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The spin-lattice-relaxation timetSL is a key quantity both for the dynamical response of ferromagnets
excited by laser pulses and as the speed limit of magneto-optical recording. Extending the theory for the
electron paramagnetic resonance of magnetic impurities to spin-lattice relaxation in ferromagnetic rare earths
we calculatetSL for Gd and find a value of 48 ps in very good agreement with time-resolved spin-polarized
photoemission experiments. We argue that the time scale fortSL in metals is essentially given by the spin-orbit
induced magnetocrystalline anisotropy energy.

I. INTRODUCTION

The spin-lattice-relaxation timetSL is a sensitive finger-
print for the strength of the dynamical coupling between the
spin system and the lattice. This time is therefore of interest
for the long-time spin response of magnetic materials upon
pulse laser lattice excitation. In a ferromagnetic solid, this
time is required to establish a new equilibrium magnetization
after a sudden change of the lattice temperature. Thus,tSL is
a key quantity for magneto-optical recording, since it deter-
mines the maximum speed for magneto-optical Curie-point
writing.1 In their pioneering work on Gd, Vaterlauset al.2

measuredtSL in real time using time-resolved spin-polarized
photoemission. This experiment was performed with the
pump and probe technique applying strong 10 ns laser heat-
ing pulses followed by 60 ps weak probe pulses with vari-
able delay and yielded the result

tSL5~100680! ps>52 50 GHz.

This corresponds to a gain by two or more orders of magni-
tude in speed compared to the present state of the art of data
processing, which is still rapidly improving.

Up to now there exists no calculation or theoretical expla-
nation of this result. Thus, it is the goal of this paper to
provide a theoretical approach to spin-lattice relaxation in
metallic rare-earth ferromagnets, which is based on rate
equations and an electronic model structure. We present a
theory which, despite its simplicity, exhibits already the mi-
croscopic features of spin-lattice relaxation in these materi-
als.

The spin-lattice relaxation timetSL describes the time re-
quired by the spins to reach thermal equilibrium with the
lattice. The lattice then operates as a heat bath if one neglects
the ‘‘phonon bottleneck’’ thus assuming perfect coupling to
the external environment via the phonons. Hereby the origi-
nally cold spins are flipped by the phonons, and spin and
phonon systems approach a common thermal equilibrium.
This is microscopically accomplished as follows:The spins
couple to the anisotropic fluctuations of the crystal fields
produced by the phonons. This coupling is mediated by spin-
orbit interaction.During this process neither a modification
of the geometrical structure nor a change of the magnetic
phase~long-range order! has to take place.

A typical scenario of the processes leading to spin-lattice
relaxation is a four-step process:~i! The laser beam hits the
sample and creates electron-hole pair excitations within
10215 s. ~ii ! The electronic system equilibrates at elevated
temperatures by electron-electron interactions within 10 fs.
Note, the lattice is not yet involved. The spin and charge
dynamics at the elevated temperature may already lead to the
breakdown of magnetic long-range order in the case of in-
tense fs laser pulses but not for ns heating, since the elec-
tronic system is always close to equilibrium for ns photo-
emission.~iii ! The equilibrated electronic excitations decay
via phonon cascades within 10213 . . . 10212 s and heat up
the phonon system, i.e., the lattice.~iv! The phonons and the
spin system reach their common equilibrium within the spin-
lattice-relaxation timetSL of 10

210 s. This is also the time
which allows for the recovery of magnetism in many cases,
since the electronic equilibrium temperature after step~ii !
might be much larger than the Curie temperature, whereas
the common equilibrium temperature reached after step~iv!
for spins and phonon system is usually much lower than the
electronic equilibrium temperature and may also be smaller
than the Curie temperature. The characteristicinteractionsof
these four processes taking place on distinct time scales are
~i! p•A, wherep is the crystal momentum of the electrons
and A is the vector potential of the laser photons,~ii !
electron-electron Coulomb interaction leading to dynamical
charge and spin fluctuations,~iii ! electron-phonon interac-
tion, ~iv! phonon-magnon interaction caused byspin-orbit
interactionwhich we will approximate by the static magne-
tocrystalline anisotropy energy~see below!.

The experiment by Vaterlauset al. measured the time
evolution of the magnetic nonequilibrium state on apicosec-
ond time scale. Therefore, in this paper, we exclusively ad-
dress the long-time~ps to ns! response via the lattice to com-
pare with the above experiment.

To support the above scenario of a laser pulse causing on
the ps timescale, and at not too low temperatures, mainly the
heating up of phonons, we compare the specific heat of
phonons, spins, and electrons3 and find the following: The
spins start to dominate the phonons at temperatures

T<T0' 0.1QD ~1!
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for fields of about 1 T~in the case of paramagnetic impuri-
ties!. The electrons start to dominate the phonons at tempera-
tures

T<T0' 0.01QD . ~2!

Typical Debye temperaturesQD in ferromagnets are 420 K
~Fe!, 385 K ~Co!, 375 K ~Ni!, 152 K ~Gd!, and 186 K~Dy!.
This crude estimate shows already, that phonons are domi-
nant at sufficiently long-time scales and not too low tempera-
tures ~the experiment has been performed typically at tem-
peratures between 30 and 300 K!, whereas spins
~corresponding to Coulomb-correlated electrons! and finally
electrons~single-particle excitations! are going to take over
for lower temperatures but also for shorter times~100 fs and
shorter!. Thus, it appears reasonable to focus on the phonons,
since the experiment has been done on the ps to ns time scale
and at not too low temperatures. However, it becomes imme-
diately obvious that very interesting dynamical properties of
the electrons and spins are to be expected in faster~fs! pump
and probe experiments which will definitely be available in
the near future. However, for this time window, the notion of
spin-lattice relaxation makes no sense any more, since elec-
trons rather than phonons are involved.

II. MICROSCOPIC CALCULATION
OF THE SPIN-LATTICE RELAXATION TIME tSL

To calculate the spin-lattice-relaxation timetSL we start
from the theoretical approaches successfully applied to
electron-spin resonance~ESR! more than three decades ago
for magnetic impurities embedded in a nonmagnetic host lat-
tice and adapt this treatment to the solid combining phenom-
enological nonequilibrium thermodynamics~kinetic theory!
and microscopic equilibrium theory. Three processes~all in-
volving phonons! contribute to spin-lattice relaxation: The
direct process@Fig. 1~a!#, the Orbach process4 @Fig. 1~b!#,
both of them being relevant only at very low temperatures,
and the Raman process@Fig. 1~c!# which we consider here:
This process consists of aspin flip, theabsorptionof a pho-
non of frequencyv, and of theemissionof a phonon of
frequencyv1v0 . The longitudinal relaxation rateT1 in this
case is independent of the magnetic field5 and is given by

1

T1
;T7 . . .T9. ~3!

The Raman process is a two-phonon process of higher order
which essentially uses the complete phonon spectrum. This
process dominates the Orbach process~and thus also the di-
rect process! for

D1

kB
>QD , ~4!

whereD1 is the crystal-field splitting andkB is Boltzmann’s
constant. Nickel, for example, has

D1

kB
' 688 K@QD' 375 K. ~5!

Thus, for not too low temperatures, the Raman process is
dominant for the spin-lattice-relaxation rate.

Therefore, in view of the experimental conditions, it ap-
pears justified to focus onRamandetermined spin-lattice re-
laxation in the solid which should be valid at intermediate
lattice temperatures and ps time scales. The temperature
range of validity forms probably the best compromise be-
tween too large temperatures where the lattice becomes un-
stable~above the melting point! or magnetism breaks down
~above the Curie temperature! and too low temperatures
where direct and Orbach processes determine the phonon-
induced relaxation or the phonons become frozen. Besides,
the Raman process is independent of the magnetic field.

Note that purely electronic mechanisms such as spin fluc-
tuations in strongly correlated electronic systems mediated
by nuclear spin flips~for energy and angular momentum con-
servation! via hyperfine interaction require even longer time
scales and are unimportant in this context since they do not
involve the lattice.

To calculate now Raman-induced spin-lattice relaxation in
ferromagnetic rare-earth solids we start from the theory for
spin-lattice relaxation in magnetic impurities.5 First we con-
sider the number of phonons in the volumeV and energy
interval @d,d1dd#

r~d!dd5
3Vd2dd

2p2\3vs
3 , ~6!

wherevs is the speed of sound in the material~e.g., Gd!. The
thermal occupation is given by the Bose factor

p̄0~d!5
1

ed/kBT21
. ~7!

FIG. 1. ~a! Direct process,~b! Orbach process, and~c! Raman
process.
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For the interaction, the usual crystal-field expansion up to
second order in terms of the randomly fluctuating strains is
used

Hc9'«1«2(
mn

vn
m , ~8!

since the Raman effect is of second order@see Fig. 1~c!#. The
transition probability from stateub& to ua& is then given by

wb→a5E 2p

\
u^b,p̄0~d1!,p̄0~d2!uHc9ua,p̄0~d1!21,p̄0~d2!11&u2r~d2!r~d1!dd1 . ~9!

Including the processes of stimulated emission, absorption, and spontaneous emission the rate equation for the change of the
occupation numbers of the levelsub& and ua& is given by (r is the mass density of the solid!

Ṅb52Nbwb→a1Nawa→b52Ṅa5K@2Nbp̄0~d!2Nb1Nap̄0~d!#. ~10!

Using Eqs.~8! and ~9! this leads to

Ṅb5
9(mnu^auvn

mub&u2

8r2p3\7vs
10 E @Nap̄0~d2!@ p̄0~d1!11#2Nbp̄0~d1!@ p̄0~d2!11##d1

6dd1 . ~11!

Here, it has been used that the square of the matrix elements
of the strains« assumes the value

d@ p̄0~d!11#

2Mvs
2 , ~12!

whereM is the crystal mass. Using the plausible assump-
tions

d!kBT, d!d1 ~13!

and the abbreviations

n5Na2Nb , N5Na1Nb and n05N tanhS d

2kBT
D
~14!

yields the kinetic equation of spin-lattice relaxation

ṅ52
1

tSL,Raman
~n2n0!. ~15!

The microscopic calculation of the spin-lattice-relaxation
rate ~which is the kinetic coefficient of the rate equation!
gives then the result

1

tSL,Raman
5
9(mnu^auvn

mub&u2

8r2p3\7vs
10 E

0

kBQD d1
6ed1 /kBTdd1

~ed1 /kBT21!2
.

~16!

Using our previous estimate for the magnetocrystalline an-
isotropy, which is discussed in some detail in Appendix A,

(
mn

u^auvn
mub&u25uEanisotropyu25u735 meVu2, ~17!

this microscopic theory finally yields for the spin-lattice-
relaxation time in Gd a value of

tSL,Raman5 48 ps. ~18!

In view of the present theoretical and experimental uncer-
tainties this result is in good agreement with the experimen-

tal value of~1006 80! ps. Clearly further studies are nec-
essary to reduce the experimental error bar and to obtain a
more definite theoretical estimate. However note, the main
issue here is that obviously the energy scale for spin-lattice
relaxation is set by themagnetocrystalline anisotropy energy,
which is of the order of 100meV–1 meV at surfaces, in thin
magnetic films or in hexagonal bulk crystals, rather than by
the Curie temperature or by spin-orbit coupling or by
electron-phonon interaction~all being of the order of 30–50
meV!. This energy scale comes into play, since spin-lattice
relaxation orginates from the coupling of the spins to the
anisotropic crystal-field fluctuations resulting from the
phonons. These fluctuations flip the spins to accomodate
their thermal occupation to the lattice temperature~or to a
common equilibrium spin-lattice temperature!. Although
magnetocrystalline anisotropy results from spin-orbit cou-
pling, its energy scale is typically smaller at interfaces or in
the bulk of noncubic three-dimensional solids by a factor of
100, since spin-orbit coupling enters to second order~see
Appendix A!. In cubic bulk crystals the leading terms are of
fourth order thus resulting in a reduction factor of 10 000.
This argument holds for both~i! the level shifts induced by
spin-orbit coupling and~ii ! the occurrence and lifting of de-
generacies at the Fermi energy within a small portion of the
Brillouin zone.6 Our argumentation is still valid even for the
particular case of Gd, where the localizedf shell carries
most of the magnetic moment, while the conduction elec-
trons are responsible for the metallicity, since the anisotropy
of the magnetic moments involves the coupling of localized
and conduction electrons. The same holds for the spin-lattice
relaxation.

III. CONCLUSIONS

In this work we presented a microscopic theory for the
spin-lattice-relaxation timetSL in the metallic rare-earth fer-
romagnet Gd and found a value of 48 ps in remarkably good
agreement with experiment which yields~1006 80! ps. Al-
though our theoretical estimate neglects all detailed features
of electronic structure, phonon density of states, electronic
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correlations, effects of electronic temperature, and the de-
tailed form of the transition matrix elements, it already yields
the correct value oftSL . Moreover, our theory clearly dem-
onstrates the important relationship between the static mag-
netocrystalline anisotropy energy and the dynamic quantity
tSL , which is essential for magneto-optic recording veloci-
ties. Furthermore, our theory yields a good starting point for
a detailed electronic and nonequilibrium response theory of
spin-lattice relaxation in rare-earth and transition metals~in-
volving phonon-magnon coupling!. For a theoretical treat-
ment of transition metals we discuss some of the necessary
extensions in Appendix B. Thus it could overcome the re-
striction of previous ESR theories to localized magnetic im-
purity spins~e.g., in insulating garnets!. For thin films and
multilayers, it is of particular importance to calculate the
thickness dependence of this dynamical quantity, thus check-
ing the dependence oftSL on the magnetocrystalline anisot-
ropy and the relationship betweentSL and the linear and
nonlinear magneto-optical Kerr effects. Note, this involves
the complementary non-spin-flip effects of spin-orbit interac-
tion. Also, it is a considerable theoretical challenge to inves-
tigate phonon-magnon coupling in realistic itinerant systems.
From the experimental side, additional thickness dependent
andspectroscopicpump and probe laser experiments as well
as measurements of the ferromagnetic resonance~FMR
yielding collective spin-flip frequencies! are required to
tackle the important and complex problem of spin-lattice re-
laxation in metallic ferromagnetic thin-film media and to
bridge the gap between magnetic-resonance experiments in
the frequency domain and optical real-time measurements. In
particular, it will be interesting to study the temperature de-
pendence oftSL . Thus, also low-temperature contributions
to the relaxation originating from direct or Orbach processes
can be discussed.

Besides, it is of considerable interest to search for faster
spin-switching mechanisms using intense fs laser pulses
which may directly lead to a breakdown of magnetism via
electron-electron correlations and may therefore bypass the
lattice thus reducing lattice heating. It is to be expected that
more interesting results will be found on thefemtosecond
time scale which is now also accessible using Ti-sapphire
lasers. Upon intense laser excitation, the magnetic state may
break down already within some fs without the influence of
the lattice and it is recovered withintSL which involves cou-
pling of the spins to the lattice viaanisotropiccrystal-field
fluctuations. In this case, the spins are cooled by the lattice
rather than heated as in the experiment by Vaterlauset al.,
which requires a theoretical explanation. These time scales
should be optically accessible in metallic thin-film media in
the near future.
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APPENDIX A: MAGNETOCRYSTALLINE ANISOTROPY

In this appendix, we give a simple estimate of magneto-
crystalline anisotropy in metals, which nevertheless contains
most of the features of a complete band-structure calculation

of this quantity and already yields the correct order of mag-
nitude. For that purpose, we consider a single, for simplicity
parabolic, but spin-orbit split band~Fig. 2! where the split-
ting Eso is approximately given by the spin-orbit coupling
constantlso, apart from some direction cosines of the mag-
netization vector which are of order unity. Hereby we neglect
the fact that parabolic bands usually represents electrons
which feel neither spin-orbit nor exchange interaction. In ad-
dition, we neglect the magnetic dipole-dipole coupling which
favors in-plane magnetization in two dimensions and is zero
in the bulk of cubic or hexagonal crystals such as Gd. It is in
particular the spin-orbit-induced magnetocrystalline anisot-
ropy energy which may~but does not necessarily have to!
favor a perpendicular easy axis in thin films and is therefore
of interest for high-density magnetic recording~the time
limit of which is related totSL).

We calculate now the maximum energy gain from mag-
netocrystalline anisotropy in this model. This gain originates
from the change of the band occupation up on spin-orbit-
induced lifting of the band degeneracy at the Fermi level.
Electrons are transferred from one branch of the band to the
other. Assuming a Brillouin sphere in three dimensions one
therefore obtains an anisotropy energy of

Eanisotropy5lso3
4pkF

2Dk

4p

3
kF
3

5lso3
3Dk

kF
~3D!, ~A1!

where

Dk

kF
5
1

2
3
k̄

kF
~A2!

is the number of states contributing to the change of the
electronic occupation. For typical values of the spin-orbit
coupling constantlso5 70 meV and the Fermi energyEF 5
10 eV we find the result

Eanisotropy5 735 meV ~3D!. ~A3!

Thus, this crude model yields already important insights in
some of the microscopic features of magnetocrystalline an-
isotropy which are confirmed by detailed calculations:6 ~i!
The model gives the correct order of magnitude for
Eanisotropyin films or noncubic bulk crystals. The actual value
for Gd might be somewhat smaller but this would even im-
prove the agreement oftSL with experiment. ~ii ! The

FIG. 2. Microscopic model for magnetocrystalline anisotropy
energy.
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model shows that the magnetocystalline anisotropy is smaller
than the spin-orbit coupling constant by two orders of mag-
nitude since only a relatively small portion of states close to
the Fermi level may gain energy from the spin-orbit induced
lifting of degeneracies. For all other states the upward and
downward shifts of the lifted degeneracies cancel.~iii ! The
model immediately yields that the anisotropy energy result-
ing from the lifting of degeneracies is proportional to the
squareof spin-orbit coupling, since besides the explicit lin-
ear dependence onlso also the portion of contributing states
is linear inlso. There is no azimuthal dependence on spin-
orbit coupling in this model in remarkable agreement with
the line degeneracies found in Fe monolayers.6 Thus, the
energy gain resulting from thelifting of degeneraciesclose
to the Fermi energy is of the same order of magnitude as the
magnetocrystalline anisotropy originating fromlevel shifts
far belowEF , which can be obtained already in nondegen-
erate second-order perturbation theory with respect to spin-
orbit coupling. ~iv! The model explains why perpendicular
anisotropy may be favored in thin films: Due to the reduced
coordination number in these films, narrow bands of large
density of states close to the Fermi level~in ferromagnets!
may occur which can gain a sufficiently large amount of
magnetocrystalline anisotropy energy.~v! The anisotropy at
interfaces and the nonlinear magneto-optical Kerr-Effect are
closely related via spin-orbit coupling although the latter re-
sults from nonlinear optical excitations.~vi! Interface hybrid-
ization of a ferromagnet with a strong spin-orbit scatterer
may yield large anisotropies due to the reoccupation of many
states close to their common Fermi level.~vii ! Spin-orbit
coupling does not split exchange-split bands again. Thus, the
diagonal part

LzSz ~A4!

just yields contrary level shifts of spin-up and spin-down
bands whereas the diagonal contribution

LxSx1LySy5
1

2
~L1S21L2S1! ~A5!

yields spin flips. It is these spin flips that contribute to the
spin-lattice relaxation timetSL which in this view describes
the time required for adapting the~temperature dependent!
magneto-crystalline anisotropy to the lattice temperature.
Thus, our model yields the correct order of magnitude and a
change of the direction of the magnetic moments.

APPENDIX B: PHONON-MAGNON COUPLING

If we want to conceive a similar theory for spin-lattice
relaxation in ferromagnetic transition metals such as Fe we
have to notice the following important difference: In the
rare-earth metal Gd it is sufficient to consider the localized
f -electron spins carrying the magnetic moment of 7mB ,

which gives rise to seven possible orientations (ml quantum
numbers!. Thus, Raman processes may easily take place. In
the transition metal Fe, however, thed electrons are itinerant
~delocalized!, have to be described within the band picture,
and have only two orientations~spin-up and spin-down!.
Therefore collective and quantized magnetic excitations
~magnons! have to be allowed for the spin-lattice relaxation
~Fig. 3!. The transition Hamiltonian then describes the
phonon-magnon coupling using boson creation and annihila-
tion operatorsak

(†) for magnons andbk
(†) for phonons

Hph-mag~k!5Dk@bkak
†1H.c.# ~B1!

with7

Dk5F 3

3A2
D

«
FGA2S~2s21!A \uku

2M v̄s
. ~B2!

Here,D is some coupling strength,F some crystal-field pa-
rameter,S the spin,M the effective mass, andv̄s the aver-
aged speed of sound.

The interaction HamiltonianHph-mag(k) can then be in-
serted in the full phonon-magnon Hamiltonian8

H5(
k

@vk
mak

†ak1vk
pbk

†bk1Hph-mag~k!#, ~B3!

which is easily solved by applying the unitary transformation

ak
~†!5Ak

~†!cosQk1Bk
~†!sinQk ,

bk
~†!5Bk

~†!cosQk2Ak
~†!sinQk , ~B4!

to yield

vA5vk
mcos2Qk1vk

psin2Qk2 2DkcosQksinQk ,

vA5vk
mcos2Qk1vk

psin2Qk1 2DkcosQksinQk . ~B5!

Qk is given by

tan2Qk5
2Dk

vk
p2vk

m . ~B6!

This then completes the formal solution of the phonon-
magnon problem.
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