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Relaxation in S=1/2 quantum spin chains: The role of second neighbor interactions
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Most of the existing dynamical studies in one dimension on magnetic insulators have considered the sim-
plest spin models with nearest-neighbor interactionseéih systems, however, it is possible that longer range
interactions are not entirely negligible. It is expected that the inclusion of next-nearest-neighbor interactions
between spins in one-dimensional spin models will introduce a multitudewfrequencies in addition to the
ones already present in the dynamics that arises due to nearest-neighbor interactions. We first pegaent an
solution for the dynamicalxx-spin-pair correlations in an Ising chain with both nearest- and next-nearest-
neighbor interactions to confirm our expectation. We next show, via an approximate analytical calculation, that
the dynamicak zspin-pair correlations in the next-nearest-neighbor transverse Ising chain when plotted as a
function of time is noticeably different with respect to the exactly solvable nearest-neighbor transverse Ising
chain atT— when the next-nearest-neighbor interactior>ig of the magnitude of the nearest-neighbor
interaction. The effects could be fairly subtle in the time domain representation and in the spectral function
when these additional interactions are weak., <% of the nearest-neighbor interaction magnifudehe
general conclusions reached in this work are expected to be valid for other simple quantum spin models such
as theXY and XXZ models in one dimension.

I. INTRODUCTION it turns out that the existence of longer-range interactions
may lead to the presence of frequencies that characterize the
The study of the time-dependent behavior of simple quandynamical behavior of the spin system under stt¥djhus,
tum spin systems, especially in one dimension, has seen cotlie dynamical spin-pair correlations and the dynamical struc-
siderable progress within the past couple of decad®d  ture factors of these systems could differ visibly when these
significant amount of literature consisting of experimetftal additional interactions are taken into account.
and theoretical work now exists on the dynamical behavior The study of quantum spin dynamics is a challenging sub-
of the transverse Ising model which is regarded as one of thigect. It is seldom possible to carry out calculations of the
simplest quantum spin systems with nontrivial spindynamical correlations exactly. However, the simple spin
dynamics’~*3 The dynamical correlations in the=1/2 XY  systems among others can often be studied approximately
(Refs. 14—-1Y and XXZ model¢8-22have also been studied and rather reliably using certain recently developed tech-
in much detail aff=0 and atT=. In addition, there also niques. We therefore explore the question of the role of next-
exists a handful ofexactresults that are available for the nearest-neighbor interactions in affecting the system dynam-
transverse Ising an&Y model§°*-1in one dimension. ics using the following approach.
Very little, however, is known about the dynamical spin-pair  We first study the transversge., xx-) dynamical spin-
correlations in two and three dimensiof§s13232%All of the  pair correlations in an Ising chain with a transverse field that
theoretical studies mentioned above have been carried oig switched off at some time=0 (for related work the reader
for quantum spin Hamiltonians with nearest-neighbor inter-may find Refs. 27—-43 usefulWe assume that both nearest-
actions. In this work we shall focus our attention on theand next-nearest-neighbor interactions are present in this
extent to which spin dynamics is sensitive to the inclusion oflsing chain. For this simple spin chain one eactlydeter-
next-nearest-neighbor interactions in one-dimensional sysnine the dynamical spin-pair correlations at all temperatures.
tems. We show that the inclusion of the next-nearest-neighbor in-
In real magnetic systems it is quite possible that the spinteractions leads to the presence of frequencies in the relax-
spin interactions may not be precisely nearest neighbor iation process in this model.
nature. While the nearest-neighbor interaction may be the We then consider a richer system, namely, the transverse
dominant interaction the second- and third-neighbor interaclsing model, that is, one in which the transverse field is
tions may be weak but non-negligible. While ignoring thesepresent at alt, with both nearest- and next-nearest-neighbor
weak longer-range interactions may be adequate for studyinigteractions. We carry out an approximate analytical calcula-
the equilibrium critical properties of quantum spin mod@&ls, tion of the dynamicakzz correlations for this system in the
it does not necessarily follow that the same would be true fohigh-temperature limit. The reason why we choose to per-
their dynamical behavior as well at all temperatures. In factform our calculations in this limit is as follows. The dynami-
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cal spin-pair correlations can be described in terms of static The time evolution ofA(t) is described by the Liouville

multipoint correlations. These correlations are, in general(or Heisenbergequation of motion

extremely difficult to calculate for most systems. However,

the calculations become more manageable in the limit the

temperatureT —«~ when the traces over the Pauli matrices

that constitute the multipoint correlations become trivial to

calculate. For simple spin systems it may turn out that thgvhereL is the Liouville operator; i.e., it denotes a commu-

behavior of the dynamical correlations Bt is not very tator bracket i/%)[H,A] for a quantum system. From now

different from that at any finite temperature abng.” on we shall sefi=1. Formally, for an operatoA(t) in .

Hence the results often are adequate for providing significandne can write down an orthogonal expansias opposed to

insights into the nature of the spin dynamicsTat T, . a Taylor expansion in which one must worry about conver-
We find that our results for the dynamical spin-pair cor-gence propertigs

relations for the transverse Ising model with both nearest-

and next-nearest-neighbor interactions differ from the one

with only a nearest-neighbor interaction in a well-defined ) .

way. This is a significant finding in view of the fact that the A(t)zexp(|Ht)Aexp(—|Ht):gl an(t)fy, @

presence of the next-nearest-neighbor interactions affect the

time-dependent correlations in a noticeable fashion as we

shall see. For weak next-nearest-neighbor interactions th&here{f.} is a complete set of orthogonal basis vectors that

character of the frequency spectrum remains almost urspan”. The inner product i is the Kubo scalar product

changed with respect to the nearest-neighbor system. Diffedefined by

ences with respect to the spectrum of the nearest-neighbor

system become readily visible upon strengthening the next-

nearest-neighbor interaction strength to soseof the (X Y)=(,8)*fﬁda(X(a)YT)—(X)(YT) (3)

nearest-neighbor interaction strength or greater. ’ 0 '

dA(t)/dt=LA(1), 1)

d-1

where 8= 1/KT, k is the Boltzmann constan¥ andY are
vectors in., X(«)=exp(—aH)Xexp(H), and the angular
A. Fundamentals brackets denote canonical ensemble averages. Observe that

We carry out our studies using the continued fraction for—at the—0 limit, Eq. (3) above can be replaced by the usual
) y o 9 L ! fluctuation formula. The individual terms on the right-hand
malism. This is sketched below. The Liouviller Heisen-

berg equation can be formally solved via this formalism side of Eq.(2), ie., thefp’s and theay(t)'s, are _therefore
which was originally due to Moff and Dupuié® and later temperature dependenF in such a way that their sum on the
; S o1 left-hand side of Eq(2) is temperature independent.
extensively developed by Lee, Grigolini, and oth&=!In - .
. : ) If . is realized by the Kubo scalar prodiétthen the
this formalism one attempts to construct satisfactory So'”brtho onal{f,.} can be obtained via the following recurrence
tions to two recurrence relations. It turns out that the solution o9 n . g.
to these recurrence relations are automatically solutions IBeIatlon (referred to as RR)lfor the basis vectors:
the Liouville (or Heisenberp equation for Hermitian(i.e.,
nondissipative systems. The subject of continued fractions foo1=Lf+Afr,, O<n=sd—1, (4)
enters from the fact that one of the key recurrence relations
can be expressed in a continued fraction representation upon
a Laplace transformation. This continued fraction is ofterwhere An=(f,,f)/(fo_1,fn-1)=[fall/[f1-4l,1sn<d-1
much easier to work with than the recurrence relation itselfare the relative norms of the basis vectors referred to as
Consider a dynamical variableA(t) in some recurrants These recurrants play a crucial role in describing
d-dimensional vector space”. Then A(t) undergoes a the qunam|ca| spin corre_:latmns.
sweeping motion i’ governed by the Liouvill¢or Heisen- Since Eq.(4) must satisfy Eq(1), RR | leads to a second
berg equation of motion. The space” is realized by a recurrence relatlon for than(t)’g, ie., the auto'correlatlon
physically meaningful inner product; typically this is the functions. This recurrence relation, i.e., RR I, is
Kubo scalar produc¢® The motion ofA in .~ describes a
trajectory which traces a hypersurfacedn It turns out that
the dimensionalityd and the structure of this hypersurface
o completely characterize the time evolution problem for
Hermitian Hamiltonians. As will become evident below, Thus, RR | and RR Il completely determirf(t), which
d<o completely characterizes nonergodic systémshile  satisfies the Liouville(or Heisenberyy equation of motion.
d—o characterizes ergodic and partially ergodic Observe thatday(0)/dt=0 is a consequence of RR Il and
systems?°3In Sec. Il we shall present calculations that will gives a condition which excludes the exponential function as
describe the dynamics of a nonergodic system. In Sec. IV wa relaxation function from the class of admissible solutions
shall address the dynamics of an ergodic system. These lattear Hermitian Hamiltonians?
systems are by far more common in the study of the dynami- Upon Laplace transformation RR [isee Eq(5)] yields*®
cal response of quantum spin systems. the following continued fraction expression fag(z):

1. CONTINUED FRACTION FORMALISM

Anii@n41(t)=—dap(t)/dt+an_y(1). ®)
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proach one setd, =0 in Eq. (6) for some largeL. How

a(2)= A, ' ©) largeL must be is sensitive to the properties of the infinite
z+ — A continued fraction under study, in particular to thelepen-
74— 2 dence ofA,. It turns out that an infinite continued fraction
- A can be readily replaced by a finite continued fraction as long
z+to © as the overall growth rate @f,=n*, wherex< 2,°**®which

is rather common in the systems that have been studied until

whereA s introduced above are static quantities, involving NoW. For faster growth rates i, , more sophisticated trun-
static correlations, that, in general, depend upon temperaturéation procedures may work bettér>® Therefore L is de-
wave vector, system size, interaction strength, and other syéermined by(i) the sequencd,,, and(ii) by the maximum
tem parameters. Forma”y, ﬁn's are known, the relaxation time 7 up to which the relaxation function is to be studied. It
function ay(t) can be obtained. Observe that it the  turns out that with the ready availability of powerful com-
continued fraction in Eq(6) truncates natura”y and hence puterS, the evaluation of a finite continued fraction with as
can be expressed in terms of a finite number of poles, whichany as 10 poles and subsequent estimation of the relax-
implies that the inverse Laplace transform of B, i.e., the  ation functionay(t) up tot=r= 10" are readily possible. In
relaxation function, can be expressed as a collection of cofact, for many typical infinite continued fractions that appear
sine terms with appropriate amplitudes. Thus, def= the  in many-body dynamics problems, as few as poles may
system never relaxes and hence is a completely nonergodi€ sufficient to faithfully represent the relaxation function up
systen?>>*As alluded to above, this case will be realized in to long enough times such that the asymptotic behavior of
the relaxation processes associated with the Ising system fiynamical correlations can sometimes be reliably extracted
Sec. lIl. For most interacting many-body systems, howeverfrom the available information.
d—o which can lead to relaxation at—o (note that The approximate form oA, for large n is often moti-
d— is not a sufficient condition for ergodicity but a nec- vated by the physical content of the lower ordgts and
essary on®). As we shall see in Sec. I\d— for the trans-  An's. However, it turns out that for problems often encoun-
verse Ising chain. Often, however, the infinite continued fractered in many-body canonical ensemble dynamics studies it
tions are not exactly solvable. WRef. 55 and the work of may be sufficient to know the first few's (say, the first
Senet al. in Ref. 9 have recently developed a reliable ap- 5—30 or so depending upon the nature of the Hamiltonian, as
proximation technique to estimate unsolvable infinite contin-Stated aboveaccurately and the rest approximately. It turns
ued fractions. This technique will be used to perform calcu-0ut that often the intermediate- or even long-time behavior of
lations in Sec. IV below. In what follows, we briefly describe the relaxation function to be eventually calculated is not too
the method of approximating unsolvable infinite continuedsensitive to the accuracy of the higher ordeys but rather
fractions>>—>° depends instead more crucially upon the general features of
the higher-orden\ ,'s.>%~%°

As stated earlier, most infinite continued fractions are not
exactly solvable. For these cases, the results obtained with a
large value of truncation levél can be used to compare with
the results obtained using a slightly smallefor fixed x and

In the past various groups have truncated infinite contin+r. In addition, one should also check whether the finite con-
ued fractions using a finite number of levels andaghhoc  tinued fraction is sensitive to whethkris an odd or an even
truncation function. While using three or five poles with number. A stable and convergent result is insensitive to the
truncation functions for approximating infinite continued oddness or evenness bf This dependence on the oddness
fractions such as in Eq6) yields satisfactory results for a and the evenness &f is commonly referred to as thedd-
few classes of infinite continued fractioffsthe form of the  even effect>*®
truncation function can only be determined based on some ay(t) can be calculated numerically for various values of
ansatz or another. Typically, this ansatz is strongly dependemt (0<x<(2) andL in this method which is often referred to
on the properties of the system under study. in the literature as the direct summation methoef. The

One can argue that the effort one must spend in extractingomputation of the inverse Laplace transform is based on the
a truncation function is no less demanding than in evaluatingaper of Crumg§! who used a Fourier series approximation.
the infinite continued fraction itself via some othlerute  For a given complex-valued functicm,(z), we can obtain
force method. One such approach is to replace the infinitean approximation of its inverse Laplace transfoag{t) by
continued fraction by a finite continued fraction. In this ap- computing the partial sums of

B. Estimating unsolvable infinite continued fractions
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where Re and Im denote real and imaginary parts, respeevhereé=(S),S/S;_1St. 1)/ x, with x=(S;,Sy). x is often
tively, b is a number larger than the maximum of the realreferred to in the literature as perpendicular or transverse
parts of the singularities ofip(z), and 1f is the step in  susceptibility(see Ref. 39 and references theyjefhe equi-
which the summation in the equation above is carried out. librium quantitiesé and y may be assumed to be known for
our purposes here. The calculationfofis straightforward.

lIl. RELAXATION IN THE NEXT-NEAREST-NEIGHBOR Using Egs.(8) and(4) one obtains
ISING CHAIN
fo=233(6S— S 1SSk ), (1D
A. Relaxation in the nearest-neighbor Ising chain h
where
We consider thes=1/2 next-nearest-neighbor Ising chain
described by the Hamiltonian A= (fy,fo)/(f1,F1)=(J312)(1—4¢). (12
N It turns out thatf;=0 in this problem, which gives us a
H=->, J1SH (S 1+ 3213,5, ), (8) Hilbert space withd=3 for theg=2 Ising model,q being
=1

the coordination number. This result suggests the possibility

. o . ) of a general relation for the class of Ising dynamics prob-
where the spin at site interacts with its nearest neighbors |gms. This relation igl=q+ 1. It can be show#“*3that this
and next-nearest neighbors with interaction strengthand  (g|ation indeed holds true.

J2, respectively, the spin operatd®§, a={x,y,z}, at sitei GivenA; andA,, Eq.(6) is readily solvable. It turns out
are given by the Pauli spin matricesri, and that

Si=(#/2)o{. We also assume periodic boundary conditions

for our Ising chain. To study the nonequilibrium behavior of ag(t)=(12[(1-4&)+(1+4é)codwt)], (13
this system we consider any sp8§ in the system. Since

i L0 TER o wherew?=A,+A,=J2. The other relaxation functions are
S commutes with the Hamiltonian in E¢B), it is a constant @ TRT AT

of moti(_)n..Let us now assume that one uses a transverse a,(t)=(1/,)sin(wt), (14)
magnetic field to “turn” this spin toSs and the field is then

switched off att=0. S} is no longer in a stationary state and a,(t)=(110%)[1—-coq wt)]. (15)
must evolve in time according to the Heisenberg equation of . . . o
motion[Eq. (1)]. All the higher relaxation functions vanish in this problem.

One might interpret the resulting dynamical process adVe have therefore demonstrated that the transverse dynamics
follows. Let us first focus on the Ising chain with nearest-Of the Ising model is characterized by two frequencies, a zero
neighbor interactions only, i.eJ,=0. The transverse spin frequency mode and a unit frequency mode, the origin of
SSin an effort to relax to its stationary state now tries to thgse two modes being m_the antlpe}rallel and parallel orien-
transfer its excess energy to its nearest neighbors to which §gtions of the nearest-neighbor spins of siteand these
is coupled byJ;. However, the neighbors, being in their Modes are unaffected by the signXf, i.e., by whether we
stationary states, cannot accept this energy, which must th{§2ve & ferromagnetic or an antiferromagnetic exchange inter-
remain on the original site. Therefore, there is no delocalizaCtion between the Ising spins.
tion of the excitation energy in this problem. Hence, no spins

other thanSkX and its two nearest neighborsﬁ_l and B. A,’s for the next-nearest-neighbor Ising chain
St+1. can be involved in the time evolution proce#s this Let us now work out the dynamical problem whén
connection see Refs. 29 and)26 #0. To keep the algebra somewhat tractable let us focus on

It turns out that the time evolution in the Ising chain canthe simpler case in which;=J,=J. The first basis vector
be characterized by two distinct excitation frequencies. Thisr{O:SkX_ Thus, via RR |,

implies that the Hilbert space &(t) has a dimensionality
d= 3. The first one is of zero frequency. It corresponds to the f,=39{S:} (16)
antiparallel state formed by the two nearest-neighbor spins.
The second frequency has magnitude unity and correspon@i‘d
to the parallel state formed by the two nearest-neighbor

spins. Observe that the lowest frequency is unrelated to the A1232<(1/4)S§>:‘]2(1+A)' (17)
lowest-energy state of the system. The transverse dynamigsere
of an Ising model is, therefore, a rigorously nonergodic pro-
cess in which the time average of an operator wit equal S=F +S +SF S, (18)
its ensemble averagé>?
Choosingf,= S; and using Eq(2) one finds and
f1=31SU(S_ 1+ Sk 1) ©) A=2(S+S,), (19
with
and

S,—S. S
Ar=(f1 F)I(fo. f)= (322 (1+48),  (10) T 20
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S$,=F S+ LS. (21) A,=J4T—2A+A?)/(1+A), (23
Applying RR | again tof; one obtaing, which is where
f,=32SYA—2(S,+S,)} (22) I'=(3/2+24y), (24)
and ¥Y=(Ss), (25
|
S5=Sk_ 1S 1Sk 2+ S 1Sk 1Sk 2T Sk- 28K 28k 1+ Sk oSk 28K+ 1+ (26)
Continuing in this fashion one finds
£l PPy (F+3A/2_3/2)S 6 )
3= ECEY VR S3. (27)
BIr+A)(3—A)
_12
As=J (1+A)(A+2T-T?) (28)
fomatg|gp ASDATT)) , AT o &)+ 008 29
4= Sk (A_ZF_FZ) (F+2A_A2)(SZ SZ) 4 ( ( )
|
where Given all these equations one can readily calculate the dy-
s oy g e namical transverse spin-pair correlation function which is de-
S4=S- 1S+ 18- 25+ 2, (30 scribed in the following subsection.
A4=J2 (1+AM)T—A) (31) C. Calculation of the relaxation function
oA AT
(F=2A-A% Using Eq.(6) one can write,
and finally it turns out that
_ Z4+ 0[122+ 2%
f5:O, (32) aO(Z)_ Z(Z4+ 522+4) ' (36)
and hence where
As=0. (33 a=(4-1) 37
Given thatA;=0, it implies thatd=5 in this problem in and
accordance with our expectation thdt=q+1, whereq
equals the number of spins that interact with gitewhich a,=(T—A). (38

here is 4. Thus, the excitation is completely localized at site _ o
j and the relaxation is characterized completely by a finiteThe poles ofag(z) lie at 0xi,*2i. Sincew=J we get
number of frequencies as in the nearest-neighbor case. The

A;’s satisfy the identities

5
> A=5J2 (34)
=1
and
A(Ag+ Ay +ALA =404 (35

r-A 3-T
a(t)= ——+ cost+

o 2] 39
4 3 17 cosdtL (39
where the zero frequency or translation mode describes the
dynamics when there is an equal number of up and down
orientations of the nearest and next-nearest neighbors. The
higher relaxation functiong,(t)—a,(t) can also be obtained
via RR 1l and are listed below for the sake of completeness:

. 3A+T
al(t)=m (3—T')sinJt+ > sin2Jt|, (40)
1 (Fr=A)(1+A) A3-1) (A=3)(3A+T)
a,(t)= J2(F+2A—A2)[ 7 + 3 cosJt+ 7 cos2lt|, (41
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1 1 N N
as(t)= ?[ sindt— §sin3Jt] : (42 H= —Zl (31SFSF 1 — 3,578, 5) — th S, (49

1 1 1 where J;(>0) is the nearest-neighbor ferromagnetic ex-

aut)= i §cos]t+ 1—Zcos2Jt. (43 change whilel,(>0) is the next-nearest-neighbor antiferro-
magnetic exchange arddenotes the strength of the trans-
verse field. We assume periodic boundary conditions and

IV. RELAXATION IN NEXT-NEAREST-NEIGHBOR work in the thermodynamic limit. The on-site dynamical
TRANSVERSE ISING CHAIN spin-pair correlations of a bulk spin, s&f,, can be written
Z Z ZQZ
A. Calculation of A,'s as (Si(t)Si(0))/(SSy), where the angular brackets denote

canonical ensemble averages. The calculation of the above-
The equilibrium properties of the transverse Ising modelmentioned dynamical correlation function is the main focus
and its realization in physical systems have been addressed this work. As mentioned above, it turns out that for
by several author® ® The Hamiltonian for our model J,=0 in Eq.(44), the dynamicakz correlations are exactly

which includescompetinginteractions is given by solvabl&® at T=% and are given by
|
(SUDSHI{((SH?) = JTI2KO5(wt/2K, q)ex] — (12 (1-E/K)t?], a<1, (45)
(SOSHI(SHH=exd — (U217, a=1, (46)
(SHOSHI(S)?) = VT al2KO (Tat/2K,q)exd 1(1/)(1-E/K)a?t?], a>1, (47)

wherea=h/J;, K andE are complete elliptic integrdiSof  in the absence of an exact solution, it is impossible to obtain
the first and second kinds of argumentiwhena<1) and the entire seff}. Typically, the best one can do is to obtain
l/a (when a>1), and q is the nome defined as as manyf,’s as possible and get an estimatenafependence
gq=exp(—mK'/K), where K’ is the elliptic integral of of Ay's therefrom. The basis vectors, i.e., thes, contain
complementary argumeft. Time is measured in units of valuable information on how the perturbation imparted to
t=2J;t,05. The functions®, and @ are Jacobi theta func- Sk(t=0) propagates through the chain which is dictated by
tions, which have the expansfdn the nature of the spin-spin interactions in the Hamiltonian.
Hence it is important and interesting to study the structure of

* ) these basis vectors, the first five of which, calculated at
0,(z,q)=2>, q"*12%cod(2n+1)z], (48)  T=c, are detailed below. Obviously, in principle, ooan
n=0 obtain more than the ones given here. The procedure in-
w0 volved in doing so is straightforward but extremely tedious.
2 We base our calculations of the relaxation function
O3(z,9)=1+2 n 2nz). 49 . o :
3(2.) nzl a” cos2nz) 49 ao(t) on the rigorous knowledge of the first five basis vec-

_ _ . . tors and the first five\ ,’'s. The rest of the\ ,’s that enter into
To study the dynamicakz spin-pair correlations for the structure of the continued fraction in E@) are esti-

the next-nearest-neighbor transverse Ising chain usinghated on the basis of simple extrapolation schemes which
the continued fraction formalism we proceed as follows.are discussed below. Thus, we believe that the short-time
We choose the first basis vectty in Eq. (4) to be the dy-  dynamics of the system obtained by us is highly accurate.
namical variable of interest, namel§;(t=0)=S;. This  The results for longer times are dependent upon the extrapo-
choice implies that the dynamical correlation functionlation of A,’s and hence should be accepted as good esti-
ao(t)=(SHt)SH/{(SH)?), the Laplace transform of which mates. The dynamical spin-pair correlations appear to decay
has the continued fraction representation in E).above. to zero rather rapidly in this problem.

Given fy and RR | one may now obtain the entire $&t}, The rigorously known basis vectors and the correspond-
which in this case, turns out to be an infinite set. Of courseing A,’s are as follows:

fi=—hg,, (50)
A,=h?, (5)

fo=hS{I1(Sk_ 1+ Skr1) — oSk 2+ Sk )} (52



3404 SEN, HOFF, KUHL, AND McGREW 53

A =3(J2+JZ) (53
2 2 1 2/

fa=2n QLIS 1S 1= I1do(Si 1S ot St 1Sk ot Sh 1Sk o+ Sk 1Sk 2T 958k oSk o} — PSS Iu(SL 1+ s )

—Jo(St o+ S0} (54)
I Y 193
Az=h"+ 2(J1+32)+ (Ji+\]§)' (55

h\]lJ2(‘]%+J%)S)§ Z Z Z Z X A A A Z Z Z Z
f4:W{J2(Sk_1+ Sk 1) FI1(Sko 2+ Sei2) 1+ 60313550 I1 S 1Sk 1(Sk- 2+ Sk 2) = ISk oSk 2(Sk-1

+ S5 )= B2 IN(SE 1S 1+ 1Sk 1) — I da(Sh oS S S T S oSt S Sk T S oS

+ S oS 1t Sh oS 1 T S S 1) FI(SE S ot S oSk )} 202 SHITSE 1S 1~ I13a(Sh 1Sk ot ShaSE

+ S0, 180, ) F 35S St o S IE(SE LSk 1+ SE 28 1) — J1da(SE sSe ot Sk sSk 1+ ShsSe 2T e sSii

+S St S St SaSo 1t S S ) + NAC AN IPE S IS P ) 3 (56)
A4:./f”/.4/@4, (57)

A 4=6h235+53502+ 30023135+ 8J1J5+ 30h2J5J5+ 53235+ 6h2J5,

D= (32432)(3}+2h202+ 43233+ 2205+ %), (58)

fo=— 243105 SK 1Sk 15— 25k 2 — 4N 2 IS SE_o(SK-sSko 1 Sie 1Sk 1+ Sk aSke 1) + See1(SE-aSke 1+ Sk 2Ske2)
+ S 1S oS 2t SE- 1Sk 3+ Sk 2 Sec 1Sk st Sk 1Sk 1t Sk 1Sk 2)} +40201(T+ ID) SUSE LS 1S
+ S 1S 1Sk 2~ AP S 4SSk 2 Sk 2 Skr oSk a} AN IS S Sk S 1+ SR A8 T S oSk
+ S 2S3) F S 1SSk st Sk oSk 1T Sk aSE,) TSk 1Sk Sk st Sk oSk 1+ Sk aSk- 2) + Sk 2(Sii 58Sk 2
+ S 1S 2t S 1Sk at Sie 1Sk )} 14020 SSE oS 1Sk 1t Sic 1S 1Sk 2 — 1202010, S 1 Sk oSk
+ S 1S 1Sk 2t S S 1S 1 Sk 1S 2 Sk 1) 1202 oSk o(SEo 1t SEe )+ SE oSk o Shea T S
+ S oSk 2(SEo 1t Sii )}~ 2hP0T LSS 1S Sk st S s Sk 1Sk ot Sk oS 1Sk Sk aShe 2k 1)
+2h%3 1058 St 4 S a( Skt See )+ See s 1Sk 1+ Se 1S 1Sk st S 2 Skr a( S 1+ Sra)} — 2 IISYSELSK,
+ S oSk 1} 0P S a(Sio o+ S )+ S (S ot Seed) T 1St Sc)+ Sk a(S2+ S
—hPI3S{ S 4Sk- 2+ S aSke 2} — BhPIISUSE 1Sk 1+ So 1S 1} + 50010, SUSE o(SE 1+ Sk 1) + S 1(Sk2
+ S 2) T S 1(Skoot S a) S 2(Sko T Sk 1)}~ SR IS S oSt o T Sk oS o} + BN AT S S 1)
—6h33;1 1,9 S oSl 1+ S oSt 1 T S oS 1+ S oSk} T 6MPIESY S LS o} — 2021, S 1+ S}
—h2I10, S+ S 2t~ (@a/20) SYSY o+ S} + (@220) S{SE- 1+ S 1} + (@alp) S 1Sk1 1)

+(aalp) LS 2Sk- 1+ Sk oSk 1+ Sk 2Sk- 1+ Sk 28k 1) — (a5 /p) SISk 25K 2} (59
Asg=1"51Ts, (60)

A 5= (I5+35)(4h231%+ 431%05 + 100* I3+ 108h2J305+ 5335+ 76n85+ 312043505+ 444h23505 + 380h°J7105+ 53203705

+ 363535+ 38Ch8J35 + 40223735+ 2840* 3305+ 76n8J5+ 53735+ 94h23238 + 10n*35 + 43233°+ 4h2J29), (61)
Fg=(J7+2h202+ 43233+ 2h2J3+ 35)(6h235+ 53535+ 30h2J7J5+ 8J7J5+ 3002205+ 53235+ 6h2J9), (62)

where
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a;=h2J,(535—2h2J1+ 100135 — 38h2J305+ J205— 8h2J3+ 2J9),
a,=h23,(238—8h231+ J135— 38h2J735+ 100735 — 2h%J5+ 535),
a3=4hJ2(h2J%+ 23533 — 4h*J2+ 323205 — 4h*J3— 3235 — h235-09),
ay=2hJ,3,(35— 3135+ 8h*J2—6h2J2J5+ 8h*J5— J305+ J9),
and

as=4hJ3(35+h23%+ 3903+ 4h* 02— 3h20205+ 4h*J3—23205—h233),  while p=J7+2h202+ 432324 2h2J3+ J5).

The reader may recall that dynamical correlations for theve assume that eventually, behaves linearly with respect
nearest-neighbor transverse Ising model are exactly solvabte n and more importantly that there are no intersections
in the limit T—c. Thus, by settingl,=0 in the above ex- between the curves fax,, for different magnitudes o, for
pressions forf, andA,, one immediately recovers the corre- J,<J;. This assumption can be defended on somewhat in-
sponding expressions in Ref. 8, and the simple linear behayuitive grounds as follows.

ior of A,’s. In addition to checking our results for the If the plots of A, versusn for two distinct values ofl,
J,=0 case, we have also checked the orthogonality thagere to intersec_t, then,_ alm(_)st inevitably, su_ch behavior
must be satisfied by the individud)’s, i.e., (f,f,)=0 for would have manifested itself in terms of certain frequency
n#m. The f,’s given above satisfy the orthogonality crite- P€2KS) in the spectral function corresponding to thedy-

ria, which leads us to believe that the expressions givefl@Mmical spin-pair correlation function for the next-nearest-
above are algebraically correct neighbor transverse Ising mod&IPhysically, such a drastic

An interesting feature of tha's above is that up ta, effect is unexpected when the next-nearest-neighbor interac-

the expressions remain invariant upon interchangé,aind ~ tion is weak, i.e.J,<J,. After all, the magnitude 03, is
J,. This symmetry is broken at and above, where inter- weaker than that oJ; and hence its effect should be correc-

changing ofJ; andJ, leads to the incorrect expression for tive with re_gard to the spectral funct_ion one obtains for the
A,’s. It turns out, however, that the invariance under ex-nearest-neighbor model, not a drastically different one.

change ofJ, andJ, in the expressions for thg,'s is broken Very different physical behavior of the relaxation process

already atf,, which is expected from the fact that the exci- 3" 9cCur if, howeverJ,>J;. Such a scenario would be
tations propagate farther out from skecompared to what interesting from a theoretical standpoint for the following
would have been the caseJ§=0 due to the next-nearest- reasons. First, the rate of growth Af’s with respect ton

neighbor interaction. This breakdown of symmetry simplylf:Ould :e veryldifffererlt frpm I_inear behav(ijor.hThis is_evid(ra]nt
does not show up in tha,’s for n<4. This is so because the [TOM the results fod,=4 in Fig. 2. Second, there exists the

A,’s are the ratios of the length squared of the basis vectorsP,OSSibi“ty of finding well-defined peaks and/or dips in the

and hence they contain thermally averaged informaiith ~ 9rOWth profile ofA, versusn as in theJ,=6 case of Fig. 2.
all the energy states being equally weighted in The o What these mean is that one can obtain systems with a very

. - . : ; different dynamical response i#,>J;. Such a response
limit) on the microscopic details of the propagation of a per- X 27 1 :
turbation fromk to its neighborhood in real space. However, c0uld be characterized by well-defined peaks and a rich va-

fg is constructed out of the commutation between the Hamil-][iety ,Of high- anq I(I)w-freqﬁency _beha/vior of the spg:li:tral
tonian in Eqg.(44) and f, andf5 contain cubic terms in the unction. Interestingly, in the regimd,/J;—c one wi
field strengthh with asymmetric couplings witld; and J,

[observe the last two sets of terms involvingin Eq. (59)]. 14 ‘ ' i
As a consequence, the level of complexity fgfis signifi- 12 | o =0
cantly higher than the lower-ordéy’s. s L=1/4
~ 10 s R=1/2 v
= ¢ J=1 .
B. Calculation of the relaxation function zl_ 8l v T=2
- v A
The behavior ofA, as a function ofn is rather compli- To6f * . .
cated forJ,# 0. The behavior oA, versusn for 1<n<5 is 5 . 4 d
shown in Fig. 1 for 6=J,<J,=2. A, increases linearly with R Y ' '
n for J,=0 (i.e., for the nearest-neighbor transverse Ising 2l H i
mode) and very nearly linearly witm for J,=J,;=2. In the .
intermediate regime fod,=%3,1 cases it turns out that % 1 2 3 " 5 6
A,’s behave in a superlinear fashion withfor smalln. It is
not clear from the completed calculatiofi®., up toAg) as
to how A, would behave fon>>5 for J,=33,1. Based FIG. 1. Plot ofA,, versusn for J,<J;=2 with h=1. Observe

upon the formulas in Eqe51), (53), (55), (57)—(59), and that the growth ofA, is linear ford,=0 and is very nearly linear
(60)—(62) and the visible trends in the growth af, versusn (with slight oscillations about linearityfor n>3 for J,=J,;=2.
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, , , A,=1.42181n—4)+4.26086, n=5, (63)
30 . L=4 for J,=3,
L] Jo=6
3 - A,=2.15384n—4)+4.94195, n=5, (64)
cl\ll 20 [} [] ° R
= . for J,=1,
i .
S .l . 7 A,=2.75448n—4)+6.78139, n=5 (65
and forJ,=2,
L S T — A,=3(n—3)+7, n=6. (66)

Using these extrapolation schemes we obtgj(t) via the
direct summation method discussed in Sec. Il B with 10 000
poles in the calculation cdy(t) for each chosed,. We have
tested our results for sensitivity to truncation of the contin-
ued fraction at odd and at even levels and found no odd-even
] ) effect within the accuracy of our calculations. Our results are
again recover the small linear growth rate ®f versusn.  essentially invariant upon changes of a few percent in the
Due to the lack of knowledge of highér,’s for theJ,>J;  parameters mentioned in the above extrapolation schemes.
case we do not carry out any approximate analysis of the Obviously, by definitionay(t)—1 ast—0. This is indeed
relaxation function for these cases. In what follows, we re+the case in all our calculations. In Fig. 3 we show our results
turn to our approximate calculations of the relaxation andfor ay(t) for 2<t<10, which appears to be the more inter-
spectral functions for thd,<J, cases discussed in Fig. 1. esting time regime in this problem. Let us briefly discuss the
To estimate the relaxation function ay(t) relaxation processes depicted in this figure.
=(SE(t)SE(0))/{(Sh)?) for the next-nearest-neighbor trans-  The solid line in Fig. 3 describes the relaxation process
verse Ising model aT — it is imperative to have some for the exactly solvable limit in whicld,=0 anday(t) is a
knowledge of the highe,’s for various J,’s. Given that Gaussian functioisee Eq.(46)]. The dot-dashed line with
J,=0 is exactly known, we focus upon the cases withthe deepest minima at~4.4 is for the casel,=3;. The
J,<J; in this study. We assume that fdg=7%,3,1, the su- minima becomes slightly shallower and occurg-a#.2 for
perlinear behavior ofA, with respect ton will eventually ~ J,=3 as shown using the second dot-dashed line. The dip
become linear im for n>>5. Such linearity also appears mentioned above disappears fiy=1 which seems to ex-
for the casel,=J;=2. On the basis of our calculations of hibit slower relaxation than for th&,=0 case as shown in
A;—As we find that the following simple extrapolation the dotted curve. Not surprisingly, the relaxation process
schemes are reasonable estimatesAfpifor n>5. The ex- slows down further asl), is tuned up to 2, i.e., when
trapolation schemes invoked here are based upon the magdi;=J,. The time domain results demonstrate the sensitivity
tudes ofA, andAg for J,=1%,3,1 cases and k3, A,, and  of ag(t) to small changes id, much better than the fre-
Ag for the J,=2 case. These are as follows. quency domain results. This is typically the case in many
Thus, ford,=3, calculations. This is because a certain degree of inaccuracy

FIG. 2. Plot ofA,, versusn for J,>J, with h=1. Observe the
dip in the growth ofA,, for J,=6=23J; atn=4. See the discussion
in the text for more on such features in the growthAgfs.

0.04 [~

FIG. 3. Plot of the dynamical spin-pair corre-
lation function for the next-nearest-neighbor
transverse Ising model withl;=2, h=1 at
- T=o. The solid line represents thb=0 case
1 for which ag(t) is a Gaussian. The dot-dashed
. line with a minimum at~4.4 and the same with
_ a minimum att~4.2 represenf,= 3 and J,= 3
~ J cases, respectively. The dotted line is fhr=1
o~ while the dashed line is fal,=2.

0.02 —

ao(t)
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FIG. 4. Plot of the spectral functions of the
0.6 quantities in Fig. 3. We do not show the plots for

J,=% and 3 cases because it is very difficult to
resolve the differences between these cases and
the J,=0 case when obtaining their spectral
functions. The dotted line is fa¥,=0, the solid

line is for J,=1 and the dashed line is for
J,=2. Observe that the central peak increases in
weight asJ, is increased, thus implying that
slower dynamics emerged ds—J; .
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inevitably creeps in from the numerical calculation that is We next consider the dynamics of one of the simplest
involved in obtaining the frequency domain result. quantum spin chains, namely, the=3 transverse Ising

In Fig. 4 we present the spectral function corresponding tehain, and consider relaxation processes in this system in the
ag(t) presented in Fig. 3. The dotted line represents the sped@resence of next-nearest-neighbor interactions. We show that
tral function for theJ,=0 case. The solid line represents the for this ergodic system, the relaxation processes are signifi-

same for thel,=1 case and the dashed line shows thecantly affected at intermediate and at long tinfese Fig. 3.
J,=2 case. It is obvious from Fig. 4 that the system exhibitsT € effects are rather distinct when one considers the spec-

tral function corresponding to the relaxation functions stud-
ied (see Fig. 4.

The results presented in this paper are valid for the tem-
erature regimd —o0. The effects of incorporating second-
earest-neighbor interactions are not obvious in the study of
A : X OMiNGw.-T1 dynamics from our work. One might expect that if the
more and more important ds competes in magmt_udg W'th_ ground state and the low-lying states of the system are
J1. The reader may note that the small oscillations ingyonqiy affected by a competitivé, the low-temperature
ao(w) in Fig. 4 enter from numerical errors in computing gynamics will be significantly altered with respect to the
ao(w) and have no physical significance. nearest-neighbor model. Also, the calculations discussed in

this article strongly suggest that similar behavior of relax-
V. SUMMARY ation processes is expected for other simple quantum spin
chains such as théY andXXZ chains. The effect of includ-

In this work we have discussed the effects of incorporat- th ¢ t-neiahbor int . laxati
ing second-nearest-neighbor interactions on the relaxatiofyd € Next-nearest-neéighbor intéractions on refaxation pro-

processes in simple= 1 spin chains. To begin with, we have cesses in ergodic systems is unknown in systémith lat-
demonstrated via an exact calculation that the introduction of°® dimension greater than 1.

next_—nearest-neighbor_ int_eractions results_ in_the entry of a ACKNOWLEDGMENTS
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progressively slower dynamics a%, is tuned up from
J,=0 to J,=J;=2 as expected from the results in Fig. 3.
This is manifested via the central peakdg(w) becoming
progressively dominant, thus showing that low frequencyﬁ
and hence longer time relaxation processes are becomi

is characterized by a finite number of frequencies. regarding the material in Sec. IIl.
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