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Quantized levitation states of superconducting multiple-ring systems
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The quantized levitation, trapped, and suspension states of a magnetic microsphere held in equilibrium by
two fixed superconductingSC) microrings are calculated by minimizing the free energy of the system. Each
state is a discrete function of two independent fluxoid quantum numbers of the rings. When the radii of the SC
rings are of the same order as the Ginzburg-Landau coherence Kigththe system exhibits a small set of
gravity and temperature-dependent levels. The levels of a weakly magnetized particle are sensitive functions of
the gravitational field, indicating potential application as an accelerometer, and for trapping small magnetic
particles in outer space or on Earth. The equilibrium states of a SC ring levitated by another SC ring are also
calculated.

I. INTRODUCTION ducting microring circuits. In this system there is a strong
nonlinear interaction between the gravitational and magnetic
Self-stabilizing magnetic levitation is an eclectic phenom-fields that can actually lift the magnet as gravity increases.
enon that generally couples electromagnetics, superconduthe effect of weightless and small gravity environments, rel-
tivity, and the gravitational field. The necessary ingredientevant to space applications, e.g., satellites, is also investi-
for magnetic levitation are a magnetic-field source and ajated. Charging the magnetic particle, and applying a uni-
magnetic-field shaping, or trapping devic&he simplest form electric field provides a convenient mechanism for
system that satisfies these requirements is a magnetic dipoiganipulating it among the quantized levitation levels. Since
and a simply connected superconductor, a system analyzefe effect of the electric field is identical to that of the gravi-
many times in the literature, typically applying magnetic im- tational field, variation of only one field is necessary to study
age methods™° For a temperaturd,, below the SUPErcon- the effect of either field. Using the approach developed in
ducting (SO critical temperatureT, a unique equilibrium  pets 3 and 4, the total free energy of the system is mini-

levitation height, independent of temperature and SC mateyized, subject to the constraints imposed by single-

rial properties, is obtained. The levitation force on Macro 5y edness of the complex superconducting order parameter
scopic magnets of various shapes placed above a SC pla

IiFeach ring, and mechanical equilibrium. In Sec. lll we ana-

hgve been calculateq using the Lpndon theory, which a[s ze the levitation of a SC ring by a fixed SC ring current.
gives a temperature-independent dipole height as long as it : . . .
e resulting quantized states of both systems are investi-

much greater than the London penetration depthin the . . : . . .
: I : ted in detail and compared with the single ring results in
rfect Meissner limi he for n the pr ipofa 98 . . .
periect Meissne tX—0) the force on the probe tip of a Refs. 3 and 4. Section Il is devoted to our conclusions, and

magnetic force microscogemodeled by a linear superposi- ; ; . . ;
tion of magnetic dipoles, above a macroscopic SC ring ha& duantized, linear theory is developed in the Appendix.

also been calculatétiThe latter may be useful in interpreting
the surface roughness effect on the probe.
Using high-temperature type-ll oxide superconductors!- A MAGNETIC MICROSPHERE TRAPPED BETWEEN
both repulsive levitation, based on partial flux exclusion and TWO SC RINGS
flux pinning, and attractive levitatiofsuspensionbased on
flux pinning, have been observed in macroscopic systems. : I
mesoscopic SC ring circuit is a simple, basic device thaﬁ‘ .and separation, as S“OW.”. n F.'g' 1(Throughogt the .
exhibits not only the necessary flux trapping, but also fluxoid?icle; parameters characterizing ring a are subscripted with
quantization. In a recent study of a magnetic microspheré& and thos_e charactenglng_rlbgare subscripted W'tb')_ The
levitated, and suspended, by a superconducting microring, ff0SS Sections ae=7r*. Itis assumed that the SC rings are
was shown that the equilibrium value of the relative coordi-mounted on nonmagnetic insulators which are fixed. The
nate of the magnet is a member of a small set of quantizedn@gnet trapped between the SC rings, at distanrem the
weakly temperature-dependent level8This discrete nature lower ringb andd—h from the upper ringa, is a uniformly
of the levitation levels is a direct consequence of fluxoidmagnetized sphere with saturation magnetizakity) radius
quantization in a multiply connected superconductor. m, and densityp. The magnetic moment of the magnet is
Here we extend our analysis of quantized levitation in theM =Mz, with Mo=Mmr3/3, and the weight
mesoscopic regime to the study of the equilibrium IevitationW=(47Tr§1/3)pg, whereg is the gravitational acceleration
states generated by microscopic multiple-ring superconductonstant, with nominal valug,=9.8 m/s’. The SC rings
ing (SO systems. In Sec. Il we investigate the levitation, carry an induced currertt and have self-inductande The
trapped, and suspension states of a magnetic microsphere, %€ ring material is characterized by the temperature-
a gravitational field, held in equilibrium by two supercon- dependent magnetic-field penetration depi{t) and

Consider two superconducting microrings of raaiand
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z tial. The last two terms comprise the kinetic energy
K=&?|py|?, where p=—iV+(2m/¢o)A. The thermody-
namic critical magnetic field is given by

non-magnetic
insulator

W;{/M _ o ~ )
2 He(t) = =H(0)(1-1), (23
T \ 2\2mpoh (D E(Y)
SC loop where ¢o=h/(2]|e])=2.07x10"1° Weber is the fluxoid
quantum.

The wire cross section of each ring is assumed small, so

M, the transverse variations ®f, Q, and magnetic fieldd in
the SC ring are small. In this limit, all integrals involving

o these quantities may be replaced by their mean values. Con-

sistent with the thin wire approximation, and the cylindrical
symmetry of the system, we also neglect the integral of

N (6V\N)2, giving

SC loop

1 2 2
AF = Aq()| = Nat 5NZ+NLQ3

77 2
nen-magnetic I, + Ab(t)< —N,+ }Ng-l- Nng) , (2.9
insulator 2
FIG. 1. The magnetic sphere of radiaiss trapped between two . . . .
superconducting rings of radii andb and fixed separatiod, car-  FOr €ach rln92 of radiup and wire radiusr, the constant
rying induced currents, andl,. The levitation height is mea-  A(t)= oV, He(t), with V,=2m?pr? the volume of the SC
sured from ringb. ring. The flux coupling energy between the magnet of mo-
mentM and a SC ring of radiup is —M-B=1¢,,(2),
whereB is the flux density generated by the induced current
Ginzburg-LandaulGL) coherence lengti§(t). The variable | in the ring, at the magnet on the ring axis at distaace
t=T/T., with T the temperature, and, the critical tem- measured from the ring, andi,,(2) is the “applied” mag-
perature of the SC—normal phase transition in zero magnetigetic flux enclosed by the SC ring dueNb The total stored
field. magnetic energF, is
The heighth is determined self-consistently by minimiz-
ing the total free energy of the system consisting of the mag-

net and two SC rings, subject to fluxoid quantization and :1 2 1 2_ _

mechanical equilibrium constraints. Since the magnetic field Fm=glalat 3 lolh 'aloMap(d) Fadma(h—d)

at the SC rings is not a controllable external variable, the | h 5

Helmholtz free energy is the apppropriate functional to be Flodmp(n), 29

minimized!! The difference between the SC and normal

state free energies of the system is whereM ,,, is the mutual inductance between the rings. The

currents are defined such thgt-0 andl,>0, as referenced

AFs=AF+AF,+Wh, (2D in Fig. 1. In the trapped configuration shown, both rings

repel the magnet.

Taking a contour integral dp around a SC ring, requiring
ingle valuedness of the complex order parameter, gives the
ux quantization constraint

The termAFg. is the energy of the SC rings, afd-,, is the
stored magnetic energy. The last tetidh, is the gravita-
tional potential energy of the magnet, relative to the plane oﬁ
the lower SC ringb. The general form of the SC energy is

A
AFSC:#f dv[—N+%N2+NQ2+(§V\/ﬁ)2}, 3§d,_Q:2W§
(2.2

5"
b0 +nj, (2.6

where A(t) = uoVHZ(t), with V the volume the supercon- where the phase winding numbeis an integer or zero, and
ductor, andH(t) is the thermodynamic critical magnetic ¢ is the total flux enclosed by the contour. Writing out the
field. The first two terms in the integrand are the normalizeccontributions to the total flux in each ring due to the magnet,
condensation energy of the superconductor, With|#|?>,  the mutual inductance between the rings, and the self-
where y=V/V 1= IN exp(6) is the normalized complex inductance of each ring, the fluxoid quantization constraints,
order parameter. The functionQ is defined by obtained from contour integrations € around each ring,
Q=¢[V o+ (27 pg)A], with A the magnetic vector poten- are
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Thus, the rope holds up the total weight of the system, in-
) cluding the floating magnet. No further information is ob-
2.7 tained from Eq.(2.12.
& 1 ' The free energyAF in Eq. (2.1), is a function of five
Qb=3{ ¢_0[¢mb(h)_|aMab(d)_Lb|b]+nb . unknown variablesN,,Ny,l 5,1y ,h. Minimizing E with re-

spect to variation ifN, and N, gives
At this point theQ’s are mean values in the rings. The flux
linking a ring of radiusp, due to the magnetic dipole, with N,=1-QZ%, N,=1-Q3, (2.13
magnetic momeni =Mz, located on the ring axis at dis-
tancez from the ring is which, in view of the flux constraint Eq2.7) leaves us with
three unknownsl,,, 1, andh. The only other contraint that
oMo z\? reduces the number of unknowns is E2;11), which we will
7 {”(E)

use to eliminatel,. The remaining problem is an uncon-
. ... trained minimization of the two parameter function
and the mutual inductance between the two coaxial ””giF(l
separated by distanakis

a1
Qa:%{ g‘Tol:d’ma(h_d)_|bMab(d)_|—a| althna

312
: (2.9

a»-h). For numerical purposes, we intoduce normalized
energyE and a normalized current densilydefined by

Map=ovabgy[ mo(d)], 29 AF
i i i E=—— 2.1
where the functiory; is defined as AN (2.19
1
91:\/?0[(2_mo)K(mo)—ZE(mo)], and
a a\? [d\?]¢ J:—Mt) ] 2.1
m0=45 1+6 +(B , \/ESHC(t)‘]c Bl ( 5)

with K andE complete elliptic integrals of the first and sec- whereJC=2/\/2—7 is the critical current density of a SC ring
ond kind, respectively. The self-inductance of a ring of ra-in the presence of a magnetic reservoir. Using E24) and

dius p and wire radiug <p is approximated by (2.11) leads to the normalized energy functidf(J,,h)
given by
8p
L=pwop In(—) —1.75. )
r E(Ja,h)=Es(t) +C[Ex(h)Jz+E; (h)Ja+Eo(h) ],

(2.19

Noting that the magnetic-flux densi® on the axis of a
current loop, of radiup, carrying current, is proportional where the SC contribution is
to the flux ¢n,(2), Eq.(2.8), thez component of the force
on the dipole is

Esdt)=— % 7(1-Q3)%+ %(1—Q§)2}(1—t2)2,
(2.10 (2.1
d

dPmp(2)

J
Fo=——(-M-B)=—1—"

Using this result, the equilibrium mechanical constraint on?"
the magnet in Fig. 1 is

La ¢rcna I—b d’rlna Mab
W= 1,5 (h—d) =1,/ (h). (2.1 EZ(h)_Z_;ﬁ[l+¢_’m) L_a¢_'m+ it
The prime denotes differentiation with respeciztoand the
argument ofgb,’n_p(z) is the value ofz after differentiation. _ Pma| WLy [dma Mg dmb Pma
It is interesting to evaluate the forces on the rings. To do Ei(h)= ﬁ_ W ¢_/+ L, 1- ¢_ ¢_, '
this, assume that the rings have weigtlf andW, and are & L¥ma¥mb A Fmb ma Fmb
tied together by stiff rods, and that the “birdcage” system is
suspended by a string. Lat,=T,Z be the tension in the E (h)zwm’( WL, —1]+Wh
string, andT = = TZ be the tension in the rods necessary to 0 Db\ 2OmpP b '

hold the rings in place. The total force on each ring is

Fa= 2 To= T—Wot ol pMAs(d) + Lbs(h—d)], - //A\Eg;: \[g
b

) 2.12
Fo=2[T—Wy+lalyMp(—d) +pdps(h)].

-1
1

Ap(0) &,(0)
Iy b

Na(0) £4(0)
ra a

In  equilibium F,=F,=0. Noting that M} (d) — 1 :4'“0‘2/5)”(0) Aa(0) £6(0) ga(O).
=—MJ,(—d)<0, Egs.(2.12 and(2.1)) yield VA 4(0)A,(0) &0 'y Ta b a

To=Wo+W,+W. From Egs.(2.7) and(2.1])
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FIG. 2. Normalized trapped heigtit/d as a function of the FIG. 3. Normalized heighb/d as a function ot=T/T., with

gravity factor g=g/g, for aluminum SC rings of radiua=b=2 gf = 1, for the data of Fig. 2.
pm, separationd=4 um, at zero temperature, and fluxoid quantum
numbers,=n,=0. The magnet is YIG, with 10% saturati¢sf =

0.3 =g/gy, Wheregy=9.8 m/s, at constant temperature, or vary
the temperature at constant gravitational factor.
Our object is to find the minimum energy of EQ.16 by
R +WMab varying the current, in the upper ring(Fig. 1) and the
Qa=7 % ®ma o heighth of the magnet aboveh(>0) or below h<0) the
lower ring. When the magnet finds a minimum in the free
La Map Pma energy withh<<0, we call this solution a suspensio)(

+ boBa —1+ Ly ¢_’mb Jatna|, (218 giate In that case, there is a net attraction between the ring
currentsl ;, andl, and the magnet, balanced by the weight of
the magnet. Whem>d, the separation between the rings

&l 1 WL, Ly [ ®@ma Map (Fig. 1), there is a net repulsion between the ring currents
Q=7 o mb T b + oBal b Ly Jatng|. and magnet, which is balanced by the gravitational force on

the magnet. This is a levitatiorL] state. When the particle
o finds a minimum in the free energy with in between the
All flux and flux derivatives ¢, and ¢y, , are evaluated at g rings (0<h<d) the solution corresponds to a trapped
h—d for p=a andh for p=b. Since the discovery of high- (T) state. In this case the net magnetic force on the magnet is
T. superconductors there is considerable interest in refrigeraupward directed, and balanced by the weight. The net mag-
tionless superconducting electronics in space applicationgetic force can be composed of repulsive forces from each
such as satellites. The trapped states of a magnetic particle ifhg current, attractive forces from each ring current, or a
a weightless environment are obtained by setiidgr0, in  repulsive force due to ring currehg and an attractive force
Egs.(2.16 — (2.18. due to ring currentl,. As the gravitational force on the
All calculations and figures for the double ring-magnetmagnet decreases, the magnet is pushed toward the center
system are based on the following data: The magnetic pagetween the rings. Depending, however, on the fluxoid quan-
ticle is an yttrium iron garnet(YIG) sphere of radius tym numbersn, and n, (initial magnetic flux state of the
rm=0.4 um, saturation magnetizatiddls=2x10° Alm and  rings), there can be more than one trapped level not neces-
density 5.2<10° kg/m®, with resultant magnetic moment sarily near 0.6. We find with the above data that, with one
Mo=5.362<10"** Am?, and weightW=1.366<10 **N.  exception discussed shortly, the overall lowest-energy states
Both SC rings have wire cross sectigr1.0x10"* m?,  gre described by fluxoid quantum numbers=n,=0. In
and radius=b=2 um, and the ring separationds=4 um.  thjs case, there exist three equilibrium position levels: 8ne
The SC rings are Al with experimental values of gneT, and onel level. TheL level behaves similar to the
He(0)=0.79x10" A/m, and GL parameter=\(0)/ results reported in Refs. 9 and 10.

£(0)=0.015. Using Eq(2.3) the zero-temperature values of  Figure 2 shows the trapped height level as a function of
the penetration depth and coherence length are calculated fge gravity factor, gf, alf =0 K for n,=n,=0 with a mag-
beX(0)=0.0188um, and£(0)=1.25 um. The temperature netic saturation factor s& 0.1 as referred to YIG. A very
dependence used is(t)=\(0)/V1—t? and &(t)=£(0)/ light particle tends to be trapped in the center between the
JV1—t?; thus k=\/& is temperature independent. Further- magnets, while a heavy particle of the same magnetic
more, we assume that the magnetic sphere is only 10% satatrength finds a minimum energy height pushed toward the
rated, reducing the magnetic forces relative to the gravitalower ring. In this particular case, the magnet is being
tional. In all the figures below we keep the magnetic momenpushed away from both rings, with the current in the lower
of the sphere constant and vary the gravitational factor gfing being larger than that in the upper ring.



33 QUANTIZED LEVITATION STATES OF SUPERCONDUCTIIS . .. 3501

0.4 . T : T . r . T T 0.04

0.02

s
N
.
(=]
T

!
o
Q
[
T

|

o

=)
T

Normalized SC Current Density
&
S
Normalized Height h/d

na=0 nb=0 \ ) -0.04F
-0.8 \\‘ na=-1 nb=-1
| -0.06[ t=0 sf=0.1
-1 ' 4
12 o1 o2 05 04 05 06 07 o8 09 1 OO o2 o4 o6 o8 1 1z 4 16 18 2
’ ’ ’ ’ Tfr c ’ ’ ’ ' Gravity Factor
FIG. 4. Normalized current densitie3, in the upper andy, in FIG. 6. Normalized heighh/d changing from a trapped to a
the lower ring, corresponding to the data of Fig. 3. suspension state as a function of the gravity factor gf/g, for SC

rings of radiusa=b=2um, separatiod=4um, at zero tempera-
ture, and fluxoid quantum numberg=n,=—1. The magnet is
Figure 3 shows the magnet height at normal weight=gf 'G: With 10% saturatior(sf = 0.1).
1, as a function of temperature with the above assumed tem-
perature dependences féft) andA(t). Figure 4 shows the L
corresponding currents. At low temperatures both ring curl@rgér values of the quantum numbers no minima in the free
rents push the magnet away, while for0.84 both currents €Nergy are found, and all quantized levels disappear. For all
attract the magnet, the upper stronger than the lower. peduantum néjmbers the bulk norr_nallzed superelectron _d_enS|-
tween 0.55t<0.84 the lower current pushes the magnett'es N=|4|* remain close to unlt“y, except "r1§ar the critical
away, while the upper attracts it. As a consequence the maé@mperatureTc, whereN of the “dominant” ring falls to
net exhibits a rapid transition from below the midpoint posi-2€"°- _ , _
tion at low temperatures to above the midpoint as the tem- AS an interesting locked-in flux state, we choose
perature increases abote 0.55. na=n,=—1 with a sf= 0.1. For th|§ set of quantum num-
Figure 5 shows the suspension height as a function opers somér_states have energy minima Iowgr than those for
weight. Lighter magnets of the same magnetic strength find Ba=Nb=0, in the same height range. We find ondevel,
minimum energy position further away from the lower ring 'our T levels and twds levels, one of which passes through
than heavier magnets, which require a larger magnetic forc%e lower ring and becomes R level as the gravitational
to keep them suspended. To keep a heavier magnet su&'ce is decreased. The levels _behave similarly to those
pended requires a larger current. In this particular instanc&OWn in Refs. 9 and 10. There isSdevel ath/d~—0.9 for
almost all of the attraction is due to the current in the lowerdf = 1, which rises as temperature and gravity factassin
ring, while the current in the upper ring is practically zero. Fig- 9 are increased. The height of the otierlevel is
A moderate increase in the quantum numbersandn,, sh(_)wn in Fig. 6 as a function of the gravity factor. At normal
increases the number of levels in general. However, folV€ight the magnetis suspended below the lower ring. As the
gravity factor is decreased the magnet finds an equilibrium
position, corresponding to a minimum free energy, as the
o4 ' ' ' ' ' ' ' ' ' magnet rises through the lower ring and becomdslavel
for gf <0.73. For this level the functional variation &f
versus gf is opposite to that found for the lowsrlevel,
discussed above. The explanation for this behavior can be
found in the slope of the force on the dipole, E.10
which is of opposite sign near and far away from the current
carrying ring circuits. The magnet position shown in Fig. 6 is
near the center of the lower ring where the lift forces due to
the current in the lower ring are small. We find that over the
gravity range shown in Fig. 6 the magnetic sphere is mainly
held in position by the upper ring current. It should be men-
tioned that when the magnet finds itself in thdevel both
upper and lower currents pull on it. Over the gf range shown,
085 . . . X , . . . . the current varies only slightly, and for gf 1 the height is
0 02 0408 M yRaar 0B decreasing with increasing temperature, but only very
slightly on the scale shown in Fig. 6.
FIG. 5. Normalized suspension height as a function of the grav- Besides thes level which becomes & level, mentioned
ity factor gf for the data of Fig. 2. above, there are three additiofalevels possible over vari-
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FIG. 7. Two trapped levels, one near the center between the FIG. 9. Normalized heightt/d as a function ot=T/T,, for gf
rings, the other near the upper ring, as a function of the gravity= 1 and data of Fig. 6, for two trapped levels, one near the center
factor gf. The upper level exists only for gf1.1. Data is the same between the rings, the other near the lower ring. The lower level
as in Fig. 6. exists only fort<0.52.

ous gravity and temperature ranges shown in Figs. 7—10. The For other combinations af, andn, we find similar quan-
level located just above the midpoint between the two ringgized levels. Since all the equations used are strongly nonlin-
exists for all temperatures and gravity factors shown. Its enear it is not possible to reduce our result to a common vari-
ergy minimum is lower than those of the other two levels forable, like My/W or similar. However, for a given set of
equal (T, gf) conditions. The currents for the center level experimental parameters the levitation, trapped, and suspen-
(curves near—0.4) and the level near the upper ring are sion levels can be uniquely calculated from the above equa-
shown in Fig. 8. Both ring currents attract the magnet withtions for various fluxoid quantum numbeng andn,,.

the upper ring generating the larger force. The upper level
disappears when the gravity factor exceeds 1.1. Similarly,
Figs. 9 and 10 show there exist3 devel near the lower ring
for low temperature, which disappearsTdil .;~0.52. Mag-
netic particles trapped in the higher energy states near the Here we analyze the two SC ring system depicted in Fig.
upper or lower ring will most likely make a transition to the 11. Assume that SC ring is fixed, and carries a persistent
lower energy center level by tunneling out of the energy wellcurrentl,,, i.e., ringb is an energy source with,#0. If a
before the corresponding energy minimum disappears. Theecond SC ring, of weightv,, is placed on the axis of ring
currents for both levels, shown in Fig. 9, attract the magnetid, a current , will be induced as shown in Fig. 11, and it will
particle, in contrast to the casg=n,=0 (Fig. 4 where the levitate at equilibrium heighlh. The free energy of this sys-
force is repulsive over all gravity factors and temperaturesem, and the flux quantization constraints are obtained from

Ill. LEVITATION OF ONE SUPERCONDUCTING
MICRO-RING BY ANOTHER

below 0.55. those given in Sec. Il with all magnet terng,, and ¢y, set
-0.2 0 T T T
Jo
o2sf .- =T na=-1 nb=-1 _o2k ]
—————— Ja

5 £
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FIG. 8. Normalized current densitie$, in the upper and,, in FIG. 10. Normalized current densitiek, in the upper andy, in

the lower ring corresponding to the data of Fig. 7. the lower ring corresponding to the data of Fig. 9.
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FIG. 11. Superconducting ring currdntlevitated by a fixed SC
ring with currentl, . FIG. 12. Normalized height/d as a function ot=T/T,, for the
situation shown in Fig. 11, with aluminum rings of radas 1 um,
b=2 um, and fluxoid quantum numberg=0,n,= —1.
to zero,W replaced byW,, andd replaced by the variable

h. The equilibrium force constraint is a distinct function of ) ) ]
the currents, given by when b=<a. As an example, aluminum rings with

W 1M (h 31 b=2a=2 um (other material parameters are given in Sec.
a=lalpMap(h), (3.9 II) have only one distinct levitatiofsuspensionstate with
whereM/,(h) is the derivative with respect oof the mu-  Na=0, N,==*1. Energy minima appear for other quantum

tual inductance between the rings, evaluated.alt is numbers, but the value of the pair densiyis negative.
Figure 12 shows the levitation level as a function of tempera-

ture, and Fig. 13 shows the corresponding SC pair densities.

M’ (h)=— woh 9ol Mo(h)] The source ringp rapidly loses its energy a§ increases,
ab 4ap with Np=0 at T=0.73T.. As T increases, the equilibrium
levitation height increases because the source ring, with re-
2—my duced energy, can exert a larger force further from the plane
ga(mMo) = Vg 1_—mOE(mo)—2K(mo)} of the ring with smaller current for the height range of this
state.
with the parametem is defined after Eg(2.9). Eliminating
I, from the free energy, the normalized function to be mini- IV. CONCLUSIONS

mized is _ . :
We have analyzed a fixed two ring current system with a
2 floating magnetic sphere, and a system consisting of a fixed
vLal 1 h i i i
a-b ring and a levitated ring current. In the latter case at least one

— 2, | Y-a=by} —~
E(Ja,h)=Esdt) + CWob| adf+ — TN
M I——————T———T T
- ?b ’ (3'2) o9f " -
ab

wherea= La/(ZbWa,Bﬁ), with B, defined in Eq2.195. The
SC contributiorEg. is given by Eq.(2.17) and the superfluid
velocities are

e
o
T

Normalized SC Pair Density
o
o

W _M 1 L
Qa_é _Lt/)lga__ aJa+na ) o4
a doMap Ja o 0sl
(3.3
:ﬁ _WaLbﬁai_MabJ +n o2
" b doMyp Ja b0 7 °| o1

Minimization of Eq.(3.2) for various ring radii and flux- e or 02 03 04 05 06 07 08
oid quantum numbers leads to the following general obser-
vations. A very restricted number of levitation and suspen-
sion states exist for a fixed source ring of radiugreater
than the radiusa of the levitated ring, and no states exist

FIG. 13. Bulk normalized superelectron densifies | 4|2 in the

upper (N,) and lower () rings corresponding to the data of Fig.
12.
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of the quantum numbers, or n, must be nonzero for a 2

solution to exist. In general we find that levitation, trapped
and suspension heights occur in discrete levels. These levels
depend strongly on the fluxoid quantum numbers that lock-in
flux in the system, apart from the geometric and material
parameters of the system. For small, nonzero quantum num-
bers, e.g.h,=n,=—1, multiple trapped states may occur
simultaneously over a range of temperatures and gravity fac-
tors. As the temperatur€, or gravity factor gf is changed,
some levels disappear at a critical valueTofor gf. A mag-
netic particle trapped in such a level makes an abrupt transi-
tion to another level. The transition probably occurs by tun-
neling out of the energy well before the level completely
disappears.

Charging the particle and placing it in a uniform electric
field provides a mechanism for manipulating the patrticle,
which has exactly the same effect as changing the gravita-
tional constant. It would be desirable to have experimental
verification of our quantized levitation findings. The first sys-
tem could be a very useful device for trapping very small
magnetic particles on Earth or in outer space. In another
related experiment, discussed in the Appendix, moving the
probe of a magnetic force microscope along the ring axigV
would measure the discrete change in the force on the probe
tip when the quantum number of a ring changes.

Ap) 2
a0 =2u08 22|, o(t)=2u0b E)'

—a
ra

Solving (A2) yields

¢ma

KoVab bma
Po

fa(h)= bo a

N=
a®

¢mb

®o

a
pCa

¢
M n

bo

on)

D*l

o)

}D‘l, (A3)

+nNp

_gl[mo(d)](

d’mb

fo(h)= Pmb
p(h) o

,U«O\/EI _
bo P

a

_gl[mo(d)](

hereD =c,c,— g5(mg), with g, defined in Eq. 2.9, and

+L AJ\?  8a
a:£a a=2<—a) +In— —1.75,
APPENDIX A QUANTIZED LINEAR THEORY Mod la a
The analysis in Secs. Il and Il requires the minimization
of the multiparameter energy function. To find the equilib- Zp+L N2 8b
. | bTLb b
rium states of a magnet supported pysuperconducting Cp= 1igh :2<r_ +Inr——1.75.
0 b b

rings, application of the flux and force constraints leaves one
with a p-parameter minimization problem. This minimiza-
tion can be avoided by linearizing the current-flux equatiO”SSubstituting(A2) in the equilibrium force Eq(2.11) gives
To this end, we neglect the difference between the quantufye |evitation height equation for the magnet. It is
current densityj ,= —(\/EHC/)\)NQ and the actual current

densityj=V xH (See the discussion in Haley and Fifjk

and assume thai~1, i.e.,Q<1. In this limit one obtains lab " (h—d ' (h
HoVaOW ¢ iy PN Dy P
. ¢0 ¢0 ¢O ¢0
B T TYGKEA -

Equation (Al) is equivalent to starting with a “quantized
London equation,” with the current given in terms of a gauge
transformed vector potential in the form

S

poh*(t)

20 v0+a

1= 2

with the contour integral oV 6 defined to be 2rn.

Using Eq.(A1), and noting the sign convention in Fig. 1,
the superfuid velocity equatiorf2.7) give the coupled set of
linear equations

[Za(t)+L]la = Map(d)lp=dma(h—d)+ Ny,
(A2)
Map(d) 2+ (1) +Lpllp= dmp(h) + Npedg

where

Equation(A4) can be useful in obtaining approximate initial
estimates forJ, and h for the minimization of the energy
E(J4,h). For some quantized levels the linear approxima-
tion is quite accurate. However, unfortunately, the linearized
equations do not always yield all solutions possible for a
given set of quantum numbers. It is evident that the linear-
ized analysis can readily be extended to systems with more
than two rings. The number of coupled equations equals the
number of rings. As noted in Ref. 10, if a ring of radipss
thick, the levitation states are obtained from the linearized
equations by neglecting,(t) for all thick rings. Using lin-
earized equations to determine the levitation height of the SC
ring in Fig. 11 is not reasonable sinbkis not close to unity.

In contrast to the levitation application, the linearized
theory should be quite satisfactory for determining the force
on the probe tip of a magnetic force microscdg@ince the
probe is a controllable magnetic source, the current depsity
is identical to the quantum current densjty. As the probe
is moved along the ring axis, a discrete change in the force
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on the tip should be detectable as the quantum number in the point dipole contributiolf over the volume of the probe.
SC ring changes. Assuming a cylindrical model for theEquation(A4) is directly applicable by replacing,, for a

probe, the flux in a ring of radius is ¢,=2mpA,, where  dipole with ¢, due to the probe, and replacivg with F,,
A, is the magnetic vector potential obtained by integratingthe magnetic force on the probe.
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