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We have investigated the static configurations of the phase inside an annular Josephson tunnel junction in the
presence of an externally applied magnetic field. We report here a detailed study of the dependence on the
magnetic field of the critical current for different annular geometries. The periodic conditions for the phase
difference across the barrier are derived from fluxoid quantization. For rings having a radius less than the
Josephson penetration depth analytical results are derived which are in excellent agreement with the experi-
mental data. For longer junctions numerical analysis is carried out after the derivation of the appropriate
perturbed sine-Gordon equation. We find that a number of different phase profiles may exist for a given applied
field which differ according to the number of fluxon-antifluxon pairs present in the line. Experimental data
support the theoretical analysis provided self-field effects are taken into account in real devices.

I. INTRODUCTION

A Josephson tunnel junction is certainly one of the most
convenient solid-state device for the study of the nonlinear
phenomena and, in particular, long Josephson tunnel junc-
tions, i.e., junctions for which at least one dimension is
greater than the Josephson penetration depth, are useful for
the investigation of the soliton properties. Most of the ex-
perimental work has been carried out on linear quasi-one-
dimensional junctions having either the overlap geometry in
which the bias current flows perpendicular to the long di-
mension or the inline geometry in which the bias current
flows parallel to the long dimension. Very little work has
dealt with annular, i.e., ring-shaped junctions even though,
they offer many advantages for the study of the soliton dy-
namics. The situation is slightly different with regard to nu-
merical investigations of long Josephson tunnel junctions. In
fact, papers have often dealt with both linear and annular
geometries and, in some cases, only the annular geometry
was considered. It was recognized a long time ago that soli-
ton ~or fluxon! motion is smoother in ring-shaped junctions
since the fluxon cannot collide with boundaries.1 Another
unique property of annular junctions results from fluxoid
quantization in a superconducting ring: one or more fluxons
can be trapped in the junction at the time of the normal-
superconducting transition. Once trapped the fluxons can
never disappear and only fluxon-antifluxon pairs can be
nucleated. Dueholmet al.2 reported experimental results on
fluxon motion in long annular junctions. Later on, a number
of people found this geometry ideal for experimental tests of
the perturbation models developed to take into account the
dissipative effects in the pure sine-Gordon analysis.3–5 The
dynamics of the single and multiple fluxons was also studied
with the help of a low-temperature scanning electron micro-
scope and in barriers with periodic inhomogeneities.6–8 Re-
cently the presence of vortices trapped in discrete Josephson
rings has attracted the interest of the scientific community.9,10

However, a detailed study of the behavior of annular junc-
tions has never been undertaken and a full understanding of
the possible new phenomena is far from complete. In par-
ticular, the behavior of an annular junction in the presence of
an externally applied field has not previously been consid-
ered, to our knowledge.

In this article we focus our attention on the static configu-
ration of the phase in ring-shaped junctions in the presence
of an external applied field. The dynamics of solitons in an-
nular junctions in the presence of an externally applied field
will be the subject of another article. We have measured the
dependence of the zero-voltage Josephson current for a large
number of annular junctions having different geometries and
normalized lengths. The experimental data are compared
with the analytical results for small rings and with the nu-
merical results obtained by solving the appropriate partial
differential equations for large rings.

The paper is organized as follows. In Sec. II we describe
the fabrication of the samples and the different geometries
that have been realized; the proper periodic conditions are
derived for each geometrical configuration. In Sec. III we
present experimental data and the analytical results for an
electrically short annular junction. In Sec. IV we derive the
appropriate partial differential equation for a electrically long
junction considering proper boundary conditions. In Sec. V
we present the results of the numerical simulations and we
demonstrate the existence of more than one phase profile for
a given field. In Sec. VI we present some magnetic patterns
for long annular junctions together with interpretation and
discussion of the measurements. Conclusions are drawn in
Sec. VII.

II. THE SAMPLES

Using the well known and reliable selective niobium an-
odization process11 we have fabricated a large number of
square and annular junctions based on the Nb/Al-AlOx/Nb
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technology. Small square junctions were used to measure the
electrical properties of the Nb/Al-AlOx/Nb trilayer. The de-
tails of the trilayer deposition and of the fabrication process
can be found elsewhere.12 On each substrate four identical
annular junctions were made having an average circumfer-
enceC5500mm corresponding to a mean radiusr̄580 mm
and ring widthDr530 mm. In this section we describe the
different geometrical configurations that were considered.
They are depicted in Figs. 1~a!–1~d!. In Fig. 1~a! we show
the perspective view of an ideal annular junction made by
two semi-infinite hollow cylinders separated by a thin dielec-
tric film; this configuration will be examined only theoreti-
cally. We will refer to this geometry as type-A geometry.
Figure 1~b! shows the type-B geometry in which the annulus
is sandwiched between two thick simply connected super-
conducting layers. Niobium anodic oxide~200 nm thick!
and, sometimes, an extra dielectric layer made of rf-sputtered
silicon dioxide~150 nm thick! provide a good insulation be-
tween the base electrode and the wiring film around the junc-
tion area. This thick insulating layer inside and outside the
ring, also called idle region, is expected to alter both the
static and dynamic properties of the junctions. However, on
linear one-dimensional long junctions it has been proved by
both numerical simulation13 and experiments12 that, as far as
the static properties are concerned, the only effect of the idle
region is to increase the magnetic energy stored in the flux-
ons, i.e., it introduces a scaling factor on the field strength.
The schematic of type-C geometry is shown in Fig. 1~c!: it is
very similar to typeB with the difference that the wiring film
does not cover the entire junction top electrode but contacts
it only in a very limited area. This difference, in principle,
allows magnetic field to be trapped in the superconducting
ring made by the junction top electrode at the time of the
phase transition. We have realized only annular junctions of
typesB and C and often type-B junctions were obtained
from type-C junctions after the deposition of an extra wiring
film. In Fig. 1~d! we also show a geometrical configuration
which has been used in previous experimental works aimed
to the study of the fluxon propagation in the absence of
boundary collisions.4,5 This geometry, which will be referred

to as typeD, is such that magnetic flux can be trapped in the
two superconducting rings, i.e., the base and top electrodes
are both multiply connected superconductors.

In general, the periodic conditions for the quantum-
mechanical phase differencef across the barrier around an
annular junction are written as

f~X1C!5f~X!12pn, ~2.1!

fx~X1C!5fx~X!, ~2.2!

where X is the spatial coordinate specifying the distance
around the ring,C is the average ring circumference andn is
an integer number corresponding to the algebraic sum of
fluxons trapped in the junction at the time of the normal-to-
superconducting transition. Equations~2.1! and ~2.2! are
physically reasonable since they state that observable quan-
tities such as the Josephson current~through sinf! and the
magnetic field~throughfx! must be single valued upon a
round trip. We will give a derivation of Eq.~2.1! and will
show that the number of trapped fluxons also depends on the
particular geometry of the annular junction.

Let us start by considering fluxoid quantization applied to
the type-D geometry. By choosing two closed and parallel
paths in the top and base electrodes just above and just below
the barrier we can write

m

nse
2 E

u
Jsu•dl1E

S
E
u
B•dS5kF0 ,

m

nse
2 E

l
Jsl•dl1E

S
E
l
B•dS5 jF0 ,

for the upper and lower paths, respectively.Jsu andJsl are the
supercurrent densities in the upper and lower electrodes, re-
spectively.F05h/2e is the flux quantum, whilek and j in-
dicate the integer numbers of flux quanta~in general, differ-
ent! corresponding to each fluxoid. Taking the difference
between the last two equations, and, considering that the two
surface integrals must be equal, we end up with

FIG. 1. Schematic of~a! type-A, ~b! type-B and ~c! type-C annular junctions considered in this work. Ideal type-A devices were used
only as a simple example for theoretical purposes.~d! Geometrical configuration~typeD! examined in previous reports.

3472 53N. MARTUCCIELLO AND R. MONACO



m

nse
2 S E

u
Jsu•dl2E

l
Jsl•dlD 5nF0 ~2.3!

with n5k2 j . After some lengthy but straightforward calcu-
lations, we obtain the following equation:

m

nse
2 ~Jsu2Jsl!•dl5fxdl,

which, inserted in Eq.~2.3!, yields Eq.~2.1!, for the devices
having the type-D geometry. In other words, the net number
of fluxons trapped in a annular junction comes out to be the
algebraic difference between the number of fluxons associ-
ated with the fluxoids in each electrode. In the case of
type-D geometry we have considered closed curves which
surround a nonsuperconducting region, i.e., a hole. Magnetic
flux can thread this hole accompanied by a current flowing
round the hole. The fluxoid enclosed within each curve will
be an integral number of flux quanta, but this number will be
zero if no flux threads the hole. If, however, we consider a
closed curve which does not encircle a nonsuperconducting
region, so that the area enclosed by the curve is entirely
superconducting, then the number of flux quanta is always
zero. In other words, if we apply the fluxoid quantization to
the type-B annular junctions, we must putk5 j50 in Eqs.
~2.3! and ~2.4!, that is,

f~X1C!5f~X!. ~2.4!

The last equation states that only fluxon-antifluxon pairs, and
not isolated fluxons, can be trapped in a type-B annular junc-
tion passing through the normal-to-superconducting transi-
tion in presence of a magnetic field. This can be easily un-
derstood considering that, if a magnetic-field line enters the
barrier in some place to create, e.g., a fluxon, it must neces-
sarily exit at some other point in the barrier where it creates
an antifluxon: in other words, a static fluxon-antifluxon pair
has been created. When the field is removed and a bias cur-
rent is supplied to the junction, the fluxon and the antifluxon
start to move toward one another and the pair annihilates.
This behavior has been experimentally proven on our type-B
devices: in fact, we never succeeded in trapping an isolated
fluxon in the barrier even after repeated thermal cycles
through the transition temperature in the presence of an ex-
ternal field. We always found the same value for the zero-
field critical current. The presence of one or more fluxons
alone would cause a strong reduction, in principle, a total
suppression, of the zero-voltage Josephson current as has
been observed on type-D devices.4 For type-C devices, from
a theoretical point of view, we would expect the more gen-
eral periodic condition@Eq. ~2.1!# to hold, however, also in
this case we were not able to trap flux in the barrier. Al-
though surprising, this result is very similar to those reported
by Davidson, Dueholm, and Pedersen on type-D devices re-
alized on a superconducting ground plane;4 in type-C de-
vices the base electrode itself acts as a ground plane. At the
moment it is not clear the role played by the ground plane on
the periodic phase conditions.

III. SMALL ANNULAR JUNCTION

In this section we derive the equations which describe the
behavior of a small annular junctions in the presence of a
uniform external applied magnetic field. We will use cylin-
drical coordinatesr , u, andz, assuming that the junction lies
in the z50 plane and its center of symmetry is located at
r50, as shown in Fig. 1. We set the origin of the angular
abscissa, i.e.,u50 in the direction of the field. The tunnel
currents flow in thez direction and the local density of the
Josephson current can be expressed as14

Jj~r ,u!5Jc~r ,u!sin f~r ,u!, ~3.1!

where the maximum Josephson current densityJc , generally
speaking, depends on bothr and u and is constant inside
uniform barrier junctions. In Josephson’s description the
two-dimensional fieldf is related to the voltageV across the
two superconducting films and to the induction fieldH inside
the barrier14

df

dt
5
2p

F0
V,

¹f5
2pdm0

F0
H3uz , ~3.2!

in which uz is a unit vector in thez direction, m0 is the
vacuum permeability, andd is the junction magnetic penetra-
tion depth~d5s1lL11lL2 wheres is the thickness of the
junction barrier andlL1 andlL2 are the London penetration
depths of the superconducting electrodes!. Equation ~3.2!
states that, among other things,f is not sensitive to fields
along thez direction.

We assume that the annular junction is electrically short,
i.e., the ring circumference is small with respect to the Jo-
sephson penetration lengthlj . Further, by denoting withr e
and r i the outer and inner ring radius, respectively, we as-
sume that the ring widthDr5r e2r i is much smaller than the
mean radiusr̄50.5(r e1r i). Under these conditions a spa-
tially homogeneous applied fieldH* fully penetrates the bar-
rier. This implies that the magnetic field is the same on both
inside and outside of the ring, which is true only for the
type-C geometry. Now, assumingf5f~u!, and considering
that, according to Eq.~3.2!, the dependence off on u is
related only to the radial component of the field
Hr5H*cosu, integrating we get

f~u!5h sin u1f0 , ~3.3!

where h is the externally applied fieldH* normalized to
F0/2pm0r̄ d andf0 is an integration constant. In other words,
a small annular junction behaves as a small linear junction in
a spatially modulated external field. The Josephson current
through the barrier is obtained integrating Eq.~3.1! over the
junction area. Assuming that the maximum Josephson cur-
rent densityJc is constant over the junction area, we obtain
for the total current,

I5E JjdS5Jcr̄Dr E
2p

p

sin f~u!du. ~3.4!

Inserting Eq.~3.3! in Eq. ~3.4! and carrying out simple cal-
culations we get
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I ~h,f0!5I c~0!sin f0

1

2p E
2p

p

cos~h sin u!du

5I c~0!sin f0J0~h!,

in which I c(0)5Jc2p r̄Dr is the maximum junction critical
current andJ0 is the zero-order Bessel function.I is largest
whenf05p/2 so15

I c~h!5maxf0
I ~h,f0!5I c~0!uJ0~h!u.

The theoretical magnetic-field dependence of the normalized
critical currentg~h!5I c(h)/I c(0) of a small annular junction
is shown by the full curve in Fig. 2. The first zero ofJ0
occurs for hc52.405. For comparison we also show the
Fraunhofer dependence typical of small linear junctions
usin(hp/hc)/(hp/hc) u ~dashed line in Fig. 2!. It is evident
that for an annular junction in a uniform field the minima in
the magnetic pattern are not integer multiples of the first one,
although they are~almost! equally spaced, the separation be-
tween two contiguous minima being aboutp. The second
zero occurs forh255.5252.29hc5hc13.12, the third oc-
curs for h358.6553.60hc5h213.13 and, for larger argu-
ments the minima can be found using the approximate rela-
tion J0(h).A2/ph cos(h2p/4). Further, the secondary
maxima in the Bessel pattern are more pronounced than
those of the Fraunhofer pattern. The experimental data for an
annular junction with the type-C geometry and average cir-
cumferenceC51.7l j are reported by stars in Fig. 2. The
field scale for the experimental data has been chosen in such
a way that the first minimum in the pattern coincides with the
first minimum of J0~h!. It is evident that the experimental
data nicely reproduce the main features of the Bessel pattern,
although discrepancies in the amplitudes of the secondary
maxima show up especially for large field values.@For the
sake of completeness, a comparison of theJ0~h! dependence
found for small annular junctions with theJ1~h!/0.5h depen-
dence known for small circular junctions16 shows that in the
latter case the secondary minima occurs ath values which

are lower than the integer multiples ofhc , that is,
h251.83hc , h352.65hc , and so on.# We wish to comment
that, if the applied field is not uniform but is radial, as that
generated by a current circulating in a loop concentric with
the ring as in Ref. 6, each section of the ring feels the same
field and the annular junction follows a Fraunhofer-like mag-
netic pattern.

So far we have assumed a uniform Josephson current den-
sity Jc , however the analysis can be generalized to the cases
in which Jc has a simple dependence onu. We have limited
our interest to sinusoidally modulated current distributions
such as

Jc~u!5Jc0
11a cosn~u2u0!

11a
, ~3.5!

where isa is a positive constant less than one,u0 is a generic
angle,n is a positive integer andJc05Jc~u0! is one of the
maxima of the critical current density. Inserting Eq.~3.5! in
Eq. ~3.4!, we obtain the result of the integration in terms of
higher-order Bessel functions:

I c~h!5
I c~0!

11a
AJ02~h!1a2 sin2 u0Jn

2~h!,

for oddn. Instead, ifn is even, we get

I c~h!5
I c~0!

11a
uJ0

2~h!1a2 sin2 u0Jn
2~h!u.

Equation~3.5! can be generalized to describe any periodic
distribution expanded in a Fourier series as, for example,
those realized on annular junctions with periodic dishomoge-
neities proposed by Ustinov.17

IV. LONG ANNULAR JUNCTIONS: THE THEORY

In this section we derive the appropriate sine-Gordon
equation for an annular junction in an external magnetic
field. The total tunnel current density is given by

Jz5Jc sin f1
F0

2pR
f t ,

where the second term in the right side takes into account the
quasiparticle tunnel current assumed to be Ohmic, i.e.,R is
the voltage-independent quasiparticle resistance per unit
area. The subscripts onf denote partial derivatives. By com-
bining the previous equations with Maxwell’s equations, one
obtains a differential equation forf:

l j
2¹2f2

1

vp
2 f tt2sin f5

f t

vp
2Rcs

2l j
2e re0Rs¹

2f t ,

wherel j
25F0/2pm0Jcd andv p

252pJc/F0cs , cs being the
specific junction capacitance. It is well known that the pa-
rameterlj , called the penetration length of the junction,
gives a measure of the distance over which significant spatial
variations of the phase occur, in the time-independent con-
figuration. The plasma frequencyvp/2p represents the oscil-
lation frequency of small amplitude waves. Further, we can
introduce the parameterc̄5vpl j which gives the velocity of
light in the barrier and is called Swihart velocity. In the last

FIG. 2. Magnetic pattern of a small annular junction. The solid
line represent the theory while the stars are the experimental data
for a type-C junction havingC51.7l j . The dashed line shows for
comparison the Fraunhofer-like theoretical dependence for a small
rectangular junction. Field values have been normalized in such a
way that the first minima coincide.
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equation the second term in the right side takes into account
the effect of the surface currents in the London layers, i.e.,
Rs is the voltage-independent surface resistance. Introducing
the adimensional loss coefficientsa215vpRcs and
b5e re0vpRs , the last equation takes the form:

l j
2¹2f2

1

vp
2 f tt2sin f5

a

vp
f t2l j

2b¹2f t . ~4.1!

Equation ~4.1! is called perturbed sine-Gordon equation
~PSGE!. Because of its local form, it is quite general and
holds for junctions of any geometrical configuration. It be-
comes more familiar in normalized Cartesian coordinates1

fxx1fyy2f tt2sin f5af t2b~fxxt1fyyt!.

On the junction boundary the continuity of the induction
field is such that, according to Eq.~3.2!,18

¹f5kHext3uz ,

with k52pdm0/F0. H
ext is the external field that, in general,

is given by the sum of an externally applied field and the
field generated by the current flowing in the junction. The
last vectorial equation can be split into its components:

]f

]r
5kHu

ext and
1

r

]f

]u
5kHr

ext. ~4.2!

The exact knowledge of the radial and tangential compo-
nents of the external field allows the determination of the
proper boundary conditions. Now we recall that the Laplac-
ian of f in cylindrical coordinates is expressed as

¹2f5
1

r

]f

]r
1

]2f

]r 2
1

1

r 2
]2f

]u2
. ~4.3!

Equations~4.1! and~4.3! are, generally speaking, the starting
point for the study of junctions having circular symmetry.
However, the exact junction geometry must be taken in con-
sideration. As a first case and as a simple example, we con-
sider an ideal annular junction made by two semi-infinite
thick-walled hollow superconducting cylinders as shown in
Fig. 1~a!. A bias currentI b flowing uniformly and parallel to
the cylinder axis generates, according to Ampere’s law, a
tangential fieldI b/2pr at a distancer from the axis~only
outside the cylinder!, the self-field being zero inside the cav-
ity. Further, assuming that the cylinder walls are much
thicker than the London penetration depthlL , i.e., that the
ring width Dr@lL , an external and uniform fieldH* ap-
plied parallel to the barrier plane~as said before, atz50!,
will be shielded inside the cavity because of the demagneti-
zation currents flowing on the external surface of the cylin-
ders. ~We assume here that the applied field is not strong
enough to drive the superconductors into the intermediate
state.! It is well known that the screening currents modify
the configuration of the external field and, by using the fact
that the field component parallel to a surface is continuous
across it, it comes out that the tangential field is given
Ht5H* /(12N)52H* whereN is the demagnetizing geo-
metrical factor which is equal to 0.5 for a cylinder immersed
in a field normal to its axis. The direction of this field is such
that it adds to the self-field on one side and subtracts on the
other. Therefore, considering that the junction boundaries are

at r5r i and r5r e , the boundary conditions Eqs.~4.2! for
this geometry can be written as

]f

]r U
r5r i

50

and

]f

]r U
r5r e

52k~2H* sin u1I b/2pr e!. ~4.4!

If the ring widthDr5r e2r i is smaller thanlj , we can as-
sume that]f/]r varies linearly betweenr e and r i to give

]f

]r
52k~2H* sin u1I b/2pr e!

r2r i
Dr

~4.5!

and, differentiating with respect tor

]2f

]r 2
52

k

Dr
~2H* sin u1I b/2pr e!. ~4.6!

Substituting Eqs.~4.5! and~4.6! into Eq. ~4.3! and eliminat-
ing the dependence onr by introducing the mean radius
r̄5(r e1r i)/25r e2Dr /2, Eq. ~4.1! can be written as

S l j

r̄ D 2fuu2
1

vp
2 f tt2sin f5g1hD sin u1

a

vp
f t

2S l j

r̄ D 2bfuut ,

whereg5I b/Jc2p r̄Dr5I b/I c(0) represents the distributed
bias current normalized to the maximum Josephson critical
current,h, as in Sec. III, is the externally applied fieldH*
normalized toF0/2pm0dr̄ and l5C/l j is the normalized
ring mean circumference. Defining the dimensionless wave
numberk52p/ l , the quantityD5k2(112r̄ /Dr ) is a geo-
metrical factor which sometimes has been referred to as the
coupling between the external field and the flux density of
the junction.19 In passing, we note that the smaller the width
Dr , the more sensitive is the junction to an external field.
However, in the limit of vanishing smallDr , Eqs.~4.4! can-
not be satisfied simultaneously, and some penetration of the
external field inside the cavity must be allowed. Finally, in-
troducing the new dimensionless angular coordinate
x5 r̄u/l j and normalizing the time tov p

21, we obtain the
perturbed Sine-Gordon equation~PSGE!, for an annular Jo-
sephson tunnel junction of typeA:

fxx2f tt2sin f5g1hD sin kx1af t2bfxxt ,

with the periodic conditions given by Eqs.~2.1! and ~2.2!.
We now consider the more realistic type-B and type-C

geometries depicted in Fig. 1~b! and Fig. 1~c!, respectively,
in which the annular junctions are realized by means of pla-
nar films. In these cases the screening currents can be ne-
glected and the boundary conditions Eqs.~4.2! can be written
as

]f

]r U
r5r i

50
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and

]f

]r U
r5r e

52k~H* sin u1I b/2pr e!

for the geometrical configuration of Fig. 1~b!, and

]f

]r U
r5r i

52kH* sin u

and

]f

]r U
r5r e

52k~H* sin u1I b/2pr e!,

for the geometrical configuration of Fig. 1~c!. Carrying out
the calculations, one ends up with the following differential
equation forf(x,t):

fxx2f tt2sin f5g1hD sin kx1af t2bfxxt , ~4.7!

in which D5k2(1/21 r̄ /Dr ) in the case of Fig. 1~b! and
D5k2 in the case of Fig. 1~c!. Equation~4.7! states that for
an annular junction the magnetic field enters directly into the
PSGE in contrast to the case of linear junctions for which it
appears only in the boundary conditions. Further, the differ-
ent sections of the ringfeel different field; more precisely,
diametrically opposed pointsfeelopposite field and the field
term in Eq.~4.7! is in phase with respect to the actual field.
Moreover, as before, the effect of a given field is larger on
small width rings, but only for the type-B geometry. In the
case of type-C geometry the behavior is independent on both
r̄ andDr , however, the coupling factorD is always smaller
than that of the type-B geometry, i.e., type-C devices are less
sensitive to the external field. In all cases, the effect of a
given field decreases quadratically with the ring normalized
circumferencel . At first glance one may think that Eq.~4.7!
is the PSGE for an overlap junction in a spatially modulated
magnetic field or with a spatially modulated bias term, how-
ever, closer consideration shows that this is not the case.

In what follows, since we are interested in the static, i.e.,
time-independent solutions of Eq.~4.7!, we will focus our
attention on the following equation:

fxx2sin f5g1hD sin kx, ~4.8!

and, in order to fix the number of solitons in the junction to
zero, the condition on the phase periodicity is given by

f~x1 l !5f~x!, ~4.9!

fx~x1 l !5fx~x!. ~4.10!

Settingg5h50, Eq. ~4.8! is a well-known equation which
describes the phase distribution in a linear in-line-type junc-
tion with the proper boundary conditions set by the bias cur-
rent and the external field. Ferrel and Prange20 found for a
semi-infinite linear junction a solution which satisfies the
boundary condition,f~`!50. Later, in a famous paper by
Owen and Scalapino,21 Eq. ~4.8! was analytically solved~for
a finite in-line junction! in terms of Jacobian elliptic func-
tions and the vortex structures have been carefully studied. It
was shown that, for a given field and bias, different phase

distributionsf(x) are allowed which differ according to the
number of static fluxons in the barrier. This also explains the
multiple solutions found in the measurements of the mag-
netic dependence of the critical current of long linear
junctions.16,22 ~The casegÞ0 and h50 which describes
long overlap junctions in external field cannot be solved ana-
lytically, but has been analyzed by Pagano, Ruggerio, and
Sarnelli in phase space23 since the equation can be integrated
once to givefx56A2(K82cosf2gf), whereK8 is an
integration constant. Unfortunately, the presence of theh
term does not allow a similar analytical treatment.!

V. LONG ANNULAR JUNCTIONS:
THE NUMERICAL SIMULATIONS

We have numerically solved Eq.~4.8! for different values
of the normalized circumferencel which enters the equation
directly throughk andD. Direct numerical integration of Eq.
~4.8! is complicated by instabilities associated with the ab-
sence of damping in the system.24 To avoid this problem, we
reverted to the integration of Eq.~4.7! with a51, in order to
obtain convergence to a static solution through a rapid decay
of transient. In real devicea<0.01. The term containing the
surface losses was simply dropped to save computer time,
i.e., b50. Equation~4.7! was integrated using an implicit
finite difference method.25 The integration in time is given
by a standard fourth-order Runge-Kutta algorithm and the
integration in space by the usual three-point approximation
for the second derivative.

We have numerically computed the maximum allowed

FIG. 3. Numerically computed threshold curves of long annular
junctions having different normalized circumferencesl . ~a! l56, ~b!
l512, and~c! l524.
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value of the zero-voltage biasgc vs h for annular junctions
having different normalized circumferencesl . In these simu-
lations, l had to be an integer number. We have carried out
the calculations for junctions having the type-C geometry,
i.e., withD5k2, however, if type-A or type-B geometries are
considered the proper value forD has to be inserted in Eq.
~4.8!. For l51, the numerical data closely follow the ex-
pected Bessel-like dependencegc5uJ0(h)u with differences
only in the third significant digit. Pronounced deviations
from the theoretical behavior of small junctions were found
for l56, as can be seen in Fig. 3~a! where thegc vs h de-
pendence is reported. In fact, for largel we find ranges of
magnetic field, near minima of the threshold curve, in which
gc may assume two different values. In a fashion which
closely recalls the behavior of long linear junctions, these
values correspond to different configurations of the phase
inside the barrier. In fact, each lobe in Fig. 3~a! is associated
with a given vortex structure; more precisely, in the first lobe
which extends fromh50 to h5hc53.2, the external mag-
netic field is shielded and no vortices penetrate the barrier.
However, at the very end of this lobe a full fluxon-antifluxon
pair is present along the junction, the fluxon facing the anti-
fluxon on diametrically opposed potential wells created by
the magnetic field. The different phase profiles will be ana-
lyzed in detail later. In the successive lobes the magnetic
field penetrates in the barrier and vortices enter the barrier in
a way analogous to the behavior of the type-II superconduct-
ors, even though the junction vortices differ from the Abri-
kosov vortices in that they lack a normal core. In the second

lobe, extending fromh51.8 to h56.1, we begin with a
phase configuration very similar to that at the right side of
the first lobe in which one fluxon-antifluxon pair is present in
the barrier, and we end with two fluxon-antifluxon pairs, the
two bunched fluxons facing the two bunched antifluxons in
diametrically opposed potential wells created by the mag-
netic field. Adopting the terminology used for the linear
junctions,21 we refer to the first lobe as the ‘‘0 to 1~fluxon-
antifluxon! pair mode’’ lobe, the second as the ‘‘1 to 2 pair
mode’’ lobe and so on. In general, one may talk about then
to n11 pair mode when the junction contains more thann
pairs, but less thann11 pairs. Asl is increased,hc increases,
each lobe broadens, and, sometime, three or more lobes over-
lap. This behavior is shown in Fig. 3~b! for an annular junc-
tion with l512 where up to five lobes are plotted.hc56.0 for
this normalized length. In order to trace the different lobes, it
is crucial to start the integration with the proper initial phase
profile. Initially the phase configurations corresponding to
zero, one, two, etc. fluxon-antifluxon pairs were found on a
short junction~l53! for which the lobe overlap is very small.
Later these profiles were scaled and used as approximate
initial configurations for longer junctions~l56,12,24!. How-
ever, on real devices, the measurements of maximum super-
current against the external field often yield the only enve-
lope of the lobes, i.e., the current distribution switches
automatically to the mode which for a given field carries the
largest supercurrent. Sometimes, for a given applied field,
multiple solutions are observed on a statistical basis by
sweeping the junction current-voltage characteristic many

FIG. 4. Dependence of the critical fieldhc on the normalized circumferences of the ringl . Dots denote numerically computed data and
the solid line is an empirically found relationship.
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times. Increasingl further, the dependence of the first lobe
becomes more and more linear and its slope becomes less
and less pronounced. Forl524 the critical field is 18.6, as
shown in Fig. 3~c!.

The numerically computed critical field values found on
junctions with different lengths are plotted as dots in Fig. 4
together with an empirical but simple exponential law~solid
line! which nicely fits the numerical data,

hc5hc~0!exp
l

4p
.

We do not have arguments to give physical support to this
relationship.

Going back to Fig. 3~c!, we observe that forl524, there
exists a range of values ofh from 14.5 to 17.4 for which five
different vortex configurations are possible. Forg50.05 and
h515, these configurations are shown in Figs. 5 where the
Josephson current density profile sinf(x) ~solid line! and
the local magnetic fieldfx(x) ~dashed line! are reported si-
multaneously. In the 0 to 1 pair mode@Fig. 5~a!# almost one
fluxon-antifluxon pair is uniformly distributed along the bar-
rier and the magnetic field in the junction is very weak since
we are still in the Meissner region where the external fields
tend to be shielded. As we move toward the 4 to 5 pair mode
@Fig. 5~e!#, we observe that sinf(x) makes more and more
oscillations between11 and 21 and the magnetic field
grows larger. Each sinf oscillation corresponds to a62p
phase change, i.e., to a fluxon or antifluxon depending on the
sign offx . We can clearly see that the fluxons~antifluxons!
are bunched together and they tend to accumulate where the
external field is tangent to the ring and its effect is weaker,
that is atx56 l /4. These points correspond to a minimum of
a potential and the fluxons~antifluxons! are in a stable equi-
librium. When the number of fluxons in a potential well in-
creases, their widths and the distance between them de-
creases, despite the repulsive force experienced by two or
more closely spaced fluxons, seen as magnetic dipoles. In
second approximation, we may also consider the attractive
forces between one or more fluxons at, say,x51 l /4 and one
or more antifluxons atx52 l /4; in fact, since they are at
diametrically opposed points of the ring their magnetic di-
poles line up. For each of the configurations shown in Figs.
5, as we increase the external field, a further torque is applied
along the line; however, the torque has opposite polarity on
opposite sides and is maximum at the pointsx50 andx5 l /2,
where the fluxon-antifluxon pairs are nucleated.

VI. LONG ANNULAR JUNCTIONS:
THE MEASUREMENTS

In this section we present some representative magnetic
threshold patterns of annular junctions for various geom-
etries, normalized lengths and orientations of the externally
applied field. We begin with the two patterns shown in Fig.
6; they refer to the same junction measured in the type-C
~dashed line! and in the type-B ~solid line! configurations. In
fact, as said before, a number of samples were first fabricated
in the type-C configuration and, after the measurement at
liquid-helium temperature, the deposition of an extra and
larger wiring film was deposited to obtain the type-B geom-
etry. The quasiparticleI -V characteristics of the samples

measured in these two configurations were very similar indi-
cating that the superconducting properties of the junction top
electrode~50 nm thick! are not affected by the presence of a
thick backing Nb film. In order to avoid self-field effects the
maximum Josephson current density of this sample was mea-
sured on a small square junction belonging to the same fab-
rication batch. We foundJc515 A/cm2, which yieldslj5110
mm andl.5; further, we measured a ratio of the maximum
Josephson current to the current jump at the gap voltage
I c/DI g50.55 ~due to the proximity effect, such a small
value is typical of symmetric low-current-density
Nb/Al-AlO x-Al/Nb junctions!.

The maximum critical currents occur for zero applied
field; however, the zero-field Josephson current for the
type-B device is larger~about twice! than that measured in

FIG. 5. The spatial dependence of the current density sinf
~solid line! and the local magnetic fieldfx ~dashed line! for an
annular junction of lengthl524. ~a!, ~b!, ~c!, ~d!, and~e! represent
the five vortex structures forh515 andg50.05.
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the type-C configuration. This effect closely recalls of linear
junctions in the in-line and overlap configurations and sug-
gests that, in type-C geometry, the bias current is not uni-
formly distributed over the junction area. The ratioI c/DI g is
a direct measure of this nonuniformity: the lower this ratio,
the larger is the nonuniformity. For the the type-B geometry
this ratio is slightly less than that found on a small square
junction so that we can assume that the bias current is dis-
tributed uniformly. However, the value measured in the
type-C configuration~0.28! indicates that the bias current
mainly enters the junction nearu50.

Another evident feature in Fig. 6 is that the minima of the
two patterns do not occur for the same value of the external
field ~although the field strength on the abscissa is reported
in arbritrary units, these units are the same for the two sets of
data!. The ratio of the critical field measured in the type-B
configuration to the critical field obtained in the type-C con-
figuration is 0.55; in Sec. IV we have observed that the
type-B samples are expected to be more sensitive to the ex-
ternal field, however, according to the calculated coupling
factorsD, we would expect this ratio to be 1/~1/21r̄ /Dr !
50.33. This discrepancy can be accounted for, at least quali-
tatively, by the presence of the idle region inside the type-B
devices. It has been shown for linear junctions that the lateral
idle region increases the fluxon rest mass13 and, in turn, the
junction critical field.12 Indeed, we always find some discrep-
ancy between the experimental and theoretical coupling fac-
tors. In particular, the coupling between the external field and
the flux density in the junction was found to depend on the
width of the base electrode and on the location of the annular

junction on the base electrode itself. These facts indicate
that, from a theoretical point of view, other geometrical fac-
tors must be taken into account to compute the exact value of
D. For this reason all the experimentalI c vsH dependences
reported in these paper use arbitrary units for the field.

The reduced zero-field critical current of type-C devices
indicates that these samples experience a field due the bias
current itself. Since the bias current flows mainly in thex
direction @see Fig. 1~c!#, the self-field occurs principally in
the y direction. To better understand the nature of the self-

FIG. 6. Magnetic pattern of a intermediate-length annular junction in the type-B ~solid line! and in the type-C ~dashed line! configuration.

FIG. 7. Magnetic pattern of a type-C intermediate-length annu-
lar junction with different orientation of the external field. Parallel
to the bias current~solid line!, i.e.,x direction in Figs. 1~b! and 1~c!,
and perpendicular to the bias current~dashed line!, i.e., y direction
in Figs. 1~b! and 1~c!.
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field, we have compared the magnetic patterns of one
~type-C geometry! annular junction taken with the orienta-
tion of the external magnetic field in thex direction and in
they direction. The results of these measurements are shown
in Fig. 7 for a sample havingJc515 A/cm2 and l.5. The
solid line shows the data for the field in thex direction, while
the dashed line corresponds to data taken with the field in the
y direction. We observe that, while in former case the pattern
is symmetric with respect to the inversion of the current
and/or the field, in the latter the dependence shows the typi-
cal behavior of linear junctions immersed in an external field
parallel to their own self-field;26 in fact, the largest value of
the critical current occurs for a field which is comparable
with the critical field measured with the field parallel to the
bias current. Furthermore, the ratio of the maximum critical
current to the current rise at the gap voltage is very close to
that measured on a small square junction, so that we can
reasonably assume that the self-fields are almost completely
compensated by a field perpendicular to the current flow.
This hypothesis is supported by the result of numerical inte-
gration of Eq.~4.8! with an extra term which simulates a
uniform self-field parallel rgD sinkx and orthogonal
rgD coskx to the external field applied in thex direction
~i.e., parallel to the bias current flow!. A behavior very close
to that shown in Fig. 7 has been simulated by setting the free
parameterr52.

We have shown numerical@cf. Fig. 3~a!# and experimental
~cf. Fig. 6! evidence that, when the junction circumference is
less than about 2plj the effects of static self-field, although
evident, are not very pronounced. To conclude this section,
we show in Fig. 8 the magnetic pattern of a long~type-B!

annular junction withJc5210 A/cm2 and l5.17. For small
fields, the dependence is not quite linear as expected for long
junctions, however, the occurrence of multiple solutions
clearly indicates the existence of different vortex states.
However, for this sample the ratioI c,max/DIgIc,max/DIg5~32
mA!/~67 mA!50.48. The same sample measured with the
field in they direction had a maximum critical current of 42
mA, while a similar junction in the type-C configuration had
a maximum critical current of 19 mA in nonzero field. These
facts suggest that current limiting effects due to the self-
fields also play an important role for long junctions in the
type-B geometrical configuration and this consideration
should apply also to devices having the type-D geometry. We
also speculate that the quadratic dependence for small fields
can be attributed to self-field effects.

VII. CONCLUSIONS

The dependence of the critical current on a uniform mag-
netic field for annular Josephson tunnel junctions has been
investigated both experimentally and numerically. A simple
analytical approach is possible when the normalized ring cir-
cumference is less than.2p. In this case we find thatI c vs
H does not follow the Fraunhofer-like pattern typical of rect-
angular junctions, but rather a zero-order Bessel function be-
havior, with almost equally spaced minima. Different junc-
tion geometries have been considered in studying the static
self-field in long annular junctions. However, two planar
structures characterized by a simply connected base elec-
trode have been chosen for the experiments. We saw no evi-
dence of fluxon trapping when the samples were cooled in an
external field. For each geometry we have derived a partial
differential equation to describe both the statics and the dy-
namics of the phase difference across the barrier. When static
solutions were numerically computed, we found that, for a
given field, different phase profiles are possible depending
on the number of fluxon-antifluxon pairs nucleated at two
diametrically opposed points in the barrier where the effect
of the field is largest. Experimental data on high-quality
Nb/Al-AlO x-Al/Nb annular junctions basically confirm the
theoretical predictions provided the effects of current limit-
ing static self-field are taken into account.
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