. ~2.3! to

FIG. 1. ~a! A magnetic source, modeled by a uniformly magne-
tized sphere of radiusa and momentM0 at tilt anglea is levitated
at heighth above a thick superconducting slab.~b! The magnet
moment and its image, located at distanceh below the SC surface,
are shown.
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Hc(0)(12tm
2 ), with Hc(0)56.43104 A/m for lead, gives

tm50.987. Abovet5tm , the heighth decreases to zero.
The result~2.7! can also be obtained from energy consid-

erations. The magnetic energy arising from the real magnetic
moment in the field of the image magnet is

U52M0•B. ~2.9!

In spherical coordinates, withu590°1a, and r52hẑ the
distance from the image to the source magnet, the magnetic-
flux density and moment are

B5
m0M0

4pr 3
~ r̂2cosu1 ûsinu!, M05M0~ r̂sina2 ûcosa!.

Using the above, the energyU reduces to

U5
m0M0

2

4pr 3
~11sin2a!. ~2.10!

The forceFz52(]U/]r ) r52h reproduces Eq.~2.6!, from
which follows the equilibrium levitation height, Eq.~2.7!.

Based on the lower energy witha50, we conjecture that
the moment parallel to the surface is the preferred configu-

ration, as observed experimentally for a bar magnet~see
Shoenberg,6 p. 20!. The moment and weight dependences of
Eq. ~2.7! are different than those obtained by Orlando and
Delin7 for a magnetic disk using a uniform magnetic-field
approximation which is a poor approximation for a spherical
magnet.

III. LEVITATION AND SUSPENSION
OF A SMALL MAGNETIC PARTICLE

BY A SUPERCONDUCTING MICRORING

The spherical magnet shown in Fig. 3~a! is levitated
above a superconducting microring of radiusb and wire
cross-sectional areas mounted on a fixed insulating sub-
strate. The value ofh is positive for levitation and negative
for suspension. The magnet is uniformly magnetized with
magnetic momentM5M0ẑ, and the weight isW, as in Sec.
II. The SC ring carries an induced currentI , and has self-
inductanceL. The SC ring material is characterized by the
temperature-dependent magnetic-field penetration depth
l(t) and the Ginzburg-Landau~GL! coherence lengthj(t).

The heighth is determined self-consistently by minimiz-
ing the total free energy of the system consisting of the mag-
net and SC ring, subject to fluxoid quantization and mechani-

FIG. 2. The normalized, unitless surface current density magnitudek is shown as a surfacek(x/h,y/h) with contours of constantk for
~a! a590°, ~b! a545°, ~c! a50°. The vector fieldk(x/h,y/h) is plotted in~d! for a50°.
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cal equilibrium constraints. Since the magnetic field at the
SC ring is not a controllable external variable, the Helmholtz
free energyF is the appropriate functional to be minimized.8

The difference between the SC and normal-state free ener-
gies is

DF5
L~ t !

Vs
E dvF2N1

1

2
N21NQ21~j¹AN!2G1

1

2
LI 2

1faI1Wh, ~3.1!

whereL(t)5m0VsHc
2(t), with Vs the volume of the SC ring

andHc(t) is the thermodynamic critical magnetic field. The
first two terms in the integrand are the normalized conden-
sation energy of the superconductor, withN5ucu2, where
c5C/Cbulk5AN exp(iu) is the normalized complex order
parameter. The last two terms comprise the kinetic energy

K5j2upcu2, wherep52 i¹1(2p/f0)A, with A the mag-
netic vector potential. The magnetic energy term 0.5LI 2 is
not constant, since the SC currentI varies with the magnet
height. The flux coupling energy between the magnet and the
superconductor isfaI , with fa the ‘‘applied’’ magnetic flux
enclosed by the SC ring due toM0 . If one models the mag-
netic dipole by a ring circuit of radiusa, carrying a fictitious
constant currentI a5M0 /(pa

2), the coupling energy term
may be written asI aMI , whereM is the mutual inductance.
This term is positive ifI a and I flow in oppositedirections,
but negative if they flow in the same direction. Note that
0.5LI 21faI comprise the height-dependent parts of the total
energy stored in the magnetic fields of the ring coupled to the
magnet. The last term,Wh, is the gravitational potential en-
ergy of the magnet with respect to the plane of the SC ring.

The normalized quantum current density is defined by

Jc5j Re~c* pc!5NQ, ~3.2!

whereQ5j@¹u1(2p/f0)A# is usually called the normal-
ized superfluid velocity. It should be noted thatI in ~3.1! and
the currentI c are not necessarily the same. The definition of
the latter is linked to the Gibbs free energyG. One of the
equations obtained from the first variation ofG is
¹3¹3Q2¹3Ha1NQ50 with the above definedQ.
Only if the applied magnetic fieldHa is curl free ~which
applies to our case! and¹3¹3Q is replaced by2J does
one obtainJ5Jc , whereJc is defined by~3.2!. Taking a
contour integral ofQ around the SC ring, requiring single-
valuedness of the complex order parameter, gives the flux
quantization constraint

R dl•Q52pjS f

f0
1nD , ~3.3!

where the phase winding numbern is an integer or zero, and
f is the total flux enclosed by the contour. Explicitly

f5fa2LI . ~3.4!

The SC currentI , in Eq. ~3.4!, is positive for levitation and
negative for suspension, whereasfa is always positive.

The gravitational force and the interaction of the SC ring
with the magnet produces a net force on the magnet given by

F5m0E dv j ~ r̂Hz2 ẑHr!2 ẑW, ~3.5!

where j is the SC current density, andHz andHr are the
components of the field due to the magnet, evaluated at the
SC ring. In a stable equilibrium state the forceF50. Since
the net horizontal force component must be zero, the super-
conductor must generate a restoring force that constrains the
magnet to the axis of symmetry of the ring. Stability is dis-
cussed below. For now, assume the magnet remains as de-
picted in Fig. 3~a!.

For the uniformly magnetized sphere, depicted in Fig.
3~a!, the magnetic vector potential, in cylindrical coordinates
with the origin at the center of the magnet, is

Aa~r,z!5f̂
m0M0

4p

r

~r21z2!3/2
.

FIG. 3. ~a! The magnetic sphere of radiusa is levitated by a
superconducting ring of radiusb and wire cross sections, carrying
an induced currentI . The levitation height ish. ~b! Side view
showing the regions of stability to horizontal displacement.
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The applied fluxfa at the ring, calculated from the line
integral ofAa(b,2h), is

fa5
m0M0

2b

1

~11x2!3/2
, ~3.6!

with normalized heightx5h/b. The field components are
determined fromm0H5¹3Aa . In cylindrical coordinates,
ther component of the magnetic field at the superconducting
ring, and thez component anywhere in the plane of the ring
are

Hr52
3M0

4pb3
x

~11x2!5/2
, Hz5

M0

4pb3
2x22~r/b!2

~11x2!5/2
.

~3.7!

The wire cross sections is assumed small so that the
transverse variations ofN,Q, andH in the SC ring are small.
In this limit, the integrals in Eqs.~3.1!, ~3.3!, and~3.5! may
be replaced by their mean values. The fluxoid quantization
constraint Eq.~3.3! then yields

Q5
j

b S f

f0
1nD , ~3.8!

whereQ is now a measure of the normalized flux enclosed
by the ring relative to a quantum number. Equation~3.8!
links the mean value ofQ to the currentI via Eq.~3.4!.Q, I ,
andfa are explicit functions of heighth and therefore our
independent variables in the free energy areN andh. In the
same approximation, Eq.~3.5!, noting thatfa852pm0bHr ,
gives the vertical components ofF and]F/]h as

Fz52Ifa82W, ~3.9a!

Fz852I 8fa82Ifa9 . ~3.9b!

The primes denote partial derivatives with respect toh. At
equilibriumFz50, andFz850 as discussed after Eq.~3.13!.
Consistent with our thin wire approximation and the cylin-
drical symmetry of the system, we neglect the integral of
(j¹AN)2 in Eq. ~3.1!. Defining a normalized energy
E5DF/L(0), it follows from Eq.~3.1! that

E5Esc~ t !1
1

L~0! F12 LI 21faI1WhG , ~3.10!

where the explicit SC contribution is

Esc~ t !5S 2N1
1

2
N21NQ2D ~12t2!2.

Before considering the general problem of minimizingE,
subject to equilibrium constraints, it is elucidating to exam-
ine the parts. The termEsc is minimum for N51 and
Q50. In a levitation state, (I.0, x.0), the second term in
Eq. ~3.10! is always positive; thus the free energyE is an
absolute minimum whenN51, Q50, and the bracket is
minimized. At equilibrium, using Eq.~3.9a! with Fz50, the
bracket in Eq.~3.10! is minimum with respect to variation in
h when

I 850, ~3.11a!

or

2
WL

fa8
1fa50. ~3.11b!

Noting that I52W/fa8 , Eq. ~3.11b! is satified only for a
suspension state, (I,0, x,0). To acheive an absolute mini-
mum energy for a levitation state Eq.~3.11a! must hold, and
Eq. ~3.9b! requires thatFz852Ifa9 at equilibrium.

The normalized free energyE, Eq. ~3.10!, is a function of
the N and h. Minimizing E with respect to variation inN
gives

N512Q2, ~3.12!

which satisfies the absolute miniumum energy condition
N51 andQ50. We note that, in general, the variation of
DF(N,Q,I ,h) with respect toN~r ! yields the GL equation
j2¹2AN 5AN(N211Q2). Thus, neglecting the¹2AN
term gives a point variable form identical to Eq.~3.12!.

The variation ofE with respect toh, using Eqs.~3.8! and
~3.9a! with Fz50, leads to the relation

b

~fa8!2 F WL2fafa8

12L~ I 8/fa8!G I 85NQ, ~3.13!

where b5l(t)/@A2sHc(t)#. It is seen that whenQ50
~when the flux through the ring is quantized!, Eq. ~3.13!
requires that Eqs.~3.11a! or ~3.11b! hold at equilibrium.
Equation~3.11b! is a well defined function ofh, but the only
relation involvingI 8 is Eq. ~3.9b! in which Fz8 , is the coef-
ficient of the linear term in an expansion ofFz about the
equilibrium value. ForQ50, the levitation solutions that
minimizeE require thatI 850, and thus from Eq.~3.9b! that
Fz852Ifa9 . The absolute minimum value ofE occurs when
x50.5, at which pointfa950, and thusFz850. The corre-
spondingQ50 suspension solutions that minimizeE satisfy
Eq. ~3.11b!, and are independent ofI 8 and henceFz8 . In light
of these results we expect the lowest-energy solutions will
haveQ!1. Since the minimum value ofE is independent of
Fz8 for any value ofQ, Eq. ~3.13! must also be independent
of Fz8 . Consistency requires thatFz850, which is an interest-
ing result: The leading term in the restoring force is not
linear in the displacement from equilibrium. SettingFz850
gives I 852Ifa9/fa8 , and Eq.~3.13! using Eq. ~3.12! as-
sumes the form

J5~12Q2!Q/~12V!. ~3.14!

The height-dependent variableV is defined by

V~h!5
12fafa9/~fa8!2

12WL@fa9/~fa8!3#
. ~3.15!

The normalized SC current density isJ5bI . The variablesJ
andQ in Eq. ~3.14! are interpreted as mean values taken over
the volume of the SC ring. Equation~3.14! shows thatJ is
not equal to the quantum-mechanical expressionJc and that
the effective electron pair velocity isQ/(12V) in our case.
Thus, whenQ→0, the variableV→1 for a finite levitation
or suspension current. NeglectingV is equivalent to starting
with a free energy without the mutual inductance termfaI .
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Using the fluxoid quantization equation~3.8! and Eq.
~3.9a! with Fz50, Eq. ~3.14! gives the equilibrium height
equation

y~x![S f

f0
1nD 32S bj D 2S f

f0
1nD 1CS 12V

fa8
D 50,

~3.16!

with the constantC defined by

C5
2pm0bW

f0

~kb!2

s
,

wherek5l/j. The total flux, using Eqs.~3.4! and~3.9a!, is

f5fa1
WL

fa8
. ~3.17!

Equation~3.16!, using Eq.~3.17!, is a self-consistent equa-
tion for the temperature-dependent normalized heightx(t,n)
5h(t,n)/b of the levitated~or suspended! magnet.

Before investigating the general temperature-dependent
solutions of Eq.~3.16!, we analyse the important special
cases arising from exact flux quantization. WhenQ50 it
follows from Eq.~3.14! thatV51. Sincet appears only as a
coefficient of the flux in Eq.~3.16!, it is satisfied for any
value of j(t) whenQ50 andV51. @Note that in accor-
dance with Eq.~3.9a! at equilibriumJ cannot be zero.# Thus
magnet heighth is temperature independent when the total
flux is quantized. ForQ50, Eq.~3.8! using Eq.~3.17! gives

fa1
WL

fa8
1nf050. ~3.18!

The conditionV51 is satisfied if and only if

fa950, ~3.19a!

or

fa5
WL

fa8
. ~3.19b!

Condition ~3.19a! is satisfied forx560.5. In this case Eq.
~3.18! determines the radiusb of the SC ring for a given
phase winding numbern. The condition~3.19b! requires that
x,0, i.e., suspension, and that the induced flux equal the
‘‘applied’’ flux. Substituting Eq.~3.19b! into Eq.~3.18! gives
the half-flux quantum condition for suspension

fa52
n

2
f0 . ~3.20!

Together, Eqs.~3.20! and ~3.19b! determineb and x for a
givenn.

To further understand the significance of the quantized
flux solutions, let us examine the energyE in more detail.
Using Eqs.~3.6!, ~3.9a!, and ~3.12!, at mechanical equilib-
rium one obtains

E52
1

2
~12Q2!2~12t2!2

1
W

6pm0sHc~0!2 F 2b3WL

3~m0M0!
2

~11x2!5

x2
1S 1x14xD G .

~3.21!

The first term in Eq.~3.21! is the normalized energy of the
SC ring, which is minimum whenQ50. The term
(1/x14x) arises fromfaI1Wh and the other from the self-
inductance. Forx.0 all terms are positive, and the bracket
has an absolute minimum forx50.5. Therefore, when
Q50, the energyE assumes its absolute minimum value for
levitation at heighth50.5b, consistent with Eq.~3.19a!.

All calculations and figures are based on the following
data: The magnetic particle is an yttrium iron garnet~YIG!
sphere of radiusa50.4 mm, saturation magnetization
Ms523105 A/m and densityr55.23103 kg/m3, with re-
sultant magnetic momentM055.36310214 A m2, and
weightW51.37310214 N. The SC ring has wire cross sec-
tion s510214m2 and various radiib. The SC ring is Al with
zero-temperature values of the penetration depth and coher-
ence length taken asl~0!50.05mm andj(0)5j051.6mm.9

The temperature dependence used isl(t)5l(0)/A12t2

and j(t)5j(0)/A12t2; thus k5l/j is temperature
independent. The critical field for Al isHc(0)50.793104

A/m, and the critical current in the ring att50 is I c
5(2/A27)@A2sHc(0)#/l(0)50.97 mA. The self-inductance
of the ring is

L'm0bF lnS 8b

As/p D 21.75G .
The temperature-independent, absolute minimum energy,

levitation solutions requireQ50 andx50.5. They are de-
termined by Eq.~3.18!, which reads

m0M0

2b~11x2!3/2F12
4WLb3

3~m0M0!
2

~11x2!4

x G52nf0 .

~3.22!

With x50.5 Eq.~3.22! yields the ordered pairs

@n, bn~mm!#: . . . @0, 9.30#, . . . @23, 3.80#,@24, 2.89#, . . .

@29, 1.30# . . . .

These discrete radii correspond to levitation height
h50.5b, which is temperature independent until the current
in the ring exceeds the critical current of the superconductor.
Of course levitation occurs only ifI is smaller than the criti-
cal current at absolute zero, namelyI c50.97 mA. If a par-
ticular bm is used in the general equation~3.16!, only solu-
tions for n>m are physical (1>N.0), and those with
n.m are weakly temperature dependent.

The temperature-independent suspension solutions are de-
termined from the coupled Eqs.~3.19b! and~3.20!, explicitly
given by

3~m0M0!
2

4W
52b3L

~11x2!4

x
~3.23!
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and

m0M0

f0
52nb~11x2!3/2. ~3.24!

With the phase winding numbern and all magnet properties
fixed, assuming that the wire cross sections is known, Eqs.
~3.23! and~3.24! can be solved uniquely forb andx. Alter-
natively, if one were to fixb and leaven andx as the two
unknowns, then Eqs.~3.23! and~3.24! cannot be satisfiedin
generalwith n an integer. Equation~3.24! restrictsn to nega-
tive values. For our data, the ordered triplets which solve
Eqs.~3.23! and ~3.24! are

@n, b~mm!, x#:@21, 4.19,21.71#,@22, 8.23,20.759#,

@23, 9.42,20.316#.

There are no other solutions.
Stability of the magnet to horizontal displacement is de-

termined by ther component of Eq.~3.5!. Domains in which
there exists a self-centering, horizontal restoring force are
shown in Fig. 3~b!. As pointed out in Ref. 5 for
0,x,1/A2 the levitation solutions withI.0 are stable,
whereas suspension solutions withI reversed are stable for
x,21/A2. Thus all of the above absolute minimum energy,
quantized flux, levitation solutions withx50.5, and the
quantized flux suspension solutions forn521 andn522
are stable; whereas then523 suspension solution is not
stable, nor is thex520.5 solution which satisfies Eq.
~3.19a!. When V50 the equilibrium current density
j52W/(sfa8) equals the quantum-mechanical current den-
sity @A2Hc(t)/l(t)#NQ. To obtain this condition, Eq.~3.15!
requires thatuxu51, or uxu infinite. Only the suspension so-
lution at x(t)521 is stable.

In general, if the total flux in the SC ring is not quantized,
i.e., whenfÞ2nf0 which requires thatQÞ0, then the pa-
rameterx5h/b is determined by Eq.~3.16!. However, since
all solutions which relate to the lowest stable energy have a
constant and temperature-independent levitation height
h50.5b, and a stable levitation height cannot exceed
h50.707a, the height of stable levitation states are not
strongly temperature dependent and remain close to 0.5b as
the temperature is varied.

We now turn our attention to the general temperature-
dependent solutions of Eq.~3.16!. The functiony(x) has a
root x0 that corresponds to the minimum value ofDF. For a
given set of parameters, there is a minimum and a maximum
value of n for which the root x0 exists, i.e.,
nmin<n<nmax. For eachn, as the temperaturet increases,
x0 disappears at a cutoff temperaturet5tco<tc .

Figure 4 shows the quantized, normalized levitation
heighth(t,n)/b plotted as a function oft5T/Tc for SC ring
radiusb53.345mm. This radius is the average of the dis-
crete radii corresponding to then523 andn524 quan-
tized flux, temperature-independent solutions. Three levels
are shown from the complete set of fluxoid quantum num-
bers in the rangenmin523 to nmax53 for which levitation
solutions exist. Only then523 level in the complete set is
horizontally stable. Asn increases, the levels become in-
creasingly temperature dependent, with a decreasing cutoff
temperaturetco . For this ‘‘intermediate’’ radius, other pa-

rameters,E, J/Jc , andN are plotted in Figs. 5–7. It is seen
that the normalized total free energyE, calculated from Eq.
~3.10! is dominated by the condensation energy, withN'1,
for n523; whereas forn53 energy is extracted from the
condensate to lift the magnet to a higher levitation state. For
n523 the normalized current densityJ exceedsJc for t
slightly less thant5tco , but for higher values ofn it does
not. The behavior of then53 current density is due to the
relatively large value ofQ on the right side of Eq.~3.14!.
The maximum of J occurs at t50.29, at which point
Q51/A3 and Jc5Jc52/A27. The corresponding value
N52/3 also occurs att50.29 as seen in Fig. 7.

Figure 8 shows the energyE plotted as a function of
normalized heighth/b at temperatureT50 for a SC ring of
radius b51.295 mm, at three fluxoid quantum numbers
n527,28,29. Total flux is quantized only for then529
temperature-independent level. All three states are horizon-
tally stable, and lie in narrow potential wells. The higher,
horizontally unstable states have shallow, overlapping energy
wells, indicating possible vertical instability.5

FIG. 4. Quantized, normalized levitation heighth(t,n)/b plotted
as a function oft5T/Tc for SC ring radiusb53.345mm for three
values of the fluxoid quantum numbern in the rangen min523 to
nmax53 for which levitation solutions exist. Each curve has a dis-
tinct cutoff temperature.

FIG. 5. Normalized free energyE as a function oft. Parameters
are the same as in Fig. 4.
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Figures 9 and 10 show a strong temperature-dependent
‘‘transition’’ state forb57.28mm. For this radius a solution
exists only forn522. The suspension heighth/b is plotted
as a function oft, in Fig. 9, which shows a rather sharp
transition att tran50.667 between the unstable and stable re-
gions. The total flux in the ring, plotted in Fig. 10, exhibits
similar behavior. Other parameters, not shown, also exhibit
unusual behavior. The pair densityN has a small, abrupt
decrease att tran; whereas the energyE is a smooth function
of t. The normalized current densityJ, has a small, abrupt
increase in magnitude att tran, with J,Jc for t,0.85. The
superfluid velocityQ!1 for the entire temperature range.

IV. CONCLUSIONS

We have studied the levitation of a macroscopic magnet
over a superconducting sheet of thickness much larger than
l(t). We find that the magnet with the moment parallel to
the sheet has a levitation height which is 84% of the levita-
tion height with the moment perpendicular to the sheet@com-
pare Eq.~2.7! for a50 anda5p/2#. As long as the sheet is
in the Meissner state, with no flux locked in, the magnet is,

in principle, unstable to lateral displacement. However, a
‘‘depression’’ in the sheet will stabilize the lateral motion
~see plate 1 in Shoenberg6!. When the tangential component
of the surface field exceedsHc(t), the thermodynamic criti-
cal field, the levitation height decreases.

Magnetic suspension states, arising from flux pinning in a
macroscopic disk of a high-Tc superconductor is a well es-
tablished phenomenon~see plates 1–10 by Moon1!. For a
mesoscopic SC microring of radius of the coherence length
j(t) ~e.g.,j>1.6mm for Al! and a magnetic sphere of radius
in the same range, we find both levitation and suspension
states which depend on the fluxoid quantum number. Equa-
tion ~3.16! determines the levitation and suspension states of
a spherical magnet with moment perpendicular to the plane
of the SC ring as a function of temperature. Stable levitation
states occur in the rangeh50.5b to h50.707b. Levitation
states aboveh50.707b are unstable to lateral displacement
@see Fig. 3~b!#. Stable suspension states are possible for

FIG. 6. Normalized SC current density as a function oft. Pa-
rameters are the same as in Fig. 4.

FIG. 7. Normalized SC pair density as a function oft. Param-
eters are the same as in Fig. 4.

FIG. 8. The normalized total free energyE of the levitation
states for fluxoid quantum numbersn527,28,29 are plotted as a
function of normalized heighth/b at temperatureT50 for SC ring
radiusb51.295mm. Total flux is quantized for then529 level
which is temperature independent. All states are horizontally stable.

FIG. 9. ‘‘Transition’’ state forb57.28mm. Suspension height
h/b versust, exhibiting a sharp transition att tran50.667. A physi-
cal solution exists only forn522.
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h,20.707b, and are horizontally unstable for
0.h.20.707b. For certain ‘‘quantized’’~discrete! radii of
the ring, which depend on the fluxoid quantum numbern,
the levitation heighth is one-half the ring radius and tem-
perature independent. This occurs when the flux through the
ring is quantized in units of the fluxoid quantum and the
average supercurrent velocityQ in the ring is zero. For radii
in between the quantized values, Eq.~3.16! leads to slightly
temperature-dependent levitation heights. Temperature-
independent suspension states are also found. For these
states, the distance of the suspended magnet depends both on
fluxoid quantum number and ring size. Again, states in-
between the temperature-independent suspension distances
are slightly temperature dependent for most values of ring
radii. For certain radii, we find an abrupt ‘‘transition’’ state in
which the suspension distance is strongly temperature depen-
dent.

Comparing the results of Secs. II and III, we find from Eq.
~2.4! for a perpendicular moment (a5p/2) that the largest
sheet current density occurs at distancerm50.5h from the
center of the ring. Thush:rm52:1. This compares toh:b
51:2 for the ring current discussed in Sec. III when the flux
is exactly quantized. Intuitively this is consistent with the
fact that a continuum of current loops flowing parallel to
each other will give rise to a larger lift force than a single
loop can produce. From Figs. 2~a! and 2~d! it is evident that
only the perpendicular moment configuration (a5p/2) will
be supported by a thin ring. In general, when the current in
the superconductor exceeds the critical currentI c(t) the
magnet falls. Depending on the superconductor, this could
happen well below the transition temperatureTc .

Experimental observation of the quantization effects in-
vestigated in Sec. III is certainly a challenging problem. The
SC ring radius must be in the mesoscopic domain. Using
current fabrication technology, only type-I superconductors
satisfy the requirements. The suspension states and the
lower-lying levitation states are stable, and should be observ-
able in the mesoscopic domain. Recent advances in the de-
velopment of optical ‘‘tweezers’’ using laser microbeams to
trap and manipulate micron-sized biological particles may
make it possible to position a magnetic microparticle.10 To

observe unstable~non-self-centering! states, the magnet must
be externally constrained to the symmetry axis of the SC
ring. Ideally, it could slide down a frictionless fiber. Perhaps
the magnetic particle could be slightly charged and held on
the axis of a cylindrical capacitor, coinciding with the SC
ring axis. Levitation of a magnetic particle, or a high-
temperature SC disc with locked-in flux, above a thin type-I
superconducting film containing a periodic array of holes is
another possible experiment. Such arrays have been fabri-
cated already.11 As a final suggestion, one could levitate a
commensurate array of aligned magnetic dipoles frozen into
a nonmagnetic medium. Although the latter system is not
analyzed here in detail, it should exhibit behavior similar to
the single ring case.

APPENDIX A: LEVITATION OF A MAGNET
BY A THICK SC RING

The current flowing around a thick SC ring of wire radius
r@l is a surface current; thus a contour exists in the bulk of
the ring such thatQ50. It follows from Eqs.~3.4! and~3.8!
that

LI5fa1nf0 , ~A1!

wherefa is the applied flux, Eq.~3.6!, due to the magnet,
enclosed by the contour. Assuming thath@2r , the variation
of the field in the surface layer around the wire cross section
can be neglected and Eq.~3.9! is valid. At equilibrium

W52Ifa8 . ~A2!

Eliminating I from Eq. ~A1! yields

LW1~fa1nf0!fa850. ~A3!

Equation~A3! determines the temperature-independent states
of a magnet levitated, or suspended, by athick SC ringsat-
isfying l!r!0.5h. Assuming that the flux in a thick ring is
conserved, the quantum number is determined by the initial
conditionnf05LI 0 , whereI 0 is the persistent current in the
ring prior to the introduction of the magnet.

APPENDIX B: LEVITATION OF A MAGNET
BY A SC MICRORING: LONDON APPROXIMATION

In the London theory of superconductivity the current in
the SC ring, using the sign convention of Fig. 3~a!, is given
by

I5s j5
s

m0l
2~ t !

A, ~B1!

whereA is the mean value of the magnitude of the total
vector potential over the wire cross section of the ring. Using
the integral relation

f5 R dl •A52pbA,

andf5fa2LI , the current in Eq.~B1! is

I5
fa

L0~ t !1L
, with L0~ t !52pm0b

l2~ t !

s
. ~B2!

FIG. 10. Transition state: Total fluxf linking the ring is plotted
versust.
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Using Eq.~B2! to eliminateI from the equilibrium equation
W52Ifa8 , leads to the self-consistent height equation

4

3
m0S b2

m0M0
D 2F2S l0

r D 2 1

12t2
1L8GW5

x

~11x2!4
,

~B3!

where x5h/b, r5As/p is the radius of the wire, and
L85 ln(8b/r)21.75.

With the data used in Sec. III, and with ring radius
b51 mm, for example, the ratio (2/L8)(l0 /r )

250.49; thus
the London levitation height is temperature dependent. Since
the right side of Eq.~B3! has a maximum value of 0.2216 at
x051/A7 there exists a maximum value ofb4W/M0

2 . Levi-
tation solutions exist forx.x0 . For b53.345mm, the nor-
malized heightx(t) is very similar to that shown forn50 in
Fig. 4, which is an unstable solution. Increasing the radius of
the ring tob58 mm, Eq. ~B3! has a strongly temperature-
dependent, stable solutionx(t) in the rangex(0)50.7 to
x(0.85)50.375, and the current density remains less than

Jc . Increasingb
4W/M0

2 causes solutions of Eq.~B3! to ap-
proachx0 at lower values oft until finally there is no solu-
tion at any temperature. Suspension solutions of Eq.~B3! are
not possible in the Meissner state,n50.

Modifying the London Eq.~B1! by the gauge transforma-
tion A⇒A1(f0/2p)¹u, with the contour integral of¹u
defined to be 2pn, leads to the equation

L0I5f1nf05fa2LI1nf0 , ~B4!

which is equivalent toJ5Q, with J5@l/(A2sHc)#I . Equa-
tion ~B4! follows from Eq. ~3.14! in the limit Q!1, with
V neglected. However, note thatJ5Q does not admit equi-
librium solutions forQ50, sinceJ cannot be zero for levi-
tation or suspension. At equilibrium, Eq.~B4! is

@L0~ t !1L#W1~fa1nf0!fa850. ~B5!

In contrast to Eq.~B3!, Eq. ~B5! has suspension solutions for
n,0. In the limit L0(t)!L, Eq. ~B5! reduces to the thick
ring result, Eq.~A3!.
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