PHYSICAL REVIEW B VOLUME 53, NUMBER 6 1 FEBRUARY 1996-II

Annular Josephson tunnel junctions in an external magnetic field: The statics

N. Martucciello
Dipartimento di Fisica, Universitali Salerno, 1-84081, Baronissi (SA), Italy

R. Monaco
Dipartimento di Fisica, Universitali Salerno, 1-84081, Baronissi (SA), Italy
and lIstituto di Cibernetica del C.N.R, 1-80072, Arco Felice (NA), Italy
(Received 27 June 1995; revised manuscript received 28 September 1995

We have investigated the static configurations of the phase inside an annular Josephson tunnel junction in the
presence of an externally applied magnetic field. We report here a detailed study of the dependence on the
magnetic field of the critical current for different annular geometries. The periodic conditions for the phase
difference across the barrier are derived from fluxoid quantization. For rings having a radius less than the
Josephson penetration depth analytical results are derived which are in excellent agreement with the experi-
mental data. For longer junctions numerical analysis is carried out after the derivation of the appropriate
perturbed sine-Gordon equation. We find that a number of different phase profiles may exist for a given applied
field which differ according to the number of fluxon-antifluxon pairs present in the line. Experimental data
support the theoretical analysis provided self-field effects are taken into account in real devices.

I. INTRODUCTION However, a detailed study of the behavior of annular junc-
tions has never been undertaken and a full understanding of
A Josephson tunnel junction is certainly one of the mosthe possible new phenomena is far from complete. In par-
convenient solid-state device for the study of the nonlineaticular, the behavior of an annular junction in the presence of
phenomena and, in particular, long Josephson tunnel jun@n externally applied field has not previously been consid-
tions, i.e., junctions for which at least one dimension is€red, to our knowledge. _ _ _
greater than the Josephson penetration depth, are useful for In this article we focus our attention on the static configu-
the investigation of the soliton properties. Most of the ex-fation of the phase in ring-shaped junctions in the presence
perimental work has been carried out on linear quasi-onef an external applied field. The dynamics of solitons in an-
dimensional junctions having either the overlap geometry ifular junctions in the presence of an externally applied field
which the bias current flows perpendicular to the long di-will be the subject of another article. We have measured the
mension or the inline geometry in which the bias currentdependence of the zero-voltage Josephson current for a large
flows parallel to the long dimension. Very little work has numbe_r of annular junctions hav!ng different geometries and
dealt with annular, i.e., ring-shaped junctions even thoughformalized lengths. The experimental data are compared
they offer many advantages for the study of the soliton dy_wnh. the analytical rgsults for smgll rings and W|t_h the nu-
namics. The situation is slightly different with regard to nu- Mmerical results obtained by solving the appropriate partial
merical investigations of long Josephson tunnel junctions. Iflifferential equations for large rings. _
fact, papers have often dealt with both linear and annular The paper is organized as follows. In Sec. Il we describe
geometries and, in some cases, only the annular geometH)e fabrication of th(_a samples and the qmgrent gegmetnes
was considered. It was recognized a long time ago that solthat have been realized; the proper periodic conditions are
ton (or fluxor) motion is smoother in ring-shaped junctions derived for each geometrical configuration. In Sec. Ill we
since the fluxon cannot collide with boundarfeAnother ~ Present experimental data and the analytical results for an
unique property of annular junctions results from fluxoid €lectrically short annular junction. In Sec. IV we derive the
quantization in a superconducting ring: one or more fluxon@PPropriate partial differential equation for a electrically long
can be trapped in the junction at the time of the normal{unction considering proper boundary con_dmons. In Sec. V
superconducting transition. Once trapped the fluxons caWe Present the results of the numerical simulations and we
never disappear and only fluxon-antifluxon pairs can béjer_nonstrate the existence of more than one phasg profile for
nucleated. Dueholnet al? reported experimental results on & given field. In S_ec. \_/I we present some magnetic patterns
fluxon motion in long annular junctions. Later on, a numberf(?r Iong_ annular junctions together with interpretation and_
of people found this geometry ideal for experimental tests ofliscussion of the measurements. Conclusions are drawn in
the perturbation models developed to take into account theec. VII.
dissipative effects in the pure sine-Gordon analysisThe
dynamics of the single and multiple fluxons was also studied
with the help of a low-temperature scanning electron micro-
scope and in barriers with periodic inhomogeneitigsRe- Using the well known and reliable selective niobium an-
cently the presence of vortices trapped in discrete Josephsanlization process we have fabricated a large number of
rings has attracted the interest of the scientific commdrifty. square and annular junctions based on the Nb/AlAWD

Il. THE SAMPLES
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FIG. 1. Schematic ofa) typeA, (b) typeB and(c) type-C annular junctions considered in this work. Ideal tydelevices were used
only as a simple example for theoretical purpogds Geometrical configuratioftype D) examined in previous reports.

technology. Small square junctions were used to measure the as typeD, is such that magnetic flux can be trapped in the
electrical properties of the Nb/AI-AI@ND trilayer. The de- two superconducting rings, i.e., the base and top electrodes
tails of the trilayer deposition and of the fabrication processare both multiply connected superconductors.

can be found elsewhel.0On each substrate four identical In general, the periodic conditions for the quantum-
annular junctions were made having an average circumfemechanical phase differenekacross the barrier around an
enceC=500 um corresponding to a mean radius80 um  annular junction are written as

and ring widthAr=30 um. In this section we describe the

different geometrical configurations that were considered. H(X+C)=¢(X)+2mn, 2.9
They are depicted in Figs.(d-1(d). In Fig. 1(@ we show
the perspective view of an ideal annular junction made by Px(X+C) = ¢y (X), (2.2

two semi-infinite hollow cylinders separated by a thin dielec-
tric film; this configuration will be examined only theoreti-

cally. We will refer to this geometry as typk-geometry. X : :

Figure 1b) shows the typd3 geometry in which the annulus an integer numper co_rresp_ondlng to _the algebraic sum of
is sandwiched between two thick simply connected superf-quons trappe_zd in the junction at the time of the normal-to-
conducting layers. Niobium anodic oxid00 nm thick supe_rconductmg transition. Equatiori8.1) and (2.2) are
and, sometimes, an extra dielectric layer made of rf-sputtere! hysmally reasonable since they state that gbservable quan-
silicon dioxide(150 nm thick provide a good insulation be- ities su.ch as the Josephson curréthtqugh sing) and the
tween the base electrode and the wiring film around thejuncmagnet'p f|eld(through x) mu_st t.)e single valued upon a
tion area. This thick insulating layer inside and outside theround trip. We will give a derivation of E¢2.1) and will

ring, also called idle region, is expected to alter both theShO\.N that the number of trapped flu_xons_ also depends on the
articular geometry of the annular junction.

static and dynamic properties of the junctions. However, or? Let us start by considering fluxoid quantization applied to

linear one-dimensional long junctions it has been proved b¥he typeD geometry. By choosing two closed and parallel

both numerical simulatiofi and experiments that, as far as aths in the top and base electrodes just above and just below
the static properties are concerned, the only effect of the idl . P . J J
e barrier we can write

region is to increase the magnetic energy stored in the flux-
ons, i.e., it introduces a scaling factor on the field strength.

where X is the spatial coordinate specifying the distance
around the ringC is the average ring circumference amis

. ) S . m
The schematic of typ& geometry is shown in Fig.(&): it is — f Jsu.d|+f f B-dS=k®d,,
very similar to typeB with the difference that the wiring film Ns€™ Ju stu
does not cover the entire junction top electrode but contacts
it only in a very limited area. This difference, in principle, m .
allows magnetic field to be trapped in the superconducting @ fl‘lsl'dH LLB'dS_JCDO’

ring made by the junction top electrode at the time of the

phase transition. We have realized only annular junctions ofor the upper and lower paths, respectivdly,andJg, are the
types B and C and often typeB junctions were obtained supercurrent densities in the upper and lower electrodes, re-
from typeC junctions after the deposition of an extra wiring spectively.®,=h/2e is the flux quantum, whil& andj in-

film. In Fig. 1(d) we also show a geometrical configuration dicate the integer numbers of flux quaria general, differ-
which has been used in previous experimental works aimedn) corresponding to each fluxoid. Taking the difference
to the study of the fluxon propagation in the absence obetween the last two equations, and, considering that the two
boundary collisioné:® This geometry, which will be referred surface integrals must be equal, we end up with
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m 11l. SMALL ANNULAR JUNCTION
2 f JSu'dl_fJS|'d| :nq)o (23) ) ) ) i A i
nse u [ In this section we derive the equations which describe the

behavior of a small annular junctions in the presence of a
uniform external applied magnetic field. We will use cylin-
drical coordinates, 6, andz, assuming that the junction lies
in the z=0 plane and its center of symmetry is located at
r=0, as shown in Fig. 1. We set the origin of the angular

m abscissa, i.e.f=0 in the direction of the field. The tunnel
o7 UsumJs) - di=gydl, currents flow in thez direction and the local density of the

s Josephson current can be expressédl as

with n=Kk—j. After some lengthy but straightforward calcu-
lations, we obtain the following equation:

which, inserted in Eq(2.3), yields Eq.(2.1), for the devices Jj(r,0)=Jc(r,0)sin ¢(r,0), (3.1

having the typdd geometry. In other words, the net numberWhere the maximum Josephson current dengitygenerally

of f'uxo.“s ‘Fappeo' in a annular junction comes out to be thespeaking, depends on bothand 6 and is constant inside
algebraic difference between the number of fluxons assoCh itorm barrier junctions. In Josephson's description the

?teg Dw'tgotr?qztjluxwoédﬁa\'/l iitr:gi de(elfg(;r%?géel(jr] (;{Sre\/e(:saiver]ig wo-dimensional fields is related to the voltage across the
yp 9 y I?wo superconducting films and to the induction fieldnside

surround a nonsuperconducting region, i.e., a hole. Magnetl{ﬁe barriet
flux can thread this hole accompanied by a current flowing
round the hole. The fluxoid enclosed within each curve will d¢ 2w

be an integral number of flux quanta, but this number will be at - oo Vv,

zero if no flux threads the hole. If, however, we consider a 0

closed curve which does not encircle a nonsuperconducting 2mdu

region, so that the area enclosed by the curve is entirely Vo= 5 0 HXxu,, (3.2
0

superconducting, then the number of flux quanta is always

zero. In other words, if we apply the fluxoid quantization toijn which u, is a unit vector in thez direction, u, is the
the typeB annular junctions, we must plt=j=0 in Egs.  vacuum permeability, and is the junction magnetic penetra-
(2.3 and(2.4), that is, tion depth(d=s+\,;+\_, wheres is the thickness of the
junction barrier andy ; and\, are the London penetration
depths of the superconducting electrgddsquation (3.2)
states that, among other things,is not sensitive to fields
along thez direction.

The last equation states that only fluxon-antifluxon pairs, and We assume that the annular junction is electrically short,
not isolated fluxons, can be trapped in a typannular junc-  j.e., the ring circumference is small with respect to the Jo-
tion passing through the normal-to-superconducting transisephson penetration length. Further, by denoting with,,
tion in presence of a magnetic field. This can be easily unandr; the outer and inner ring radius, respectively, we as-
derstood considering that, if a magnetic-field line enters thgume that the ring widthr =r ,—r; is much smaller than the
barrier in some place to create, e.g., a fluxon, it must necesnean radiug =0.5(r,+r;). Under these conditions a spa-
sarily exit at some other point in the barrier where it createsially homogeneous applied field* fully penetrates the bar-
an antifluxon: in other words, a static fluxon-antifluxon pairrier. This implies that the magnetic field is the same on both
has been created. When the field is removed and a bias cunside and outside of the ring, which is true only for the
rent is supplied to the junction, the fluxon and the antifluxontype-C geometry. Now, assuming=¢(6), and considering
start to move toward one another and the pair annihilateshat, according to Eq(3.2), the dependence o on 6 is
This behavior has been experimentally proven on our §pe- related only to the radial component of the field
devices: in fact, we never succeeded in trapping an isolated . =H*cos#, integrating we get

fluxon in the barrier even after repeated thermal cycles

through the transition temperature in the presence of an ex- $(0)=n sin 6+ ¢, (3.3

ternal field. We always found the same value for the zeroypare 7 is the externally applied fielt* normalized to

field critical current. The presence of one or more quxons(DO,ZWMOr—d and d, is an integration constant. In other words,
alone would cause a strong reduction, in principle, a total, gma| annular junction behaves as a small linear junction in

suppression, of the ZefO'VP'“;gJe Josephson current as hgsgnatially modulated external field. The Josephson current
been observed on tyd-devices. For type€ devices, from  yhrqqh the barrier is obtained integrating E8.1) over the

a theoretical point of view, we would expect the more genynction area. Assuming that the maximum Josephson cur-
eral periodic conditiofEq. (2.1)] to hold, however, also in

; ) X rent densityJ, is constant over the junction area, we obtain
this case we were not able to trap flux in the barrier. A

- : . o tor the total current,
though surprising, this result is very similar to those reported

by Davidson, Dueholm, and Pedersen on tipeevices re- _ w
alized on a superconducting ground plénie; type-C de- |:j deS=chAff
vices the base electrode itself acts as a ground plane. At the
moment it is not clear the role played by the ground plane ornserting Eq.(3.3) in Eq. (3.4) and carrying out simple cal-
the periodic phase conditions. culations we get

P(X+C)=p(X). (2.9

sin ¢(0)dé. (3.9

-
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1.0 R are lower than the integer multiples ofy., that is,
: 17,=1.831,, 73=2.657., and so or]. We wish to comment
that, if the applied field is not uniform but is radial, as that

Y 08 3 1 generated by a current circulating in a loop concentric with
; 1 the ring as in Ref. 6, each section of the ring feels the same
o6 . field and the annular junction follows a Fraunhofer-like mag-

netic pattern.
So far we have assumed a uniform Josephson current den-

04 sity J., however the analysis can be generalized to the cases
in which J; has a simple dependence énwWe have limited
02r YL 1 our interest to sinusoidally modulated current distributions
] R % £ N WAL such as
0.0 ISP Vi VAV S VO A
0 2 4 6 8 10 12 1+a cosn(6— 6y)
n 3e(6)=Jco e (35

FIG. 2. Magnetic pattern of a small annular junction. The solidWhere isa is a positive constant less than omgjs a generic
line represent the theory while the stars are the experimental da@ngle,n is a positive integer andy=J.(6p) is one of the
for a typeC junction havingC=1.7\; . The dashed line shows for maxima of the critical current density. Inserting E§.5) in
comparison the Fraunhofer-like theoretical dependence for a smaltq. (3.4), we obtain the result of the integration in terms of
rectangular junction. Field values have been normalized in such higher-order Bessel functions:
way that the first minima coincide.

1(0)

e lo(m) =75 \Ja(m)+a® sin? 6635(7),
(7, 0) =1 (0)sin g 5— f cog 7 sin 6)d¢ -
™ J—m for odd n. Instead, ifn is even, we get
=1¢(0)sin ¢odo(7), o

1.(0
le(m)= 1+; |35(7) + a2 sir? 6,9%(7)|.

in which I ,(0)=J.2nr Ar is the maximum junction critical
current and], is the zero-order Bessel functiohis largest

when ¢o=/2 sd° Equation(3.5 can be generalized to describe any periodic

distribution expanded in a Fourier series as, for example,
- - those realized on annular junctions with periodic dishomoge-
() =maxy, 1(7,0) =1e(0)Jo(7)]. neities proposed by Usting3\7/. P ’
The theoretical magnetic-field dependence of the normalized
critical currenty(n)=1.(%)/1.(0) of a small annular junction [V. LONG ANNULAR JUNCTIONS: THE THEORY
is shown by the full curve in Fig. 2. The first zero af
occurs for .=2.405. For comparison we also show the
Fraunhofer dependence typical of small linear junction
[sin(nar! )l (nlny)| (dashed line in Fig. R It is evident
that for an annular junction in a uniform field the minima in ®
the magnetic pattern are not integer multiples of the first one, J,=J. sinp+ 0 o1
although they ar¢almos) equally spaced, the separation be- 27R

tween two contiguous minima being abowt The second \yhere the second term in the right side takes into account the
zero occurs fory,=5.52=2.29,= 7,+3.12, the third oc-  guasiparticle tunnel current assumed to be Ohmic, Res

curs for 7;=8.65=3.607,=17,+3.13 and, for larger argu- the voltage-independent quasiparticle resistance per unit
ments the minima can be found using the approximate relagrea. The subscripts afidenote partial derivatives. By com-
tion Jo(7)=\2/mn cos(m—ml4). Further, the secondary bining the previous equations with Maxwell’s equations, one
maxima in the Bessel pattern are more pronounced thagbtains a differential equation fap:

those of the Fraunhofer pattern. The experimental data for an

annular junction with the typ& geometry and average cir- 202 1 . by 5 )
cumferenceC=1.7\; are reported by stars in Fig. 2. The ATV ¢—; bu—sin o= ms_kjfrfoRsV br.

field scale for the experimental data has been chosen in such P P

a way that the first minimum in the pattern coincides with thewhere #=®¢/2muoJ.d andw 5=27J /P ocs, Cs being the

first minimum of Jo(7). It is evident that the experimental specific junction capacitance. It is well known that the pa-
data nicely reproduce the main features of the Bessel patterrameter);, called the penetration length of the junction,
although discrepancies in the amplitudes of the secondargives a measure of the distance over which significant spatial
maxima show up especially for large field value$For the variations of the phase occur, in the time-independent con-
sake of completeness, a comparison oflkle;) dependence figuration. The plasma frequenay,/27 represents the oscil-
found for small annular junctions with thi(7)/0.57 depen- lation frequency of small amplitude waves. Further, we can
dence known for small circular junctioffsshows that in the introduce the parameter= wp\j Which gives the velocity of
latter case the secondary minima occursyatalues which  light in the barrier and is called Swihart velocity. In the last

In this section we derive the appropriate sine-Gordon
equation for an annular junction in an external magnetic
S'field. The total tunnel current density is given by
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equation the second term in the right side takes into accourat r=r; andr=r., the boundary conditions Eq§.2) for
the effect of the surface currents in the London layers, i.e.this geometry can be written as
R, is the voltage-independent surface resistance. Introducing

the adimensional loss coefficientsy '=w,Rc; and ¢ _0
B=€€qwRs, the last equation takes the form: ar r=r__

1 @

. and
NV2h— —5 gy—sing=— g-ABV? . (4D
P P
P :

Equation (4.1) is called perturbed sine-Gordon equation ar =—k(2H* sin 6+1,/27r,). (4.4

(PSGH. Because of its local form, it is quite general and r=r
holds for junctions of any geometrical configuration. It be-

comes more familiar in normalized Cartesian coordinates
¢

Dxxt ¢yy_ i —Sin p=adi— B( Dyt ¢yyt)-

_ r—r
On the junction boundary the continuity of the induction S =~ k(2H* sin 6+ 1y/2mre) A—rl (4.5
field is such that, according to E¢B.2),®

e

If the ring width Ar =r.—r; is smaller than\;, we can as-
sume thatig/dr varies linearly between, andr; to give

and, differentiating with respect to

Vé=kH®Xu,,
: , , , @
with k=2mduy®,. H*is the external field that, in general, a_g S % (2H* sin 6+ 1,/27t ). (4.6)

is given by the sum of an externally applied field and the

field gener_ated by 'the current ro_vvjng [n the junction. TheSubstituting Eqs(4.5 and (4.6) into Eq. (4.3 and eliminat-

last vectorial equation can be split into its components: ing the dependence on by introducing the mean radius
90 r=(retr;)/2=ry,—Ar/2, Eg.(4.1) can be written as

19
pP kHE andr—szth. (4.2

A\ 2 1 a
j . .
=| ¢go— —3 dp—SiNn p=7y+ A sin 6+ — ¢
The exact knowledge of the radial and tangential compo- ( r ) o w'2) . rr wp ‘

nents of the external field allows the determination of the

2
proper boundary conditions. Now we recall that the Laplac- _()‘__l) Bb oo,
ian of ¢ in cylindrical coordinates is expressed as r
1ap ¢ 1 ¢ where y=1,/J.27r Ar=1,/1.(0) represents the distributed
Vip=——+ —>+—>5—>. (4.3)  bias current normalized to the maximum Josephson critical
rar - drc reoe current, 5, as in Sec. lIl, is the externally applied fiek

Equationg4.1) and(4.3) are, generally speaking, the starting Normalized to®y/2muqdr and |=C/\; is the normalized
point for the study of junctions having circular symmetry. ring mean circumference. Defining the d_imenSionleSS wave
However, the exact junction geometry must be taken in conoumberk=2/I, the quantityA=k*(1+2r/Ar) is a geo-
sideration. As a first case and as a simple example, we comnetrical factor which sometimes has been referred to as the
sider an ideal annular junction made by two semi-infinitecoupling between the external field and the flux density of
thick-walled hollow superconducting cylinders as shown inthe junction:® In passing, we note that the smaller the width
Fig. 1(a). A bias current , flowing uniformly and parallel to Ar, the more sensitive is the junction to an external field.
the cylinder axis generates, according to Ampere’s law, dlowever, in the limit of vanishing smallr, Egs.(4.4) can-
tangential fieldl ,/27rr at a distancea from the axis(only ~ not be satisfied simultaneously, and some penetration of the
outside the cylind@r the self-field being zero inside the cav- external field inside the cavity must be allowed. Finally, in-
ity. Further, assuming that the cylinder walls are muchtroducing the new dimensionless angular coordinate
thicker than the London penetration depth, i.e., that the X=T6/\; and normalizing the time ta;*, we obtain the
ring width Ar>X\_, an external and uniform fielth* ap-  perturbed Sine-Gordon equatioRSGBH, for an annular Jo-
plied parallel to the barrier plan@s said before, a¢=0),  sephson tunnel junction of typ&:

will be shielded inside the cavity because of the demagneti- . )

zation currents flowing on the external surface of the cylin- b= pu—Sin g=y+ nA sinkx+ adi— By,

ders. (We assume here that the applied field is not strongyith the periodic conditions given by Eg2.1) and (2.2.
enough to drive the superconductors into the intermediate \ve now consider the more realistic tyBeand typec
state) It is well known that the screening currents modify geometries depicted in Fig(t) and Fig. 1c), respectively,

the configuration of the external field and, by using the fac§y \which the annular junctions are realized by means of pla-
that the field component parallel to a surface is continuougay films. In these cases the screening currents can be ne-
across it, it comes out that the tangential field is givengiected and the boundary conditions E@s2) can be written
H{=H*/(1—N)=2H* whereN is the demagnetizing geo- 35

metrical factor which is equal to 0.5 for a cylinder immersed

in a field normal to its axis. The direction of this field is such L)
that it adds to the self-field on one side and subtracts on the ar =0
other. Therefore, considering that the junction boundaries are r=ri
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and distributions¢(x) are allowed which differ according to the
number of static fluxons in the barrier. This also explains the

@ —  k(H* sin 64+1./2 multiple solutions found in the measurements of the mag-
ar| _, =~ x(H* sin b/27T e) netic dependence of the critical current of long linear
e junctions®?? (The casey#0 and =0 which describes
for the geometrical configuration of Fig(k), and long overlap junctions in external field cannot be solved ana-
Iytically, but has been analyzed by Pagano, Ruggerio, and
@ — _kH* sin g Sarnelli in phase spattsince the equation can be integrated
ar r=r-_ whesin once to gived,==*2(K'—cos¢—y¢), whereK’ is an
: integration constant. Unfortunately, the presence of the
and term does not allow a similar analytical treatmgnt.
I , .
I =—k(H* sin 6+1 /271y, V. LONG ANNULAR JUNCTIONS:
oar r=re THE NUMERICAL SIMULATIONS
for the geometrical configuration of Fig(d. Carrying out We have numerically solved E¢4.8) for different values
the calculations, one ends up with the following differential of the normalized circumferendewhich enters the equation
equation forg(x,t): directly throughk andA. Direct numerical integration of Eq.

(4.9 is complicated by instabilities associated with the ab-
Dux— bu—Sin p=y+ pA sinkx+ ad— Bdy, (4.7  sence of damping in the systéfhiTo avoid this problem, we
. . — . . reverted to the integration of E4.7) with a=1, in order to
in which A=k?(1/2+r/Ar) in the case of Fig. (b) and : ; - .
A=K in the case of Fig. (t). Equation(4.7) states that for obtain convergence to a static solution through a rapid decay

. ) e X . of transient. In real device<0.01. The term containing the
an annular junction the magnetic field enters directly into theSurface losses was simply dropped to save computer time

PSGE in contrast to the case of linear junctions for which it; e., =0. Equation(4.7) was integrated using an implicit
appears only in the boundary conditions. Further, the diﬁer"finiée difference metho& The integration in time is given

ent secj[ions of the ””@9?' different fi_eld;_ more precis_ely, by a standard fourth-order Runge-Kutta algorithm and the
diametrically opposed poinfeel opposite field and the field integration in space by the usual three-point approximation
term in EqQ.(4.7) is in phase with respect to the actual field. for the second derivative

Moreover, as before, the effect of a given field is larger on . ;
S ’ We have numerically computed the maximum allowed
small width rings, but only for the typB-geometry. In the y P

case of typez geometry the behavior is independent on both

r andAr, however, the coupling factak is always smaller 1.0

than that of the typ® geometry, i.e., typ& devices are less o8t

sensitive to the external field. In all cases, the effect of a Te

given field decreases quadratically with the ring normalized 0.6¢

circumferencd. At first glance one may think that E¢4.7) 0.41

is the PSGE for an overlap junction in a spatially modulated ool

magnetic field or with a spatially modulated bias term, how-

ever, closer consideration shows that this is not the case. 0.04 o 4 6 8 10

In what follows, since we are interested in the static, i.e., 10
time-independent solutions of E4.7), we will focus our
attention on the following equation: %, 08 (b) =12 ]
0.6 1

Pyx— SN p=y+ nA sinkx, (4.9 o4l

and, in order to fix the number of solitons in the junction to 0.2l

zero, the condition on the phase periodicity is given by 00 o \_/

Sx+1)= $(x), .9 100 2 4 6 8 10 12 14
Dy(X+1) = dy(X). (4.10 v 0.8f (c)1=24

Setting y=7=0, Eq. (4.9 is a well-known equation which © 0.8)

describes the phase distribution in a linear in-line-type junc- 0.4}

tion with the proper boundary conditions set by the bias cur- i

rent and the external field. Ferrel and Praéigeund for a 0.2

semi-infinite linear junction a solution which satisfies the 0.0y 5 10 15 20

boundary conditiong(c)=0. Later, in a famous paper by n

Owen and Scalapin®, Eq. (4.8) was analytically solvedfor

a finite in-line junction in terms of Jacobian elliptic func- FIG. 3. Numerically computed threshold curves of long annular

tions and the vortex structures have been carefully studied. [tinctions having different normalized circumferente®) 1 =6, (b)
was shown that, for a given field and bias, different phasé=12, and(c) | =24.



53 ANNULAR JOSEPHSON TUNNEL JUNCTIONS INN . .. 3477

value of the zero-voltage biag. vs » for annular junctions lobe, extending fromyp=1.8 to »=6.1, we begin with a
having different normalized circumferencedn these simu- phase configuration very similar to that at the right side of
lations,| had to be an integer number. We have carried outhe first lobe in which one fluxon-antifluxon pair is present in
the calculations for junctions having the ty@egeometry, the barrier, and we end with two fluxon-antifluxon pairs, the
i.e., with A=k? however, if typeA or typeB geometries are two bunched fluxons facing the two bunched antifluxons in
considered the proper value fdr has to be inserted in Eq. diametrically opposed potential wells created by the mag-
(4.8). For I=1, the numerical data closely follow the ex- netic field. Adopting the terminology used for the linear
pected Bessel-like dependengg=|J(7)| with differences junctions®* we refer to the first lobe as the “0 to (fluxon-

only in the third significant digit. Pronounced deviations antifluxon pair mode” lobe, the second as the “1 to 2 pair
from the theoretical behavior of small junctions were foundmode” lobe and so on. In general, one may talk aboutrthe
for 1=6, as can be seen in Fig(é3 where they, vs 7 de- to n+1 pair mode when the junction contains more timn
pendence is reported. In fact, for largeve find ranges of pairs, but less than+1 pairs. Ad is increasedy, increases,
magnetic field, near minima of the threshold curve, in whicheach lobe broadens, and, sometime, three or more lobes over-
v, may assume two different values. In a fashion whichlap. This behavior is shown in Fig(l® for an annular junc-
closely recalls the behavior of long linear junctions, thesetion with |=12 where up to five lobes are plotteg,.=6.0 for
values correspond to different configurations of the phas¢his normalized length. In order to trace the different lobes, it
inside the barrier. In fact, each lobe in FigaBis associated is crucial to start the integration with the proper initial phase
with a given vortex structure; more precisely, in the first lobeprofile. Initially the phase configurations corresponding to
which extends fronn=0 to »=7,=3.2, the external mag- zero, one, two, etc. fluxon-antifluxon pairs were found on a
netic field is shielded and no vortices penetrate the barrieshort junction(l =3) for which the lobe overlap is very small.
However, at the very end of this lobe a full fluxon-antifluxon Later these profiles were scaled and used as approximate
pair is present along the junction, the fluxon facing the antidnitial configurations for longer junction$=6,12,24. How-
fluxon on diametrically opposed potential wells created byever, on real devices, the measurements of maximum super-
the magnetic field. The different phase profiles will be ana-current against the external field often yield the only enve-
lyzed in detail later. In the successive lobes the magnetitope of the lobes, i.e., the current distribution switches
field penetrates in the barrier and vortices enter the barrier inutomatically to the mode which for a given field carries the
a way analogous to the behavior of the type-1l superconductiargest supercurrent. Sometimes, for a given applied field,
ors, even though the junction vortices differ from the Abri- multiple solutions are observed on a statistical basis by
kosov vortices in that they lack a normal core. In the secondweeping the junction current-voltage characteristic many
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FIG. 4. Dependence of the critical fielg. on the normalized circumferences of the rindots denote numerically computed data and
the solid line is an empirically found relationship.
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times. Increasing further, the dependence of the first lobe X
becomes more and more linear and its slope becomes less
and less pronounced. Fbr24 the critical field is 18.6, as
shown in Fig. c).

The numerically computed critical field values found on
junctions with different lengths are plotted as dots in Fig. 4
together with an empirical but simple exponential I&olid
line) which nicely fits the numerical data,

|
Ne= nc(o)expﬂ-

We do not have arguments to give physical support to this
relationship.

Going back to Fig. &), we observe that fok=24, there
exists a range of values aeffrom 14.5 to 17.4 for which five
different vortex configurations are possible. Re+0.05 and
n=15, these configurations are shown in Figs. 5 where the
Josephson current density profile gitx) (solid line) and
the local magnetic field,(x) (dashed lingare reported si-
multaneously. In the 0 to 1 pair modlEig. 5a)] almost one
fluxon-antifluxon pair is uniformly distributed along the bar-
rier and the magnetic field in the junction is very weak since
we are still in the Meissner region where the external fields
tend to be shielded. As we move toward the 4 to 5 pair mode
[Fig. 5(e)], we observe that sih(x) makes more and more
oscillations betweent+1 and —1 and the magnetic field
grows larger. Each sigh oscillation corresponds to &2
phase change, i.e., to a fluxon or antifluxon depending on the
sign of ¢,. We can clearly see that the fluxotetifluxons

are bunched together and they tend to accumulate where the (d)
external field is tangent to the ring and its effect is weaker, ar ' ' 1-4
that is atx= *1/4. These points correspond to a minimum of ; d e

a potential and the fluxon@ntifluxong are in a stable equi- 2r N
librium. When the number of fluxons in a potential well in- 0 \/\/\/\/\/\/\/\/\/\/\/
creases, their widths and the distance between them de-

creases, despite the repulsive force experienced by two or 2r 1
more closely spaced fluxons, seen as magnetic dipoles. In I S N (e)
second approximation, we may also consider the attractive /2 0 /2 n 31/2
forces between one or more fluxons at, say,+1/4 and one 0

or more antifluxons ak=—1/4; in fact, since they are at

diametrically opposed points of the ring their magnetic di- . o
poles line up. For each of the configurations shown in Figs, FIG. 5. The spatial dependence of the current densitypsin
5, as we increase the external field, a further torque is applief°lid lin® and the local magnetic fields, (dashed ling for an
along the line: however, the torque has opposite polarity oRMnular junction of length=24. (@), (b), (c), (d), and(e) represent
opposite sides and is maximum at the poirte0 andx=1/2, "€ five vortex structures fop=15 andy=0.05.

where the fluxon-antifluxon pairs are nucleated. ) ] ) o
measured in these two configurations were very similar indi-

V1. LONG ANNULAR JUNCTIONS: cating that the supgrconducting properties of the junction top
THE MEASUREMENTS electrode(50 nm thick are not affected by the presence of a
thick backing Nb film. In order to avoid self-field effects the
In this section we present some representative magnetimaximum Josephson current density of this sample was mea-
threshold patterns of annular junctions for various geomsured on a small square junction belonging to the same fab-
etries, normalized lengths and orientations of the externallyication batch. We found,=15 A/cn?, which yields\;j=110
applied field. We begin with the two patterns shown in Fig.um andl=>5; further, we measured a ratio of the maximum
6; they refer to the same junction measured in the @pe- Josephson current to the current jump at the gap voltage
(dashed lingand in the typeB (solid line) configurations. In  1./A1;=0.55 (due to the proximity effect, such a small
fact, as said before, a number of samples were first fabricatechlue is typical of symmetric low-current-density
in the type€ configuration and, after the measurement atNb/AI-AIO,-Al/Nb junctions.
liquid-helium temperature, the deposition of an extra and The maximum critical currents occur for zero applied
larger wiring film was deposited to obtain the tyBegeom-  field; however, the zero-field Josephson current for the
etry. The quasiparticld-V characteristics of the samples typeB device is larger(@about twicg than that measured in
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H (a.u.)

FIG. 6. Magnetic pattern of a intermediate-length annular junction in the Byfsslid line) and in the typec (dashed ling configuration.

the type€ configuration. This effect closely recalls of linear junction on the base electrode itself. These facts indicate
junctions in the in-line and overlap configurations and sugthat, from a theoretical point of view, other geometrical fac-
gests that, in typ& geometry, the bias current is not uni- tors must be taken into account to compute the exact value of
formly distributed over the junction area. The ratjdAl,is  A. For this reason all the experimentalvs H dependences

a direct measure of this nonuniformity: the lower this ratio,reported in these paper use arbitrary units for the field.

the larger is the nonuniformity. For the the tyBegeometry The reduced zero-field critical current of ty@edevices

this ratio is slightly less than that found on a small squarendicates that these samples experience a field due the bias
junction so that we can assume that the bias current is disurrent itself. Since the bias current flows mainly in the
tributed uniformly. However, the value measured in thedirection[see Fig. 1c)], the self-field occurs principally in
type-C configuration(0.28 indicates that the bias current they direction. To better understand the nature of the self-
mainly enters the junction nea=0.

Another evident feature in Fig. 6 is that the minima of the 5
two patterns do not occur for the same value of the external .
field (although the field strength on the abscissa is reported <
in arbritrary units, these units are the same for the two sets of
datg. The ratio of the critical field measured in the tyBe-
configuration to the critical field obtained in the ty@eeon-
figuration is 0.55; in Sec. IV we have observed that the
typeB samples are expected to be more sensitive to the ex-
ternal field, however, according to the calculated coupling
factors A, we would expect this ratio to be (1/2+r/Ar)
=0.33. This discrepancy can be accounted for, at least quali-
tatively, by the presence of the idle region inside the t@pe- T4 3 2 A 0 1 2 3 4
devices. It has been shown for linear junctions that the lateral H(auw)
idle region increases the fluxon rest midsmd, in turn, the
junCtlon CI’Itlca| fle|d12 |ndeed, we aIWa.yS f|nd some dISCI’ep- FIG. 7. Magnenc pattern of a ty@-|ntermed|ate_|ength annu-
ancy between the experimental and theoretical coupling fagar junction with different orientation of the external field. Parallel
tors. In particular, the coupling between the external field ando the bias currerfsolid line), i.e., x direction in Figs. {b) and Xc),
the flux density in the junction was found to depend on theand perpendicular to the bias currédashed ling i.e.,y direction
width of the base electrode and on the location of the annulan Figs. 1(b) and 1c).

I, (mA)
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35 : : ‘ : annular junction withl,=210 A/cnf andl ==17. For small
— et T e, fields, the dependence is not quite linear as expected for long
25 ::;3‘“ . junctions, however, the occurrence of multiple solutions
r Easity e clearly indicates the existence of different vortex states.
L A t e ] However, for this sample the ratiQ may/Alglemax/Alg=(32
5’_ R " mA)/(67 mA)=0.48. The same sample measurec(]J with the
< I field in they direction had a maximum critical current of 42
E s i mA, while a similar junction in the typ& configuration had
0 . a maximum critical current of 19 mA in nonzero field. These
15+ o A facts suggest that current limiting effects due to the self-
KRS e fields also play an important role for long junctions in the
25¢ e . 1 typeB geometrical configuration and this consideration
35 I ‘ e , should apply also to devices having the typegeometry. We
2 1 0 1 2 also speculate that the quadratic dependence for small fields
H (au) can be attributed to self-field effects.

VII. CONCLUSIONS
FIG. 8. Magnetic pattern of a lond=17) annular junction in . .
the typeB configuration. The dependence of the critical current on a uniform mag-

netic field for annular Josephson tunnel junctions has been
énvestigated both experimentally and numerically. A simple

field, we have compared the magnetic patterns of on : ) . : ; .
analytical approach is possible when the normalized ring cir-

(type-C geometry annular junction taken with the orienta- : s | than2o In thi find thd
tion of the external magnetic field in thedirection and in cumference IS 1ess thaazm. In this case we Tin L VS

they direction. The results of these measurements are show] 90€s not follow the Fraunhofer-like pattern typical of rect-
in Fig. 7 for a sample having,=15 Alen? and | =5. The angular junctions, but rather a zero-order Bessel function be-
. c .

havior, with almost equally spaced minima. Different junc-

the dashed line corresponds to data taken with the field in thiion geometries have been con_S|dered in studying the static
y direction. We observe that, while in former case the patterr?elf'f'eld in long an_nular junctions. However, two planar

is symmetric with respect to the inversion of the currentStructures characterized by a S|mply. connected base eIe(_:-
and/or the field, in the latter the dependence shows the typffode have been chosen for the experiments. We saw no evi-

cal behavior of linear junctions immersed in an external fielddetnce olffﬂuléor::trapplnr? when t?e samrﬁ)les V\éer? C%OIEd 'nt.aT
parallel to their own self-field® in fact, the largest value of external field. For each geometry we have derived a partia

the critical current occurs for a field which is comparablediﬁerential equation to describe both the stati<_:s and the dy?
with the critical field measured with the field parallel to the nalml_cs of the phase d!ffelrlence acrosz the b]:':lrne(;. Vt\]/henf static
bias current. Furthermore, the ratio of the maximum critical>® utions were numerically computed, we found that, for a

current to the current rise at the gap voltage is very close tg'ven field, different phase p_rof|les are possible depending
that measured on a small square junction, so that we call! the pumber of fluxonjantlf'luxon pairs nucleated at two
reasonably assume that the self-fields are almost completfg{cag:etr;?allgy_Oplposedt p(émts In thet lia(;rlfr WheLe. tr?e efﬁct
compensated by a field perpendicular to the current flo e field 1S largest. Experimental data on high-quality

This hypothesis is supported by the result of humerical intel\Ib/Al"/'\lo><'A|/'\Ib annular junctions basically confirm the

gration of Eq.(4.8) with an extra term which simulates a ftheoretipal predictions providgd the effects of current limit-
uniform self-field parallel pyA sinkx and orthogonal ing static self-field are taken into account.
pyA coskx to the external field applied in the direction
(i.e., parallel to the bias current flgwA behavior very close
to that shown in Fig. 7 has been simulated by setting the free The authors wish to thank Professor R. D. Parmentier and
parametep=2. Dr. S. Pagano for stimulating discussions and for a critical
We have shown numericpdf. Fig. 3@] and experimental reading of the manuscript; further we acknowledge A. Fer-
(cf. Fig. 6 evidence that, when the junction circumference isrentino for a valuable technical assistance. This work was
less than about2\; the effects of static self-field, although partially supported by the Consiglio Nazionale delle
evident, are not very pronounced. To conclude this sectiorRicerche under the Progetto Finalizzato “Superconductive
we show in Fig. 8 the magnetic pattern of a lofigpeB)  and Cryogenic Technologies.”

solid line shows the data for the field in tkelirection, while
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