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The scalar virial theorem for the Ginzburg-Landau theory is generalized to a vector virial theorem and
follows from similar scaling properties of the Gibbs free-energy density. All the components of the magnetic
field H are determined in terms of average values of the kinetic and field tensor components of the Helmholtz
free-energy density. We consider two frames, the crystal’s and the magnetic induction’sB, where the scaling
properties yield useful relations due to anisotropy. In the last case the scaling relations do not completely
determineH; instead, they provide useful identities that reflect collective properties of the vortex state. We
compare both the scaling and the thermodynamic methods for the particular case of straight tilted parallel
vortex lines in the London limit.

I. INTRODUCTION

Some time ago a scalar virial theorem has been obtained
by Doria, Gubernatis, and Rainer1 for the Ginzburg-Landau
theory through scaling arguments. It determines the scalar
product between the magnetic field,H, and the magnetic
induction,B, in terms of average values of the kinetic and
field energies of the superconductor. This scalar virial rela-
tion has been verified first numerically2 and then analytically
near the upper critical field by Klein and Po¨ttinger,3 who
showed that the virial theorem provides an elegant method to
understand Abrikosov’s identities.4 In this paper we general-
ize the previous result to a vector virial theorem, where each
component of the magnetic fieldH is fully determined in
terms of average values of several tensor components of the
kinetic and field energies. Our formula forH is derived by
scaling arguments applied to the anisotropic Ginzburg-
Landau ~AGL! theory, similar to those used to obtain
the scalar virial theorem.1 The present scaling relations
for the magnetic field render relations of the form
Hi5*d3x@hi

21dhi(Dc)#/*d3xhi where i51,2,3, label
components along the crystal’s principal axes. The local
magnetic field ish, anddhi are just functions of the gauge
invariant derivative of the order parameter,Djc, that must
vanish when the superconducting state disappears since, in
this limit, h→H.

The AGL theory is the simplest model for an anisotropic
superconductor and was investigated long ago.5 The discov-
ery of copper-oxygen layered compounds with high transi-
tion temperatures brought a renewed interest in this theory.6

For some of the ceramic materials, the layered structure is
screened and just introducing anisotropy into the mass tensor
is enough to describe many of their properties.7 Because cur-
rents flow preferentially along the plane of lower mass,
namely the copper-oxygen layers, the model has a natural
frustration whenever such currents are forced to stay out of
the plane. This feature has led the theory to predict some
novel phenomena, like the attraction8 between vortices

which has been experimentally verified in the ceramic com-
pound YBa2Cu3O7.

9

According to thermodynamics, the magnetic field is ob-
tained through the derivative

H54p
]F

]B
. ~1!

The thermodynamic fields are also related by
B524p]G/]H, whereF5F/V andG5G/V are thermo-
dynamic potentials, namely the Helmholtz and the Gibbs
free-energy densities, respectively,V being the sample vol-
ume. The state of a superconductor is described at each tem-
perature by the minimum of a thermodynamic potential, and
these two potentials are the most commonly considered, the
choice depending on the selected thermodynamic variables.
For a fixed magnetic induction, e.g., a constant vortex den-
sity, the Helmholtz free energy, F(T,B), must be the mini-
mum. Obviously in most experimental situations it is more
interesting to consider the sample under a fixed magnetic
field, thus the Gibbs free energy, G(T,H)/V5F(B)/
V2B•H/4p, is most convenient. The present scaling rela-
tions totally replace Eq.~1!, the thermodynamic relation,
which requires knowledge of the Helmholtz free energy on a
certain neighborhood ofB, because a derivative of the free
energy must be calculated. The present scaling relations de-
termineH just demanding knowledge of the Helmholtz free
energy at a single value ofB. This advantage of the present
expressions over the thermodynamic relation is mostly useful
for numeric computations of the GL theory.2,10–13

Equation~1! reflects the central role played by the ther-
modynamic fieldsB andH when the first law of thermody-
namics is applied to a superconductor.14,15 To understand it,
take a superconductor sample subjected to an applied field
and consider the work done by the sample on some far-away
coils responsible for this magnetic field. Suppose that the
sample temperature is lowered from above to below its criti-
cal value. LetJext be the current density circulating in these
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coils. When the sample becomes superconductor, an induced
current density must arise in the sample in order to cancel the
applied field. The local magnetic field becomesh, distinct
from the original applied field. According to Faraday’s law,
the expulsion of a fraction of the magnetic flux, inside the
sample, leads to the presence of an electric field,E. There-
fore work is done by the sample on the coils at the rate
dW/dt5*d3xE•Jext , when the temperature is lowered from
above to below the critical value. This process must be re-
versible in order that the laws of thermodynamics applies.
Thus it must unfold at a very slow pace to avoid irreversible
phenomena, and so one neglects the displacement current
and radiation effects in the Maxwell equations, resulting in
dW/dt52(c/4p)*d3x(]h/]t)•H. Below the critical tem-
perature the fieldH remains uniform inside the sample only
for special geometries, e.g., a long cylinder with its symme-
try axis parallel to the applied field.14,15The only source for
H are the external currents,“3H54pJext /c, and since we
have not included the displacement current, a slight time
dependence onH in this process is also neglected. Then the
work done by the sample on the coil is simply given by

dW

V
52

1

4p
H•dB, B5E d3x

V
h, ~2!

in the special geometries cited before.
The scaling properties of the Gibbs free-energy density

discussed in this paper yield expressions in two coordinate
frames, namely the crystal’s (C frame! and the magnetic
induction’s (B frame!. We only consider here uniaxial super-
conductors and theB frame is defined through a rotation of
theC frame: cosu5ĉ•B̂ whereĉ andB̂ are along the crystal’s
axis of symmetry and the magnetic induction direction, re-
spectively~see Fig. 1!. In theB frame the scaling relations

do not completely determine the magnetic field. Instead they
give identities that must be satisfied by the collective vortex
state that extremizes the free energy. The existence of such
identities is one of the major results of this paper.

Like the scalar virial theorem, our relation forH applies
for an infinite superconductor, thus boundary free, and under
the presence of periodic boundary conditions.1 This is suffi-
cient to treat the Abrikosov state and also some recently pro-
posed states caused by disorder,16 which can be easily intro-
duced into the AGL theory. For the latter case, not treated
here, the periodicity has no physical meaning but scaling
relations are still valid provided that such a periodicity is
interpreted as an artifact, such that the cell boundaries are
taken very large at the end of the calculations.1 In this paper
we compare the present scaling relations forH to the ther-
modynamic method of Eq.~1!, in one particular limit, where
the AGL theory can be solved analytically. This is the Lon-
don limit, where the density of superconducting pairs is con-
stant everywhere. We consider the case of a vortex lattice
made of tilted parallel straight lines all making an angleu
with the c axis and find that our formula forH and Eq.~1!
give the same results in bothB andC frames. Near the upper
critical field Hc2 it is also possible to seek an analytical
comparison17 between the scaling and the thermodynamic
methods forH. This comparison is not carried here and will
be considered elsewhere.

This paper is organized as follows. In Sec. II, we review
the anisotropic Ginzburg-Landau~AGL! theory, the varia-
tional Ginzburg-Landau equations and present our formula
for H in both C and B frames. We also express the AGL
theory in terms of the superelectron density and current den-
sity in order to consider the London limit. In Sec. III the
scaling properties of the minimum of the Gibbs energy are
explored in order to derive our scaling relations forH. In
Sec. IV the periodic array of tilted parallel lines in the Lon-
don limit is studied. For this particular array of vortex lines,
we obtain in the next two subsections the magnetic fieldH
from both the thermodynamic relation, Sec. IV A, and the
scaling relations, Sec. IV B, and show that they give the
same results. In order to help the reader we have included a
special section, Sec. IV C, where the isotropic limit of the
vector virial relation is taken and several results of the pre-
vious sections are discussed once more. Finally we conclude
in Sec. V and leave for the appendices some side discussions
regarding properties of certain matrices upon rotation, Ap-
pendix A, and the reciprocal space vectors, Appendix B. In
Appendix C we provide more detailed information about
some mathematical proofs that complete the derivations car-
ried in Sec. IV B.

II. THE THERMODYNAMIC FIELD H FOR THE
ANISOTROPIC GINZBURG-LANDAU THEORY

In this section we review the AGL theory, present this
paper’s expressions forH that replace the thermodynamic
relation of Eq.~1!, and introduce a frame (B frame! obtained
upon rotation. When it is necessary to distinguish tensor
components in theC andB frames, we use a subscript index,
taking valuesi51,2,3 andi5x,y,z, respectively. The Helm-
holtz free energy of an anisotropic superconductor is ex-
pressed in terms of a complex order parameter,c5Ar exp

FIG. 1. The copper-oxygen layers are depicted here in theC
frame, this one defined by the crystal’s major axes. TheB frame,
which follows from thec axis upon rotation by an angleu, has the
magnetic inductionB along one of its axes (z axis!. A set of tilted
straight and parallel vortex lines are pictorially represented here.
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( ix), and of the local magnetic potential,A, such that the
local magnetic field ish5“3A. One obtains

F~B!5E d3x

V S ao~T2Tc!ucu21
b

2
ucu4

1
1

2M̄
@Dc#†•m8•@Dc#1

h2

8p D , ~3!

where the covariant derivative isD5(\/ i )“2(q/c)A. In
the crystal’s frame the mass tensor is

M5S Ma 0 0

0 Ma 0

0 0 Mc
D . ~4!

The dimensionless tensors,m andm8, extensively used in
this paper, are

m[
M

M̄
, m8[m21, ~5!

whereM̄5A3 Ma
2Mc stands for the average mass. Hence, in

the crystal’s frame,ma51/ma and mc51/mc . The varia-
tional equations obtained from the above free-energy density
are the so-called Ginzburg-Landau~GL! equations,

1

2M̄
@DÁ

•m8•D#c5~ao~Tc2T!c2bucu2c!, ~6!

“3h5
4p

c
J, J5

q

2M̄
~c*m8•Dc1c.c.!. ~7!

We claim in this paper that scaling properties of the Gibbs
free-energy density, discussed in the next section, give that
the magnetic field is

H154pB1
21E d3x

V S h124p
1

1

2M̄
@2mauD1cu21mauD2cu2

1mcuD3cu2# D , ~8!

H254pB2
21E d3x

V S h224p
1

1

2M̄
@mauD1cu22mauD2cu2

1mcuD3cu2# D , ~9!

H354pB3
21E d3x

V S h324p
1

1

2M̄
@mauD1cu21mauD2cu2

2mcuD3cu2# D . ~10!

The fieldsc andA in the above formulas must be solutions
of the GL equations in order that the right-hand side~RHS!
of the above equations yield the magnetic fieldH. Similarly

in order that Eq.~1! determines the magnetic field it is also
necessary that the free energy be extremized with respect to
all parameters other thanB.

Similar to the above scaling expressions forH, Eqs.~8!–
~10!, there is also another equation that demands the solution
of the GL equations in order to be valid. It is well known and
we call it theintegratedequation,

E d3x

V S ao~T2Tc!ucu21bucu41
1

2M̄
@Dc#†•m8•@Dc# D

50. ~11!

This equation is obtained by direct integration of a GL equa-
tion, Eq. ~6!, multiplied byc. A surface term is abandoned
in the derivation of the above equation, since its contribution
vanishes because of the special boundary conditions assumed
here. A simple way to see the limitation to an infinite super-
conductor made of lattice cells is to study the case of no
applied field. Then the scaling relations reduce to
*d3xu]c/]xi u250 along each of the crystal’s axes
( i51,2,3). The only possible solution to such relations is a
constant order parameter everywhere. Thus the scaling rela-
tions do not take into account the possibility of interfaces,
e.g., superconductor-insulator barriers, where the order pa-
rameter must vary over a distance characterized by the co-
herence length. For this case of no applied field and no in-
terfaces, theintegratedequation just fixes the modulus of the
order parameter:ucu5Aao(Tc2T)/b.

We also propose here another set of scaling relations be-
sides Eqs.~8!–~10!. The new relations are obtained by scal-
ing of theB frame’s axes. We choose the magnetic induction
to beB5B1x̂11B3x̂3 in theC frame, with no loss of gener-
ality because only uniaxial superconductors are studied here.
The rotation axis is 2[y and letu be the angle defining this
particular rotation, such that a point with coordinates
(x1 ,x2 ,x3), in theC frame, has coordinates (x,y,z) in this
new frame, where x5cosux11sinux3 , y5x2 , and
z52sinux11cosux3 @see Fig.~1!#. Such a rotation is rep-
resented by the matrix

R5S cosu 0 sinu

0 1 0

2sinu 0 cosu
D . ~12!

In the new frame the mass matrix becomes
M (u)5RÁ(u)•M•R(u), and the dimensionless matrices,
previously defined, transform in the same way, rendering

m5S mxx 0 mxz

0 ma 0

mxz 0 mzz
D ,

mxx5macos
2u1mcsin

2u,

mzz5masin
2u1mccos

2u,

mxz5~ma2mc!sinu cosu,

~13!

and

3442 53MAURO M. DORIA AND SARAH C. B. DE ANDRADE



m85S mxx 0 mxz

0 ma 0

mxz 0 mzz
D ,

mxx5macos
2u1mcsin

2u,

mzz5masin
2u1mccos

2u,

mxz5~ma2mc!sinu cosu.

~14!

TheB frame corresponds to a choice of angleu such that the
magnetic induction is along thez axis, B5Bzẑ. From Fig.
~1! we see that

tanu5
B1

B3
, Bz5AB1

21B3
2. ~15!

The scaling relations in theB frame are given below:

HxBx

4p
5E d3x

V S hx24p
1

1

2M̄
@2mxxuDxcu21mauDycu2

1mzzuDzcu2# D 50, ~16!

HyBy

4p
5E d3x

V S hy24p
1

1

2M̄
@mxxuDxcu21mxz„~Dzc!* ~Dxc!

1c.c.…2mauDycu21mzzuDzcu2# D 5 0, ~17!

HzBz

4p
5E d3x

V S hz24p
1

1

2M̄
@mxxuDxcu21mauDycu2

2mzzuDzcu2# D . ~18!

Notice that the above equations can only determineHz , the
magnetic fieldH component along the magnetic induction
B. However the RHS of Eqs.~16! and ~17! must still be
satisfied by the solution (c,A) that extremize the free en-
ergy. In the next section we show that they are valuable tools
to provide information on the properties of the collective
state of vortices.

The two sets of scaling relations introduced in this sec-
tion, Eqs. ~8!–~10! and Eqs.~16!–~18!, are in agreement
with the scalar virial relation1 shown below.

H•B

4p
5Fkin12F field , ~19!

Fkin5
1

2M̄
E d3x

V
@Dc#†•m8•@Dc#, Ffield5E d3x

V

h2

8p
.

~20!

In the next section we consider the London limit of the
AGL theory, and for this reason we find it convenient to
write the AGL free-energy density, theintegratedequation,
and the scaling relations forH in terms of the superelectron
density,r5ucu2, and the supercurrent density,J. In order to
do so, we first notice that, for any of the two frames previ-
ously defined,c*Djc5(\/2i )¹ jr1r(\¹ jx2qAj /c). The
imaginary part of this expression multiplied by the matrix
m8 is

\

2iM̄
m8•“r5

1

2M̄
~c*m8•“c2c.c.!. ~21!

The sum of the above equation to the expression forJ, Eq.
~7!, gives that

c*Dc5
\

2i
“r1

M

q
m•J. ~22!

Now we cast the AGL Helmholtz free-energy density into
this new variable formulation:

F~B!5E d3x

V S ao~T2Tc!r1
b

2
r2

1
\2

8M̄r
@“r#Á

•m8•@“r#1
M̄

2rq2
JÁ
•m•J1

h2

8p D .
~23!

Using this (r,J) representation the scaling relations for
H, in both frames, become

HjBj

4p
5E d3x

V S hj24p
1

\2

8M̄r
@“r#Á

•Vj•@“r#

1
M̄

2rq2
JÁ
•Wj•JD , ~24!

where no summation over repeated indices is understood.
The two sets of matrices,Vj andWj, are discussed in Ap-
pendix A for both frames. Lastly theintegratedequation be-
comes

E d3x

V S ao~T2Tc!r1br21
\2

8M̄r
@“r#Á

•m8•@“r#

1
M̄

2rq2
JÁ
•m•JD 50. ~25!

In the next section the scaling relations forH, presented
in this section, namely Eqs.~8!–~10! and Eqs.~16!–~18!, are
derived by use of the scaling properties of the Gibbs free
energy.

III. SCALING PROPERTIES OF THE GIBBS ENERGY

According to thermodynamics the Gibbs free-energy den-
sity of the superconducting state,

G~H,T!5E d3x

V S ao~T2Tc!ucu21
b

2
ucu4

1
1

2M̄
@Dc#†•m8•@Dc#1

h2

8p
2
h•H

4p D ,
~26!

is a minimum under the variation of all parameters for fixed
temperature and magnetic field. The relevant parameters that
extremize the above Gibbs free energy are usually taken to
be the fields,c andA. The new assumption here is that the
local coordinates (x,y,z) @or (x1 ,x2 ,x3)# are also parameters
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that must extremize the Gibbs energy. In the same way that
extremizing the Gibbs energy with respect to the fields yields
the GL equations, extremizing the Gibbs energy with respect
to the local coordinates should lead to new equations, which
are our scaling relations forH.

Consider the original coordinates, (x,y,z), changed to
new ones, (x8,y8,z8), which are obtained by the scaling
transformation

x5lx8, y5y8, z5z8, ~27!

wherel is an arbitrary parameter. We claim that the effect of
such a change is to move the Gibbs energy density away
from its extreme value where the fieldsc(x,y,z) and
A(x,y,z) in Eq. ~26! are the solutions of the GL equa-
tions. To determine the new value of the Gibbs energy
density, substitute the original coordinates by the new ones
into the solutions of the GL equations,c(lx8,y8,z8),
A(lx8,y8,z8). Other changes must be taken into account.
The derivative operator is scaled according to¹x5l21¹x8,
¹y5¹y8, ¹z5¹z8 and the volume element remains un-
changed,*d3x/V5*d3x8/V8. Notice that scaling is not in-
troduced into the limits of integration since we are integrat-
ing throughout the whole space. Finally we assume that the
Gibbs energy density increases by this scaling procedure and
this leads to the extreme condition

dG~l!

dl
U
l51

50. ~28!

The above condition is just a different way to see the same
principle that has led to the scalar virial theorem of Ref. 1.
The only difference between the two cases is that scaling
takes place in all of the three coordinates simultaneuously for

the scalar virial theorem, whereas here the coordinates are
scaled independently. Therefore we shall obtain three scaling
relations instead of only one.

We discuss the minimization procedure for theB frame
only since results for theC frame are easily retrieved taking
u50° at the end of the present calculation.

New fields must be introduced,c8[l2nc, Ax8[lAx ,
Ay8[Ay , andAz8[Az , and such fields are explicit functions
of l whereas the original ones are not. We shall write the
Gibbs energy in terms of the new fields, and thus it is more
convenient to think in terms of the following replacement:

c~x,y,z!5lnc8~x8,y8,z8!,
Ax~x,y,z!5l21Ax8~x8,y8,z8!,

Ay~x,y,z!5Ay8~x8,y8,z8!,

Az~x,y,z!5Az8~x8,y8,z8!,

Dx5l21Dx8,

Dy5Dy8,

Dz5Dz8.
~29!

We shall find that the value of the parametern is totally
irrelevant for our purposes. Notice that for the local magnetic
field, we did not introduce such an arbitrary paramenter since
A must transform like the gradient operator,“. In this way
the covariant derivative transfoms in a single way, as ex-
pressed above, and gauge invariance is preserved. It is
straightforward to determine the way the local magnetic
field, h85¹83A8, scales:

hx~x,y,z!5hx8~x8,y8,z8!,

hy~x,y,z!5l21hy8~x8,y8,z8!, ~30!

hz~x,y,z!5l21hz8~x8,y8,z8!.

All the elements necessary to obtain the scaling of the origi-
nal Gibbs energy, Eq.~26!, have been already discussed and
one obtains

G~H,T!5E d3x8
V8 5 l2nao~T2Tc!uc8u21l4n

b

2
uc8u41

l2n

2 SDx8c8

l
Dy8c8Dz8c8D * S mxx 0 mxz

0 ma 0

mxz 0 mzz
D S Dx8c8

l

Dy8c8

Dz8c8

D
1

1

8p Fhx821hy8
2

l2 1
hz8

2

l2 22SHx8hx81
Hy8hy8

l
1
Hz8hz8

l D G 6 . ~31!

Hence we carry on the condition of Eq.~28!, which contains
four distinct contributions,

dG~H!

dl
5E d3x8S dG

dA8~x8!

dA8~x8!

dl
1

dG

dc8~x8!

dc8~x8!

dl

1
dG

dc8* ~x8!

dc8* ~x8!

dl D1
]G~l!

]l
. ~32!

At this point we recall that the original fields,A andc, are
solutions of the GL equations:

dG

dA8
Ul5150,

dG

dc8
U

l51

5
dG

dc8*
ul5150. ~33!

Including the above consideration into the minimization
principle of Eq. ~28!, one obtains that]G(l)/]lul5150.
This condition contains two independent terms, one propor-
tional and the other not proportional ton, which are, respec-
tively,
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2nE d3x

V S ao~T2Tc!ucu21bucu4

1
1

2M̄
@mxxuDxcu21mxz„~Dzc!* ~Dxc!1c.c.…

1mauDycu2# D 50,

E d3x

V S 1

2M̄
@22mzzuDzcu22mxz„~Dzc!* ~Dxc!1c.c.…]

1
1

4p
(hyHy1hzHz2hy

22hz
2) D50. ~34!

The n dependent term is just theintegratedequation, Eq.
~11!, and the other one is

HyBy1HzBz

4p
5E d3x

V S 1

2M̄
@2mzzuDzcu2

1mxz„~Dzc!* ~Dxc!1c.c.…#

1
hy
21hz

2

4p D . ~35!

Similar independent scaling on the other two coordinates
(x5x8, y5ly8, z5z8) and (x5x8, y5y8, z5lz8) also
yields two equations in each case. Then dependent one is
always theintegratedequation, Eq.~11!, and then indepen-
dent conditions are given below:

HxBx1HzBz

4p
5E d3x

V S 1

2M̄
@2mauDacu2#1

1

4p
~hx

21hz
2! D ,
~36!

HxBx1HyBy

4p
5E d3x

V S 1

2M̄
@2mxxuDxcu2

1mxz„~Dzc!* ~Dxc!1c.c.…#

1
hx
21hy

2

4p D . ~37!

Two possible distinct operations, scaling and rotation, can
yield different relations depending on the order they are ap-
plied to the Gibbs energy, Eq.~26!. This is true for the an-
isotropic supercondutors since upon rotation, the Gibbs en-
ergy is written in terms of a new set of tensorial components.
In this section we choose two sets of orthogonal axes where
scaling is taken through the extreme condition of Eq.~28!:
the C and B frame axes. However notice that the present
derivation of the scaling relations is quite general and could
be used along a general set of orthogonal axes. We do not
analyze this general possibility in this paper and, in the next
section, restrict our goals to show that the scaling relations
are truthful, at least for theC and B frames. For this we
choose a special limit of the AGL free energy where the
theory has an analytical solution.

IV. THE LONDON LIMIT

In the London approximation the density of superelec-
trons, r, is constant. In this limit, the GL Helmholtz free-
energy density, Eq.~23!, becomes

F5
1

8pE d3x

V F S 4pL

c D 2JÁ
•m•J1h2G . ~38!

The integratedversion of the first GL equation, Eq.~11!,
plays no role other than determiner in terms of parameters
of the theory. The second GL equation, Eq.~7!, is Ampère’s
law,

“3h54pJ/c, J5
c

4p

1

L2m8•S F0

2p
“x2AD ,

L25M̄c2/~4pq2r!, ~39!

whereL is the average London penetration length. The cur-
rent is automatically conserved,“•J50. The curl of Am-
père’s law gives

h1L2
“3~m•“3h!5

F0

2p
“3“x, ~40!

According to the above equation, the Meissner effect takes
place around each vortex core singularity. This is the only
possible situation because boundaries to nonsuperconducting
regions were excluded from the present treatment, according
to our previous discussion. Such singularities are described
by the vorticity, v, related to the phase,x, according to
v5(“3“x)/2p, for vortex linesv vanish everywhere ex-
cept at their cores. For instance, the vorticity ofN vortex
lines, each with a structureless core, isv(x)
5( j51

N rdr jd (3)(x2r j ), where r j describes thej th vortex
line in space. The number of vortex lines in space,N, is also
related to the assumption of single-valuedness of the wave
function: @x(2p)2x(0)#52pN. To see this, integrate Eq.
~40! on a plane of areaA, pierced by theN vortex lines~see
Fig. 1!, and consider that the magnetic induction is
B5*dsh/A. The periodic boundary conditions show that the
supercurrent does not contribute, and this integration is taken
to the contour around areaA, using Stoke’s theorem:
B5(N/A)F0ẑ, where ẑ is the normal to this plane. Even
within the London approximation it is possible to include
more elaborate structures18 for the vortex core and we claim
that our scaling relations remain valid in such cases. How-
ever for our comparison between the scaling and the thermo-
dynamicH relations we choose vortex lines with no core
structure. Introducing Ampe`re’s law into the free energy, we
find that its extreme value for a fixed distribution of vortices
v is F5(F0/8p)*(d3x/V)h•v. Notice that the extremization
of this free energy has not been completely done up to this
point. For a given distribution of vortex lines we have deter-
mined so far, from Eq.~40!, the local magnetic field in space,
h, and the corresponding free energy. It remains to determine
how vortex lines, under a fixed density,N/A, are arranged in
space.

The following tensors, extensively used in our consider-
ations on London theory,
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K i j5L2E d3x

V
~“3h! i~“3h! j , f i j5E d3x

V
hihj

~41!

allow Eq. ~38! to be written as

F5Fkin1Ffield , Fkin5
L2

8p
tr~K•m!, Ffield5

1

8p
tr~ f!.

~42!

The above free energy has been partially extremized since
the kinetic energy is expressed in terms of the local magnetic
field by means of Ampe`re’s law. Since we are only interested
here in the vortex configuration that extremizes the free en-
ergy, the above expression implies no loss of generality for
our purposes.

In this London limit, the scaling relations of the previous
section are given by

C frame:

H1B15 f 111
1

2
~2maK111maK221mcK33!, ~43!

H2B25 f 221
1

2
~maK112maK221mcK33!, ~44!

H3B35 f 331
1

2
~maK111maK222mcK33!, ~45!

B frame:

HxBx5 f xx1
1

2
~2mxxKxx1maKyy1mzzKzz!50, ~46!

HyBy5 f yy1
1

2
~mxxKxx2maKyy1mzzKzz12mxzKxz!50,

~47!

HzBz5 f zz1
1

2
~mxxKxx1maKyy2mzzKzz!. ~48!

Next assume that the vortex lines are straight and tilted,
like rods, all parallel to each other, making an angleu with
the c axis. In this case the vorticity reduces to
v(x)5nz(x) ẑ, nz(x)5( j51

N d (2)(x2r j ) where x and r j are
position vectors restricted toxy plane, orthogonal to the di-
rection of the lines~see Fig. 1!. The local fieldh is first
determined in theB frame, and then in theC frame, upon
rotation, simply using h15cosuhx1sinuhz, and
h352sinuhx1cosuhz. In this case Eqs.~39! become

1

L2hx2mzz¹ i
2hx1mxz¹y

2hz50,

1

L2hy2mzz¹ i
2hy2mxz¹x¹yhz50,

1

L2hz2ma¹x
2hz2mxx¹y

2hz1mxz¹ i
2hx5

F0

L2 nz , ~49!

where ¹ i
25¹x

21¹y
2 . The solution is sought in

momentum space,

h~x!5E h~k!exp~ ik•x!d2k/~2p!2,

hx~k!5mxz~Lky!
2hz~k!V~k!/P~k!,

hy~k!52mxz~Lkx!~Lky!hz~k!V~k!/P~k!,

and

hz~k!5F0V~k!nz~k!,

where we have defined P(k)511mzz(Lk)2,
Q(k)511ma(Lk)2, R(k)511mzz(Lkx)

21mc(Lky)
2,

andV(k)5P(k)/Q(k)R(k). Once the local field is deter-
mined, the currents are also obtained by similar fashion. In
the case of a single tilted vortex19 a full description of this
state is provided by Eqs.~49!. Some time ago8 it was discov-
ered that, for a special range of the tilt angleu, the local field
hz displays a change of sign along thex axis, that is, on the
plane defined by thec axis and the magnetic induction. This
feature gives rise to an attractive potential along this special
plane, and consequently, yields the formation of the so-called
vortex chains, experimentally verified in the ceramic com-
pound YBCO.9 The above equations also determine the so-
lution for N vortex lines, since the vorticity is additive and
consequently the superposition principle is valid. However
this does not determine the collective vortex state completely
since it remains to describe how the lines are arranged in
space. Interestingly in order that RHS of the scaling rela-
tions, Eqs.~43!–~48!, determine their left-hand side, LHS,
the vortex state must be fully determined, including the col-
lective arrangement of vortex lines in space.

Next we consider a tilted vortex line state forming a pe-
riodic array with one vortex per unit cell. Hence the array is
characterized by the unit cell parameters, namely its two
sidesL1 , along thex axis, andL2 , that makes an anglef
with L1 ~see Fig. 2!. One of these three parameters can be
discarded because there is a constraint among them due to
the magnetic flux quantization,L1L2sinf5F0 /Bz ~see Ap-
pendix B!. Thus there are truly only two free parameters
associated with the unit cell. We find convenient, for the
present purpose, to parametrize the unit cell with new vari-
ables,s andv, also discussed in Appendix B:

FIG. 2. On the planexy, orthogonal to the magnetic induction
B, the parameters defining the vortex lattice are displayed, as well
as the unit vectors of the unit cell, in both real and reciprocal space.
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s[L/L1 , L[AF0

Bz
, v[L2cosf/L1 . ~50!

The local magnetic field generated by such a periodic collec-
tive array of vortices must be a periodic function under dis-
placements defined by the basic parameters of the unit cell.
This periodic field is obtained from the single vortex solution
simply by restricting the set of momentum space vectors,
k, to a smaller set consistent with the lattice, the so-called
reciprocal space vectors,g. We describe the reciprocal space
through dimensionless reciprocal space vectors,G5Lg.
Similarly to Lk, the vectorG lies in the planexy, assuring
the translational symmetry ofh along thez axis ~see Appen-
dix B!.

We introduce here the following notation used extensively
in the next discussions:

P~G!511mzzG
2, ~51!

Q~G!511maG
2, Qc~G!511mcG

2, ~52!

R~G!511mzzGx
21mcGy

2 , Ra~G!511mzzGx
21maGy

2 ,

Rca~G!511mcGx
21maGy

2 , ~53!

V~G!5
P

QR
. ~54!

For future purposes we list some identities involving the
above polynomials.

R5P1~mc2mzz!Gy
2, ~55!

mzzQ~P2R!1ma~mc2mzz!Gy
252mxz

2 Gy
2, ~56!

2mxz
2 Gy

41sin2uRa
25P22cos2uR2, ~57!

2mxz
2 Gy

41cos2uR25P22sin2uRa
2, ~58!

mxz
2 G2Gy

21P25P~Q1R!2QR, ~59!

2R21P~Q1R!2QR5~ma2mc!sin
2u~Q1R!Gy

2,
~60!

2Ra
21P~Q1R!2QR52~ma2mc!cos

2u~R1Rac!Gy
2 .
~61!

Using the previously introduced notation it becomes
straightforward to express the components of the tensorsh,
J, K , andf in reciprocal space. This is first obtained in theB
frame, and then in theC frame, with the help of some Ap-
pendix A identities, like Eq.~A3! and Eq.~A4!:

B frame:

hx~x!5mxzF0

N

A (
G

V

P
Gy
2expS i GL •xD , ~62!

hy~x!52mxzF0

N

A (
G

V

P
GxGyexpS i GL •xD , ~63!

hz~x!5F0

N

A (
G

VexpS i GL •xD ,
4pJx~x!

c
5

]hz
]y

5 iF0

N

A (
G

V
Gy

L
expS i GL •xD ,

4pJy~x!

c
52

]hz
]x

52 iF0

N

A (
G

V
Gx

L
expS i GL •xD ,

~64!

4pJz~x!

c
5

]hy
]x

2
]hx
]y

52 imxzF0

N

A (
G

V

P
G2

Gy

L
expS i GL •xD ,

Kxx5Bz
2(
G

V2Gy
2 , Kyy5Bz

2(
G

V2Gx
2 ,

~65!

Kzz5Bz
2mxz

2 (
G

V2

P2 G
4Gy

2 , Kxz52Bz
2mxz(

G

V2

P
G2Gy

2 ,

f xx5Bz
2mxz

2 (
G

V2

P2 Gy
4 , f yy5Bz

2mxz
2 (

G

V2

P2 Gx
2Gy

2 ,

~66!

f zz5Bz
2(
G

V2,

C frame:

h1~x!5sinuF0

N

A (
G

Ra

PR
expS i GL •xD ,

h2~x!5hy~x!, ~67!

h3~x!5cosuF0

N

A (
G

VexpS i GL •xD ,
4pJ1~x!

c
5 icosuF0

N

A (
G

Qc

PR

Gy

L
expS i GL •xD ,

J2~x!5Jy~x! ~68!

4pJ3~x!

c
52 isinuF0

N

A (
G

Q

PR

Gy

L
expS i GL •xD ,

K115Bz
2cos2u(

G
V2

Qc
2

P2Gy
2 , K225Bz

2(
G

V2Gx
2 ,

~69!

K335Bz
2sin2u(

G

1

R2Gy
2 ,
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f 115Bz
2sin2u(

G

VRa
2

P2 , f 225Bz
2mxz

2 (
G

V2

P2 Gx
2Gy

2 ,

f 335Bz
2cos2u(

G

1

Q2 . ~70!

In reciprocal space the free-energy terms of Eq.~42! become

Ffield5
Bz
2

8p (
G

V2S 11
mxz
2

P2 Gy
2G2D ,

Fkin5
Bz
2

8p (
G

FV2V2S 11
mxz
2

P2 Gy
2G2D G , ~71!

and the total free-energy density is

F5
Bz
2

8p (
G

V. ~72!

Notice that the unit cell parameters that extremize the free
energy have not been determined up to this point. So far we
have just found the local magnetic field that solves Eqs.~49!
and this solution just takes that vortices form an arbitrary
periodic array without any information about the optimal lat-
tice configuration. This means that the above reciprocal
space formulation of all tensors, including the total free en-
ergy, only contain a partial extremization of the problem. The
complete extremization is achieved once the optimal array
configuration is determined. Therefore we extremize the free
energy with respect to the relevant parameters,]F/]s50
and]F/]v50, respectively:

(
G

1

~QR!2
@2PQ~mzzGx

22mcGy
2!2PRma~Gx

22Gy
2!

1QRmzz~Gx
22Gy

2!#50 ~73!

and

(
G

1

~QR!2
~2PQmc2PRma1QRmzz!GxGy50.

~74!

Both formulas are derived simply using V̇5

(2PQṘ2PQ̇R1 ṖQR)/(QR)2, together with Eqs.~B10!,
whereV̇ means]V/]s or ]V/]v. The two conditions, Eq.
~73! and Eq.~74!, determine the unit cell parameters for the
tilted straight vortex lattice limit, described by the extreme
values of s and v. Such lattice configurations are well
known in the literature at several special limits of the vortex
density. At the low vortex density limit, one has the forma-
tion of chains20,21and, for a high vortex density, one verifies
the onset of a distorted trianglular lattice.22 Another relevant
remark is that regardless of the vortex density value, there is
always a distorted rectangular unit cell that extremizes the
free energy. Generally speaking Eqs.~73! and~74! must ad-
mit at least two solutions, one corresponds to a local energy
maximum, and the other to the absolute minimum.21 In the
isotropic limit they are the square and the triangular lattice,
respectively.

A. H from thermodynamics

The Helmholtz free-energy density, Eq.~72!, is a function
of the magnetic induction modulus,Bz , and the angleu be-
tween thec axis andB: F(Bz ,u). According to the thermo-
dynamic relation, Eq.~1!, the magnetic field components are
given by

H1

4p
5sinu

]F

]Bz
1
cosu

Bz

]F

]u
, H250,

H3

4p
5cosu

]F

]Bz
2
sinu

Bz

]F

]u
. ~75!

The partial derivatives]Bz /]Bi and]u/]Bi , for i51,2, are
obtained from Eq.~15!. Direct inspection of the above rela-
tions also givesH in theB frame,

Hx5
4p

Bz

]F

]u
52Bzsinucosu(

G
~mc2ma!

Qc

QR2
gy
2 ,

~76!

Hz54p
]F

]Bz
5
Bz

2 (
G

PQR1P~Q1R!2QR

Q2R2 . ~77!

We discuss below some aspects of the explicit derivation of
the free energy, Eq.~72!, with respect toBz and u. Notice
that the free energy of Eq.~72! has both an explicit and an
implicit dependence onBz , the last one due to the lattice
parameters as described in Eq.~50!. Such implicit depen-
dence appears through the dimensionless reciprocal space
vector, Eq.~B9!, thus giving that]G/]Bz5G/(2Bz). From
the above considerations one obtains]F/]Bz5(2/Bz)F
1@1/(2Bz)#G•]F/]G. The derivative of the free energy
with respect tou is straightforward, the reciprocal vectorG
does not depend onu, and only the matrix elements of the
tensorm(u) do @see Eq.~13!#.

Interestingly, the reciprocal space expressions of Eqs.~77!
and ~76! can be derived without ever having to explicitly
take a derivative of the free energy. The scaling relations for
H can do this, as shown in the next subsection.

B. H from the scaling relations

Here we show that the London limit of the scaling rela-
tions in both theC frame, Eqs.~43!–~45!, and in theB
frame, Eqs.~46!–~48!, are satisfied by the tilted vortex lat-
tice. We start in theB frame with the vanishing scaling rela-
tions, Eqs.~46! and~47!, whose LHS are zero by definition,
Bx5By50, and consequently, their RHS must also vanish.
We find advantageous to check that the sum and the differ-
ence of these two equations are fulfilled instead:

HxBx1HyBy5~mxzKxz1mzzKzz!1~ f xx1 f yy!, ~78!

HxBx2HyBy5~2mxzKxz2mxxKxx1maKyy!1~ f xx2 f yy!.
~79!

To show that the RHS of the above equations vanish, we
make use of Eqs.~65!, ~66!, ~69!, ~70!, and write all the
necessary tensor components in reciprocal space. One ob-
tains
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mxzKxz1mzzKzz5Bz
2mxz

2 (
G

V2S 2
1

P
1
mzzG

2

P2 DGy
2G2

52Bz
2mxz

2 (
G

V2

P2 Gy
2G2, ~80!

f xx1 f yy5Bz
2mxz

2 (
G

V2

P2 Gy
2~Gx

21Gy
2!, ~81!

and

2mxzKxz2mxxKxx1maKyy5Bz
2 (

G
V2Sma~Gx

22Gy
2!

2~mc2mzz!
Q

P
Gy
2D , ~82!

f xx2 f yy5Bz
2mxz

2 (
G

V2

P2 Gy
2~2Gx

21Gy
2!. ~83!

Direct inspection shows that the sum of Eq.~80! and of Eq.
~81! vanishes and this agrees with the LHS of Eq.~78!,
HxBx1HyBy50. However the RHS of Eq.~79! does not
vanish automatically,

HxBx2HyBy5Bz
2 (

G
@~maP

22mxz
2 Gy

2!~Gx
22Gy

2!

2~mc2mzz!PQGy
2#

1

~QR!2
. ~84!

The most surprising result of this paper is that the vanishing
of the RHS of the above equation has already been shown
here. This is just the same condition that extremizes the free
energy with respect to one of the lattice parameters:

HxBx2HyBy58p
]F

]s
50. ~85!

We have shown that the sum and difference ofHxBx and
HyBy are null, consequently the RHS of Eq.~46! and of Eq.
~47! vanish, and conclude that twoB-frame scaling relations
are valid. Further details showing that Eq.~84! and Eq.~73!
are indeed the same condition can be found in Appendix C.
To completely determine the magnetic fieldH in the B
frame, by the scaling procedure, it remains to obtain the
componentHz . Instead of Eq.~48! we consider the sum of
the three scaling relations, Eqs.~46!–~48!.

Fkin12Ffield5
Bz
2

8p (
G

PQR1P~Q1R!2QR

Q2R2 . ~86!

Thus we conclude that the scaling relations do determine
correctly the magnetic fieldH in the B frame since
Fkin12Ffield5HzBz/4p and this is identical to a previous
result, Eq.~77!, derived from a thermodynamic argument.
Notice that scaling in theB frame, Eqs.~46! and~47!, do not
determine the transverse components,Hx and Hy because
Bx5By50.

The scaling relations are also valid in theC frame as
shown below. We show that the RHS of Eqs.~43!–~45! are
consistent with the previous results obtained in theB frame.

Notice that upon this particular rotation around the 2[y
axis, three quantities remain invariant, namely the scalar
product, H1B11H3B35HxBx1HzBz , the vector compo-
nentH2B25HyBy , which vanishes, and also a pseudovector
component,H1B32H3B15HxBz2HzBx .

The invariance of the scalar product means that the sum
of two sets of RHS must be the same, namely Eq.~43! plus
Eq. ~45!, and Eq. ~46! plus Eq. ~48!. This condition is
f xx1 f zz1maKyy5 f 111 f 331maK22, which can be easily
shown to hold, by invariance under rotation around the
2[y axis.

We have already shown that the RHS of Eq.~47! gives
HyBy50. To show that the RHS of Eq.~44! also gives
H2B250, we observed that the kinetic and field energies
are independently invariant under this rotation:f 22
5 f yy , K225Kyy , and maK111mcK335mxxKxx1mzzKzz
12mxzKxz .

Now we proceed to show that the remaining scaling rela-
tions in theC frame are also valid, taking into account the
above considerations. It is straightforward to verify that the
RHS of the two scaling relationsH1B11H3B3 and
HxBx1HzBz are equal. To show that the RHS of
H1B32H3B1 andHxBz2HzBx are the same demands some
further work. To verify the above relations we start noticing
that the RHS of Eq.~47! gives HyBy50, and find that
2 f 225ma(K222K11)2mcK33. Introducing this expression
into the two other scaling relations gives

H1B15 f 111 f 221mcK33, H2B250,

H3B35 f 221 f 331maK11. ~87!

Expressing Eqs.~87! into reciprocal space gives

H1B15Bz
2 (

G

1

~QR!2
~mcsin

2uQ2Gy
21mxz

2 Gx
2Gy

2

1sin2uRa
2!, ~88!

H3B35Bz
2 (

G

1

~QR!2
~macos

2uQc
2Gy

21mxz
2 Gx

2Gy
2

1cos2uR2!. ~89!

The use of the above relations allows us to compute
the pseudovector componentH3B12H1B35H3B3tanu
2H1B1 /tanu. This is our starting point to show that the
thermodynamic relation forHx , given by Eq.~76!, can be
obtained by the scaling method. The goal is to show that the
RHS ofH1B32H3B1 , calculated from the scaling relations,
is identical toHxBz , obtained from thermodynamics. Appen-
dix C provides more details in this proof that the scaling
method does lead to the thermodynamicHx expression of
Eq. ~76!. We have just found a way to determineHx from C-
frame scaling information.Hx cannot be directly determined
in theB frame from scaling becauseBx50.

In summary, we have shown, in this section, that theH
components can be obtained either by the thermodynamic
relations, Eq.~76! and Eq.~77!, or by the scaling method.
We also found that Eqs.~78! and~79! supply useful informa-
tion about the collective properties of the vortex state. Our
comparison is restricted to the situation of straight tilted vor-
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tex lines forming a periodic array with one vortex per unit
cell. A better insight into the results obtained so far is found
in the next section where we revisit the isotropic supercon-
ductor.

C. The isotropic limit

In the isotropic limit there is only one mass parameter
identical to the average mass,M̄5M and, consequently, the
dimensionless tensors become the identity,m5I and
m85I . No new results are obtained in this subsection, the
only goal is to make the previous results more transparent to
the reader, in particular the scaling identitesHxBx50 and
HyBy50, given by Eqs.~46! and~47!, and the lattice condi-
tions, ]F/]s50, and ]F/]v50, given by Eqs.~73! and
~74!. In the last subsection we found that such scaling iden-
tities demand that the lattice conditions be fulfilled and ac-
cording to Eq. ~85! one must haveHxBx2HyBy5
8p]F/]s50. It is well known that the square and the trian-
gular lattices23 are the two configurations that extremize the
isotropic vortex state and therefore they must satisfy the
above identities and conditions.

We stress that the scaling relations for the anisotropic GL
theory cannot be read off from the isotropic case, unless in
the special limit of largek and high vortex density.24 Long
ago Klemm and Clem25 have introduced a scaling procedure,
different from the present one, that maps the anisotropic
London theory into the isotropic one. This transformation
has been used recently7 to obtain several results in the aniso-
tropic case from the isotropic theory. This map is limited to
the high vortex density limit, where the average London pen-
etraton length is much larger than the distance between two
consecutive vortices on the lattice.

In the isotropic limit all the reciprocal space polynomials
of Eq. ~54! collapse into a single one,P5Q5Qc5R
5Ra5Rca, such that

V8~G!5
1

11G2 . ~90!

Then one gets in theB frame that

hx~x!5hy~x!50, hz~x!5F0

N

A (
G

V8expS i GL •xD ,
~91!

4pJx~x!

c
5 iF0

N

A (
G

V8
Gy

L
expS i GL •xD ,

4pJy~x!

c
52 iF0

N

A (
G

V8
Gx

L
expS i GL •xD , ~92!

4pJz~x!

c
50,

Kxx5Bz
2(
G

V82Gy
2 , Kyy5Bz

2(
G

V82Gx
2 ,

Kzz5Kxz50, ~93!

f xx5 f yy50, fzz5Bz
2(
G

V82. ~94!

The isotropic free energy is

Ffield5
Bz
2

8p (
G

V82, Fkin5
Bz
2

8p(
G

~V82V82!,

F5
Bz
2

8p (
G

V8. ~95!

In the isotropic limit the local magnetic field is only along
the direction of the vortex lines (hx5hy50, hzÞ0), and its
intensity decays exponentially away from the core of each
vortex located on the lattice.

The isotropic magnetic fieldH, obtained either by ther-
modynamics, Eqs.~77! and~76!, or by scaling, Eqs.~86! and
~C9!, is such thatHz5(Bz /2)(G(V81V82) and Hx50.
ThusH andB are aligned to each other in the isotropic limit,
a fact that is not true for the anisotropic superconductor,
where their misalignment produces an intrinsic magnetic
torque26,27 that has led to interesting experimental
consequences.28 There is no isotropic kinetic energy along
the z axis, Kzz50, since the current is constrained to the
plane xy, orthogonal to the vortex lines. Thus the scaling
identities in theB frame demand that the average kinetic
energies, along thex andy directions be equal,Kxx5Kyy , in
order to have the magnetic induction oriented along thez
axis (Bx5By50). These identities require the fulfillment of
the first of the two lattice conditions, Eqs.~73! and~74!, that
extremize the free energy with respect to the unit cell param-
eters:

]F

]s
5(

G
V82~Gx

22Gy
2!50, ~96!

]F

]v
5(

G
V82GxGy50. ~97!

Among the many possible choices of unit cell for a given
lattice, we pick the simplest ones for each of these two lat-
tices. The corresponding reciprocal space vectors are ob-
tained from Eq.~B9!.

Square lattice. For the unit cellL1 /L251, f590°, or
s51,v50, one gets the reciprocal space vector components
Gx5(2pL/L)q1 andGy5(2pL/L)q2 . Equations~96! and
~97! become

(
q1 ,q2

1

11S 2pL

L D 2~q121q2
2!

~q1
22q2

2!50, ~98!

(
q1 ,q2

1

11S 2pL

L D 2~q121q2
2!

q1q250. ~99!

Triangular lattice. For the unit cellL1 /L251, f560°,
or s5A3/2, v51/2, one gets the reciprocal space
vector components Gx5(2pL/A6L)3q1 and Gy

5(2pL/A6L)(2q22q1). Equations~96! and ~97! become
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(
q1 ,q2

1

11S 2pL

A6L D 2@~3q1!21~2q22q1!
2#

3@~3q1!
22~2q22q1!

2#50, ~100!

(
q1 ,q2

1

11S 2pL

A6L D 2@~3q1!21~2q22q1!
2#

~3q1!~2q22q1!

50. ~101!

The arguments showing that the two free-energy derivatives
vanish are the same for both lattices. For the first set of
identities, Eqs.~98! and~100!, pick one particular term in the
first sum associated toq15m, m any integer. Then there is
always a choice in the second sum,q252m, that renders
the series terms equal to zero. For the second set of identi-
ties, Eqs.~99! and~101!, the sum of two distinct terms of the
series, associated toq15m, q25m and q152m, q25m,
give that they also vanish.

In the C frame, one gets that all local fields are nicely
expressed as simple rotations of theirB frame counterparts:
the local magnetic field h1(x)5sinuhz(x), h2(x)50,
h3(x)5cosuhz(x), the supercurrent J1(x)5cosuJx(x),
J2(x)5Jy(x), J3(x)52sinuJx(x), the kinetic energy
K115cos2uKxx, K225Kyy , K335sin2uKxx, and the field en-
ergy f 115sin2ufzz, f 225 f yy , f 335cos2ufzz. The isotropic
limit of Eqs. ~C7! and ~C8! give that H1B1 /sin

2u5
H3B3 /cos

2u5 Bz
2(GV82(Gy

211). Using the unit cell condi-
tion of Eq. ~96!, it follows @see also Eqs.~87!# that the scal-
ing relations becomeH1B15sin2uHzBz, H2B250, and
H3B35cos2uHzBz. One also gets thatH3B12H1B350 con-
sistent with the fact of no transverse field in the isotropic
limit Hx50.

In summary in the isotropic limit both triangular and
square lattices were shown to verify the scaling identities
corresponding toHxBx5HyBy50. According to the scaling
relations, and also to the thermodynamic equation@Eq. ~1!#,
for the same vortex density,Bz , triangular and square lattices
result in distinct values ofHz . The square lattice is not in-
teresting because it is an unstable configuration of the free
energy. As pointed out before, the anisotropic problem can-
not be mapped into the isotropic case except in special limits.

V. CONCLUSION

The virial theorem is a useful tool to determineH when
numerical techniques must be introduced in the Ginzburg-
Landau theory. While the thermodynamic relation, Eq.~1!,
requires the free energy at two values ofB in order to com-
pute a derivative, the virial relation demands the knowledge
of the free energy only at a single value ofB. Another ap-
plication of the scalar virial theorem, pointed out some time
ago,29 is in the determination of the elastic properties of the
vortex state within the Ginzburg-Landau context. For isotro-
pic superconductors, the tilt modulus in the limit of very
large wavelength can be directly related to the sum of kinetic
and field free-energy contributions, as described in the scalar
virial theorem, sincec4452HB.30 The scalar virial theorem

does not determine the magnetic field completely and, espe-
cially in case of anisotropy, its generalization to a vector
virial theorem becomes quite useful. In fact, such generali-
zation has been proposed, although not studied, by the au-
thors1 of the scalar virial theorem. The present scaling pro-
cedure is very similar to the one leading to the scalar virial
theorem, the only difference being that each spatial coordi-
nate is independently scaled here, while previously this was
done simultaneously in all coordinates.

Anisotropy introduces some interesting theoretical re-
marks because scaling along the crystal’s axes (C frame! and
along the orthogonal axes, defined by magnetic induction~B
frame!, result into distinct scaling relations. In theB frame
the scaling relations only determineHz , the projection of
H alongB5Bzẑ. Nevertheless in theB frame two identities
are obtained, related to the fact thatHxBx50, Eq. ~16!, and
HyBy50, Eq. ~17!. Such identities give information on the
collective properties of the vortex state that extremizes the
Helmholtz free energy.

We have compared the scaling to the thermodynamic re-
lations in a special limit of the AGL theory, whereH is
obtained analytically. This is the London limit and we have
treated the problem of straight parallel vortices tilted with
respect to thec axis. We have found that elastic properties of
the vortex lattice can be related to the thermodynamic fields
according toHxBx2HyBy58p]F/]s @see Eq.~85!#. Hence
two identities, related toHxBx50 andHyBy50, are fulfilled
once a property of the unit cell that extremizes the free en-
ergy is included,]F/]s50. Thus we have obtained, through
the scaling relation, identities that provide information on the
properties of the collective state of the vortices, as previously
discussed. In case the collective vortex state is driven by
disorder, like in a spin glass,16 we believe that suchB frame
identities should be helpful to elucidate the properties of
such state. Notice that we were only able to obtain the mag-
netic field component perpendicular to the magnetic induc-
tion through the help of the vector identityHxBz5H1B3
2H3B1 . This shows that theB frame scaling relations are
not able to determine all components ofH, although they
supply information on the collective state not given by theC
frame scaling relations. It seems to us that in the case of
anisotropic superconductors, the two sets of scaling relations
are both useful because they contain some complementary
information about the superconductor’s state.

In the present AGL context disorder can be introduced
through the assumption that the parameters acquire a spatial
dependence,ao(x), Tc(x), bo(x), m(x), and m(x). Re-
cently there have been suggestions of unconventional pairing
symmetry for the high temperature superconductors.31 Ex-
tensions of the Ginzburg-Landau theory containing order pa-
rameters of higher symmetry have been studied before.32 Al-
though we have not derived expressions forH in these cases,
it is obvious that the present scaling procedure easily applies
to them. We believe that, for both cases of disorder and of an
order parameter of higher symmetry, the present vector virial
theorem provides a useful tool to unveil the magnetic prop-
erties of the underlying GL theories.

In summary we have obtained in this paper, by scaling
arguments, new relations that determineH for the AGL
theory. Perfect agreement between the scaling relations and
the thermodynamic method has been found in the London
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limit. We propose that theH relations should be valid
throughout the mixed state.

APPENDIX A: MATRIX PROPERTIES

Under the rotationR(u) given in Eq.~12! the covariant
derivative transforms, as any other vector, according to
Dcu5R(u)•Dc crystal. Knowledge of the invariance
@Dc#u

†
•m8(u)•@Dc#u5@Dc#crystal

†
•m8•@Dc#crystal gives that

m8(u)5RÁ(u)•m8•R(u). Consider the dimensionless mass
matrices,m andm8, upon rotation. The orthogonal transfor-
mation gives that detm8(u)5detm8(0) and so

mxxmzz2mxz
2 5mamc , mxxmzz2mxz

2 5mamc . ~A1!

Since we have

cosumxz1sinumzz5sinuma , ~A2!

cosumzz2sinumxz5sinumc , ~A3!

the explicitu dependence of these matrix elements leads to
the following relations

mxx

mamc
5mzz,

mxz

mamc
52mxz ,

mzz

mamc
5mxx . ~A4!

The dimensionless matrices are the inverse of each other,
m8•m5I , and in terms of components one gets

mxxmxx1mxzmxz5mzzmzz1mxzmxz51,

mxzmxx1mzzmxz5mxzmzz1mxxmxz50. ~A5!

The scaling relations can be expressed more compactly, if the
kinetic term, proportional to@Dc#†•Vj•@Dc#, is expressed
in terms of the matrices

C frame:

V15S 2ma 0 0

0 ma 0

0 0 mc
D , V25S ma 0 0

0 2ma 0

0 0 mc
D ,

V35S ma 0 0

0 ma 0

0 0 2mc
D , ~A6!

B frame:

Vx5S 2mxx 0 0

0 ma 0

0 0 mzz
D , Vy5S mxx 0 mxz

0 2ma 0

mxz 0 mzz
D ,

Vz5S mxx 0 0

0 ma 0

0 0 2mzz
D . ~A7!

In order to express the kinetic energy in terms ofr andJ ,
we must calculate

Wj[m•Vj•m, ~A8!

wherem is given by Eq.~13!. With the help of Eqs.~A1!,
~A4!, ~A5! one obtains

C frame:

W15S 2ma 0 0

0 ma 0

0 0 mc
D , W25S ma 0 0

0 2ma 0

0 0 mc
D ,

W35S ma 0 0

0 ma 0

0 0 2mc
D , ~A9!

B frame:

Wx5S 2mxx 0 0

0 ma 0

0 0 mzz
D ,

Wy5S mxx 0 mxz

0 2ma 0

mxz 0 mzz
D ,

Wz5S mxx 0 0

0 ma 0

0 0 2mzz
D . ~A10!

APPENDIX B: RECIPROCAL SPACE

Let the local magnetic field created by a single vortex in
real space beh(x), wherex is the coordinate on the plane
xy, orthogonal to the vortex line. Take that its Fourier trans-
form is

h~x!5E d2k

~2p!2
h~k!exp~ ik•x!. ~B1!

Now consider a periodic array of vortices whose positions in
real space are determined by

L ~n!5n1L11n2L2, L15L1ê1, L25L2ê2, ~B2!

where (n1 ,n2) are a set of integers, and the unit vectors are
chosen such that

ê1[ x̂, ê2[cosf x̂1sinf ŷ. ~B3!

The vectorx̂ is on the plane defined by the c-axis and the
magnetic induction, andŷ is orthogonal to this plane~see
Fig. 2!.

The local magnetic field produced by a periodic array of
vortices takes the contribution of all vortices, and so must be
given by

h̃~x!5(
n
h@x1L ~n!#. ~B4!
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This is a periodic function, since discrete translations mul-
tiple of the basic lengths,L1 andL2 , just shift the field to a
position identical to the starting one:h̃@x1L (m)#5h̃(x).
Such a periodic function is better described in the so-called
reciprocal space,

h̃~x!5
N

A (
g
h~g!exp~ ig•x!, ~B5!

whereN/A is the ratio between the total number of vortices,
N, and the total area of thexy plane,A. An exponential
condition, exp@ig•L (n)#51, valid for all (n1 ,n2), assures
the translational invariant property of the functionh̃(x). The
function h(g… is just the original Fourier transform,h(k….
The reciprocal space is just a subset of the momentum space,
such thatk is restricted to the set of vectorsg, that satisfy the
exponential condition, just described.

Flux quantization demands that a fluxonF0 be associated
to the areaA/N of each vortex unit cell:

A

N
5L1L2sinf5

F0

Bz
. ~B6!

Thus the vortex density is completely determined by the
magnetic induction.

The reciprocal space vectorsg also form an array
characterized by two integers, (q1 ,q2), such that
g(q)5q1g11q2g2. Choosing g1•L25g2•L150 and
g1•L15g2•L252p ~see Fig. 2!, theng•L (n)52pI , I any
integer, and we find that

g~q!5
2p

sinf S q1L1 v̂11 q2
L2

v̂2D , v̂15sinf x̂2cosf ŷ,

v̂25 x̂. ~B7!

We define new parametersL, s andv describing the real
space unit cell,

L[AF0

Bz
5AL1L2sinf, s[AL2sinf

L1
5

L

L1
,

v[
L2cosf

L1
. ~B8!

The optimal lattice is determined by minimizing the free
energy with respect to the variabless andv which represent
L1 /L2 andf. We define the dimensionless reciprocal space
vector asG5Lg that becomes, in terms of the the previously
defined variables,

G5Gxx̂1Gyŷ, Gx5
2pL

L
q1s,

Gy5
2pL

L
@2q1v1q2#

1

s
. ~B9!

The following derivatives are useful for the present pur-
poses:

]Gx

]s
5
Gx

s
,

]Gy

]s
52

Gy

s
,

]Gx

]v
50,

]Gy

]v
52

Gy

s2 .

~B10!

Then the derivatives of theGx , Gy polynomials, defined by
Eqs.~51!–~53!, are easily obtained:

]P

]s
5
2

s
mzz~Gx

22Gy
2!,

]Q

]s
5
2

s
ma~Gx

22Gy
2!,

]R

]s
5
2

s
~mzzGx

22mcGy
2!, ~B11!

]P

]v
52

2

s2mzzGxGy ,
]Q

]v
52

2

s
maGxGy ,

]R

]v
52

2

s
mcGxGy . ~B12!

APPENDIX C: MATHEMATICAL RELATIONS

In this appendix we provide to the interested reader some
further details on how some mathematical relations are es-
tablished in Sec. IV B.

First we outline a few intermediate steps showing that Eq.
~84! and Eq.~73! are indeed the same condition. We start
adding and taking a termmzzGy

2PQ to Eq. ~73!,

(
G

1

~QR!2
$~mc2mzz!PQGy

2

1@mzzQ~P2R!1maPR#~Gy
22Gx

2!%50. ~C1!

Equation~55! gives

(
G

1

~QR!2
$~mc2mzz!PQGy

21@maP
21mzzQ~P2R!

1ma~mc2mzz!Gy
2] ~Gy

22Gx
2!] %50. ~C2!

Finally one obtains from the above equation~C2! that the
LHS of Eq. ~84! vanishes. We find that Eq.~56! is helpful
when verifying the above relation. In summary the RHS of
Eq. ~84! vanishes due to the actual extremization of the free
energy with respect to lattice parameters.

Second we present some of the intermediate steps neces-
sary to show thatHx from scaling is the same thermody-
namic relation of Eq.~76!. Using the auxiliary identities of
Eq. ~57! and of Eq.~58! one obtains

H1B15Bz
2(
G

1

~QR!2
@mcsin

2uQ2Gy
2

1~mxz
2 G2Gy

21P2!2R2cos2u#, ~C3!

H3B35Bz
2(
G

1

~QR!2
@macos

2uQc
2Gy

2

1~mxz
2 G2Gy

21P2!2Ra
2cos2u#. ~C4!

Then applying another auxiliary relation, Eq.~59!, gives
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H1B15Bz
2(
G

1

~QR!2
$sin2u~mcQ

2Gy
21R2!

1@2R2

1P~Q1R!2QR#%, ~C5!

H3B35Bz
2(
G

1

~QR!2
$cos2u~maQc

2Gy
21Ra

2!

1@2Ra
2

1P~Q1R!2QR#%. ~C6!

Finally the use of auxiliary relations of Eq.~60! and of Eq.
~61! yields

H1B15Bz
2sin2u(

G

1

~QR!2
$mcQ

2Gy
21R2

1~ma2mc!~Q1R!Gy
2%, ~C7!

H3B35Bz
2cos2u(

G

1

~QR!2
$maQc

2Gy
21Ra

2

2~ma2mc!~R1Rac!Gy
2%. ~C8!

Now one is ready to obtain the pseudovector component us-
ing the above formula:

2HxBz5H3B12H1B35Bz
2sinu cosu,(

G

1

~QR!2
$~maQc

22mcQ
2!Gy

21~Ra
22R2!2~ma2mc!~2R1Rca1Q!Gy

2%

5Bz
2sinu cosu~ma2mc!(

G

1

~QR!2
$12mamcG

41~ma2mc!Gy
22Q2Rca%Gy

2

5Bz
2sinu cosu~mc2ma!(

G

Qc

QR2
Gy
2 . ~C9!

Comparison of the above equation to Eq.~76! shows that they are identical.
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