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The quantized levitation, trapped, and suspension states of a magnetic microsphere held in equilibrium by
two fixed superconducting~SC! microrings are calculated by minimizing the free energy of the system. Each
state is a discrete function of two independent fluxoid quantum numbers of the rings. When the radii of the SC
rings are of the same order as the Ginzburg-Landau coherence lengthj(T), the system exhibits a small set of
gravity and temperature-dependent levels. The levels of a weakly magnetized particle are sensitive functions of
the gravitational field, indicating potential application as an accelerometer, and for trapping small magnetic
particles in outer space or on Earth. The equilibrium states of a SC ring levitated by another SC ring are also
calculated.

I. INTRODUCTION

Self-stabilizing magnetic levitation is an eclectic phenom-
enon that generally couples electromagnetics, superconduc-
tivity, and the gravitational field. The necessary ingredients
for magnetic levitation are a magnetic-field source and a
magnetic-field shaping, or trapping device.1 The simplest
system that satisfies these requirements is a magnetic dipole
and a simply connected superconductor, a system analyzed
many times in the literature, typically applying magnetic im-
age methods.1–5 For a temperatureTm below the supercon-
ducting ~SC! critical temperatureTc , a unique equilibrium
levitation height, independent of temperature and SC mate-
rial properties, is obtained. The levitation force on macro-
scopic magnets of various shapes placed above a SC plane
have been calculated using the London theory, which also
gives a temperature-independent dipole height as long as it is
much greater than the London penetration depthl.6 In the
perfect Meissner limit (l→0) the force on the probe tip of a
magnetic force microscope,7 modeled by a linear superposi-
tion of magnetic dipoles, above a macroscopic SC ring has
also been calculated.8 The latter may be useful in interpreting
the surface roughness effect on the probe.

Using high-temperature type-II oxide superconductors
both repulsive levitation, based on partial flux exclusion and
flux pinning, and attractive levitation~suspension! based on
flux pinning, have been observed in macroscopic systems. A
mesoscopic SC ring circuit is a simple, basic device that
exhibits not only the necessary flux trapping, but also fluxoid
quantization. In a recent study of a magnetic microsphere
levitated, and suspended, by a superconducting microring, it
was shown that the equilibrium value of the relative coordi-
nate of the magnet is a member of a small set of quantized,
weakly temperature-dependent levels.9,10This discrete nature
of the levitation levels is a direct consequence of fluxoid
quantization in a multiply connected superconductor.

Here we extend our analysis of quantized levitation in the
mesoscopic regime to the study of the equilibrium levitation
states generated by microscopic multiple-ring superconduct-
ing ~SC! systems. In Sec. II we investigate the levitation,
trapped, and suspension states of a magnetic microsphere, in
a gravitational field, held in equilibrium by two supercon-

ducting microring circuits. In this system there is a strong
nonlinear interaction between the gravitational and magnetic
fields that can actually lift the magnet as gravity increases.
The effect of weightless and small gravity environments, rel-
evant to space applications, e.g., satellites, is also investi-
gated. Charging the magnetic particle, and applying a uni-
form electric field provides a convenient mechanism for
manipulating it among the quantized levitation levels. Since
the effect of the electric field is identical to that of the gravi-
tational field, variation of only one field is necessary to study
the effect of either field. Using the approach developed in
Refs. 3 and 4, the total free energy of the system is mini-
mized, subject to the constraints imposed by single-
valuedness of the complex superconducting order parameter
in each ring, and mechanical equilibrium. In Sec. III we ana-
lyze the levitation of a SC ring by a fixed SC ring current.
The resulting quantized states of both systems are investi-
gated in detail and compared with the single ring results in
Refs. 3 and 4. Section III is devoted to our conclusions, and
a quantized, linear theory is developed in the Appendix.

II. A MAGNETIC MICROSPHERE TRAPPED BETWEEN
TWO SC RINGS

Consider two superconducting microrings of radiia and
b, and separationd, as shown in Fig. 1.~Throughout the
article, parameters characterizing ring a are subscripted with
a and those characterizing ringb are subscripted withb.! The
cross sections ares5pr 2. It is assumed that the SC rings are
mounted on nonmagnetic insulators which are fixed. The
magnet trapped between the SC rings, at distanceh from the
lower ringb andd2h from the upper ringa, is a uniformly
magnetized sphere with saturation magnetizationMs , radius
rm , and densityr. The magnetic moment of the magnet is
M5M0ẑ, with M05Ms4prm

3 /3, and the weight
W5(4prm

3 /3)rg, whereg is the gravitational acceleration
constant, with nominal valueg059.8 m/s2. The SC rings
carry an induced currentI , and have self-inductanceL. The
SC ring material is characterized by the temperature-
dependent magnetic-field penetration depthl(t) and
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Ginzburg-Landau~GL! coherence lengthj(t). The variable
t5T/Tc , with T the temperature, andTc the critical tem-
perature of the SC–normal phase transition in zero magnetic
field.

The heighth is determined self-consistently by minimiz-
ing the total free energy of the system consisting of the mag-
net and two SC rings, subject to fluxoid quantization and
mechanical equilibrium constraints. Since the magnetic field
at the SC rings is not a controllable external variable, the
Helmholtz free energyF is the apppropriate functional to be
minimized.11 The difference between the SC and normal
state free energies of the system is

DFsc5DFsc1DFm1Wh, ~2.1!

The termDFsc is the energy of the SC rings, andDFm is the
stored magnetic energy. The last term,Wh, is the gravita-
tional potential energy of the magnet, relative to the plane of
the lower SC ringb. The general form of the SC energy is

DFsc5
L~ t !

V E dvF2N1
1

2
N21NQ21~j¹AN!2G ,

~2.2!

whereL(t)5m0VHc
2(t), with V the volume the supercon-

ductor, andHc(t) is the thermodynamic critical magnetic
field. The first two terms in the integrand are the normalized
condensation energy of the superconductor, withN5ucu2,
wherec5C/Cbulk5AN exp(iu) is the normalized complex
order parameter. The functionQ is defined by
Q5j@¹u1(2p/f0)A#, with A the magnetic vector poten-

tial. The last two terms comprise the kinetic energy
K5j2upcu2, where p52 i¹1(2p/f0)A. The thermody-
namic critical magnetic field is given by

Hc~ t !5
f0

2A2pm0l~ t !j~ t !
5Hc~0!~12t2!, ~2.3!

where f05h/(2ueu)52.07310215 Weber is the fluxoid
quantum.

The wire cross section of each ring is assumed small, so
the transverse variations ofN, Q, and magnetic fieldH in
the SC ring are small. In this limit, all integrals involving
these quantities may be replaced by their mean values. Con-
sistent with the thin wire approximation, and the cylindrical
symmetry of the system, we also neglect the integral of
(j¹AN)2, giving

DFsc5La~ t !S 2Na1
1

2
Na
21NaQa

2D
1Lb~ t !S 2Nb1

1

2
Nb
21NbQb

2D , ~2.4!

For each ring of radiusr and wire radiusr , the constant
L(t)5m0VrHc

2(t), with Vr52p2rr 2 the volume of the SC
ring. The flux coupling energy between the magnet of mo-
mentM and a SC ring of radiusr is 2M•B5Ifmr(z),
whereB is the flux density generated by the induced current
I in the ring, at the magnet on the ring axis at distancez,
measured from the ring, andfmr(z) is the ‘‘applied’’ mag-
netic flux enclosed by the SC ring due toM . The total stored
magnetic energyDFm is

DFm5
1

2
LaI a

21
1

2
LbI b

22I aI bMab~d!1I afma~h2d!

1I bfmb~h!, ~2.5!

whereMab is the mutual inductance between the rings. The
currents are defined such thatI a.0 andI b.0, as referenced
in Fig. 1. In the trapped configuration shown, both rings
repel the magnet.

Taking a contour integral ofQ around a SC ring, requiring
single valuedness of the complex order parameter, gives the
flux quantization constraint

R dl•Q52pjS f

f0
1nD , ~2.6!

where the phase winding numbern is an integer or zero, and
f is the total flux enclosed by the contour. Writing out the
contributions to the total flux in each ring due to the magnet,
the mutual inductance between the rings, and the self-
inductance of each ring, the fluxoid quantization constraints,
obtained from contour integrations ofQ around each ring,
are

FIG. 1. The magnetic sphere of radiusa is trapped between two
superconducting rings of radiia andb and fixed separationd, car-
rying induced currentsI a and I b . The levitation heighth is mea-
sured from ringb.
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Qa5
ja
a H 1

f0
@fma~h2d!2I bMab~d!2LaI a#1naJ ,

~2.7!

Qb5
jb
b H 1

f0
@fmb~h!2I aMab~d!2LbI b#1nbJ .

At this point theQ’s are mean values in the rings. The flux
linking a ring of radiusr, due to the magnetic dipole, with
magnetic momentM5M0ẑ, located on the ring axis at dis-
tancez from the ring is

fmr~z!5
m0M0

2r F11S zr D 2G23/2

, ~2.8!

and the mutual inductance between the two coaxial rings
separated by distanced is

Mab5m0Aabg1@m0~d!#, ~2.9!

where the functiong1 is defined as

g15
1

Am0

@~22m0!K~m0!22E~m0!#,

m054
a

b F S 11
a

bD
2

1S dbD
2G21

,

with K andE complete elliptic integrals of the first and sec-
ond kind, respectively. The self-inductance of a ring of ra-
dius r and wire radiusr!r is approximated by

L5m0rF lnS 8r

r D21.75G .
Noting that the magnetic-flux densityB on the axis of a

current loop, of radiusr, carrying currentI , is proportional
to the fluxfmr(z), Eq. ~2.8!, the z component of the force
on the dipole is

Fz52
]

]z
~2M•B!52I

]fmr~z!

]z
. ~2.10!

Using this result, the equilibrium mechanical constraint on
the magnet in Fig. 1 is

W52I afma8 ~h2d!2I bfmb8 ~h!. ~2.11!

The prime denotes differentiation with respect toz, and the
argument offmr8 (z) is the value ofz after differentiation.

It is interesting to evaluate the forces on the rings. To do
this, assume that the rings have weightWa andWb and are
tied together by stiff rods, and that the ‘‘birdcage’’ system is
suspended by a string. LetT05T0ẑ be the tension in the
string, andT56Tẑ be the tension in the rods necessary to
hold the rings in place. The total force on each ring is

Fa5 ẑ@T02T2Wa1I aI bMab8 ~d!1I afma8 ~h2d!#,
~2.12!

Fb5 ẑ@T2Wb1I aI bMab8 ~2d!1I bfmb8 ~h!#.

In equilibrium Fa5Fb50. Noting that Mab8 (d)
52Mab8 (2d),0, Eqs.~2.12! and ~2.11! yield

T05Wa1Wb1W.

Thus, the rope holds up the total weight of the system, in-
cluding the floating magnet. No further information is ob-
tained from Eq.~2.12!.

The free energyDF in Eq. ~2.1!, is a function of five
unknown variables,Na ,Nb ,I a ,I b ,h. Minimizing E with re-
spect to variation inNa andNb gives

Na512Qa
2 , Nb512Qb

2 , ~2.13!

which, in view of the flux constraint Eq.~2.7! leaves us with
three unknowns,I a , I b , andh. The only other contraint that
reduces the number of unknowns is Eq.~2.11!, which we will
use to eliminateI b . The remaining problem is an uncon-
trained minimization of the two parameter function
DF(I a ,h). For numerical purposes, we intoduce normalized
energyE and a normalized current densityJ defined by

E5
DF

ALa~0!Lb~0!
, ~2.14!

and

J5
l~ t !

A2sHc~ t !Jc
I5bI , ~2.15!

whereJc52/A27 is the critical current density of a SC ring
in the presence of a magnetic reservoir. Using Eqs.~2.1! and
~2.11! leads to the normalized energy functionE(Ja ,h)
given by

E~Ja ,h!5Esc~ t !1C@E2~h!Ja
21E1~h!Ja1E0~h!#,

~2.16!

where the SC contribution is

Esc~ t !52
1

2 Fh~12Qa
2!21

1

h
~12Qb

2!2G~12t2!2,

~2.17!

and

E2~h!5
La
2ba

2 F11
fma8

fmb8 S LbLa fma8

fmb8
12

Mab

La
D G ,

E1~h!5
fma

ba
F WLb
fmafmb8 S fma8

fmb8
1
Mab

Lb
D 112

fmb

fma

fma8

fmb8 G ,
E0~h!5W

fmb

fmb8 S WLb
2fmbfmb8

21D 1Wh,

h5ALa~0!

Lb~0!
5Ab

aFlb~0!

r b

jb~0!

b GFla~0!

r a

ja~0!

a G21

,

C5
1

ALa~0!Lb~0!
5
4m0Aab

f0
2

lb~0!

r b

la~0!

r a

jb~0!

b

ja~0!

a
.

From Eqs.~2.7! and ~2.11!
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Qa5
ja
a F 1f0

S fma1
WMab

fmb8 D
1

La
f0ba

S 211
Mab

La

fma8

fmb8 D Ja1naG , ~2.18!

Qb5
jb
a F 1f0

S fmb1
WLb
fmb8 D 1

Lb
f0ba

S fma8

fmb8
2
Mab

Lb
D Ja1nbG .

All flux and flux derivatives,fmr andfmr8 , are evaluated at
h2d for r5a andh for r5b. Since the discovery of high-
Tc superconductors there is considerable interest in refrigera-
tionless superconducting electronics in space applications,
such as satellites. The trapped states of a magnetic particle in
a weightless environment are obtained by settingW50, in
Eqs.~2.16! – ~2.18!.

All calculations and figures for the double ring-magnet
system are based on the following data: The magnetic par-
ticle is an yttrium iron garnet~YIG! sphere of radius
rm50.4mm, saturation magnetizationMs523105 A/m and
density 5.23103 kg/m3, with resultant magnetic moment
M055.362310214 A m2, and weightW51.366310214 N.
Both SC rings have wire cross sections51.0310215 m2,
and radiusa5b52 mm, and the ring separation isd54 mm.
The SC rings are Al with experimental values of
Hc(0)50.793104 A/m, and GL parameterk5l(0)/
j(0)50.015. Using Eq.~2.3! the zero-temperature values of
the penetration depth and coherence length are calculated to
bel(0)50.0188mm, andj(0)51.25mm. The temperature
dependence used isl(t)5l(0)/A12t2 and j(t)5j(0)/
A12t2; thus k5l/j is temperature independent. Further-
more, we assume that the magnetic sphere is only 10% satu-
rated, reducing the magnetic forces relative to the gravita-
tional. In all the figures below we keep the magnetic moment
of the sphere constant and vary the gravitational factor gf

[g/g0 , whereg059.8 m/s, at constant temperature, or vary
the temperature at constant gravitational factor.

Our object is to find the minimum energy of Eq.~2.16! by
varying the currentI a in the upper ring~Fig. 1! and the
heighth of the magnet above (h.0) or below (h,0) the
lower ring. When the magnet finds a minimum in the free
energy withh,0, we call this solution a suspension (S)
state. In that case, there is a net attraction between the ring
currentsI a andI b and the magnet, balanced by the weight of
the magnet. Whenh.d, the separation between the rings
~Fig. 1!, there is a net repulsion between the ring currents
and magnet, which is balanced by the gravitational force on
the magnet. This is a levitation (L) state. When the particle
finds a minimum in the free energy withh in between the
two rings (0,h,d) the solution corresponds to a trapped
(T) state. In this case the net magnetic force on the magnet is
upward directed, and balanced by the weight. The net mag-
netic force can be composed of repulsive forces from each
ring current, attractive forces from each ring current, or a
repulsive force due to ring currentI b and an attractive force
due to ring currentI a . As the gravitational force on the
magnet decreases, the magnet is pushed toward the center
between the rings. Depending, however, on the fluxoid quan-
tum numbersna and nb ~initial magnetic flux state of the
rings!, there can be more than one trapped level not neces-
sarily near 0.5d. We find with the above data that, with one
exception discussed shortly, the overall lowest-energy states
are described by fluxoid quantum numbersna5nb50. In
this case, there exist three equilibrium position levels: oneS,
oneT, and oneL level. TheL level behaves similar to the
results reported in Refs. 9 and 10.

Figure 2 shows the trapped height level as a function of
the gravity factor, gf, atT50 K for na5nb50 with a mag-
netic saturation factor sf5 0.1 as referred to YIG. A very
light particle tends to be trapped in the center between the
magnets, while a heavy particle of the same magnetic
strength finds a minimum energy height pushed toward the
lower ring. In this particular case, the magnet is being
pushed away from both rings, with the current in the lower
ring being larger than that in the upper ring.

FIG. 2. Normalized trapped heighth/d as a function of the
gravity factor gf5g/g0 for aluminum SC rings of radiusa5b52
mm, separationd54 mm, at zero temperature, and fluxoid quantum
numbersna5nb50. The magnet is YIG, with 10% saturation~sf 5
0.1!.

FIG. 3. Normalized heighth/d as a function oft5T/Tc , with
gf 5 1, for the data of Fig. 2.
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Figure 3 shows the magnet height at normal weight, gf5
1, as a function of temperature with the above assumed tem-
perature dependences forj(t) andl(t). Figure 4 shows the
corresponding currents. At low temperatures both ring cur-
rents push the magnet away, while fort.0.84 both currents
attract the magnet, the upper stronger than the lower. Be-
tween 0.55,t,0.84 the lower current pushes the magnet
away, while the upper attracts it. As a consequence the mag-
net exhibits a rapid transition from below the midpoint posi-
tion at low temperatures to above the midpoint as the tem-
perature increases abovet50.55.

Figure 5 shows the suspension height as a function of
weight. Lighter magnets of the same magnetic strength find a
minimum energy position further away from the lower ring
than heavier magnets, which require a larger magnetic force
to keep them suspended. To keep a heavier magnet sus-
pended requires a larger current. In this particular instance
almost all of the attraction is due to the current in the lower
ring, while the current in the upper ring is practically zero.

A moderate increase in the quantum numbersna andnb
increases the number of levels in general. However, for

larger values of the quantum numbers no minima in the free
energy are found, and all quantized levels disappear. For all
quantum numbers the bulk normalized superelectron densi-
ties N5ucu2 remain close to unity, except near the critical
temperatureTc , whereN of the ‘‘dominant’’ ring falls to
zero.

As an interesting locked-in flux state, we choose
na5nb521 with a sf5 0.1. For this set of quantum num-
bers someT states have energy minima lower than those for
na5nb50, in the same height range. We find oneL level,
four T levels and twoS levels, one of which passes through
the lower ring and becomes aT level as the gravitational
force is decreased. TheL levels behave similarly to those
shown in Refs. 9 and 10. There is aS level ath/d'20.9 for
gf 5 1, which rises as temperature and gravity factors~as in
Fig. 5! are increased. The height of the otherS level is
shown in Fig. 6 as a function of the gravity factor. At normal
weight the magnet is suspended below the lower ring. As the
gravity factor is decreased the magnet finds an equilibrium
position, corresponding to a minimum free energy, as the
magnet rises through the lower ring and becomes aT level
for gf ,0.73. For this level the functional variation ofh
versus gf is opposite to that found for the lowerS level,
discussed above. The explanation for this behavior can be
found in the slope of the force on the dipole, Eq.~2.10!
which is of opposite sign near and far away from the current
carrying ring circuits. The magnet position shown in Fig. 6 is
near the center of the lower ring where the lift forces due to
the current in the lower ring are small. We find that over the
gravity range shown in Fig. 6 the magnetic sphere is mainly
held in position by the upper ring current. It should be men-
tioned that when the magnet finds itself in theT level both
upper and lower currents pull on it. Over the gf range shown,
the current varies only slightly, and for gf5 1 the height is
decreasing with increasing temperature, but only very
slightly on the scale shown in Fig. 6.

Besides theS level which becomes aT level, mentioned
above, there are three additionalT levels possible over vari-

FIG. 4. Normalized current densities,Ja in the upper andJb in
the lower ring, corresponding to the data of Fig. 3.

FIG. 5. Normalized suspension height as a function of the grav-
ity factor gf for the data of Fig. 2.

FIG. 6. Normalized heighth/d changing from a trapped to a
suspension state as a function of the gravity factor gf5 g/g0 for SC
rings of radiusa5b52mm, separationd54mm, at zero tempera-
ture, and fluxoid quantum numbersna5nb521. The magnet is
YIG, with 10% saturation~sf 5 0.1!.
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ous gravity and temperature ranges shown in Figs. 7–10. The
level located just above the midpoint between the two rings
exists for all temperatures and gravity factors shown. Its en-
ergy minimum is lower than those of the other two levels for
equal (T, gf! conditions. The currents for the center level
~curves near20.4! and the level near the upper ring are
shown in Fig. 8. Both ring currents attract the magnet with
the upper ring generating the larger force. The upper level
disappears when the gravity factor exceeds 1.1. Similarly,
Figs. 9 and 10 show there exists aT level near the lower ring
for low temperature, which disappears atT/Tc'0.52. Mag-
netic particles trapped in the higher energy states near the
upper or lower ring will most likely make a transition to the
lower energy center level by tunneling out of the energy well
before the corresponding energy minimum disappears. The
currents for both levels, shown in Fig. 9, attract the magnetic
particle, in contrast to the casena5nb50 ~Fig. 4! where the
force is repulsive over all gravity factors and temperatures
below 0.55Tc .

For other combinations ofna andnb we find similar quan-
tized levels. Since all the equations used are strongly nonlin-
ear it is not possible to reduce our result to a common vari-
able, like M0 /W or similar. However, for a given set of
experimental parameters the levitation, trapped, and suspen-
sion levels can be uniquely calculated from the above equa-
tions for various fluxoid quantum numbersna andnb .

III. LEVITATION OF ONE SUPERCONDUCTING
MICRO-RING BY ANOTHER

Here we analyze the two SC ring system depicted in Fig.
11. Assume that SC ringb is fixed, and carries a persistent
currentI b , i.e., ringb is an energy source withnbÞ0. If a
second SC ring, of weightWa , is placed on the axis of ring
b, a currentI a will be induced as shown in Fig. 11, and it will
levitate at equilibrium heighth. The free energy of this sys-
tem, and the flux quantization constraints are obtained from
those given in Sec. II with all magnet termsfmr andfmr8 set

FIG. 7. Two trapped levels, one near the center between the
rings, the other near the upper ring, as a function of the gravity
factor gf. The upper level exists only for gf,1.1. Data is the same
as in Fig. 6.

FIG. 8. Normalized current densities,Ja in the upper andJb in
the lower ring corresponding to the data of Fig. 7.

FIG. 9. Normalized heighth/d as a function oft5T/Tc , for gf
5 1 and data of Fig. 6, for two trapped levels, one near the center
between the rings, the other near the lower ring. The lower level
exists only fort,0.52.

FIG. 10. Normalized current densities,Ja in the upper andJb in
the lower ring corresponding to the data of Fig. 9.
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to zero,W replaced byWa , andd replaced by the variable
h. The equilibrium force constraint is a distinct function of
the currents, given by

Wa5I aI bMab8 ~h!, ~3.1!

whereMab8 (h) is the derivative with respect toz of the mu-
tual inductance between the rings, evaluated ath. It is

Mab8 ~h!52
m0h

4Aab
g2@m0~h!#,

g2~m0!5Am0F22m0

12m0
E~m0!22K~m0!G ,

with the parameterm0 is defined after Eq.~2.9!. Eliminating
I b from the free energy, the normalized function to be mini-
mized is

E~Ja ,h!5Esc~ t !1CWabFaJa
21

1

a S ALaLb
2bMab8

D 2 1Ja2 1
h

b

2
Mab

Mab8
G , ~3.2!

wherea5La /(2bWaba
2), with ba defined in Eq.~2.15!. The

SC contributionEsc is given by Eq.~2.17! and the superfluid
velocities are

Qa5
ja
a F2

WaMabba

f0Mab8

1

Ja
2
La
f0

Ja1naG ,
~3.3!

Qb5
jb
b F2

WaLbba

f0Mab8

1

Ja
2
Mab

f0
Ja1nbG .

Minimization of Eq.~3.2! for various ring radii and flux-
oid quantum numbers leads to the following general obser-
vations. A very restricted number of levitation and suspen-
sion states exist for a fixed source ring of radiusb greater
than the radiusa of the levitated ring, and no states exist

when b<a. As an example, aluminum rings with
b52a52 mm ~other material parameters are given in Sec.
II ! have only one distinct levitation~suspension! state with
na50, nb561. Energy minima appear for other quantum
numbers, but the value of the pair densityN is negative.
Figure 12 shows the levitation level as a function of tempera-
ture, and Fig. 13 shows the corresponding SC pair densities.
The source ringb rapidly loses its energy asT increases,
with Nb50 at T50.73Tc . As T increases, the equilibrium
levitation height increases because the source ring, with re-
duced energy, can exert a larger force further from the plane
of the ring with smaller current for the height range of this
state.

IV. CONCLUSIONS

We have analyzed a fixed two ring current system with a
floating magnetic sphere, and a system consisting of a fixed
ring and a levitated ring current. In the latter case at least one

FIG. 11. Superconducting ring currentI a levitated by a fixed SC
ring with currentI b . FIG. 12. Normalized heighth/d as a function oft5T/Tc for the

situation shown in Fig. 11, with aluminum rings of radiusa51 mm,
b52 mm, and fluxoid quantum numbersna50,nb521.

FIG. 13. Bulk normalized superelectron densitiesN5ucu2 in the
upper (Na) and lower (Nb) rings corresponding to the data of Fig.
12.
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of the quantum numbersna or nb must be nonzero for a
solution to exist. In general we find that levitation, trapped
and suspension heights occur in discrete levels. These levels
depend strongly on the fluxoid quantum numbers that lock-in
flux in the system, apart from the geometric and material
parameters of the system. For small, nonzero quantum num-
bers, e.g.,na5nb521, multiple trapped states may occur
simultaneously over a range of temperatures and gravity fac-
tors. As the temperatureT, or gravity factor gf is changed,
some levels disappear at a critical value ofT, or gf. A mag-
netic particle trapped in such a level makes an abrupt transi-
tion to another level. The transition probably occurs by tun-
neling out of the energy well before the level completely
disappears.

Charging the particle and placing it in a uniform electric
field provides a mechanism for manipulating the particle,
which has exactly the same effect as changing the gravita-
tional constant. It would be desirable to have experimental
verification of our quantized levitation findings. The first sys-
tem could be a very useful device for trapping very small
magnetic particles on Earth or in outer space. In another
related experiment, discussed in the Appendix, moving the
probe of a magnetic force microscope along the ring axis
would measure the discrete change in the force on the probe
tip when the quantum number of a ring changes.

APPENDIX A QUANTIZED LINEAR THEORY

The analysis in Secs. II and III requires the minimization
of the multiparameter energy function. To find the equilib-
rium states of a magnet supported byp superconducting
rings, application of the flux and force constraints leaves one
with a p-parameter minimization problem. This minimiza-
tion can be avoided by linearizing the current-flux equations.
To this end, we neglect the difference between the quantum
current densityjc52(A2Hc /l)NQ and the actual current
density j5¹3H ~See the discussion in Haley and Fink10!,
and assume thatN'1, i.e.,Q!1. In this limit one obtains

I5sj52
f0

2pr~l/r !2~j/r!
Q. ~A1!

Equation ~A1! is equivalent to starting with a ‘‘quantized
London equation,’’ with the current given in terms of a gauge
transformed vector potential in the form

I52
s

m0l
2~ t ! F f0

2p
¹u1AG ,

with the contour integral of¹u defined to be 2pn.
Using Eq.~A1!, and noting the sign convention in Fig. 1,

the superfuid velocity equations~2.7! give the coupled set of
linear equations

@za~ t !1La#I a1Mab~d!I b5fma~h2d!1naf0 ,
~A2!

Mab~d!I a1@zb~ t !1Lb#I b5fmb~h!1nbf0

where

za~ t !52m0aS la

r a
D 2, zb~ t !52m0bS lb

r b
D 2.

Solving ~A2! yields

f a~h!5
m0Aab

f0
I a5FAb

a
cbS fma

f0
1naD

2g1@m0~d!#S fmb

f0
1nbD GD21,

f b~h!5
m0Aab

f0
I b5FAa

b
caS fmb

f0
1nbD

2g1@m0~d!#S fma

f0
1naD GD21, ~A3!

whereD5cacb2g1
2(m0), with g1 defined in Eq. 2.9, and

ca5
za1La

m0a
52S la

r a
D 21 ln

8a

r a
21.75,

cb5
zb1Lb

m0b
52S lb

r b
D 21 ln

8b

r b
21.75.

Substituting~A2! in the equilibrium force Eq.~2.11! gives
the levitation height equation for the magnet. It is

m0AabW
f0
2 1 f a~h!

fma8 ~h2d!

f0
1 f b~h!

fmb8 ~h!

f0
50.

~A4!

Equation~A4! can be useful in obtaining approximate initial
estimates forJa and h for the minimization of the energy
E(Ja ,h). For some quantized levels the linear approxima-
tion is quite accurate. However, unfortunately, the linearized
equations do not always yield all solutions possible for a
given set of quantum numbers. It is evident that the linear-
ized analysis can readily be extended to systems with more
than two rings. The number of coupled equations equals the
number of rings. As noted in Ref. 10, if a ring of radiusr is
thick, the levitation states are obtained from the linearized
equations by neglectingzr(t) for all thick rings. Using lin-
earized equations to determine the levitation height of the SC
ring in Fig. 11 is not reasonable sinceN is not close to unity.

In contrast to the levitation application, the linearized
theory should be quite satisfactory for determining the force
on the probe tip of a magnetic force microscope.7 Since the
probe is a controllable magnetic source, the current densityj
is identical to the quantum current densityj c . As the probe
is moved along the ring axis, a discrete change in the force
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on the tip should be detectable as the quantum number in a
SC ring changes. Assuming a cylindrical model for the
probe, the flux in a ring of radiusr is fp52prAp , where
Ap is the magnetic vector potential obtained by integrating

the point dipole contribution10 over the volume of the probe.
Equation~A4! is directly applicable by replacingfm for a
dipole withfp due to the probe, and replacingW with Fz ,
the magnetic force on the probe.
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