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Most of the existing dynamical studies in one dimension on magnetic insulators have considered the sim-
plest spin models with nearest-neighbor interactions. Inreal systems, however, it is possible that longer range
interactions are not entirely negligible. It is expected that the inclusion of next-nearest-neighbor interactions
between spins in one-dimensional spin models will introduce a multitude ofnewfrequencies in addition to the
ones already present in the dynamics that arises due to nearest-neighbor interactions. We first present anexact
solution for the dynamicalxx-spin-pair correlations in an Ising chain with both nearest- and next-nearest-
neighbor interactions to confirm our expectation. We next show, via an approximate analytical calculation, that
the dynamicalzz-spin-pair correlations in the next-nearest-neighbor transverse Ising chain when plotted as a
function of time is noticeably different with respect to the exactly solvable nearest-neighbor transverse Ising
chain atT→` when the next-nearest-neighbor interaction is.

1
2 of the magnitude of the nearest-neighbor

interaction. The effects could be fairly subtle in the time domain representation and in the spectral function
when these additional interactions are weak~i.e., ,

1
2 of the nearest-neighbor interaction magnitude!. The

general conclusions reached in this work are expected to be valid for other simple quantum spin models such
as theXY andXXZmodels in one dimension.

I. INTRODUCTION

The study of the time-dependent behavior of simple quan-
tum spin systems, especially in one dimension, has seen con-
siderable progress within the past couple of decades.1–4 A
significant amount of literature consisting of experimental5,6

and theoretical work now exists on the dynamical behavior
of the transverse Ising model which is regarded as one of the
simplest quantum spin systems with nontrivial spin
dynamics.7–13 The dynamical correlations in thes51/2 XY
~Refs. 14–17! andXXZmodels18–23have also been studied
in much detail atT50 and atT5`. In addition, there also
exists a handful ofexact results that are available for the
transverse Ising andXY models8,9,14–17 in one dimension.
Very little, however, is known about the dynamical spin-pair
correlations in two and three dimensions.10–13,23,24All of the
theoretical studies mentioned above have been carried out
for quantum spin Hamiltonians with nearest-neighbor inter-
actions. In this work we shall focus our attention on the
extent to which spin dynamics is sensitive to the inclusion of
next-nearest-neighbor interactions in one-dimensional sys-
tems.

In realmagnetic systems it is quite possible that the spin-
spin interactions may not be precisely nearest neighbor in
nature. While the nearest-neighbor interaction may be the
dominant interaction the second- and third-neighbor interac-
tions may be weak but non-negligible. While ignoring these
weak longer-range interactions may be adequate for studying
the equilibrium critical properties of quantum spin models,25

it does not necessarily follow that the same would be true for
their dynamical behavior as well at all temperatures. In fact,

it turns out that the existence of longer-range interactions
may lead to the presence of frequencies that characterize the
dynamical behavior of the spin system under study.26 Thus,
the dynamical spin-pair correlations and the dynamical struc-
ture factors of these systems could differ visibly when these
additional interactions are taken into account.

The study of quantum spin dynamics is a challenging sub-
ject. It is seldom possible to carry out calculations of the
dynamical correlations exactly. However, the simple spin
systems among others can often be studied approximately
and rather reliably using certain recently developed tech-
niques. We therefore explore the question of the role of next-
nearest-neighbor interactions in affecting the system dynam-
ics using the following approach.

We first study the transverse~i.e., xx-) dynamical spin-
pair correlations in an Ising chain with a transverse field that
is switched off at some timet50 ~for related work the reader
may find Refs. 27–43 useful!. We assume that both nearest-
and next-nearest-neighbor interactions are present in this
Ising chain. For this simple spin chain one canexactlydeter-
mine the dynamical spin-pair correlations at all temperatures.
We show that the inclusion of the next-nearest-neighbor in-
teractions leads to the presence of frequencies in the relax-
ation process in this model.

We then consider a richer system, namely, the transverse
Ising model, that is, one in which the transverse field is
present at allt, with both nearest- and next-nearest-neighbor
interactions. We carry out an approximate analytical calcula-
tion of the dynamicalzz correlations for this system in the
high-temperature limit. The reason why we choose to per-
form our calculations in this limit is as follows. The dynami-
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cal spin-pair correlations can be described in terms of static
multipoint correlations. These correlations are, in general,
extremely difficult to calculate for most systems. However,
the calculations become more manageable in the limit the
temperatureT→` when the traces over the Pauli matrices
that constitute the multipoint correlations become trivial to
calculate. For simple spin systems it may turn out that the
behavior of the dynamical correlations atT5` is not very
different from that at any finite temperature aboveTc .

13

Hence the results often are adequate for providing significant
insights into the nature of the spin dynamics atT.Tc .

We find that our results for the dynamical spin-pair cor-
relations for the transverse Ising model with both nearest-
and next-nearest-neighbor interactions differ from the one
with only a nearest-neighbor interaction in a well-defined
way. This is a significant finding in view of the fact that the
presence of the next-nearest-neighbor interactions affect the
time-dependent correlations in a noticeable fashion as we
shall see. For weak next-nearest-neighbor interactions the
character of the frequency spectrum remains almost un-
changed with respect to the nearest-neighbor system. Differ-
ences with respect to the spectrum of the nearest-neighbor
system become readily visible upon strengthening the next-
nearest-neighbor interaction strength to some1

2 of the
nearest-neighbor interaction strength or greater.

II. CONTINUED FRACTION FORMALISM

A. Fundamentals

We carry out our studies using the continued fraction for-
malism. This is sketched below. The Liouville~or Heisen-
berg! equation can be formally solved via this formalism
which was originally due to Mori44 and Dupuis45 and later
extensively developed by Lee, Grigolini, and others.46–51 In
this formalism one attempts to construct satisfactory solu-
tions to two recurrence relations. It turns out that the solution
to these recurrence relations are automatically solutions to
the Liouville ~or Heisenberg! equation for Hermitian~i.e.,
nondissipative! systems. The subject of continued fractions
enters from the fact that one of the key recurrence relations
can be expressed in a continued fraction representation upon
a Laplace transformation. This continued fraction is often
much easier to work with than the recurrence relation itself.

Consider a dynamical variableA(t) in some
d-dimensional vector spaceS . Then A(t) undergoes a
sweeping motion inS governed by the Liouville~or Heisen-
berg! equation of motion. The spaceS is realized by a
physically meaningful inner product; typically this is the
Kubo scalar product.46 The motion ofA in S describes a
trajectory which traces a hypersurface inS . It turns out that
the dimensionalityd and the structure of this hypersurface
s completely characterize the time evolution problem for
Hermitian Hamiltonians. As will become evident below,
d,` completely characterizes nonergodic systems,52 while
d→` characterizes ergodic and partially ergodic
systems.52,53In Sec. III we shall present calculations that will
describe the dynamics of a nonergodic system. In Sec. IV we
shall address the dynamics of an ergodic system. These latter
systems are by far more common in the study of the dynami-
cal response of quantum spin systems.

The time evolution ofA(t) is described by the Liouville
~or Heisenberg! equation of motion

dA~ t !/dt5LA~ t !, ~1!

whereL is the Liouville operator; i.e., it denotes a commu-
tator bracket (i /\)@H,A# for a quantum system. From now
on we shall set\[1. Formally, for an operatorA(t) in S
one can write down an orthogonal expansion~as opposed to
a Taylor expansion in which one must worry about conver-
gence properties!

A~ t !5exp~ iHt !Aexp~2 iHt !5 (
n51

d21

an~ t ! f n , ~2!

where$ f n% is a complete set of orthogonal basis vectors that
spanS . The inner product inS is the Kubo scalar product
defined by

~X,Y!5~b!21E
0

b

da^X~a!Y†&2^X&^Y†&, ~3!

whereb51/kT, k is the Boltzmann constant,X andY are
vectors inS , X(a)5exp(2aH)Xexp(aH), and the angular
brackets denote canonical ensemble averages. Observe that
at theb→0 limit, Eq. ~3! above can be replaced by the usual
fluctuation formula. The individual terms on the right-hand
side of Eq.~2!, i.e., the f n’s and thean(t)’s, are therefore
temperature dependent in such a way that their sum on the
left-hand side of Eq.~2! is temperature independent.

If S is realized by the Kubo scalar product,46 then the
orthogonal$ f n% can be obtained via the following recurrence
relation ~referred to as RR I! for the basis vectors:

f n115L f n1Dnf n21 , 0<n<d21, ~4!

whereDn5( f n , f n)/( f n21 , f n21)[i f ni /i f n21i ,1<n<d21
are the relative norms of the basis vectors referred to as
recurrants. These recurrants play a crucial role in describing
the dynamical spin correlations.

Since Eq.~4! must satisfy Eq.~1!, RR I leads to a second
recurrence relation for thean(t)’s, i.e., the autocorrelation
functions. This recurrence relation, i.e., RR II, is

Dn11an11~ t !52dan~ t !/dt1an21~ t !. ~5!

Thus, RR I and RR II completely determineA(t), which
satisfies the Liouville~or Heisenberg! equation of motion.
Observe thatda0(0)/dt50 is a consequence of RR II and
gives a condition which excludes the exponential function as
a relaxation function from the class of admissible solutions
for Hermitian Hamiltonians.54

Upon Laplace transformation RR II@see Eq.~5!# yields46

the following continued fraction expression fora0(z):
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a0~z!5
1

z1
D1

z1
D2

z1
D3

z1to `

, ~6!

whereDn’s introduced above are static quantities, involving
static correlations, that, in general, depend upon temperature,
wave vector, system size, interaction strength, and other sys-
tem parameters. Formally, ifDn’s are known, the relaxation
function a0(t) can be obtained. Observe that ford,` the
continued fraction in Eq.~6! truncates naturally and hence
can be expressed in terms of a finite number of poles, which
implies that the inverse Laplace transform of Eq.~6!, i.e., the
relaxation function, can be expressed as a collection of co-
sine terms with appropriate amplitudes. Thus, ford,` the
system never relaxes and hence is a completely nonergodic
system.52,54As alluded to above, this case will be realized in
the relaxation processes associated with the Ising system in
Sec. III. For most interacting many-body systems, however,
d→` which can lead to relaxation att→` ~note that
d→` is not a sufficient condition for ergodicity but a nec-
essary one52!. As we shall see in Sec. IV,d→` for the trans-
verse Ising chain. Often, however, the infinite continued frac-
tions are not exactly solvable. We~Ref. 55 and the work of
Senet al. in Ref. 9! have recently developed a reliable ap-
proximation technique to estimate unsolvable infinite contin-
ued fractions. This technique will be used to perform calcu-
lations in Sec. IV below. In what follows, we briefly describe
the method of approximating unsolvable infinite continued
fractions.55–59

B. Estimating unsolvable infinite continued fractions

In the past various groups have truncated infinite contin-
ued fractions using a finite number of levels and anad hoc
truncation function. While using three or five poles with
truncation functions for approximating infinite continued
fractions such as in Eq.~6! yields satisfactory results for a
few classes of infinite continued fractions,60 the form of the
truncation function can only be determined based on some
ansatz or another. Typically, this ansatz is strongly dependent
on the properties of the system under study.

One can argue that the effort one must spend in extracting
a truncation function is no less demanding than in evaluating
the infinite continued fraction itself via some otherbrute
force method. One such approach is to replace the infinite
continued fraction by a finite continued fraction. In this ap-

proach one setsDL50 in Eq. ~6! for some largeL. How
largeL must be is sensitive to the properties of the infinite
continued fraction under study, in particular to then depen-
dence ofDn . It turns out that an infinite continued fraction
can be readily replaced by a finite continued fraction as long
as the overall growth rate ofDn5nx, wherex,2,55,56which
is rather common in the systems that have been studied until
now. For faster growth rates inDn , more sophisticated trun-
cation procedures may work better.55–59 Therefore,L is de-
termined by~i! the sequenceDn , and ~ii ! by the maximum
time t up to which the relaxation function is to be studied. It
turns out that with the ready availability of powerful com-
puters, the evaluation of a finite continued fraction with as
many as 106 poles and subsequent estimation of the relax-
ation functiona0(t) up to t5t5102 are readily possible. In
fact, for many typical infinite continued fractions that appear
in many-body dynamics problems, as few as 103 poles may
be sufficient to faithfully represent the relaxation function up
to long enough times such that the asymptotic behavior of
dynamical correlations can sometimes be reliably extracted
from the available information.

The approximate form ofDn for large n is often moti-
vated by the physical content of the lower orderf n’s and
Dn’s. However, it turns out that for problems often encoun-
tered in many-body canonical ensemble dynamics studies it
may be sufficient to know the first fewDn’s ~say, the first
5–30 or so depending upon the nature of the Hamiltonian, as
stated above! accurately and the rest approximately. It turns
out that often the intermediate- or even long-time behavior of
the relaxation function to be eventually calculated is not too
sensitive to the accuracy of the higher orderDn’s but rather
depends instead more crucially upon the general features of
the higher-orderDn’s.

55–59

As stated earlier, most infinite continued fractions are not
exactly solvable. For these cases, the results obtained with a
large value of truncation levelL can be used to compare with
the results obtained using a slightly smallerL for fixed x and
t. In addition, one should also check whether the finite con-
tinued fraction is sensitive to whetherL is an odd or an even
number. A stable and convergent result is insensitive to the
oddness or evenness ofL. This dependence on the oddness
and the evenness ofL is commonly referred to as theodd-
even effect.55,56

a0(t) can be calculated numerically for various values of
x (0,x,2) andL in this method which is often referred to
in the literature as the direct summation method.55,56 The
computation of the inverse Laplace transform is based on the
paper of Crump,61 who used a Fourier series approximation.
For a given complex-valued functiona0(z), we can obtain
an approximation of its inverse Laplace transforma0(t) by
computing the partial sums of

a0~ t !'
exp~bt!

t F12 a0~b!1 (
k51

` HRea0S b1
ikp

t D cosS kpt

t D 2Ima0S b1
ikp

t D sinS kpt

t D J G , ~7!
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where Re and Im denote real and imaginary parts, respec-
tively, b is a number larger than the maximum of the real
parts of the singularities ofa0(z), and 1/t is the step in
which the summation in the equation above is carried out.

III. RELAXATION IN THE NEXT-NEAREST-NEIGHBOR
ISING CHAIN

A. Relaxation in the nearest-neighbor Ising chain

We consider thes51/2 next-nearest-neighbor Ising chain
described by the Hamiltonian

H52(
i51

N

J1Si
z~Si11

z 1J2/J1Si12
z !, ~8!

where the spin at sitei interacts with its nearest neighbors
and next-nearest neighbors with interaction strengthsJ1 and
J2 , respectively, the spin operatorsSi

a , a5$x,y,z%, at sitei
are given by the Pauli spin matricess i

a , and
Si

a5(\/2)s i
a . We also assume periodic boundary conditions

for our Ising chain. To study the nonequilibrium behavior of
this system we consider any spinSk

z in the system. Since
Sk
z commutes with the Hamiltonian in Eq.~8!, it is a constant
of motion. Let us now assume that one uses a transverse
magnetic field to ‘‘turn’’ this spin toSk

x and the field is then
switched off att50. Sk

x is no longer in a stationary state and
must evolve in time according to the Heisenberg equation of
motion @Eq. ~1!#.

One might interpret the resulting dynamical process as
follows. Let us first focus on the Ising chain with nearest-
neighbor interactions only, i.e.,J250. The transverse spin
Sk
x in an effort to relax to its stationary state now tries to
transfer its excess energy to its nearest neighbors to which it
is coupled byJ1 . However, the neighbors, being in their
stationary states, cannot accept this energy, which must thus
remain on the original site. Therefore, there is no delocaliza-
tion of the excitation energy in this problem. Hence, no spins
other thanSk

x and its two nearest neighbors,Sk21
z and

Sk11
z , can be involved in the time evolution process~in this
connection see Refs. 29 and 26!.

It turns out that the time evolution in the Ising chain can
be characterized by two distinct excitation frequencies. This
implies that the Hilbert space ofSk

x(t) has a dimensionality
d53. The first one is of zero frequency. It corresponds to the
antiparallel state formed by the two nearest-neighbor spins.
The second frequency has magnitude unity and corresponds
to the parallel state formed by the two nearest-neighbor
spins. Observe that the lowest frequency is unrelated to the
lowest-energy state of the system. The transverse dynamics
of an Ising model is, therefore, a rigorously nonergodic pro-
cess in which the time average of an operator willnot equal
its ensemble average.26,52

Choosingf 05Sk
x and using Eq.~2! one finds

f 15J1Sk
y~Sk21

z 1Sk11
z ! ~9!

and

D15~ f 1 , f 1!/~ f 0 , f 0!5~J1
2/2!~114j!, ~10!

wherej5(Sk
y ,Sk

ySk21
z Sk11

z )/x, with x[(Sk
x ,Sk

x). x is often
referred to in the literature as perpendicular or transverse
susceptibility~see Ref. 39 and references therein!. The equi-
librium quantitiesj andx may be assumed to be known for
our purposes here. The calculation off 2 is straightforward.
Using Eqs.~8! and ~4! one obtains

f 252J1
2~jSk

x2Sk21
z Sk

xSk11
z !, ~11!

where

D25~ f 2 , f 2!/~ f 1 , f 1!5~J1
2/2!~124j!. ~12!

It turns out thatf 350 in this problem, which gives us a
Hilbert space withd53 for theq52 Ising model,q being
the coordination number. This result suggests the possibility
of a general relation for the class of Ising dynamics prob-
lems. This relation isd5q11. It can be shown26,43 that this
relation indeed holds true.

GivenD1 andD2 , Eq. ~6! is readily solvable. It turns out
that

a0~ t !5~1/2!@~124j!1~114j!cos~vt !#, ~13!

wherev2[D11D25J1
2 . The other relaxation functions are

a1~ t !5~1/J1!sin~vt !, ~14!

a2~ t !5~1/J1
2!@12cos~vt !#. ~15!

All the higher relaxation functions vanish in this problem.
We have therefore demonstrated that the transverse dynamics
of the Ising model is characterized by two frequencies, a zero
frequency mode and a unit frequency mode, the origin of
these two modes being in the antiparallel and parallel orien-
tations of the nearest-neighbor spins of sitek and these
modes are unaffected by the sign ofJ1 , i.e., by whether we
have a ferromagnetic or an antiferromagnetic exchange inter-
action between the Ising spins.

B. Dn’s for the next-nearest-neighbor Ising chain

Let us now work out the dynamical problem whenJ2
Þ0. To keep the algebra somewhat tractable let us focus on
the simpler case in whichJ15J2[J. The first basis vector
f 05Sk

x . Thus, via RR I,

f 15JSk
y$S1% ~16!

and

D15J2^~1/4!S1
2&5J2~11L!, ~17!

where

S1[Sk21
z 1Sk11

z 1Sk22
z 1Sk12

z ~18!

and

L[2^S21Ŝ2&, ~19!

with

S25Sk21
z Sk22

z 1Sk21
z Sk12

z 1Sk11
z Sk22

z 1Sk11
z Sk12

z ,
~20!
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Ŝ25Sk21
z Sk11

z 1Sk22
z Sk12

z . ~21!

Applying RR I again tof 1 one obtainsf 2 which is

f 25J2Sk
x$L22~S21Ŝ2!% ~22!

and

D25J4~G22L1L2!/~11L!, ~23!

where

G[~3/2124g!, ~24!

g[^S3&, ~25!

S35Sk21
z Sk11

z Sk22
z 1Sk21

z Sk11
z Sk12

z 1Sk22
z Sk12

z Sk21
z 1Sk22

z Sk12
z Sk11

z . ~26!

Continuing in this fashion one finds

f 35J3Sk
yH ~G13L/223/2!

~11L!
S126S3J , ~27!

D35J2
~3G1L!~32L!

~11L!~L12G2G2!
, ~28!

f 45J4Sk
xH F3/22 ~L13G!~L2G!

~L22G2G2! G12
G~L23!

~G12L2L2!
~S21Ŝ2!124S4J , ~29!

where

S45Sk21
z Sk11

z Sk22
z Sk12

z , ~30!

D45J2
~11L!~G2L!

~G22L2L2!
, ~31!

and finally it turns out that

f 550, ~32!

and hence

D550. ~33!

Given thatD550, it implies thatd55 in this problem in
accordance with our expectation thatd5q11, where q
equals the number of spins that interact with sitej , which
here is 4. Thus, the excitation is completely localized at site
j and the relaxation is characterized completely by a finite
number of frequencies as in the nearest-neighbor case. The
D i ’s satisfy the identities

(
i51

5

D i55J2 ~34!

and

D1~D31D4!1D2D454J4. ~35!

Given all these equations one can readily calculate the dy-
namical transverse spin-pair correlation function which is de-
scribed in the following subsection.

C. Calculation of the relaxation function

Using Eq.~6! one can write,

a0~z!5
z41a1z

21a2

z~z415z214!
, ~36!

where

a15~42L! ~37!

and

a25~G2L!. ~38!

The poles ofa0(z) lie at 0,6 i ,62i . Sincev5J we get

a0~ t !5
G2L

4
1
32G

3
cosJt1

3L1G

12
cos2Jt, ~39!

where the zero frequency or translation mode describes the
dynamics when there is an equal number of up and down
orientations of the nearest and next-nearest neighbors. The
higher relaxation functionsa1(t) –a4(t) can also be obtained
via RR II and are listed below for the sake of completeness:

a1~ t !5
1

3J~11L! F ~32G!sinJt1
3L1G

2
sin2JtG , ~40!

a2~ t !5
1

J2~G12L2L2! F ~G2L!~11L!

4
1

L~32G!

3
cosJt1

~L23!~3L1G!

12
cos2JtG , ~41!
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a3~ t !5
1

J3H sinJt2 1

3
sin3JtJ , ~42!

a4~ t !5
1

4
2
1

3
cosJt1

1

12
cos2Jt. ~43!

IV. RELAXATION IN NEXT-NEAREST-NEIGHBOR
TRANSVERSE ISING CHAIN

A. Calculation of Dn’s

The equilibrium properties of the transverse Ising model
and its realization in physical systems have been addressed
by several authors.62–66 The Hamiltonian for our model
which includescompetinginteractions is given by

H52(
i51

N

~J1Si
zSi11

z 2J2Si
zSi12

z !2h(
i51

N

Si
x , ~44!

where J1(.0) is the nearest-neighbor ferromagnetic ex-
change whileJ2(.0) is the next-nearest-neighbor antiferro-
magnetic exchange andh denotes the strength of the trans-
verse field. We assume periodic boundary conditions and
work in the thermodynamic limit. The on-site dynamical
spin-pair correlations of a bulk spin, say,Sk

z , can be written
as ^Sk

z(t)Sk
z(0)&/^Sk

zSk
z&, where the angular brackets denote

canonical ensemble averages. The calculation of the above-
mentioned dynamical correlation function is the main focus
of this work. As mentioned above, it turns out that for
J250 in Eq. ~44!, the dynamicalzz correlations are exactly
solvable8,9 at T5` and are given by

^Sk
z~ t !Sk

z&/^~Sk
z!2&5Ap/2KQ3~pt/2K,q!exp@2~1/2!~12E/K !t2#, a,1, ~45!

^Sk
z~ t !Sk

z&/^~Sk
z!2&5exp@2~1/2!t2#, a51, ~46!

^Sk
z~ t !Sk

z&/^~Sk
z!2&5Apa/2KQ2~pat/2K,q!exp@1~1/2!~12E/K !a2t2#, a.1, ~47!

wherea[h/J1 , K andE are complete elliptic integrals67 of
the first and second kinds of argumenta ~whena,1) and
1/a ~when a.1), and q is the nome defined as
q[exp(2pK8/K), where K8 is the elliptic integral of
complementary argument.67 Time is measured in units of
t52J1t real. The functionsQ2 andQ3 are Jacobi theta func-
tions, which have the expansion67

Q2~z,q!52(
n50

`

q~n11/2!2cos@~2n11!z#, ~48!

Q3~z,q!5112(
n51

`

qn
2
cos~2nz!. ~49!

To study the dynamicalzz spin-pair correlations for
the next-nearest-neighbor transverse Ising chain using
the continued fraction formalism we proceed as follows.
We choose the first basis vectorf 0 in Eq. ~4! to be the dy-
namical variable of interest, namely,Sk

z(t50)[Sk
z . This

choice implies that the dynamical correlation function
a0(t)5^Sk

z(t)Sk
z&/^(Sk

z)2&, the Laplace transform of which
has the continued fraction representation in Eq.~6! above.
Given f 0 and RR I one may now obtain the entire set$ f n%,
which in this case, turns out to be an infinite set. Of course,

in the absence of an exact solution, it is impossible to obtain
the entire set$ f n%. Typically, the best one can do is to obtain
as manyf n’s as possible and get an estimate ofn dependence
of Dn’s therefrom. The basis vectors, i.e., thef n’s, contain
valuable information on how the perturbation imparted to
Sk
z(t50) propagates through the chain which is dictated by
the nature of the spin-spin interactions in the Hamiltonian.
Hence it is important and interesting to study the structure of
these basis vectors, the first five of which, calculated at
T5`, are detailed below. Obviously, in principle, onecan
obtain more than the ones given here. The procedure in-
volved in doing so is straightforward but extremely tedious.

We base our calculations of the relaxation function
a0(t) on the rigorous knowledge of the first five basis vec-
tors and the first fiveDn’s. The rest of theDn’s that enter into
the structure of the continued fraction in Eq.~6! are esti-
mated on the basis of simple extrapolation schemes which
are discussed below. Thus, we believe that the short-time
dynamics of the system obtained by us is highly accurate.
The results for longer times are dependent upon the extrapo-
lation of Dn’s and hence should be accepted as good esti-
mates. The dynamical spin-pair correlations appear to decay
to zero rather rapidly in this problem.

The rigorously known basis vectors and the correspond-
ing Dn’s are as follows:

f 152hSk
y , ~50!

D15h2, ~51!

f 25hSk
x$J1~Sk21

z 1Sk11
z !2J2~Sk22

z 1Sk12
z !%, ~52!
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D25
1

2
~J1

21J2
2!, ~53!

f 352hSk
y$J1

2Sk21
z Sk11

z 2J1J2~Sk21
z Sk22

z 1Sk21
z Sk12

z 1Sk11
z Sk22

z 1Sk11
z Sk12

z 1J2
2Sk22

z Sk12
z %2h2Sk

x$J1~Sk21
y 1Sk11

y !

2J2~Sk22
y 1Sk12

y !%, ~54!

D35h21
1

2
~J1

21J2
2!1

J1
2J2

2

~J1
21J2

2!
, ~55!

f 45
hJ1J2~J1

21J2
2!Sk

x

2~J1
21J2

2!
$J2~Sk21

z 1Sk11
z !1J1~Sk22

z 1Sk12
z !%16hJ1J2Sk

x$J1Sk21
z Sk11

z ~Sk22
z 1Sk12

z !2J2Sk22
z Sk12

z ~Sk21
z

1Sk11
z !%23h2Sk

y$J1
2~Sk21

z Sk11
y 1Sk21

y Sk11
z !2J1J2~Sk22

z Sk21
y 1Sk22

y Sk21
z 1Sk22

z Sk11
y 1Sk22

y Sk11
z 1Sk12

z Sk21
y

1Sk12
y Sk21

z 1Sk12
z Sk11

y 1Sk12
y Sk11

z !1J2
2~Sk22

z Sk12
y 1Sk22

y Sk12
z !%12h2Sk

z$J1
2Sk21

z Sk11
z 2J1J2~Sk21

z Sk12
z 1Sk11

z Sk22
z

1Sk11
z Sk12

z !1J2
2Sk22

z Sk12
z %1h2Sk

x$J1
2~Sk22

z Sk21
x 1Sk12

z Sk11
x !2J1J2~Sk23

z Sk22
x 1Sk23

z Sk21
x 1Sk13

z Sk12
x 1Sk13

z Sk11
x

1Sk1
z Sk11

x 1Sk21
z Sk22

x 1Sk11
z Sk21

x 1Sk11
z Sk12

x !1J2
2~Sk24

z Sk22
x 1Sk14

z Sk12
x !%, ~56!

D45N 4 /D4 , ~57!

N 456h2J1
615J1

6J2
2130h2J1

4J2
218J1

4J2
4130h2J1

2J2
415J1

2J2
616h2J2

6 ,

D45~J1
21J2

2!~J1
412h2J1

214J1
2J2

212h2J2
21J2

4!, ~58!

f 55224J1
2J2

2Sk
y$Sk21

z Sk11
z Sk22

z Sk12
z %24h2J1

2J2Sk
y$Sk22

x ~Sk23
z Sk21

z 1Sk21
z Sk11

z 1Sk23
z Sk11

z !1Sk21
x ~Sk23

z Sk11
z 1Sk22

z Sk12
z !

1Sk11
x ~Sk22

z Sk12
z 1Sk21

z Sk13
z !1Sk12

x ~Sk21
z Sk13

z 1Sk21
z Sk11

z 1Sk11
z Sk13

z !%14h2J1~J1
21J2

2!Sk
y$Sk22

z Sk21
x Sk11

z

1Sk21
z Sk11

x Sk12
z %24h2J2

3Sk
y$Sk24

z Sk22
x Sk12

z 1Sk22
z Sk12

x Sk14
z %14h2J1J2

2Sk
y$Sk22

x ~Sk24
z Sk21

z 1Szk24Sk11
z 1Sk12

z Sk21
z

1Sk12
z Sk23

z !1Sk21
x ~Sk12

z Sk23
z 1Sk12

z Sk11
z 1Sk23

z Sk2
z !1Sk11

x ~Sk12
z Sk13

z 1Sk22
z Sk21

z 1Sk13
z Sk22

z !1Sk12
x ~Sk13

z Sk22
z

1Sk11
z Sk22

z 1Sk21
z Sk14

z 1Sk11
z Sk14

z !%214h2J1
2J2Sk

x$Sk22
z Sk21

y Sk11
z 1Sk21

z Sk11
y Sk12

z %212h2J1
2J2Sk

x$Sk21
z Sk22

y Sk11
z

1Sk11
z Sk21

y Sk12
z 1Sk22

z Sk11
y Sk21

z 1Sk21
z Sk12

y Sk11
z %112h2J1J2

2Sk
x$Sk22

y Sk12
z ~Sk21

z 1Sk11
z !1Sk22

z Sk12
z ~Sk21

y 1Sk11
y !

1Sk22
z Sk12

z ~Sk21
z 1Sk11

z !%22h2J1
2J2Sk

x$Sk21
z Sk22

y Sk23
z 1Sk23

z Sk21
y Sk22

z 1Sk12
z Sk11

y Sk13
z 1Sk13

z Sk12
y Sk11

z %

12h2J1J2
2Sk

x$Sk24
z Sk22

y ~Sk23
z 1Sk21

z !1Sk23
z Sk21

y Sk11
z 1Sk21

z Sk11
y Sk13

z 1Sk12
y Sk14

z ~Sk11
z 1Sk13

z !%2h3J1
2Sk

x$Sk22
y Sk1

x

1Sk12
y Sk11

x %1h3J1J2Sk
x$Sk23

y ~Sk22
x 1Sk21

x !1Sk21
y ~Sk22

x 1Sk11
x !1Sk11

y ~Sk12
x 1Sk1

x !1Sk13
y ~Sk12

x 1Sk11
x !%,

2h3J2
2Sk

x$Sk24
y Sk22

x 1Sk14
y Sk12

x %25h3J1
2Sk

z$Sk21
y Sk11

z 1Sk21
z Sk11

y %15h3J1J2Sk
z$Sk22

y ~Sk21
z 1Sk11

z !1Sk21
y ~Sk22

z

1Sk12
z !1Sk11

y ~Sk22
z 1Sk12

z !1Sk12
y ~Sk21

z 1Sk11
z !%25h3J2

2Sk
z$Sk22

y Sk12
y 1Sk22

z Sk12
y %16h3J1

2Sk
y$Sk21

y Sk11
y %

26h3J1J2Sk
y$Sk22

y Sk21
y 1Sk22

y Sk11
y 1Sk12

y Sk21
y 1Sk12

y Sk11
y %16h3J2

2Sk
y$Sk22

y Sk12
y %22h2J1

2J2Sk
y$Sk21

x 1Sk11
x %

2h2J1
2J2Sk

y$Sk22
x 1Sk12

x %2~a1/2r!Sk
x$Sk22

y 1Sk12
y %1~a2/2r!Sk

x$Sk21
y 1Sk11

y %1~a3 /r!Sk
y$Sk21

z Sk11
z %

1~a4 /r!Sk
y$Sk22

z Sk21
z 1Sk22

z Sk11
z 1Sk12

z Sk21
z 1Sk12

z Sk11
z %2~a5 /r!Sk

y$Sk22
z Sk12

z %, ~59!

D55N 5 /D5 , ~60!

N 55~J1
21J2

2!~4h2J1
1014J1

10J2
2110h4J1

81108h2J1
8J2

215J1
8J2

4176h6J1
61312h4J1

6J2
21444h2J1

6J2
41380h6J1

4J2
21532h4J1

4J2
4

136J1
6J2

61380h6J1
2J2

41402h2J1
4J2

61284h4J1
2J2

6176h6J2
615J1

4J2
8194h2J1

2J2
8110h4J2

814J1
2J2

1014h2J2
10!, ~61!

D55~J1
412h2J1

214J1
2J2

212h2J2
21J2

4!~6h2J1
615J1

6J2
2130h2J1

4J2
218J1

4J2
4130h2J1

2J2
415J1

2J2
616h2J2

6!, ~62!

where
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a15h2J2~5J1
622h2J1

4110J1
4J2

2238h2J1
2J2

41J1
2J2

428h2J2
412J2

6!,

a25h2J1~2J1
628h2J1

41J1
4J2

2238h2J1
2J2

2110J1
2J2

422h2J2
415J2

6!,

a354hJ1
2~h2J1

412J1
4J2

224h4J1
213h2J1

2J2
224h4J2

22J1
2J2

42h2J2
42J2

6!,

a452hJ1J2~J1
62J1

4J2
218h4J1

226h2J1
2J2

218h4J2
22J1

2J2
41J2

6!,

and

a554hJ2
2~J1

61h2J1
41J1

4J2
214h4J1

223h2J1
2J2

214h4J2
222J1

2J2
42h2J2

4!, while r5J1
412h2J1

214J1
2J2

212h2J2
21J2

4).

The reader may recall that dynamical correlations for the
nearest-neighbor transverse Ising model are exactly solvable
in the limit T→`. Thus, by settingJ250 in the above ex-
pressions forf n andDn one immediately recovers the corre-
sponding expressions in Ref. 8, and the simple linear behav-
ior of Dn’s. In addition to checking our results for the
J250 case, we have also checked the orthogonality that
must be satisfied by the individualf n’s, i.e., ^ f nf m&50 for
nÞm. The f n’s given above satisfy the orthogonality crite-
ria, which leads us to believe that the expressions given
above are algebraically correct.

An interesting feature of theDn’s above is that up toD4
the expressions remain invariant upon interchange ofJ1 and
J2 . This symmetry is broken atD5 and above, where inter-
changing ofJ1 andJ2 leads to the incorrect expression for
Dn’s. It turns out, however, that the invariance under ex-
change ofJ1 andJ2 in the expressions for thef n’s is broken
already atf 2 , which is expected from the fact that the exci-
tations propagate farther out from sitek compared to what
would have been the case ifJ250 due to the next-nearest-
neighbor interaction. This breakdown of symmetry simply
does not show up in theDn’s for n<4. This is so because the
Dn’s are the ratios of the length squared of the basis vectors,
and hence they contain thermally averaged information~with
all the energy states being equally weighted in theT→`
limit ! on the microscopic details of the propagation of a per-
turbation fromk to its neighborhood in real space. However,
f 5 is constructed out of the commutation between the Hamil-
tonian in Eq.~44! and f 4 and f 3 contain cubic terms in the
field strengthh with asymmetric couplings withJ1 and J2
@observe the last two sets of terms involvingh3 in Eq. ~59!#.
As a consequence, the level of complexity off 5 is signifi-
cantly higher than the lower-orderf n’s.

B. Calculation of the relaxation function

The behavior ofDn as a function ofn is rather compli-
cated forJ2Þ0. The behavior ofDn versusn for 1<n<5 is
shown in Fig. 1 for 0<J2<J152.Dn increases linearly with
n for J250 ~i.e., for the nearest-neighbor transverse Ising
model! and very nearly linearly withn for J25J152. In the
intermediate regime forJ25

1
4,
1
2,1 cases it turns out that

Dn’s behave in a superlinear fashion withn for smalln. It is
not clear from the completed calculations~i.e., up toD5) as
to how Dn would behave forn..5 for J25

1
4,
1
2,1. Based

upon the formulas in Eqs.~51!, ~53!, ~55!, ~57!–~59!, and
~60!–~62! and the visible trends in the growth ofDn versusn

we assume that eventuallyDn behaves linearly with respect
to n and more importantly that there are no intersections
between the curves forDn for different magnitudes ofJ2 for
J2<J1 . This assumption can be defended on somewhat in-
tuitive grounds as follows.

If the plots ofDn versusn for two distinct values ofJ2
were to intersect, then, almost inevitably, such behavior
would have manifested itself in terms of certain frequency
peak~s! in the spectral function corresponding to thezz dy-
namical spin-pair correlation function for the next-nearest-
neighbor transverse Ising model.68 Physically, such a drastic
effect is unexpected when the next-nearest-neighbor interac-
tion is weak, i.e.,J2,J1 . After all, the magnitude ofJ2 is
weaker than that ofJ1 and hence its effect should be correc-
tive with regard to the spectral function one obtains for the
nearest-neighbor model, not a drastically different one.

Very different physical behavior of the relaxation process
can occur if, however,J2.J1 . Such a scenario would be
interesting from a theoretical standpoint for the following
reasons. First, the rate of growth ofDn’s with respect ton
could be very different from linear behavior. This is evident
from the results forJ254 in Fig. 2. Second, there exists the
possibility of finding well-defined peaks and/or dips in the
growth profile ofDn versusn as in theJ256 case of Fig. 2.
What these mean is that one can obtain systems with a very
different dynamical response ifJ2.J1 . Such a response
could be characterized by well-defined peaks and a rich va-
riety of high- and low-frequency behavior of the spectral
function. Interestingly, in the regimeJ2 /J1→` one will

FIG. 1. Plot ofDn versusn for J2<J152 with h[1. Observe
that the growth ofDn is linear forJ250 and is very nearly linear
~with slight oscillations about linearity! for n.3 for J25J152.
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again recover the small linear growth rate ofDn versusn.
Due to the lack of knowledge of higherDn’s for the J2.J1
case we do not carry out any approximate analysis of the
relaxation function for these cases. In what follows, we re-
turn to our approximate calculations of the relaxation and
spectral functions for theJ2<J1 cases discussed in Fig. 1.

To estimate the relaxation function a0(t)
[^Sk

z(t)Sk
z(0)&/^(Sk

z)2& for the next-nearest-neighbor trans-
verse Ising model atT→` it is imperative to have some
knowledge of the higherDn’s for various J2’s. Given that
J250 is exactly known, we focus upon the cases with
J2,J1 in this study. We assume that forJ25

1
4,
1
2,1, the su-

perlinear behavior ofDn with respect ton will eventually
become linear inn for n..5. Such linearity also appears
for the caseJ25J152. On the basis of our calculations of
D12D5 we find that the following simple extrapolation
schemes are reasonable estimates forDn for n.5. The ex-
trapolation schemes invoked here are based upon the magni-
tudes ofD4 andD5 for J25

1
4,
1
2,1 cases and ofD3 , D4 , and

D5 for the J252 case. These are as follows.
Thus, forJ25

1
4,

Dn51.42181~n24!14.26086, n>5, ~63!

for J25
1
2,

Dn52.15384~n24!14.94195, n>5, ~64!

for J251,

Dn52.75445~n24!16.78139, n>5, ~65!

and forJ252,

Dn53~n23!17, n>6. ~66!

Using these extrapolation schemes we obtaina0(t) via the
direct summation method discussed in Sec. II B with 10 000
poles in the calculation ofa0(t) for each chosenJ2 . We have
tested our results for sensitivity to truncation of the contin-
ued fraction at odd and at even levels and found no odd-even
effect within the accuracy of our calculations. Our results are
essentially invariant upon changes of a few percent in the
parameters mentioned in the above extrapolation schemes.

Obviously, by definition,a0(t)→1 ast→0. This is indeed
the case in all our calculations. In Fig. 3 we show our results
for a0(t) for 2<t<10, which appears to be the more inter-
esting time regime in this problem. Let us briefly discuss the
relaxation processes depicted in this figure.

The solid line in Fig. 3 describes the relaxation process
for the exactly solvable limit in whichJ250 anda0(t) is a
Gaussian function@see Eq.~46!#. The dot-dashed line with
the deepest minima att'4.4 is for the caseJ25

1
4. The

minima becomes slightly shallower and occurs att'4.2 for
J25

1
2 as shown using the second dot-dashed line. The dip

mentioned above disappears forJ251 which seems to ex-
hibit slower relaxation than for theJ250 case as shown in
the dotted curve. Not surprisingly, the relaxation process
slows down further asJ2 is tuned up to 2, i.e., when
J15J2 . The time domain results demonstrate the sensitivity
of a0(t) to small changes inJ2 much better than the fre-
quency domain results. This is typically the case in many
calculations. This is because a certain degree of inaccuracy

FIG. 2. Plot ofDn versusn for J2.J1 with h[1. Observe the
dip in the growth ofDn for J25653J1 at n54. See the discussion
in the text for more on such features in the growth ofDn’s.

FIG. 3. Plot of the dynamical spin-pair corre-
lation function for the next-nearest-neighbor
transverse Ising model withJ152, h51 at
T5`. The solid line represents theJ250 case
for which a0(t) is a Gaussian. The dot-dashed
line with a minimum att'4.4 and the same with
a minimum att'4.2 representJ25

1
4 and J25

1
2

cases, respectively. The dotted line is forJ251
while the dashed line is forJ252.
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inevitably creeps in from the numerical calculation that is
involved in obtaining the frequency domain result.

In Fig. 4 we present the spectral function corresponding to
a0(t) presented in Fig. 3. The dotted line represents the spec-
tral function for theJ250 case. The solid line represents the
same for theJ251 case and the dashed line shows the
J252 case. It is obvious from Fig. 4 that the system exhibits
progressively slower dynamics asJ2 is tuned up from
J250 to J25J152 as expected from the results in Fig. 3.
This is manifested via the central peak ina0(v) becoming
progressively dominant, thus showing that low frequency
and hence longer time relaxation processes are becoming
more and more important asJ2 competes in magnitude with
J1 . The reader may note that the small oscillations in
a0(v) in Fig. 4 enter from numerical errors in computing
a0(v) and have no physical significance.

V. SUMMARY

In this work we have discussed the effects of incorporat-
ing second-nearest-neighbor interactions on the relaxation
processes in simples5 1

2 spin chains. To begin with, we have
demonstrated via an exact calculation that the introduction of
next-nearest-neighbor interactions results in the entry of a
multitude of frequencies in the characterization of the dy-
namical process. This point becomes especially clear when
one considers a nonergodic dynamical system such as the
transverse dynamics of the Ising model~see Sec. III! which
is characterized by a finite number of frequencies.

We next consider the dynamics of one of the simplest
quantum spin chains, namely, thes5 1

2 transverse Ising
chain, and consider relaxation processes in this system in the
presence of next-nearest-neighbor interactions. We show that
for this ergodic system, the relaxation processes are signifi-
cantly affected at intermediate and at long times~see Fig. 3!.
The effects are rather distinct when one considers the spec-
tral function corresponding to the relaxation functions stud-
ied ~see Fig. 4!.

The results presented in this paper are valid for the tem-
perature regimeT→`. The effects of incorporating second-
nearest-neighbor interactions are not obvious in the study of
low-T dynamics from our work. One might expect that if the
ground state and the low-lying states of the system are
strongly affected by a competitiveJ2 the low-temperature
dynamics will be significantly altered with respect to the
nearest-neighbor model. Also, the calculations discussed in
this article strongly suggest that similar behavior of relax-
ation processes is expected for other simple quantum spin
chains such as theXY andXXZ chains. The effect of includ-
ing the next-nearest-neighbor interactions on relaxation pro-
cesses in ergodic systems is unknown in systems26 with lat-
tice dimension greater than 1.
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