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Simple theory for spin-lattice relaxation in metallic rare-earth ferromagnets
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The spin-lattice-relaxation timeg, is a key quantity both for the dynamical response of ferromagnets
excited by laser pulses and as the speed limit of magneto-optical recording. Extending the theory for the
electron paramagnetic resonance of magnetic impurities to spin-lattice relaxation in ferromagnetic rare earths
we calculaterg, for Gd and find a value of 48 ps in very good agreement with time-resolved spin-polarized
photoemission experiments. We argue that the time scalesfan metals is essentially given by the spin-orbit
induced magnetocrystalline anisotropy energy.

I. INTRODUCTION A typical scenario of the processes leading to spin-lattice
relaxation is a four-step procegs$} The laser beam hits the

The spin-lattice-relaxation timeg, is a sensitive finger- sample and creates electron-hole pair excitations within

print for the strength of the dynamical coupling between the10~%° s. (ii) The electronic system equilibrates at elevated

spin system and the lattice. This time is therefore of interestemperatures by electron-electron interactions within 10 fs.

for the long-time spin response of magnetic materials upomote, the lattice is not yet involved. The spin and charge
pulse laser lattice excitation. In a ferromagnetic solid, thisdynamics at the elevated temperature may already lead to the

time is required to establish a new equilibrium magneti;atiorbreakdown of magnetic long-range order in the case of in-
after a sudden change of the lattice temperature. ThySS  tense fs laser pulses but not for ns heating, since the elec-

a key quantity for magneto-optical recording, since it deter{,qonic system is always close to equilibrium for ns photo-

mines the maximum speed for magneto-optical Curie-poing nicsion (jii) The equilibrated electronic excitations decay
writing.” In their pioneering work on Gd, Vaterlaiet al: via phonon cascades within T6°. .. 1022 s and heat up

measuredrs, in real time using time-resolved spin-polarized phonon system, i.e., the latti¢@:) The phonons and the
photoemission. This experiment was performed with the_ . : o - :
spin system reach their common equilibrium within the spin-

pump and probe technique applying strong 10 ns laser heaIa-lttice-relaxation timerg, of 1071 s, This is also the time

ing pulses followed by 60 ps weak probe pulses with vari- "~ " S
able delay and yielded the result which allows for the recovery of magnetism in many cases,

since the electronic equilibrium temperature after siiep
7o,=(100+80) ps=5— 50 GHz. might be much Igrggr than the Curie temperature, vyhereas
the common equilibrium temperature reached after §tep
This corresponds to a gain by two or more orders of magnifor SPins and phonon system is usually much lower than the
tude in speed compared to the present state of the art of da@4ectronic equilibrium temperature and may also be smaller
processing, which is still rapidly improving. than the Curie temperature. The characteristieractionsof

Up to now there exists no calculation or theoretical explathese four processes taking place on distinct time scales are
nation of this result. Thus, it is the goal of this paper to(i) P-A, wherep is the crystal momentum of the electrons
provide a theoretical approach to spin-lattice relaxation ir@hd A is the vector potential of the laser photord,)
metallic rare-earth ferromagnets, which is based on rat€lectron-electron Coulomb interaction leading to dynamical
equations and an electronic model structure. We present @arge and spin fluctuationsiji) electron-phonon interac-
theory which, despite its simplicity, exhibits already the mi-tion, (iv) phonon-magnon interaction caused $gin-orbit
croscopic features of spin-lattice relaxation in these materilnteractionwhich we will approximate by the static magne-
als. tocrystalline anisotropy energgee below.

The spin-lattice relaxation timeg, describes the time re- ~ The experiment by Vaterlaust al. measured the time
quired by the spins to reach thermal equilibrium with the®volution of the magnetic nonequilibrium state opieosec-
lattice. The lattice then operates as a heat bath if one neglec®d time scale. Therefore, in this paper, we exclusively ad-
the “phonon bottleneck” thus assuming perfect coupling todress the long-timeps to n3 response via the lattice to com-
the external environment via the phonons. Hereby the origiPareé with the above experiment. _
nally cold spins are flipped by the phonons, and spin and TO Support the above scenario of a laser pulse causing on
phonon systems approach a common thermal equilibriun‘?.he ps timescale, and at not too low temperatures, mainly the
This is microscopically accomplished as follovighe spins heating up of phonons, we compare the specific heat of
couple to the anisotropic fluctuations of the crystal fieldsPhonons, spins, and electrdrand find the following: The
produced by the phonons. This coupling is mediated by spirsPins start to dominate the phonons at temperatures
orbit interaction. During this process neither a modification
of the geometrical structure nor a change of the magnetic
phase(long-range ordérhas to take place. T<To~ 0.10p (1)
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for fields of about 1 T(in the case of paramagnetic impuri- (a)
ties). The electrons start to dominate the phonons at tempera- — |
tures
T<To~ 0.010,. @) 0> hawy
Typical Debye temperature® in ferromagnets are 420 K
(Fe), 385 K(Co), 375 K(Ni), 152 K(Gd), and 186 K(Dy). lay T
This crude estimate shows already, that phonons are domi- (b)
nant at sufficiently long-time scales and not too low tempera- | c>
tures (the experiment has been performed typically at tem-
peratures t_)etween 30 and 300),Kwhereas _ spins ho A ha)+hco0
(corresponding to Coulomb-correlated electpoasd finally Al
electrons(single-particle excitationsare going to take over
for lower temperatures but also for shorter tini@80 fs and 5 ’b>
shortej. Thus, it appears reasonable to focus on the phonons, | a>
since the experiment has been done on the ps to ns time scale
and at not too low temperatures. However, it becomes imme- (c)
diately obvious that very interesting dynamical properties of
the electrons and spins are to be expected in fafepump ho ho +hw0
and probe experiments which will definitely be available in
the near future. However, for this time window, the notion of |b>
spindattice relaxation makes no sense any more, since elec-
trons rather than phonons are involved. |a>
II. MICROSCOPIC CALCULATION FIG. 1. (a) Direct process(b) Orbach process, an@) Raman
OF THE SPIN-LATTICE RELAXATION TIME  7g_ process.

To calculate the spin-lattice-relaxation timg, we start Theref L £ th . | diti .
from the theoretical approaches successfully applied to erefore, in view o the expenmer}ta con |t|on§, It ap-
electron-spin resonand&SR) more than three decades ago P€aS J“S_t'f'ed to f(_)cus qﬁamandetermme_d spm_—lattlce re-
for magnetic impurities embedded in a nonmagnetic host |ati@xation in the solid which should be valid at intermediate

tice and adapt this treatment to the solid combining phenoml—attice t?mplgégtu:ces and pbs tt)ilmehscgles. The temper;ta)ture
enological nonequilibrium thermodynamickinetic theory ~ 'ange of vall Ity forms probably the best compromise be-

and microscopic equilibrium theory. Three procesgisin- tween too large tempgraturgs where the_Iattice becomes un-
volving phonons contribute to spin-lattice relaxation: The StéPle(@bove the melting pointor magnetism breaks down

direct procesgFig. 1(a)], the Orbach proce$dFig. 1(b)], (above the Curie temperatyrend too low temperatures

both of them being relevant only at very low temperatures)Nhere direct and Orbach processes determine the phonon-

and the Raman proce§Sig. 1(c)] which we consider here: induced relaxation or the phonons become frozen. Besides,
This process consists ofspin flip, the absorptionof a pho- the Raman process is mdependent Of. the magnetic f'?ld'

non of frequencyw, and of theemissionof a phonon of Note that purely electronic mechanlsms such as spm'fluc-
frequencyw + w,. The longitudinal relaxation rafé, in this tuations in strongly correlated electronic systems mediated

case is independent of the magnetic fledsd is given by by nuc_lear Spin fllpssfor energy Z.ind angqlar momentum con-
servation via hyperfine interaction require even longer time

1 scales and are unimportant in this context since they do not
T—~T7 L TE. (3 involve the lattice.

! To calculate now Raman-induced spin-lattice relaxation in
The Raman process is a two-phonon process of higher ordégrromagnetic rare-earth solids we start from the theory for
which essentially uses the complete phonon spectrum. Thipin-lattice relaxation in magnetic impuritig&irst we con-
process dominates the Orbach proce@s®l thus also the di- sider the number of phonons in the volurdeand energy
rect processfor interval[ 8,6+ d&]

A
=00, (4) 3vsids

5 p(8)do= 533, ®)
whereA; is the crystal-field splitting an#lg is Boltzmann’s °

constant. Nickel, for example, has ) ]
wherev is the speed of sound in the materialg., Gd. The

A, thermal occupation is given by the Bose factor
— =~ 688 K>0p~ 375 K. (5)

kg
Thus, for not too low temperatures, the Raman process is

_ 1
dominant for the spin-lattice-relaxation rate. Po(0)= GameT—7 - 0



3424 W. HUBNER AND K. H. BENNEMANN 53
. . i i Hl~eg e o, 8
For the interaction, the usual crystal-field expansion up to ¢t 2% . ®

:L;jzgznd order in terms of the randomly fluctuating strains Since the Raman effect is of second orffe Fig. 10)]. The

transition probability from statgb) to |a) is then given by

2 _ _ _ _
Wp_.a= f %|<b,po(51),po(52)| Hela, po( 81) — 1.po( 82) + 1)|2p(82) p(81)d ;. 9

Including the processes of stimulated emission, absorption, and spontaneous emission the rate equation for the change of the
occupation numbers of the levdls) and|a) is given by ( is the mass density of the solid

Nb=—NpWp_.a+ NaWa_.5= —Na= K[~ NpPo( 8) = Np+NaPo( 8)]. (10
Using Eqgs.(8) and(9) this leads to

Cosad@mb - 6
szwf [Napo(92)[Po(61) +1]1—Nppo(81)[Po( 52) +1]]167d6; . (11

Here, it has been used that the square of the matrix elementazl value of (100 = 80) ps. Clearly further studies are nec-

of the strainss assumes the value essary to reduce the experimental error bar and to obtain a
_ more definite theoretical estimate. However note, the main
d[Po(d)+1] issue here is that obviously the energy scale for spin-lattice
—_—, (12 o ; ;
2Muv relaxation is set by thmagnetocrystalline anisotropy energy

) ) ) which is of the order of 10@teVV—1 meV at surfaces, in thin
whereM s the crystal mass. Using the plausible assumpynagnetic films or in hexagonal bulk crystals, rather than by

tions the Curie temperature or by spin-orbit coupling or by
s<ksT, 86, (13) electron—phonon interactiogall belng of the orQer of 30—5Q

meV). This energy scale comes into play, since spin-lattice

and the abbreviations relaxation orginates from the coupling of the spins to the

anisotropic crystal-field fluctuations resulting from the
phonons. These fluctuations flip the spins to accomodate
ﬁ their thermal occupation to the lattice temperat(we to a
(149  common equilibrium spin-lattice temperatureAlthough
magnetocrystalline anisotropy results from spin-orbit cou-
pling, its energy scale is typically smaller at interfaces or in

n=N,—N,, N=N;+N, and nO=NtanI‘(

yields the kinetic equation of spin-lattice relaxation

1 the bulk of noncubic three-dimensional solids by a factor of
n=———(n—nyp). (15 100, since spin-orbit coupling enters to second orgsee
TSL,Raman Appendix A). In cubic bulk crystals the leading terms are of

The microscopic calculation of the spin-lattice-relaxationfourth order thus resulting in a reduction factor of 10 000.
rate (which is the kinetic coefficient of the rate equation This argument holds for botfi) the level shifts induced by

gives then the result spin-orbit coupling andii) the occurrence and lifting of de-
generacies at the Fermi energy within a small portion of the
1 9Emn|<a|vnm|b)|2JkB®D 55e’1/keTd 5, Brillouin zone® Our argumentation is still valid even for the
= "o RgT — 132+ i i '
TsLraman  8pmih v ) (eT%eT—1) particular case of Gd, where the localizédshell carries

(16) most of the magr_letic moment, whil_e th(_a conductio_n elec-
trons are responsible for the metallicity, since the anisotropy
Using our previous estimate for the magnetocrystalline anef the magnetic moments involves the coupling of localized
isotropy, which is discussed in some detail in Appendix A, and conduction electrons. The same holds for the spin-lattice
relaxation.

2 |<a|vnm|b>|2=|Eanisotrop¢2=|735 /.LeV|2, (17)
mn lIl. CONCLUSIONS
this microscopic theory finally yields for the spin-lattice-

AL In this work we presented a microscopic theory for the
relaxation time in Gd a value of

spin-lattice-relaxation timeg,_in the metallic rare-earth fer-

- — 48 ps. (18) romagnet Gd.and found a valut_e of 48 ps in remarkably good
St.Raman agreement with experiment which yiel@s00 + 80) ps. Al-

In view of the present theoretical and experimental uncerthough our theoretical estimate neglects all detailed features

tainties this result is in good agreement with the experimenef electronic structure, phonon density of states, electronic
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correlations, effects of electronic temperature, and the de- E
tailed form of the transition matrix elements, it already yields
the correct value ofg . Moreover, our theory clearly dem-
onstrates the important relationship between the static mag-
netocrystalline anisotropy energy and the dynamic quantity
751, Which is essential for magneto-optic recording veloci- Ep
ties. Furthermore, our theory yields a good starting point for
a detailed electronic and nonequilibrium response theory of
spin-lattice relaxation in rare-earth and transition metias
volving phonon-magnon couplingFor a theoretical treat- 50
ment of transition metals we discuss some of the necessary
extensions in Appendix B. Thus it could overcome the re-
striction of previous ESR theories to localized magnetic im-
purity spins(e.g., in insulating garnetsFor thin films and
multilayers, it is of particular importance to calculate the
thickness dependence of this dynamical quantity, thus chec
ing the dependence af;, on the magnetocrystalline anisot-

bt A

k

FIG. 2. Microscopic model for magnetocrystalline anisotropy
energy.

le this quantity and already yields the correct order of mag-
ropy and the relationship betweery, and the linear and nitude. For that purpose, we consider a single, for simplicity

. . = parabolic, but spin-orbit split bandrig. 2) where the split-
Phonlln?narl Tnagr?tetro_gpgcalir}ﬁﬁr eff;ectts. I;lot?r; thr'ts)‘it'?r:f[drvesting E., is approximately given by the spin-orbit coupling
€ compiementary non-spin-iip €fiects ot spin-o €rac-onstant,, apart from some direction cosines of the mag-

t!on. Also, itis a con5|derable_: th_eoreUc_aI_chaIlenge to INVES+ etization vector which are of order unity. Hereby we neglect
tigate phonon-magnon coupling in realistic itinerant systems

From the experimental side, additional thickness dependeﬁli1e fact that parabolic bands usually represerdiectrons

andspectroscopigump and probe laser experiments as WeIIwhich feel neither spin-orbit nor exchange interaction. In ad-
as measurements of the ferromagnetic resonaitdR dition, we neglect the magnetic dipole-dipole coupling which

o : g ; : favors in-plane magnetization in two dimensions and is zero
yielding collective spin-flip frequencig¢sare required to

tackle the important and complex problem of spin-lattice re_in the bulk of cubic or hexagonal crystals such as Gd. Itis in
laxation in metallic ferromagnetic thin-film media and to particular the spin-orbit-induced magnetocrystalline anisot-

bridge the gap between magnetic-resonance experiments topy energy which maybut does not necessarily have to
9 9ap 9 P {Avor a perpendicular easy axis in thin films and is therefore

the Treq“er.‘cy .doma.in and qptical real-time measurements. Igf interest for high-density magnetic recordirithe time
particular, it will be interesting to study the temperature de'limit of which is related torg)
S .

pendence ofrg, . Thus, also low-temperature contributions We calculate now the maximum energy gain from mag-

o the relaxation originating from direct or Orbach processe"?ﬁetocrystalline anisotropy in this model. This gain originates

can be discussed. : ; i
Besides, it is of considerable interest to search for fasteifr;%rﬂcgzje"?t?r? ; goef ?r: ethbear? o? nd(:a ; gﬁggag;ogt utﬁ eor; es;ﬁ:?_ggr

svﬁ::l'ﬁvmgh'gﬁegle C:;anlsgsa Lé)srg'agkd'gxgsé Ealiseetirsnp]u\llsigélectrons are transferred from one branch of the band to the
y y X 9 other. Assuming a Brillouin sphere in three dimensions one
electron-electron correlations and may therefore bypass tr‘

lattice thus reducing lattice heating. It is to be expected tha'ﬁerefore obtains an anisotropy energy of

more interesting results will be found on tfiemtosecond 4mk2Ak 3AK

time scale which is now also accessible using Ti-sapphire Eanisotropy™ M soX 7 :)\soxk— (3D), (A1)
lasers. Upon intense laser excitation, the magnetic state may ! F

break down already within some fs without the influence of 3 °F

the lattice and it is recovered withir, which involves cou-  \\here

pling of the spins to the lattice vianisotropiccrystal-field

fluctuations. In this case, the spins are cooled by the lattice Ak 1 k

rather than heated as in the experiment by Vaterktus., e EXK_F (A2)

which requires a theoretical explanation. These time scales

should be optically accessible in metallic thin-film media inis the number of states contributing to the change of the

the near future. electronic occupation. For typical values of the spin-orbit
coupling constank,, = 70 meV and the Fermi enerdsg: =

10 eV we find the result
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some of the microscopic features of magnetocrystalline an-
isotropy which are confirmed by detailed calculati3ng)
The model gives the correct order of magnitude for

In this appendix, we give a simple estimate of magneto-£ isotropyin films or noncubic bulk crystals. The actual value
crystalline anisotropy in metals, which nevertheless containfor Gd might be somewhat smaller but this would even im-
most of the features of a complete band-structure calculatioprove the agreement ofg with experiment. (i) The

APPENDIX A: MAGNETOCRYSTALLINE ANISOTROPY
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model shows that the magnetocystalline anisotropy is smaller
than the spin-orbit coupling constant by two orders of mag-
nitude since only a relatively small portion of states close to he ho+ho
the Fermi level may gain energy from the spin-orbit induced
lifting of degeneracies. For all other states the upward and
downward shifts of the lifted degeneracies canéil) The
model immediately yields that the anisotropy energy result- |b>
ing from the lifting of degeneracies is proportional to the
squareof spin-orbit coupling, since besides the explicit lin- | a>

ear dependence ox, also the portion of contributing states

is linear in\g,. There is no azimuthal dependence on spin- FIG. 3. Spin-lattice relaxation in transition metals.

orbit coupling in this model in remarkable agreement with ) ] ) ] ]

the line degeneracies found in Fe monolayefus, the Which gives rise to seven possible orientationy quantum
energy gain resulting from thiifting of degeneracieglose ~ Numbers. Thus, Raman processes may easily take place. In
to the Fermi energy is of the same order of magnitude as thi€ transition metal Fe, however, theelectrons are itinerant
magnetocrystalline anisotropy originating frolevel shifts ~ (delocalized, have to be described within the band picture,
far belowEr, which can be obtained already in nondegen-8nd have only two orientationéspin-up and spin-down
erate second-order perturbation theory with respect to spintherefore collective and quantized magnetic excitations
orbit coupling. (iv) The model explains why perpendicular (Magnons have to be allowed for the spin-lattice relaxation
anisotropy may be favored in thin films: Due to the reducedFig. 3. The transition Hamiltonian then describes the
coordination number in these films, narrow bands of larg?honon-magnon coupling using boson creation and annihila-
density of states close to the Fermi levil ferromagnets  tion operatorsa{) for magnons and{ for phonons

may occur which can gain a sufficiently large amount of

magnon

magnetocrystalline anisotropy enerdy) The anisotropy at Honmad k) = Did bia+H.c] (B1)
interfaces and the nonlinear magneto-optical Kerr-Effect argyith?

closely related via spin-orbit coupling although the latter re-

sults from nonlinear optical excitationi) Interface hybrid- 3 D fi|K|

ization of a ferromagnet with a strong spin-orbit scatterer Dy= ﬁ;F V2S(2s—-1) \/m- (B2

may yield large anisotropies due to the reoccupation of many
states close to their common Fermi levélii) Spin-orbit ~ Here,D is some coupling strength, some crystal-field pa-
coupling does not split exchange-split bands again. Thus, theameter,S the spin,M the effective mass, and, the aver-

diagonal part aged speed of sound.
The interaction Hamiltoniam ;. nadK) can then be in-
L.S, (A4) serted in the full phonon-magnon Hamiltonfan
just yields contrary level shifts of spin-up and spin-down
bands whereas the diagonal contribution H=>, [w{'aa+ wfblb,+ Hphmad K1, (B3)
k
LS+ Lysy:%(LJrs_ +L_S,) (A5) which is easily solved by applying the unitary transformation

() — A(D (M gi
yields spin flips. It is these spin flips that contribute to the A=A COB+ By SOy,

spin-lattice relaxation timeg; which in this view describes

the time required for adapting thgemperature dependent bg):Bg)CO@k_A(kT)Sm@k' (B4)
magneto-crystalline anisotropy to the lattice temperatureto yield

Thus, our model yields the correct order of magnitude and a _ _

change of the direction of the magnetic moments. wp= [ €SO + wfSi O — 2D, coM,SiNB,

wa= 0p'COLO, + wfsit®,+ 2D, cod,sin®,. (B5)

APPENDIX B: PHONON-MAGNON COUPLING 0, is given by
If we want to conceive a similar theory for spin-lattice 2Dy
relaxation in ferromagnetic transition metals such as Fe we tan20, = ——. (B6)

have to notice the following important difference: In the @k @k

rare-earth metal Gd it is sufficient to consider the localizedThis then completes the formal solution of the phonon-
f-electron spins carrying the magnetic moment @fg7  magnon problem.
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