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Virial theorem for the anisotropic Ginzburg-Landau theory
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The scalar virial theorem for the Ginzburg-Landau theory is generalized to a vector virial theorem and
follows from similar scaling properties of the Gibbs free-energy density. All the components of the magnetic
field H are determined in terms of average values of the kinetic and field tensor components of the Helmholtz
free-energy density. We consider two frames, the crystal’'s and the magnetic induBtiomlsere the scaling
properties yield useful relations due to anisotropy. In the last case the scaling relations do not completely
determineH; instead, they provide useful identities that reflect collective properties of the vortex state. We
compare both the scaling and the thermodynamic methods for the particular case of straight tilted parallel
vortex lines in the London limit.

I. INTRODUCTION which has been experimentally verified in the ceramic com-
. iy ___pound YB&Cu30,.°
Some time ago a scalar virial theorem has been obtalne'?:i Accordi?fg tg tr:ermodynamics the magnetic field is ob-
by Doria, Gubernatis, and Rairtdior the Ginzburg-Landau tained through the derivative '

theory through scaling arguments. It determines the scalar

product between the magnetic field, and the magnetic

induction, B, in terms of average values of the kinetic and H=4 f

. . . . =47—. (1)

field energies of the superconductor. This scalar virial rela- B

tion has been verified first numericdllgnd then analytically

near the upper critical field by Klein and'®ager} who  The thermodynamic fields are also related by
showed that the virial theorem provides an elegant method tg = — 479G/9H, whereF=F/V and G=G/V are thermo-
understand Abrikosov’s identitiésin this paper we general- dynamic potentials, namely the Helmholtz and the Gibbs
ize the previous result to a vector virial theorem, where eacliree-energy densities, respectively,being the sample vol-
component of the magnetic field is fully determined in  ume. The state of a superconductor is described at each tem-
terms of average values of several tensor components of thgerature by the minimum of a thermodynamic potential, and
kinetic and field energies. Our formula féf is derived by these two potentials are the most commonly considered, the
scaling arguments applied to the anisotropic Ginzburgchoice depending on the selected thermodynamic variables.
Landau (AGL) theory, similar to those used to obtain For a fixed magnetic induction, e.g., a constant vortex den-
the scalar virial theorerh.The present scaling relations Sity, the Helmholtz free energy, F(B), must be the mini-

for the magnetic field render relations of the form Mum. Obviously in most experimental situations it is more
Hi=fd3x[hi2+5hi(sz)]/fd3xhi where i=1,2.3 label interesting to consider the sample under a fixed magnetic

ield, thus the Gibbs free energy, GH)/V=F(B)/

L |
components along the crystal's principal axes. The Ioca{/ ) ; .
e ' . : —B-H/4m, is most convenient. The present scaling rela-
magnetic field ish, and oh; are just functions of the gauge tions totally replace Eq(1), the thermodynamic relation,

'”V"’?”a”t derivative of the OrdeT paramet@_rjz,//, that mu_st which requires knowledge of the Helmholtz free energy on a
vanish when the superconducting state disappears since, Hrtain neighborhood dB, because a derivative of the free

this limit, h—H. ) ) ) __energy must be calculated. The present scaling relations de-
The AGL theory is the simplest model for an anisotropicemineH just demanding knowledge of the Helmholtz free

superconductor and was investigated long %ghe discov-  gnergy at a single value &. This advantage of the present
ery of copper-oxygen layered compounds with high transieypressions over the thermodynamic relation is mostly useful
tion temperatures brought a renewed interest in this tHfeorysor numeric computations of the GL thedry®~3

For some of the ceramic materials, the layered structure is Equation(1) reflects the central role played by the ther-
screened and just introducing anisotropy into the mass tens@fiodynamic field8 andH when the first law of thermody-

is enough to describe many of their properti@ecause cur- namics is applied to a superconductbt’ To understand it,
rents flow preferentially along the plane of lower mass,take a superconductor sample subjected to an applied field
namely the copper-oxygen layers, the model has a naturand consider the work done by the sample on some far-away
frustration whenever such currents are forced to stay out ofoils responsible for this magnetic field. Suppose that the
the plane. This feature has led the theory to predict someample temperature is lowered from above to below its criti-
novel phenomena, like the attractforbetween vortices cal value. Let],,; be the current density circulating in these
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do not completely determine the magnetic field. Instead they

3 Cu-o give identities that must be satisfied by the collective vortex
————————— state that extremizes the free energy. The existence of such
identities is one of the major results of this paper.

Like the scalar virial theorem, our relation fét applies
for an infinite superconductor, thus boundary free, and under
the presence of periodic boundary conditidrEhis is suffi-
cient to treat the Abrikosov state and also some recently pro-
posed states caused by disortfarhich can be easily intro-
duced into the AGL theory. For the latter case, not treated
here, the periodicity has no physical meaning but scaling
relations are still valid provided that such a periodicity is
interpreted as an artifact, such that the cell boundaries are
taken very large at the end of the calculatidns.this paper
we compare the present scaling relations Hbto the ther-
modynamic method of Ed1), in one particular limit, where
the AGL theory can be solved analytically. This is the Lon-
don limit, where the density of superconducting pairs is con-
stant everywhere. We consider the case of a vortex lattice
+ made of tilted parallel straight lines all making an angle
with the ¢ axis and find that our formula fdd and Eq.(1)
give the same results in boBhandC frames. Near the upper
critical field H., it is also possible to seek an analytical
comparisoh’ between the scaling and the thermodynamic
methods foH. This comparison is not carried here and will
be considered elsewhere.

This paper is organized as follows. In Sec. I, we review

coils. When the sample becomes superconductor, an inducdy® anisotropic Ginzburg-LandalAGL) theory, the varia-
current density must arise in the sample in order to cancel thiional Ginzburg-Landau equations and present our formula
applied field. The local magnetic field becomesdistinct ~ [of H in both C and B frames. We also express the AGL
from the original applied field. According to Faraday’s law, tN€0ry in terms of the superelectron density and current den-
the expulsion of a fraction of the magnetic flux, inside theSIty in order to consider the London limit. In Sec. lil the
sample, leads to the presence of an electric figldThere- ~ Scaling properties of the minimum of the Gibbs energy are
fore work is done by the sample on the coils at the ratee*Plored in order to derive our scaling relations fdr In
dW/dt=[d3xE- J,,., when the temperature is lowered from Sec. _IV_the perl_odlc array _of tllte_d parallel lines in the _Lon-
above to below the critical value. This process must be redon I|m|§ is studied. For this parchIar array of vortgx lines,
versible in order that the laws of thermodynamics appliesV€ obtain in the next two subsections the magnetic fitld
Thus it must unfold at a very slow pace to avoid irreversible/Tom both the thermodynamic relation, Sec. IV A, and the
phenomena, and so one neglects the displacement curreifi@ling refations, Sec. IV B, and show that they give the
and radiation effects in the Maxwell equations, resulting inS&Me results. In order to help the reader we have included a
dW/dt= — (c/4w) [d3x(dh/at) - H. Below the critical tem- special section, _Sec: IV C, where the isotropic limit of the
perature the fieldd remains uniform inside the sample only vector virial relation is taken and several results of the pre-

for special geometries, e.g., a long cylinder with its Symme_vious sections are discussed once more. Finally we conclude
try axis parallel to the ’appli'ed fiel:15The only source for in Sec. V and leave for the appendices some side discussions

H are the external current¥,x H=4mJ,/c, and since we regarding properties of certain matrices upon rotation, Ap-

have not included the displacement current, a slight timé’endixd’/.'\’ and the rec_igrocal sp%ce \(Iefjtqrs%, Appe;ndix E In

dependence ol in this process is also neglected. Then the”PPendix C we provide more detailed information about

work done by the sample on the coil is simply given by ~ S°Me mathematical proofs that complete the derivations car-
ried in Sec. IV B.

FIG. 1. The copper-oxygen layers are depicted here inGhe
frame, this one defined by the crystal's major axes. Bhizame,
which follows from thec axis upon rotation by an angle has the
magnetic inductiorB along one of its axesz(axis). A set of tilted
straight and parallel vortex lines are pictorially represented here.

\% 4 Vv IIl. THE THERMODYNAMIC FIELD H FOR THE

ANISOTROPIC GINZBURG-LANDAU THEORY

dw 1 d3x
—=——"H-dB, Bzf—h, 2)

in the special geometries cited before.

The scaling properties of the Gibbs free-energy density In this section we review the AGL theory, present this
discussed in this paper yield expressions in two coordinatpaper’s expressions fdf that replace the thermodynamic
frames, namely the crystal’sC( frame and the magnetic relation of Eq.(1), and introduce a frameB(frame obtained
induction’s B frame). We only consider here uniaxial super- upon rotation. When it is necessary to distinguish tensor
conductors and th8 frame is defined through a rotation of components in th€ andB frames, we use a subscript index,
theC frame: co®=c¢- B wherec andB are along the crystal’s taking values =1,2,3 and =x,y,z, respectively. The Helm-
axis of symmetry and the magnetic induction direction, re-holtz free energy of an anisotropic superconductor is ex-
spectively(see Fig. 1 In the B frame the scaling relations pressed in terms of a complex order paramater,/p exp
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(ix), and of the local magnetic potentiad, such that the in order that Eq(1) determines the magnetic field it is also
local magnetic field is1=V X A. One obtains necessary that the free energy be extremized with respect to
all parameters other thad.
3 B Similar to the above scaling expressions lfor Egs.(8)—
F(B)= f 7( ao(T=To)|]?+ §| yl* (10), there is also another equation that demands the solution
of the GL equations in order to be valid. It is well known and
2 we call it theintegratedequation,

+1DT’D+h 3
m[ ¢1'-m"-[Dy]+ o/, 3

d3x 1
where the covariant derivative B=(%/i)V—(g/c)A. In J 7(%(T—Tc)|¢|2+ﬁ|¢|4+ —[Dy]"-m’-[Dy]
the crystal’'s frame the mass tensor is 2M
Ma 0 0 -0. (11)
m=[ 0 Ma O} @
0 0 M, This equation is obtained by direct integration of a GL equa-

tion, Eq. (6), multiplied by ¢. A surface term is abandoned

in the derivation of the above equation, since its contribution
vanishes because of the special boundary conditions assumed
here. A simple way to see the limitation to an infinite super-

The dimensionless tensonsy and m’, extensively used in
this paper, are

M conductor made of lattice cells is to study the case of no
m=—, m'=m?% (5) applied field. Then the scaling relations reduce to
M Jd3x|aylax|>=0 along each of the crystals axes

wherel\ﬁzw stands for the average mass. Hence, in(|=1,2,3). The only possible solution to such relatlops is a
the crystal's frame u,=1/m, and u,=1/m,. The varia- constant order parameter everywhere. T_hg_s the §cal|ng rela-
tional equations obt’ai; ed frgm the a(t:)ove frcée—ener densittlons do not take into account the possibility of interfaces,

q . . ay ¥.g., superconductor-insulator barriers, where the order pa-
are the so-called Ginzburg-Land&BL) equations,

rameter must vary over a distance characterized by the co-
1 herence length. For this case of no applied field and no in-
—[DT-m’-D]y=(ay(Te—T) = Bl|?¥), (6) terfaces, théntegratedequation just fixes the modulus of the
2M order parametefyy| =\ a(T.—T)/B.

We also propose here another set of scaling relations be-
sides Eqs(8)—(10). The new relations are obtained by scal-
ing of theB frame’s axes. We choose the magnetic induction
to beB=B;X;+ B3X3 in the C frame, with no loss of gener-

We claim in this paper that scaling properties of the Gibbsality because only uniaxial superconductors are studied here.
free-energy density, discussed in the next section, give thdthe rotation axis is 2y and letd be the angle defining this
the magnetic field is particular rotation, such that a point with coordinates

(X1,X2,Xg), In the C frame, has coordinatex,y,z) in this
1 d3x( h2 1 ) 5 new frame, where Xx=co¥x;+sinéx;, Yy=X,, and
Hy=4mB, f VAV m[_ﬂa“:)l‘M + pal D29l z=—sindx, + cos x5 [see Fig.(1)]. Such a rotation is rep-
resented by the matrix

V><h—47TJ J= L "D 7
=< —m(d/w y+c.c). (7)

+MC|D3¢|Z])1 8 cosd 0 sing
L (dx(h3 1 , , R= 9 1o (12)
H,=47B, Jv am " o #alD1¥l"— 1al Doy —sing 0 co9
+ MC|D3¢|Z]), (9 In the new frame the mass matrix becomes
M(6)=R"(6)-M-R(6), and the dimensionless matrices,

previously defined, transform in the same way, rendering

d®(h: 1
Ha=4mB3 1| ——| = + ——[ o] D1h|2+ 1o D92
3=4mB; V |27 T oM 17+ g Doty

My 0 My My =M,CO O+ MSirf e,
0 m 0 _ i
m= a ., My,=MgSinf g+ m.cos o,
—mnm). (10 m, 0 m s
xz 72 mxz:(ma_ mc)smﬁ cosY,
The fieldsy andA in the above formulas must be solutions (13

of the GL equations in order that the right-hand s{B&19
of the above equations yield the magnetic fieldSimilarly  and
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Hxx 0 piyg M= ,LLaCOSZt9+ ,u,CSinzﬁ,
m=| O #a O | 4 =u.sirP0+u.code,
Mxz 0 g

Hxz= (a— pc)SING COSH.
(14)

TheB frame corresponds to a choice of anglsuch that the
magnetic induction is along the axis, B=B,z. From Fig.
(1) we see that

B1
tand= —, B,=

B, B2+ B3.

(15

The scaling relations in thB frame are given below:

H,B, d® [ hy 1 ) )
ype —fv EJFN[—#XADXM + 14| Dy

+ 12 DZW]) = (16)
e f d\s, ;; Ziﬂ[uxxmxwl + 16l(D#)* (D)
+¢.0)— pal Dyl >+ ;D |%] | = (17)
H,B, d3x
[ | o+ il o
~ 112 DZWJ) : (18

Notice that the above equations can only deterntine the

magnetic fieldH component along the magnetic induction

B. However the RHS of Eqg(16) and (17) must still be

satisfied by the solution,A) that extremize the free en-
ergy. In the next section we show that they are valuable tools
to provide information on the properties of the collective

state of vortices.

The two sets of scaling relations introduced in this sec-
tion, Egs. (8)—(10) and Egs.(16)—(18), are in agreement

with the scalar virial relatiohshown below.

e Fiin* 2F field, (19
1 [ d3 b d3x h?
Fkin:mf v[Dlﬂ] -m’-[Dy], Fﬁem:fvg-
(20)

In the next section we consider the London limit of the
AGL theory, and for this reason we find it convenient to

write the AGL free-energy density, thategratedequation,

3443

1
—m’-Vp=m(z//*m’-Vz,b—c.c.). (22)

2iM
The sum of the above equation to the expressionJfdeq.
(7), gives that

L h_ M
WDY= 5 Vp+m-J. (22)

Now we cast the AGL Helmholtz free-energy density into
this new variable formulation:

d3x B,

F(B)ZJ—V ao(T=Te)p+ 5p
he Vp]T-m'-[V M J7 J h*
Mp[ pl -m"-[ P]+2pqz m-J+ el

(23

Using this (p,J) representation the scaling relations for
H, in both frames, become

[Vpl"-V;-[Vp]

H;B; fd?’ h2 #2
471' \Y/ 477 8Mp

+ T W,

2pq2‘] W; J), (29
where no summation over repeated indices is understood.
The two sets of matrices/; and W, are discussed in Ap-
pendix A for both frames. Lastly thiategratedequation be-
comes

d3x ,. h?
v | @(T=To)p+Bp™+ o0

[Vp]"-m'"-[Vp]
p

M
+=—J7-m-J|=0. (25

2pq

In the next section the scaling relations tdr presented
in this section, namely Eq$8)—(10) and Eqs(16)—(18), are
derived by use of the scaling properties of the Gibbs free
energy.

lll. SCALING PROPERTIES OF THE GIBBS ENERGY

According to thermodynamics the Gibbs free-energy den-
sity of the superconducting state,

d3x
G(H,T)=J—V
h? h-H

1
— 'm’. _
+ 5Dyl M Dyl + g ==,

( a’o(T_Tc)|‘/’|2+ g' ¢|4

(26)

and the scaling relations fod in terms of the superelectron
density,p=|¢|?, and the supercurrent densify, In order to  is a minimum under the variation of all parameters for fixed
do so, we first notice that, for any of the two frames previ-temperature and magnetic field. The relevant parameters that
ously definedy* D= (2/21)Vip+p(hV;x—qAj/c). The extremize the above Gibbs free energy are usually taken to
imaginary part of this expression multiplied by the matrix be the fieldsgs andA. The new assumption here is that the
m’ is local coordinatesx,y,z) [or (X;,X,,X3)] are also parameters
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that must extremize the Gibbs energy. In the same way thahe scalar virial theorem, whereas here the coordinates are
extremizing the Gibbs energy with respect to the fields yieldscaled independently. Therefore we shall obtain three scaling
the GL equations, extremizing the Gibbs energy with respedtelations instead of only one.
to the local coordinates should lead to new equations, which We discuss the minimization procedure for tBeframe
are our scaling relations fd. only since results for th€ frame are easily retrieved taking
Consider the original coordinatesx,§,z), changed to ¢=0° at the end of the present calculation.
new ones, X',y’,z'), which are obtained by the scaling New fields must be introduced)’=\""y, A;=NA,,
transformation Aj=A,, andA;=A,, and such fields are explicit functions
of A whereas the original ones are not. We shall write the
Xx=\x', y=y', z=7, (27)  Gibbs energy in terms of the new fields, and thus it is more

where\ is an arbitrary parameter. We claim that the effect Ofconvenlent to think in terms of the following replacement:

such a change is to move the Gibbs energy density away (XY, 2)=N"y' (X'y',2"), s

from its extreme value where the fieldg(x,y,z) and A(x,y,2)=N"TALX Y, Z), Dx_h/ Dy,
A(x,y,z) in Eq. (26) are the solutions of the GL equa- A(x.y.2)= AL y"2') Dy=Dy, (29)
tions. To determine the new value of the Gibbs energy i yrm e em o D,=D,.

density, substitute the original coordinates by the new ones Adxy, ) =Az(X"y",2),

into the solutions of the GL equationsy(Ax’,y’,z'), We shall find that the value of the parameteiis totally
A(\X',y',z"). Other changes must be taken into accountirrelevant for our purposes. Notice that for the local magnetic
The derivative operator is scaled accordingitp=\ "'V, field, we did not introduce such an arbitrary paramenter since
Vy:w, V,=V, and the volume element remains un- A must transform like the gradient operat¥, In this way
changed fd3x/V=[d3x'/V’. Notice that scaling is not in- the covariant derivative transfoms in a single way, as ex-
troduced into the limits of integration since we are integrat-Pressed above, and gauge invariance is preserved. It is
ing throughout the whole space. Finally we assume that thgtraightforward to determine the way the local magnetic
Gibbs energy density increases by this scaling procedure arftgld, h'=V'XxA’, scales:
this leads to the extreme condition Tt gt o
h(x.y,2)=hy(x".y",z"),

dG(\)
dx

=0. (29) hy(x,y,2)=\"*hy(x",y",2'), (30
A=1
—\ 1R’ (! ! !
The above condition is just a different way to see the same h,(x,y,2) =X ""h,(x",y",2').
principle that has led to the scalar virial theorem of Ref. 1.All the elements necessary to obtain the scaling of the origi-
The only difference between the two cases is that scalingal Gibbs energy, Eq26), have been already discussed and
takes place in all of the three coordinates simultaneuously foone obtains

3 2 " Moxx 0 Mxz D);\l’/,
d°x’ A2V D’lp’
G(H'T):f_/ )\zvao(T_Tc)|¢,|2+)\4VE|¢,|4+_ < D,y'Dy’ 0O pma O .
v 2 2\ n Y 0 D,
Mxz Mzz s
D,y
12 12 I/ Pt
h, H,h
4+ 72+L+i_ "h + y y+ z''z .
8| TRz Tz 2 Mt =+ 31)
|
Hence we carry on the condition of E@8), which contains 5G 5G SG
four distinct contributions, A \21=0, S0 )\:l_ 5o l_1=0. 33)

dG(H):f 3,( G  SA'(X')  8G  SY (X))

ax SA(X)  oN sy (x) o
vk o Including the above consideration into the minimization
+ iG - Sy (X )) + &G()\). (32 principle of Eq.(28), one obtains tha¥G(\)/dN|,-,=0.
SYr(x') - On IN This condition contains two independent terms, one propor-
At this point we recall that the original field#, andy, are  tional and the other not proportional to which are, respec-
solutions of the GL equations: tively,
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d3X IV. THE LONDON LIMIT
ZVI 7(%(T—Tc)|¢|2+,3|'lf|4

In the London approximation the density of superelec-
trons, p, is constant. In this limit, the GL Helmholtz free-
1 ) . energy density, Eq23), becomes
+m[ﬂxx|Dx'p| + ux (D) * (Dyih) +c.c) ,
1 (dx

F=g-| v : (39)

4N\
(T) JT-m-J+n?

=0,

+Ma|Dy¢|2]
The integratedversion of the first GL equation, Eq11),
plays no role other than determipein terms of parameters

3
f dV_X(%[_2/-LZZ|DZ¢’|2_sz((Dzl/f)*(Dx(//)"_C-c-)] of the theory. The second GL equation, Ed), is Ampee’s

law,
1 - c 1 | [P
+E(hyHy+thZ_hy_hz) =0. (34 VXxXh=4sxJlc, \]Zﬂpm . EV)(—A ,
The v dependent term is just thiategrated equation, Eq. A22M02/(47Tq2p) (39)

(1), and the other one is

whereA is the average London penetration length. The cur-
HyBy+H,B, d3x ) rent is automatically conserve®,-J=0. The curl of Am-
. v N[ZMZZ|DZIII| pae’s law gives

+ ux(D2h)* (Dyh) +¢.0)] ) D
h+ AV X(m-VXh)=-—=VXVy, (40
hy+hZ 27
+— (35
Am According to the above equation, the Meissner effect takes

o _ . place around each vortex core singularity. This is the only
Similar independent scaling on the other two coordinateg,ossiple situation because boundaries to nonsuperconducting
(x=x", y=\y', z=2') and k=x', y=y’, z=AZ") also  yegions were excluded from the present treatment, according
yields two equations in each case. Thelependent one is o our previous discussion. Such singularities are described
always theintegratedequation, Eq(11), and thev indepen-  py the vorticity, v, related to the phasey, according to
dent conditions are given below: v=(V X Vx)/27, for vortex linesv vanish everywhere ex-
cept at their cores. For instance, the vorticity dfvortex
HxBx+H,B, _ f d*x i[z IDLy[2]+ i(h2+h2) lines, each with a structureless core, i®/(x)

4 V | 2p teHalFa 4o X PP =3]L,$dr;8®(x—r;), wherer; describes thejth vortex
(39 line in space. The number of vortex lines in spadejs also
related to the assumption of single-valuedness of the wave
H,Byx+H,B, d3x/ 1 ) function: [X(Zw)—X(O)]=_277N. To see this, int(_agrate Eq.
— ar f ~ m[zﬂxxmxlﬂ (40) on a plane of ared, pierced by theN vortex lines(see
Fig. 1, and consider that the magnetic induction is
+ ix(D23h)* (Dyip) +C.C)] B= fdsh/A. The periodic boundary conditions show that the
supercurrent does not contribute, and this integration is taken
to the contour around ared, using Stoke’s theorem:
(37) B=(N/A)®,z, wherez is the normal to this plane. Even
within the London approximation it is possible to include
Two possible distinct operations, scaling and rotation, carnore elaborate structurédor the vortex core and we claim
yield different relations depending on the order they are apthat our scaling relations remain valid in such cases. How-
plied to the Gibbs energy, E@26). This is true for the an- ever for our comparison between the scaling and the thermo-
isotropic supercondutors since upon rotation, the Gibbs erdynamicH relations we choose vortex lines with no core
ergy is written in terms of a new set of tensorial componentsstructure. Introducing Ampe’s law into the free energy, we
In this section we choose two sets of orthogonal axes wherfind that its extreme value for a fixed distribution of vortices
scaling is taken through the extreme condition of E2f): vis F=(®y/87)[(d®x/V)h-v. Notice that the extremization
the C and B frame axes. However notice that the presentof this free energy has not been completely done up to this
derivation of the scaling relations is quite general and couldoint. For a given distribution of vortex lines we have deter-
be used along a general set of orthogonal axes. We do netined so far, from Eq40), the local magnetic field in space,
analyze this general possibility in this paper and, in the nexh, and the corresponding free energy. It remains to determine
section, restrict our goals to show that the scaling relation®iow vortex lines, under a fixed density/A, are arranged in
are truthful, at least for th€ and B frames. For this we space.
choose a special limit of the AGL free energy where the The following tensors, extensively used in our consider-
theory has an analytical solution. ations on London theory,

hZ+h?

+
A
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, [ A d3x

v o .
(41 y Q246 2
allow Eq.(38) to be written as X L% e %\

2
1 L
F=Fyint Ffield> ka=§tr(K-m), Ffieldzgtr(f)-

(42

The above free energy has been partially extremized since FIG. 2. On the planey, orthogonal to the magnetic induction
the kinetic energy is expressed in terms of the local magnetiB, the parameters defining the vortex lattice are displayed, as well
field by means of Ampe’s law. Since we are only interested as the unit vectors of the unit cell, in both real and reciprocal space.
here in the vortex configuration that extremizes the free en-
ergy, the above expression implies no loss of generality fowhere VﬁszJr Vf,. The solution is sought in
our purposes. momentum space,

In this London limit, the scaling relations of the previous
section are given by

C frame: h(x)=f h(k)exp(ik-x)d?k/(27)?,

1
H1By=f1+ 5 (= MaKyyt MaKoot MeKag), (43 hy(K) =My Aky)?h,(K)Q(K)/P(k),

1 hy (k) = —m,,(Ak,) (Aky)h,(k)Q(k)/P(k),
HoBo="fot E(maK 11~ MKt MK 33), (44)

and
1
H3Bs=fast E(maKll_l' MK 2o~ McK33), (45 h,(K)=®Q(K)v,(k),

B frame: where we have defined P(k)=1+m,(Ak)?
Q(k)=1+mu(Ak)%2,  R(K)=1+m,(Aky)?+ mC(Aky)z,
1 and Q (k) =P(k)/Q(k)R(k). Once the local field is deter-
H,B,=f + 5(—mxxKxx+ myKyy+m,K,)=0, (46) mined, the currents are also obtained by similar fashion. In
the case of a single tilted vortE¥xa full description of this
1 state is provided by Eq$49). Some time adfbit was discov-
HyBy="f,,+ E(mxxKxx_ MKy + M, K+ 2m, K, ) =0, ered that, for a special range of the tilt anglethe local field
h, displays a change of sign along thkeaxis, that is, on the
(47) plane defined by the axis and the magnetic induction. This
feature gives rise to an attractive potential along this special
plane, and consequently, yields the formation of the so-called
vortex chains, experimentally verified in the ceramic com-
pound YBCQ® The above equations also determine the so-
Next assume that the vortex lines are straight and tiltedlution for N vortex lines, since the vorticity is additive and
like rods, all parallel to each other, making an anglaith consequently the superposition principle is valid. However
the ¢ axis. In this case the vorticity reduces to this does not determine the collective vortex state completely
V(X)=,(X)Z, v,(x)==(L,83(x—r;) wherex andr; are  since it remains to describe how the lines are arranged in
position vectors restricted toy plane, orthogonal to the di- Space. Interestingly in order that RHS of the scaling rela-
rection of the lines(see Fig. 1 The local fieldh is first ~ tions, Egs.(43)—(48), determine their left-hand side, LHS,
determined in theB frame, and then in th€ frame, upon the vortex state must be fully determined, including the col-
rotation, simply using h;=cosph,+sinth,, and lective arrangement of vortex lines in space.
hy= —sinéh,+cosfh,. In this case Eqs39) become Next we consider a tilted vortex line state forming a pe-
riodic array with one vortex per unit cell. Hence the array is
5 ) characterized by the unit cell parameters, namely its two
12 mzVihe+ m,,Vih, =0, sidesL,, along thex axis, andL,, that makes an angle
with L; (see Fig. 2. One of these three parameters can be
discarded because there is a constraint among them due to
hy—mszﬁhy—mszxVthZO, the magnetic flux quantizatior,;L,sing=®,/B, (see Ap-
pendix B. Thus there are truly only two free parameters
associated with the unit cell. We find convenient, for the
present purpose, to parametrize the unit cell with new vari-
ables,o and w, also discussed in Appendix B:

1
Hsz:fzz+ E(mxxKxx+ maKyy_ mzszz)- (48)

A?

1 0
1z m,VZh,—m,,Voh,+ mxzvﬁhﬁp vy, (49
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@
o=L/L,, LE\/B—O, w=L,cosp/L,.  (50)

z

The local magnetic field generated by such a periodic collec-
tive array of vortices must be a periodic function under dis-

placements defined by the basic parameters of the unit cell.

This periodic field is obtained from the single vortex solution
simply by restricting the set of momentum space vectors,
k, to a smaller set consistent with the lattice, the so-called
reciprocal space vectorg, We describe the reciprocal space
through dimensionless reciprocal space vect@s; Ag.
Similarly to Ak, the vectorG lies in the planexy, assuring
the translational symmetry &f along thez axis (see Appen-
dix B).

We introduce here the following notation used extensively
in the next discussions:

P(G)=

1+m,,G?, (51)

Q(G)=1+m,G?, Q. G)=1+m.G?, (52)

R(G)=1+m, G5+ MG, Ry(G)=1+m,Gi+m,G,

Rea(G)=1+mGZ+m,G7, (53
P
Q(6)= =5 oR’ (54)

For future purposes we list some identities involving the
above polynomials.

R=P+(m,—m,, G2, (55)

M, Q(P—R)+my(Me—m,;)Gy=—m .G}, (56)

—mZ,Gy+sinf0R5= P2~ cog 6R?, (57)

—mZ,Gy+ cos OR?= P?—sirf0R;, (58

mZ,G°G;+P2=P(Q+R)—QR, (59)
—R?+P(Q+R)—QR=(m,—m)sirf6(Q+R)G;,

(60)

—R3+P(Q+R)—QR= — (m,— m,)cog 6(R+ R,) G .
(61)

Using the previously introduced notation it becomes
straightforward to express the components of the tenisors
J, K, andf in reciprocal space. This is first obtained in e
frame, and then in th€ frame, with the help of some Ap-
pendix A identities, like Eq(A3) and Eq.(A4):

B frame:
G
i—-Xx
G 63
LX) (63

No @,
hy(X)=m, Do 2 5 Glexg| i & (62)

Q
EGXGyex

>

G

N
hy(x) == mxzq)OK
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G
hy(x)= @+ 2 Qexp( < )
4md(x) oh, N G, [.G
c —W—@OK% Qxex 'K'X'
47J,(X) ah N G G
e AN, P _x P
c Birv @OA%QAGXF{IA x),
(64)
4w (x) oh, oh,
c _W_W
Q Gy G
—imy, Do~ E szex%lx x)
Kw=B2X Q%G3, K,,=B2> 0%GZ,
G G
(65)
0? 02
K,,=BZmZ, FG“G)Z,, KXZ——BimXZ% FGZG§,
f=B2m ZE—ZG“, f,y=B2Zm ZE—ZG G2,
(66)
f= 552 QZ,
G
C frame:
. N R, .G
hl(x)—smetbox %: ﬁeX‘{'K'X ,
hy(x) =hy(X), (67)
ha(X) = cos9d N >0 S
3(X)=cos 0p 2 ex |K-x,
4wy (X) Qc Gy .G
ICO%@OA%ﬁTeX IK- ,
J2(X)=Jy(X) (68)
477J3(X) Q G, G
——|S|n¢9<I>0A > ﬁxex% 0 x),
2 ZQC 2 22
K;;=B cos"az 02> K,=B2Y, 02G2,
G
(69)

1
Ks3=B2sitg>, —>G2,
5 R
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OR2 02 A. H from thermodynamics
f=B2SiP0Y, —5°, fr=B2m2>, —G2G?2 - . -
1= B; < Tpz 0 1227 BMasy BBy The Helmholtz free-energy density, E§2), is a function
of the magnetic induction moduluB,,, and the angle® be-
1 tween thec axis andB: F(B,, ). According to the thermo-
fas= B§co§02 —. (700 dynamic relation, Eq(1), the magnetic field components are
c Q -
given by
In reciprocal space the free-energy terms of become
P P 9y ed Hl__0&F+cose&F H.=0
B2 S 47 2B, B, 900 ¥
Fﬁe|d:g % Q1+ ?GyG ) .
Hs ” dF  sind JF 25
B2 2, 4 Y78, " B, w0 (79
Fuin=qe X | Q-0 1+ 557 GIG?| |, (71) _ o _
87 G P The partial derivative$B,/dB; and6/JB;, fori=1,2, are

obtained from Eq(15). Direct inspection of the above rela-

and the total free-energy density is tions also givedd in the B frame,

B
F=—=-> Q. (72) _4m dF : Q
87 G Hx_B_Z&_G__BZSW]eCOS&% (mc_ma)wgya
Notice that the unit cell parameters that extremize the free (76)
energy have not been determined up to this point. So far we o+ LR -
have just found the local magnetic field that solves E4S) H,=4m oF = E > PQR P(? ZR) QR_ (77
and this solution just takes that vortices form an arbitrary B, 27 QR

periodic array without any information about the optimal lat-

tice configuration. This means that the above reciprocam/e discuss below some aspects of the explicit derivation of

space formulation of all tensors, including the total free en'thgtftrﬁg ﬁggrgx’efq]ozf) ’EV(;I;Z) rﬁzge;;taoiznznxd ﬁé:itl\lgr?gean
ergy, only contain a partial extremization of the problem. The, licit d d 9y B the last d tp the latti
complete extremization is achieved once the optimal array"P!C! tepen ednce pb é eE(GS gneh ue |9 it g attice
configuration is determined. Therefore we extremize the fre dg:lirgeaiﬁe:fs tﬁfgggﬁ tklg di?ﬁ e.nsigﬁleggprgzipr(fcpaeln;pace
223%;{:}2 (;efgggéégvg?; relevant parametéfs)Jo =0 vector, Eq.(B9), thus giving thatvG/dB,=G/(2B,). From

the above considerations one obtaias/oB,=(2/B,)F

1 +[1/(2B,) G- 9F/dG. The derivative of the free energy
> SRzl PQ m,,Gs—m.G5)—PRmy(G;—G?) with respect tod is straightforward, the reciprocal vectGr
¢ (QR) does not depend od, and only the matrix elements of the
LTORMAG2—G2)1=0 73 tensorm( 0) do[see Eq_.(13)]. _
QRMAG,—Gy)] 73 Interestingly, the reciprocal space expressions of EA}8.
and and (76) can be derived without ever having to explicitly

take a derivative of the free energy. The scaling relations for
1 H can do this, as shown in the next subsection.
% (Q—R)z(—PQmC— PRm,+QRM,)G,G,=0.
(74 B. H from the scaling relations

Here we show that the London limit of the scaling rela-

~ o - 2 . tions in both theC frame, Egs.(43)—(45), and in theB
(=PQR-PQR+PQR)/(QR)?, together with Eqs(B10), frame, Eqs.(46)—(48), are satisfied by the tilted vortex lat-

where() meansi{)/do or 9{)/dw. The two conditions, EQ. ice e start in th@ frame with the vanishing scaling rela-
(73) and Eq.(74), determine the unit cell parameters for thetions, Eqs.(46) and (47), whose LHS are zero by definition,

tilted straight vortex lattice Ilm]t, descr!bed py the extreme B,=B,=0, and consequently, their RHS must also vanish.
values of ¢ and w. Such lattice configurations are well \,,

. X L ge e e find advantageous to check that the sum and the differ-
known in the literature at several spef:lal limits of the vortexanca of these two equations are fulfilled instead:
density. At tfgg 2|?W vortex density limit, one has the forma-
tion of chains™“*and, for a high vortex density, one verifies —
the onset of a distorted trianglular Iatti%’eAnot%er relevant HBit HyBy = (MGt MK + (ot ), (78
remark is that regardless of the vortex density value, there i _ (i _ _
always a distorted rectangular unit cell that extremizes thtj_'xBX HyBy= (= Mk MoKt MaKyy) + (T fy(%)
free energy. Generally speaking E¢&3) and(74) must ad-
mit at least two solutions, one corresponds to a local energyo show that the RHS of the above equations vanish, we
maximum, and the other to the absolute minimtinn the ~ make use of Eqs(65), (66), (69), (70), and write all the
isotropic limit they are the square and the triangular latticenecessary tensor components in reciprocal space. One ob-
respectively. tains

Both formulas are derived simply usingQ=
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- , 1 m,,G? A Notice that upon this particular rotation around the=y?
My Kyt My Ky = Bzmxz%: Q —pt |G axis, three quantities remain invariant, namely the scalar
product, H,B;+H3B;=H,B,+H,B,, the vector compo-
s 0?2 - nentH,B,=HB,, which vanishes, and also a pseudovector
=—Bim; 2 526G (80 componentH;B;—H3B;=H,B,—H,B,.
G . .
The invariance of the scalar product means that the sum
0?2 of two sets of RHS must be the same, namely @8) plus
foot fyy=B2m? — G3(G2+G?) (81 Eqg. (45, and Eq.(46) plus Eg. (48). This condition is
yy— Pziihe & pZ 2yl Px T Pyl f — . :
wxt f2A MKy =f11+ fa3+myKy,, which can be easily
shown to hold, by invariance under rotation around the

and ,
2=y axis.
We have already shown that the RHS of E47) gives
_n2 2_ (2
= My K= MyKyxt MaKyy=B; % Qz( my(Gy—Gy) H,B,=0. To show that the RHS of Eq44) also gives

H,B,=0, we observed that the kinetic and field energies
Q , are independently invariant under this rotatioriy,
—(m— mzz)EGy . 82 = fyy, K=K and muK;+mKaz=m K +m, K,
+2m,K,,.
0?2 Now we proceed to show that the remaining scaling rela-
frx— fyy=BIms, 365(—G§+ G?). (83)  tions in theC frame are also valid, taking into account the
¢ above considerations. It is straightforward to verify that the
Direct inspection shows that the sum of E§0) and of Eq. RHS of the two scaling relationdH;B;+H3B; and
(81) vanishes and this agrees with the LHS of E@8), H,B,+H,B, are equal. To show that the RHS of
HBy+H,B,=0. However the RHS of Eq(79) does not H;B3;—H3B; andH,B,—H,B, are the same demands some
vanish automatically, further work. To verify the above relations we start noticing
that the RHS of Eq.(47) gives H/B,=0, and find that
2fo=m,(Ko— K1) —m¢Ks3. Introducing this expression
into the two other scaling relations gives

yy»

HyB,—HyB, =B} X [(miP?~m,G))(G{~Gj)

1 H,B;=f1+fnr+mKss, H,B,=0,
- (84) 1P1 11 22 cf\33 22
(QR)
The most surprising result of this paper is that the vanishin

of the RHS of the above equation has already been shov%\preSSing Eqs(87) into reciprocal space gives
here. This is just the same condition that extremizes the free

—(mg—m,,)PQG]]
H3Bg=foot fagt mKy;. (87)

; . ] 1 _
energy with respect to one of the lattice parameters: H,B,= B§ % W(mcSWF@QZGfﬂFmiz@iGi
JF

HXBX—HyBy=8W£=O. (85) +sin249R§), (89
We have shown that the sum and differencetHgBB, and 5 1 B,
H,B, are null, consequently the RHS of E¢6) and of Eq. H3B3=B; % (Q—R)z(n”laC0§0QcGwL MGy Gy
(47) vanish, and conclude that twi-frame scaling relations
are valid. Further details showing that E§4) and Eq.(73) +coSOR?). (89

are indeed the same condition can be found in Appendix C. )

To completely determine the magnetic fieldl in the B The use of the above relations allows us to compute
frame, by the scaling procedure, it remains to obtain thdhe Ppseudovector componentsB; —H,B;=H3Bstand
component, . Instead of Eq(48) we consider the sum of —H,Bq/tand. This is our starting point to show that the

the three scaling relations, Eqg.6)—(48). thermodynamic relation foH,, given by Eq.(76), can be
obtained by the scaling method. The goal is to show that the
Bf PQR+P(Q+R)—QR RHS ofH,B3;—H3B,, calculated from the scaling relations,
Fuint 2F fela=g— % o%R? . (86) isidentical toH,B,, obtained from thermodynamics. Appen-

dix C provides more details in this proof that the scaling
Thus we conclude that the scaling relations do determinenethod does lead to the thermodynarkig expression of
correctly the magnetic fieldH in the B frame since Eq.(76). We have just found a way to determihig from C-
Frint 2Fseq=H,B,/47 and this is identical to a previous frame scaling informationH, cannot be directly determined
result, Eq.(77), derived from a thermodynamic argument. in the B frame from scaling becaudg = 0.

Notice that scaling in th& frame, Eqs(46) and(47), do not In summary, we have shown, in this section, that the
determine the transverse componerts, and H, because components can be obtained either by the thermodynamic
By=B,=0. relations, Eq.(76) and Eq.(77), or by the scaling method.

The scaling relations are also valid in ti@ frame as We also found that Eq$78) and(79) supply useful informa-
shown below. We show that the RHS of E¢43)—(45) are  tion about the collective properties of the vortex state. Our
consistent with the previous results obtained inBhfame.  comparison is restricted to the situation of straight tilted vor-
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tex lines forming a periodic array with one vortex per unit

cell. A better insight into the results obtained so far is found fux=fyy=0, f= Bﬁ%} a2 (94)
in the next section where we revisit the isotropic supercon-
ductor. The isotropic free energy is
B2 B2
i i i i z ! z ’ ’
C. The isotropic limit Ffieldzﬁ %: Q2 Fkin:%% Q' -0 2),

In the isotropic limit there is only one mass parameter
identical to the average madd,=M and, consequently, the B2
dimensionless tensors become the identitg=1 and F=_2% 2 Q. (95)
m’'=1. No new results are obtained in this subsection, the 87 G
only goal is to make the previous results more transparent t

fh the isotropic limit the local magnetic field is only alon
the reader, in particular the scaling identitdgB,=0 and P d y g

the direction of the vortex linesh(=h,=0, h,#0), and its

H,B,=0, given by Eqs(46) and(47), and the lattice condi- jangity decays exponentially away from the core of each
tions, dF/do=0, and dF/dw=0, given by Eqgs.(73) and vortex located on the lattice.

(74). In the last subsection we found that such scaling iden- The isotropic magnetic fielti, obtained either by ther-

tities demand that the lattice conditions be fulfilled and ac'modynamics, Eqg77) and(76), or by scaling, Eqs(86) and

cording t_o Eq_. (850 one must haveHXBX—HyByz_ (C9), is such thatH,=(B,/2)=s(Q'+Q'?) and H,=0.
877’9':/’90._%3 Itis well known that the square and the trian- 1, ;g1 andB are aligned to each other in the isotropic limit,
gular lattice$® are the two configurations that extremize thea fact that is not true for the anisotropic superconductor,

isotropic vortex state and therefore they must satisfy th‘?/vhere their misalignment produces an intrinsic magnetic

above identities and conditions. torqué®?’ that has led to interesting experimental

We stress that the scaling relations for the anisotropic Gloonsequence? There is no isotropic kinetic energy along
theory cannot be read off from the isotropic case, unless Bhe 7 axis, K,,~0, since the current is constrained to the

the stIeciaI Iim(ijt 8{ I%r%]m and high vc&rtex d?nsiﬁﬂ Londg plane xy, orthogonal to the vortex lines. Thus the scaling
ago niemm and Llem have Introduced a scaling Proceaure, jjentities in theB frame demand that the average kinetic
different from the present one, that maps the an'sowp'%nergies, along the andy directions be equak =Ky, in

London theory mtor;he Isotropic_one. This trf”meorrm_‘t'onorder to have the magnetic induction oriented along zhe
has been used recenthp obtain several results in the aniso- o (=B, =0). These identities require the fulfillment of

:LOp;]C. c;]ase Im"& the_tls?trqflc :}heor&’]‘ This map II_S I|:jn|ted ©the first of the two lattice conditions, Eq¥.3) and(74), that

€ high vortex density fimit, where the average London peny, yemize the free energy with respect to the unit cell param-
etraton length is much larger than the distance between twg, ..
consecutive vortices on the lattice. '

In the isotropic limit all the reciprocal space polynomials JF

of Eq. (54) collapse into a single oneP=Q=Q.=R £=2 Q'%(G;-GH=0, (96)
=R,=R.s, such that G
JoF
, 1 —=2, 0'?G,G,=0. 9
Q'(6)= 17 (90) 7o 076,06, ©7)

Among the many possible choices of unit cell for a given
lattice, we pick the simplest ones for each of these two lat-
N G tiges. The corresponding reciprocal space vectors are ob-
h(X)=hy(x)=0, hy(x)=dy—~ > Q'exr(i_.x), tained from Eq.(BQ). _
A ‘G A Square lattice For the unit cellL,;/L,=1, ¢$=90°, or
(91 o=1, =0, one gets the reciprocal space vector components
Gy=(2mA/L)q; andGy=(2mA/L)q,. Equationg96) and

Then one gets in thB frame that

c _l(DOK%Q Xexp<|K~x), 1
4mdy(x) N G G & [2mA|2 (6F-03)=0, (99
YR gy '—Zexp i — v 1+(—) (95 +a5)
C = I(DOA%Q Aex;<|A-x), (92) 3
1
Amldx) 2, 2 q:9>=0. (99
=0 01,02 2w P 2
‘ | 1+ L (91 +0a3)

Triangular lattice For the unit cellL;/L,=1, ¢=60°,
or 0=432, w=1/2, one gets the reciprocal space
vector components GX=(277A/\/§L)3q1 and G,
K,,=K,=0, (93) =(2wA/\6L)(29,—q;). Equations(96) and (97) become

K gu= Bf% Q'2G2, K= Bi% 0'2G2,
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1

1+

27A\2 ) )
oL [(3d1)“+(202—0q1)7]

X[(3d1)?~(20,—01)?]=0, (100

1

>

d1.42

(391)(292,—01)
1+

27A\2
W) [(301)%+(20,—-01)?]

=0. (101
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does not determine the magnetic field completely and, espe-
cially in case of anisotropy, its generalization to a vector
virial theorem becomes quite useful. In fact, such generali-
zation has been proposed, although not studied, by the au-
thors! of the scalar virial theorem. The present scaling pro-
cedure is very similar to the one leading to the scalar virial
theorem, the only difference being that each spatial coordi-
nate is independently scaled here, while previously this was
done simultaneously in all coordinates.

Anisotropy introduces some interesting theoretical re-
marks because scaling along the crystal’'s axefréme and
along the orthogonal axes, defined by magnetic indudiibn
frame, result into distinct scaling relations. In thg frame

The arguments showing that the two free-energy derivativethe scaling relations only determirt¢,, the projection of
vanish are the same for both lattices. For the first set oH alongB=B,z. Nevertheless in thB frame two identities
identities, Eqs(98) and(100), pick one particular term in the are obtained, related to the fact th&¢B,=0, Eq.(16), and
first sum associated tg; =m, m any integer. Then there is H,B,=0, Eq.(17). Such identities give information on the

always a choice in the second sugy=—m, that renders

collective properties of the vortex state that extremizes the

the series terms equal to zero. For the second set of identiHelmholtz free energy.

ties, Egs(99) and(101), the sum of two distinct terms of the

series, associated w;=m, g,=m andqg;=—m, g,=m,
give that they also vanish.

We have compared the scaling to the thermodynamic re-
lations in a special limit of the AGL theory, whetd is
obtained analytically. This is the London limit and we have

In the C frame, one gets that all local fields are nicely treated the problem of straight parallel vortices tilted with

expressed as simple rotations of thBiframe counterparts:

the local magnetic field hi(x)=sinfh(x), hy(x)=0,
hs(x)=cosph,(x), the supercurrent J;(x)=cosfl(X),
Jo(x)=J J3(x)=—sindl,(x), the kinetic energy

(x),

K= coéerx, K=Ky, Kzz=sir?éK,,, and the field en-
ergy fi,=sindf,,, fp="f,,, fa3=coséf,,. The isotropic
limit of Egs. (C7) and (C8 give that H,B;/sirf6=

H3Bs/cosd= BZZs0'?(G2+1). Using the unit cell condi-
tion of Eq. (96), it follows [see also Eq987)] that the scal-
ing relations becomeH,;B;=sirf6H,B,, H,B,=0, and
H3B3=cog6H,B,. One also gets thai;B; —H;B;=0 con-

respect to the axis. We have found that elastic properties of
the vortex lattice can be related to the thermodynamic fields
according toH,B,—H,B,=8mdF/do [see Eq(85)]. Hence
two identities, related tél,B,=0 andH,B, =0, are fulfilled
once a property of the unit cell that extremizes the free en-
ergy is includedgF/do=0. Thus we have obtained, through
the scaling relation, identities that provide information on the
properties of the collective state of the vortices, as previously
discussed. In case the collective vortex state is driven by
disorder, like in a spin glas§,we believe that sucB frame
identities should be helpful to elucidate the properties of

sistent with the fact of no transverse field in the isotropicsuch state. Notice that we were only able to obtain the mag-
limit H,=0. netic field component perpendicular to the magnetic induc-
In summary in the isotropic limit both triangular and tion through the help of the vector identity,B,=H;B;
square lattices were shown to verify the scaling identities— H3B;. This shows that th& frame scaling relations are
corresponding tdd,B,=H,B,=0. According to the scaling not able to determine all components l8f although they
relations, and also to the thermodynamic equafq. (1)],  supply information on the collective state not given by the
for the same vortex densiti,, triangular and square lattices frame scaling relations. It seems to us that in the case of
result in distinct values oH,. The square lattice is not in- anisotropic superconductors, the two sets of scaling relations
teresting because it is an unstable configuration of the freare both useful because they contain some complementary
energy. As pointed out before, the anisotropic problem caninformation about the superconductor’s state.
not be mapped into the isotropic case except in special limits. In the present AGL context disorder can be introduced
through the assumption that the parameters acquire a spatial
dependencegy(X), T(X), Bo(X), m(x), and m(x). Re-
cently there have been suggestions of unconventional pairing
The virial theorem is a useful tool to determiewhen  symmetry for the high temperature superconductbix-
numerical techniques must be introduced in the Ginzburgtensions of the Ginzburg-Landau theory containing order pa-
Landau theory. While the thermodynamic relation, EL, rameters of higher symmetry have been studied befohé.
requires the free energy at two valuesBofn order to com-  though we have not derived expressionsHoin these cases,
pute a derivative, the virial relation demands the knowledgat is obvious that the present scaling procedure easily applies
of the free energy only at a single value Bf Another ap- to them. We believe that, for both cases of disorder and of an
plication of the scalar virial theorem, pointed out some timeorder parameter of higher symmetry, the present vector virial
ago?’ is in the determination of the elastic properties of thetheorem provides a useful tool to unveil the magnetic prop-
vortex state within the Ginzburg-Landau context. For isotro-erties of the underlying GL theories.
pic superconductors, the tilt modulus in the limit of very In summary we have obtained in this paper, by scaling
large wavelength can be directly related to the sum of kinetiarguments, new relations that determikie for the AGL
and field free-energy contributions, as described in the scaldheory. Perfect agreement between the scaling relations and
virial theorem, since,4,=2HB.*° The scalar virial theorem the thermodynamic method has been found in the London

V. CONCLUSION
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limit. We propose that theH relations should be valid
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throughout the mixed state.

APPENDIX A: MATRIX PROPERTIES

Under the rotatiorR(#) given in Eq.(12) the covariant

wherem is given by Eq.(13). With the help of Eqs(Al),
(A4), (A5) one obtains
C frame:

-my 0 O m, O 0

derivative transforms, as any other vector, according to

Diy=R(0) D) cysia-  Knowledge of the invariance \y — m, O W,= 0
[D‘p];'m/(a)'[D‘/’]az[Dlﬂzrystal'm,'[D‘//]crystal gives that 0 m 0 me
m’(6)=R"(#)-m’'-R(6). Consider the dimensionless mass
matricesm andm’, upon rotation. The orthogonal transfor-
mation gives that det’(6)=deim’(0) and so m, 0 0
0 m 0
MxxMzz™ M>2<z: Mates MMz~ m>2<z: maMmc. (A1) W= N (A9)
0O 0 —-m
Since we have
cosdm,,+ sindm, ,= sinfm,, (A2)
cos¥m, ,— sinfm, ,= sinfm_ (A3) M O
0 m 0
the explicit & dependence of these matrix elements leads to Wy= 2
the following relations 0 0 mg,
mXX mXZ mZZ
= = —z _ m 0 m
m,m. Mzz, mam. Mxz, mam. Hxx- (A4) OXX N OXZ
— —Ila
The dimensionless matrices are the inverse of each other, Wy m 0 m
m’-m=1, and in terms of components one gets Xz 7z
My xx T My iy z= Myl y 7+ Myity =1, m, O 0
My atbxxt My zhxz= My 72+ Myypty ;= 0. (A5) W, = 0 m, 0 (A10)
0 0 m,,

The scaling relations can be expressed more compactly, if the
kinetic term, proportional t(ﬁDzﬂ]T»Vj'[Dw], is expressed
in terms of the matrices

C frame:
~Ma 0 O Ma 0 0
V.= 0 Ha O . V= 0 —una O ’
0 0 e 0 0 Me
Ha O 0
Vo= O #a O | (A6)
0 0 —wpue
B frame:
—Mxx O 0 Mxx 0 Mxz
V= 0 ma O v 0O —u, O ,
0 0 uy Mxz 0 Mzz

Mxx 0 0
v=[ O #a 0 | (A7)
0 0 —uz

In order to express the kinetic energy in termspchndJ ,
we must calculate

APPENDIX B: RECIPROCAL SPACE

Let the local magnetic field created by a single vortex in
real space bé(x), wherex is the coordinate on the plane
Xy, orthogonal to the vortex line. Take that its Fourier trans-
form is

d?k )
h(x)=JWh(k)exp(|k-x). (B1

Now consider a periodic array of vortices whose positions in
real space are determined by

L(n)=n;Li+nyL,  Li=Li&, Lo,=L,e, (B2)

where f,,n,) are a set of integers, and the unit vectors are
chosen such that

E1=X, ©=CospX+singy. (B3)

The vectorX is on the plane defined by the c-axis and the
magnetic induction, ang is orthogonal to this planésee
Fig. 2.

The local magnetic field produced by a periodic array of
vortices takes the contribution of all vortices, and so must be
given by

h(x)=>, h[x+L(n)]. (B4)
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This is a periodic function, since discrete translations mul- 5G, G, Gy G, 3Gy Gy G,
tiple of the basic lengthd,; andL,, just shift the field to a o o' o o' e =0, e o2
position identical to the starting onda{x+ L(m)]= h(x) (B10)
Such a periodic function is better described in the so-called
reciprocal space, Then the derivatives of th&,, G, polynomials, defined by
Egs.(51)—(53), are easily obtained:
~ N
h(x)=+ 2 h(g)exig-x), (B5) P 2 Q2
A g %ZEmZZ(Gi_Gs)a %:;ma(G)z(_G)Z/)y
whereN/A is the ratio between the total number of vortices, R 2
N, and the total area of they plane, A. An exponential ‘9_: “ 2 2
condition, exfig-L(n)]=1, valid for all (n,,n,), assures o o (Ml MeGy), (B1Y)
the translational invariant property of the functib(x). The
function h(g) is just the original Fourier transform(k). op 2 Q 2
The reciprocal space is just a subset of the momentum space, do FmZZGXGy’ Er ;manGy,
such thak is restricted to the set of vectogs that satisfy the
exponential condition, just described. IR 2
Flux quantization demands that a fluxdn be associated 0" o MGGy (B12

to the areaA/N of each vortex unit cell:

APPENDIX C: MATHEMATICAL RELATIONS

A @,
—=L4L,singg=——. B6
N~ Labesing B, (B6) In this appendix we provide to the interested reader some

o ) further details on how some mathematical relations are es-
Thus the vortex density is completely determined by thegpiished in Sec. IV B.
magnetic induction. First we outline a few intermediate steps showing that Eq.
The reciprocal space vectorg also form an array (gs) and Eq.(73) are indeed the same condition. We start
characterized by two integers, q,0,), such that adding and taking a term,,G2PQ to Eq. (73,
9(9)=0101+0929,-  Choosing g;-L,=g,-L;=0 and Y

0-L1=0,-L,=27 (see Fig. 2, theng-L(n)=2=l, | any 1 )
integer, and we find that %: (Q—R)Z{(mc_mzz) PQG;
1. Q2. ~ N ~ _ 2 A2\
9Q)=——| —V+ —V,|, V,=singX—cospy, +[M, Q(P—R)+myPR](G}—G;)}=0. (C1
sing \ Lq L,

Equation(55) gives

Vo=X. (B7) 1
———{(m.—m,)PQG+[m,P?+m,,Q(P—R
We define new parametets o andw describing the real % (QR)Z{( e~ Mad PQG+[ma 2Q( )
space unit cell,
+my(me—m,,) GJ1(Gy— G} =0. (C2)

P Losing . . .
= A /B_j:‘/LlLZSi”¢’ o=\/-2 Finally one obtains from the above equati@®?2) that the

LHS of Eq. (84) vanishes. We find that E¢56) is helpful
when verifying the above relation. In summary the RHS of
L,cosp Eg. (84) vanishes due to the actual extremization of the free
L, (B8) energy with respect to lattice parameters.
Second we present some of the intermediate steps neces-
The optimal lattice is determined by minimizing the free sary to show that, from scaling is the same thermody-
energy with respect to the variablesand» which represent namic relation of EQ(75) Using the auxiliary identities of
L,/L, and ¢. We define the dimensionless reciprocal spaceEd- (57) and of Eq.(58) one obtains
vector asc= A g that becomes, in terms of the the previously

S
i

defined variables, Z (QR)Z[mcsmzanGz
N N 2’7TA 22 2
G=G&+GJ, G,=——a0, +(mg,G2G;+ P?) — R%cos 9], (C3
27A 1 HsBs=B2Y, L 5[ M,co AQG2
a
Cy=—"[~ho+g]_. (B9) “c (QR) o
+(mZ,G?G;+ P?) — Ricosd]. (C4)

The following derivatives are useful for the present pur-
poses: Then applying another auxiliary relation, E®9), gives
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HiB:=B22 QR
+[—R?
+P(Q+R)~QRI},

HiBs=Bi2 (QR)2
+[-R2
+P(Q+R)—QR]}.

)2{sm29( m.Q*G.+R?)

(CH

{cog8(m,QiG;+R?)

(C6)

Finally the use of auxiliary relations of E¢60) and of Eq.

(61) yields

—H,B,=H3B; —H;B;=BZ2sind cos, 2 (QR 2{(man

=B2sing cosh(m,— mc)z o)

=BZsing cosf(m,— ma)z sz,.

———{1-m;m.,G*+(m,—m
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H,B,=B2 sm202 (QR)Z{chZGer R2
+(my—me)(Q+R)G}, (C7)
H;B;=B cosZoE )Z{maQCGZJr R2
— (M= mg)(R+R,0)GJ}. (C8)

Now one is ready to obtain the pseudovector component us-
ing the above formula:

MQ?) G+ (RE—R?) — (My—mc) (2R+ R, + Q) GJ}
c)Gs_Q_ Rca}Gyz/

(C9)

Comparison of the above equation to EﬁG) shows that they are identical.
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