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Thermodynamic properties of S=2 antiferromagnetic Heisenberg chains
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Thermodynamic properties =2 antiferromagnetic Heisenberg chains are studied not only under the
periodic boundary condition but also under the open one employing a quantum Monte Carlo method. Tem-
perature and size dependences of the energy, the specific heat, and the magnetic susceptibility are calculated
and edge effects on them are investigated in detail. The specific heat shows a well-pronounced Schottky
anomaly but the maximum is located at a temperature much larger than the Haldane gap of the system. As
temperature goes to zero, the magnetic susceptibility vanishes for the periodic chains, while it diverges for the
open chains. The edge contribution in the open-chain susceptibility is attributed to tise-tlveffective spins
localized at the chain ends at low temperatures, while t&ar2 free spin at high temperatures. This is a
visualization of a quantum-classical crossover and an evidence that the present model is a Haldane system.
High-temperature behaviors of the thermodynamic quantities are also discussed with the help of a series-
expansion method.

[. INTRODUCTION unfortunate in the works that the calculations were restricted
to rather short chains. A few more fine wotké®on thermal

Haldane’'s conjectufe caused intege® linear-chain  properties of theS=1 chains were presented during the last
Heisenberg antiferromagnets to catch a great deal of attemlecade. Betsuyaku and Yok&taalculated temperature and
tion. The so-called Haldane gap immediately above thenisotropy dependences of the energy and the specific heat
ground state is nhow widely believed to exist and a precisaising a quantum transfer-matrix method. However, their
estimate of thé&s=1 Haldane gap® has been recently given. work seems to have aimed at demonstrating usefulness of the
Besides the gap, various nontrivial ground-state properties ahethod rather than inquiring into the Haldane problem.
the Haldane antiferromagnets have been revealed so far, sutthile Narayanan and Singhinvestigated the specific heat
as the exponential decay of the spin correlation functién, in the bulk by means of a cluster expansion method in lattice
the effective spins localized at chain eddsand the hidden gauge theories, boundary condition and size dependences of
antiferromagnetic ordeérlt should be also noted that an ex- the quantity were not explicitly discussed. In such above-
actly solvable modéf introduced by Affleck, Kennedy, Lieb, mentioned circumstances, our wdtk& *®laid special em-
and Tasaki has played an important role in understanding thghasis on the open-chain properties and treated the Haldane
underlying physical mechanism of these phenomena. problem in connection with the edge effects. The edge

The experimental study has been successfully carried owstate’® as well as the Haldane gap, is a fascinating subject
especially since the synthesis of aB=1 quasi-one- not only theoretically but also experimentally in that it is a
dimensional antiferromagnet, @,HgN,),NO,ClO,,**  macroscopic consequence of quantum cooperative phenom-
which is abbreviated as NENP. Renatlal ! demonstrated ena. Recent experimefts®°are actually showing an interest
that magnetic susceptibility and inelastic neutron scatteringn the doped materials aiming to observe the edge effects.
experiments on NENP are well explained by the existence of In order to obtain an essential understanding of the
an energy gap between the ground state and the first excitédialdane problem, it is necessary to study 8w®2 systems.
state. Katsumataet al? further performed magnetization However, in comparison with a variety &1 studies, the
measurements on NENP and confirmed that NENP is actus=2 systems have been less discussed so far partly because
ally a Haldane-gap material. Since then, a varietySefl of the large degree of freedom. Therefore, it is great encour-
linear-chain antiferromagnéfs'® have been successfully agement to theS=2 study to have been demonstratetf
synthesized and they have in general supported Haldanetbat the valence-bond approaths still successful in the
conjecture. Motivated by these stimulative experiments, th&=2 cases. There are, on the other hand, recent numerical
present author and Miyashita have recently studied omttempts®~3°to treat the pureéS=2 Heisenberg chains. Al-
thermodynamit®!” and magnetit® properties ofS=1 anti-  though the Haldane gap is expected to decrease rapidly as
ferromagnetic Heisenberg chains using a quantum Monténcreases, several authtfs® have given pioneering esti-
Carlo method. Few theoretical studies on finite-temperaturenates of theS=2 Haldane gap, which are still somewhat
properties of the Haldane antiferromagnet had been well predifferent from one another. All the rece®=2 works are
sented until these investigations. Of course, before Haldane&imulative, whereas they have not yet discussed the finite-
conjecture, there had already been several pioneeringmperature properties. Thus we here carry out Monte Carlo
works'®=?! on thermodynamic quantities of the integgr- calculations of thermodynamic properties®# 2 antiferro-
chains, which employed a numerical diagonalization methodmagnetic Heisenberg chains. We investigate temperature de-
However, in these works, any remarkable property peculiapendences of the energy, the specific heat, and(zbeo-
to the Haldane system was not yet mentioned. It was alsield) magnetic susceptibility not only for the periodic chains
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but also for the open ones. The present study is also moti-
vated by recent admirable experimental atteif¥tsto ob-
serve magnetic properties of tfg&=2 linear-chain Heisen-
berg antiferromagnet and possibly discuss$ke2 Haldane s g @
phenomena. It is unfortunate that all the existiSg 2 ! #
material§®*! exhibit the three-dimensional antiferromagnetic
order at temperatures much larger than the Haldane gap pre-
dicted theoreticallj>>°*We hope thaB=2 Haldane antifer-
romagnets will be successfully synthesized in the future and
the present study can be of some help to analysis of the
experimental results on them.

In Sec. Il, we describe in detail the Monte Carlo proce-
dure. Obtaining numerically reliable results with feasible
Monte Carlo steps in th8=2 cases is not so trivial as that in
the smallers cases due to the large degree of freedom. The
present numerical accuracy is checked employing a quantum
transfer-matrix method and also in comparison with exact
diagonalization results. In Sec. lll, we present the results and
discuss them. Section IV is devoted to summary.

S(m+1) S (m+1}
i i+l

© @

FIG. 1. Various types of Monte Carlo flips on the transformed
two-dimensional Ising system, where the circles denote the Ising
spins, the hatched plaquettes the local Boltzmann factors, and the
shaded circles the spins to be updat@l.Plaquette with the four-

We treat theS=2 antiferromagnetic Heisenberg chains body interaction, wher&™ takes 0,+ 1, and+ 2. Herei andm are
described by the Hamiltonian the indices representing a site and a Trotter layer, respectively:

i=12,...,L;m=12,...,2n. (b) Local flip which updates a set
L L of four spins as {S™"Y S M gNyA o gmy
T = 2 JS-Sii— g,u,BHE &, 2.1  +6,8TM V-6, M+ 58D 51 wheres takes 0,* 1, and
=1 =1 +2. (c) Global flip along the chain direction which updates a set of
L spins as{S{™,sm, ..., S —{SMt58M—4, ..., sm
—(—1)t6}, whereé takes 0,+ 1, and=+ 2. (d) Global flip along the
Trotter direction which updates a set ofn2spins as
{sH 8@ ., SPM (s + 5,82+, ..., S2M+ 5}, where 8
J;=J,=---=J,=J for the periodic chains, takes 0,= 1 and=+2. The local _fIip;(b) and the g_IobaI flipgc) are _
(2.29 done keeping the total magnetization of the chain constant. The flips
(c) change the winding number of the spin configuration and are
J;=J,=---=J,_,=J, J,=0 for the open chains. t_herefore necessary only for periodic chains. T_he total magnetiza-
(2.2b tion of the chain fluctuates through the global flij. The flips of
types(b) and (c) represent quantum fluctuations, while the flips of
The partition functionZ=Tr[e‘ﬁ'7/] is approximately de- type (d) thermal fluctuations.
composed &4

IIl. METHOD

whereg is theg factor of the spinug the Bohr magnetori,
the number of spins, an§ , ;=S,. The exchange interac-
tion J; is taken according to the boundary condition as

Z=Tr

n
( e Ahi/n e—Bhi/n) } (2.3 ~and*2. Xqm) denotes the summation over all the configu-
i=13, ... =24, ... '

rations of the lIsing spins on the transformed-+1)-
wheren is a Trotter numberg=(kgT) ! with the Boltz- dimensional checkerboaf‘ﬁ,which is here evaluated through
mann ConstarkB, and an |mp0rtance Sampllnﬁ.
Now let me describe the actual Monte Carlo procedure to
gugH update the spin configuration. The local fligsg. 1(b)] are
hi=JiS-S+1— T(SH Sii1) (2.4 the most fundamental and are carried out keeping the total
magnetization of the chain constant. The global flips along
is the local Hamiltonian. Using the local Boltzmann factor the chain directiofiFig. 1(c)], which also keep the total mag-
[Fig. 1(@)], netization constant, change the winding nurfbef the spin
m (M) (M) | Bh Il e(mi D) (mi D) configuration and are thus necessary only for periodic chains.
p™M=(S™ ST)|e AngmD STV (2.5 Although the global flips of this type should be in principle
taken into account, they are sometimes neglected due to their
small effect. However, we have confirmed that, in the present
case, an improvement of the Monte Carlo estimate owing to

which is represented as a square matrix ok25 size, Eq.
(2.3 is rewritten as

n this type of global flips is generally beyond the numerical
z=> 11 pt2~ b pt?V|, (2.6)  uncertainty. Therefore, we have taken them into the calcula-
gmy =1 1i=13,.. i=24, ... tional procedure. It seems that this type of global flip be-

S ” . _ . _ comes more effective a$ increases. In contrast to the
wheres? 1 and " are Ising spins at thith site on the  above-mentioned flips, the global flips along the Trotter di-
Ith Trotter layer. HereS®"* Y=g and (™ takes 0,~1, rection[Fig. 1(d)] are carried out to let the total magnetiza-
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TABLE |. Monte Carlo estimates and exact transfer-matrix calculations of the energy ofxtHelging
system at various temperatures, where PBC and OBC mean the periodic and open boundary conditions,

respectively.
PBC OBC
kgT/J Monte Carlo Exact Monte Carlo Exact
0.1 —23.99605 (0.00244) —23.99946 —17.97939 (0.00158) —17.97937
0.2 —23.87768 (0.00346) —23.91735 —17.69235 (0.00605) —17.69099
0.3 —23.47065 (0.00664) —23.55246 —17.18408 (0.00848) —17.18291
0.4 —22.93137 (0.00834) —23.02476 —16.70855 (0.00838) —16.70624
0.5 —22.41956 (0.01000) —22.51492 —16.29418 (0.01035) —16.29322
0.6 —21.95668 (0.00944) —22.05656 —15.92750 (0.00946) —15.92750
0.8 —21.14744 (0.01294) —21.25486 —15.29670 (0.01399) —15.29197
1.0 —20.44814 (0.01902) —20.55565 —14.72980 (0.01574) —14.72834

tion change. All the flips are schematically shown in Fig. 1,Trotter numbers are taken not to freeze the spin configuration
where § takes 0,=1, and +2. It is not necessary for the and more Monte Carlo steps are spent on equilibrating the
ergodic distribution thats takes =2. We also admit that sSystem.

more candidates for a new configuration in the flipping pro- We have to extrapolate a set of Monte Carlo data for finite
cedure make the numerical argorithm more Comp|icatedTrOtter numbers into the— limit to obtain a final result.
Nevertheless, we have providetiwith the five values be- The n dependence is extrapolated by the least squares
cause we have found out that the simulation wita0,-1  method with a formul&

sometimes gives initial-configuration-dependent results. This

is a serious problem which may be left unnoticed from an

. . : o A A
ergodic point of view but is essential in the actual calcula- AN)=A.+—5+—. 2.7
tions. We cannot be too careful with the large degree of n~.n
freedom.

In order to check the numerical accuracy in the presenfye show in Fig. 2 how the Monte Carlo data for the energy
method, we compare, in Table I, the Monte Carlo estimategre extrapolated, where=8 and kgT/J=0.02. Since the
and the exact values for the ener@y the unit ofJ) of the  temperature is low enough to represent the ground-state
4X4 (L=4 andn=2) Ising system at various temperatures, properties, then— = extrapolated values are expected to co-
where 3x10* and 2<x10° Monte Carlo steps have been incide with the exact-diagonalization resfltsfor the
spent on the initial thermalization and the Monte Carlo samground-state energy. The open-chain result is in excellent
pling, respectively, at each temperature, and the numerals imgreement with the exact one, while the periodic-chain re-
parentheses are the statistical uncertainties in the samplingult, as expected, shows a slight deviation from the exact
Here the exact energies have been calculated by means of a
quantum tre'lnsfer'-matrix methaa,%"‘ethat i‘e’_’ by tracing out . TABLE Il. Sets of the Trotter numbers used and the Monte
a_” the configurations of the system. We find that the PreéClcarlo stepsMCS) spent for each Trotter number at various tem-
sion of the Monte Carlo data is, at least, almost three digitSperatures.
namely, there is, at worst, small uncertainty in the first deci
mal place. Under the open boundary condition, the differ- kgT/J n MCS
ences between the Monte Carlo estimates and the exact val-

ues are all within the statistical uncertainties, while under the 0.08 12 16. 24. 32 & 10°
periodic boundary condition, they are generally beyond 0.|11 e

those. The small but nontrivial deviations under the periodic 013 10 14. 20. 28 5 10°
boundary condition result from the winding-number problem 0.15 8 ’12 ,16 ’24 510
and are therefore expected to decrease with increase of the 5, 6’ 8 ’12 ’16 5 10°
system size. On the other hand, the statistical errors are gen- oo T

erally enhanced with increase of the Trotter number, because | 4,6, 8 12 MK10P
the acceptance ratio of the global flips along the Trotter di- 0.50

rection is strongly reduced for large Trotter numbers. Thus, 0.60

in the actual calculations which have been carried out for | 2,4,6, 8 X 10°
largeL’s andn’s, the dominant numerical uncertainties in the 1.00

Monte Carlo data generally come from the statistical errors. 1.20

We list in Table Il sets of the Trotter numbers used at various | 2,4,6,8 X 10P

temperatures, together with the Monte Carlo steps spent for 10.00
each Trotter number. With decrease of temperature, larget
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FIG. 2. Trotter number dependences of the Monte Carlo data for k777
the energy in the periodicX) and open ¢ ) chains withL=8 at
kgT/J=0.02. The statistical uncertainties in the data are smaller 30— T ! T
than their symbols® and ¢ denote then— o values obtained by %88 © L=32
extrapolating the dat&® and ¢, respectively. The arrows indicate 40} %8y . ’I:zg;‘
the ground-state energiéRef. 47 of the L=8 periodic and open 535
chains, which were calculated by means of a numerically exact 30l 535 ]
diagonalization method. 3 ) Be
~ 585
n ey
one. However, even the periodic-chain result has almost 2.0F 8oy, " 7
L e . . - L ]
three-digits reliability and its deviation almost disappears mmggm I
into the statistical uncertainty. 1.0 g
Now we may say that the numerical accuracy of the final L ()
results is between three and two digits at low temperatures D] S S R SR S S S
and between four and three digits at high temperatures. The 0.0 2.0 4.0 6.0 8.0 10.0
worst accuracy is found in the low-temperature calculations k,T/J
of the specific heaC which has been directly evaluated
through a formul# FIG. 3. Temperature dependences of the en&gyer spin in

the periodic(a) and open(b) chains with various lengthk. The

1 ) ) , solid line represents a high-temperature series-expansion result for
C= @((Q )—(Q)*+(Q")), (2.8)  the periodic chain within the up-tg8J)® approximation.
where _i (m)
M 2n % S
1 ap™ (2.12
Q=2 (m) = 1 2
im | pj B M'=— Z sm
(2.9 2nw\T
0-S 1 @™ [ 1 api™\?
= T a2 T | | [ll. RESULTS AND DISCUSSION
™ 9B \pi™ 9B

A. Energy
and (A) denotes the thermal average Afat a given tem-

perature. On the other hand, the data for the enErgyhich
have been obtained through a fornfila

We show in Fig. 3 temperature dependences of the energy
per spin in the periodidFig. 3@)] and open[Fig. 3b)]
chains. Though a weak size dependence is observed for the

E=—(Q) 2.10 open chains, both the periodic and open chains show almost
' ' the same behavior at= 96, that may be regarded as the bulk
generally have higher accuracy than those for the specifiproperty. A stationary point dtgT/J=2 suggests the exist-
heat. Therefore, the specific heat at low temperaturegnce of the Schottky anomaly in temperature dependences of
(kgT/J<0.6) has been calculated by numerically differenti- the specific heat. Let us confirm the high-temperature behav-
ating the energy with respect to temperature, though the ador of the energy by means of a series-expansion method.
curacy still did not reach three digits. The magnetic suscepCarefully treating the edge effect, we find that
tibility x has been calculated through a formula T e A7
92 , , L Tr{e A7
X KeT (M5=(M)D, 219 E.L=E®* for the periodic chains,

where “lEL+ Eq=EP" for the open chains,(



3368 SHOJI YAMAMOTO 53

12.0 T T T M T M T M T T T T T L) 1 0‘8 T T T T M T T T M T M T T T M T M T T
: L ™ o L=32 |
10.0} . e O ® X L=64
06 s o L=9% -
]
66
Q - ] ® i
] ]
§ 04F @ %- -
= 3
© - : Y i
2 6655%
021e %,% -
[ @ ]
0.0 n 1 1 I 1 1 1 I 1 1 1 1 1
0.0 2.0 4.0 6.0 8.0 10.0
kBT/J
0-8 t T ] T ) T T T T T T 1 T
FIG. 4. Temperature dependence of the finite-size correction in
__open_ per : _ L 3888 o L=32 |
the energy,Eo=E """ —E[™, obtained from theL=96 data. The 5 8, x L=64
solid line represents a high-temperature series-expansion result 0.6 8 8 o L=96 -
within the up-to-8J)® approximation. The dashed line represents F ® 8y
the temperature dependence of the energy of an antiferromagneti- = [ : 85@ ]
cally coupledS=2 classical spin pair. D04l 556 i
N ® &
- 5%5 4
s
where 02ls e - .
L &, gaengﬂe“
204 3 5 [ ® ]
E.=J| —128)+ () +0((Bd)°), (3.2a N
0.0 2.0 4.0 6.0 8.0 10.0
kBT/J

244
E0=J( 128J— ?(,BJ)3 +0((BJI)°). (3.2b

FIG. 5. Temperature dependences of the specific Ggaper

- . S spin in the periodida) and open(b) chains with various lengthis.
We have plotted in Fig. (&) the expressior3.2a, which is The solid line represents a high-temperature series-expansion result

in good agreement with the numerical data especially af o veriodic chain within the up-tagd)* approximation
kgT/J=6=[S(S+1)]s_,. Figure 4 shows that the expres- P P-t980)” app :

sion (3.2b also well fits the numerical result for the finite-

Size correctionEy= ELP"-EP*" at high temperatures. We ence of an energy gap. However, the temperature dependence
have confirmed that all the data for=32, 64, 96 give al-  should not be simply attributed to the Haldane gap of the
most the same results fdf,. The dashed line in Fig. 4 gystem, which is probably smaller than 8,73 because
represents the temperature dependence of the energy of g{s maximum is located & T/J=2. While the open chains

antiferromagnetically couple8=2 classical spin pair, show a weak size dependence as expected, it is significant

. . . around the Schottky anomaly rather than at low tempera-

E=3J 16 sinfi4/J] +16 sinti2J]+ 4 sinif 5J] tures. An asymptotic high-temperature behavior of the spe-
4 cosli4pJ]+8 cosli2pJ]+4 coshipI]+9’ cific heat is straightforwardly obtained from Ed8.1) and

B3 (3.2 as

which well explains the numerical datalgfT/J=4. We find

that at high temperatures, the system can be regarded as a
group of almost free spins which are weakly coupled to one
another. On the other hand, the edge effects at low tempera-
tures should be understood in connection with the edge stat¥de
which are composed of quantum mechanically correlated 612
spins, as will be shown in Sec. Ill C. szkB( 12(B3)2— ?(IBJ)‘l

C..L=CP*" for the periodic chains,

L=

(3.9

C..L+Cy=CP" for the open chains,

re

+0((B3)°), (3.59

B. Specific heat

732

We show in Fig. 5 temperature dependences of the spe- C0=kB( —12(BJ)*+ —(ﬁJ)“) +0((BI)°).
cific heat per spin in the periodi¢ig. 5a)] and oper{Fig. (3.50
5(b)] chains. The temperature dependencel at96 is in '
good agreement with the— o resulf® obtained by extrapo- The expressioti3.53 has been also shown in Fig(eh.
lating the numerical-diagonalization data fbe5, except Due to the Haldane gap, it is expected that the specific
for small deviations at low temperatures. There exists a wellheat vanishes exponentially d8s—0. Unfortunately, how-
pronounced maximuniSchottky anomalydue to the exist- ever, we were unable to calculate the specific heat success-
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0.0 2.0 . 8.0 10.0 FIG. 7. Schematic representations of the VBS state on a periodic
k,T/7 chain(a) and a VBS-like state on an open chdm in the cases of
0.4 — ———— S=1 andS=2, where the symbd® and the segment denote a spin
o Loz 1/2 and a singlet pair, respectively. The circle represents an opera-
X L=64 tion of constructing a spirs by symmetrizing the 3 spin 1/2's
03 o L=9% | inside.
VN m
&
&g
] o} .
S 0.2 %O%gggggseeﬁﬁﬁeeeegeeeee 1 holds better for Iargg spins than for small oﬁ%_é“.h_ere are
- 3 Oe08800ag also recent report3® that the elementary excitation spec-
N EQQ@QQ@QQ 1 . Cp e 0 . .
o trum of the present system is, within 10% deviation, consis-
0.1t . tent with Anderson’s spin-wave theory restikexcept for the
| ] qualitative difference at the boundaries and center of the
(®) Brillouin zone. While we have to keep it in mind that Ander-
0-%0 ' 2'0' ; '4'0' e '8'0' : 0.0 son’s approach is a semiclassical Gheye may say that the
) ' k,T/J spin-wave picture generally comes to hold betterSam-
T T T T ¥ T Ll T L T Creases
0.6 P o L=33 ]
e x L=65 C. Magnetic susceptibility
¢ L=97
. 9 1 We show in Fig. 6 temperature dependences of the mag-
{; 0.4 i netic susceptibility per spin in the even-length periodic
N P chains[Fig. 6(@)], the even-length open chaifiBig. 6(b)],
RS . and the odd-length open chaifBig. 6(c)]. As T—0, x.
®OK 1 vanishes for the periodic chains, while diverges for the open
02 %gm@m | chains. We note that the divergence in the present system is
L N essentially different from one in the half-odd-integer-
©
0.0 2 1 n 1 1 1 2 i n 1 2 i n 1 1 1 " 1 1
0.0 2.0 4.0 6.0 8.0 10.0 60T 7T T T T T
k. T/J ‘
B
12.0R i

FIG. 6. Temperature dependences of the magnetic susceptibility
xL per spin in the periodi¢a) and open((b) and (c)] chains with
various lengthsL. The solid line represents a high-temperature
series-expansion result for the periodic chain within the up-to-
(BJ)® approximation.

fully at such low temperatures. On the other hand, it is inter-
esting that ar-linear behavior exists over a finite interval.
The behavior is, within 10% deviation, consistent with Ku-
bo’s antiferromagnetic spin-wave theory re&ult

C. . kg T 36 FIG. 8. Temperature dependence of the edge contribution in the
Lkg 3JS° (3.6 magnetic susceptibility, xc=x %7 —xP¢', obtained from the

) o ) ) L=96 data. The solid and dashed lines represent the curves,
There_ls a varlatlonal_ approaﬁf’moncludmg Fhat ar-linear _XCJ/g%é:(4/3)(|<BT/J)‘l and xcJ/g?ug=2(ksT/J) "%, respec-
behavior of the specific heat may also exist over a certaifively, which are expected for two isotropic spins ®& 1 and for
interval for finite-gap systems. It seems that form(8a6)  an isotropic spin oS=2.
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chains}? where asT—0, regardless of the boundary condi- y.J
tion, y,. vanishes for the even-length chains, while it di- 72 =
verges for the odd-length chains. It is the quasi-nine-foldg #B

degeneracy of the open-chain ground states that bears the 4] 1[S(S+1)Jd

divergence in Fig. 6, as will be made clear in the following. 3k T=2><§[ T at low temperatures,
The (S+1)2-fold degenerate ground states of an open chain  _ B B s=1

are a remarkable property probably common throughout the 2 1/S(S+1)J )

Haldane system&>3***and have been actually detected for kB_ng[kB—T at high temperatures.
theS=1 (Refs. 7, 8, and 55andS=2 (Ref. 36 Heisenberg s=2 (3.8

Hamiltonians. It has been also pointed '83f that the mag-
netic ground states of the same origin is further found for a
variety of models with Haldane gap. Thus the IOW'_Thus it turns out that the divergence at low temperatures is

temperature behavior of the susce_ptﬂ_alllty shown_ here is eviz, tually caused by the two edge moments v@th1, while
dence that the present system is in a massive phase

Haldane type. e edge contribution at high temperatures is simply attrib-

Th hani f this ph . Il understood buted to anS=2 free spin. There is also a transitional period
€ mechanism ol this phenomenon IS Wel understood by,eqyeen the above-mentioned temperature ranges, where the
means of a valence-bond appro¥ct schematically shown

L . ) system is no more in the Haldane phase but a certain influ-
in Fig. 7. Since the so-called valence-bond-sQ\iS) state Y ! ! P u in i

. . . f the Hal h till ins. The fact ghat
[Fig. 7(a)] is the exact ground state of a certain extendecgnce of the Haldane phase sill remains e fact ¥

Heisenbera Hamiltonidh and I hibits th pproaches the solid line from below suggests that the edge
1€1senberg Framiitoniart an ge”eram%g} IDIS the Prober- - oment is an effective spin which is quantum-cooperatively
ties inherent in the Haldane pha®é!*>5we can consider

) ; constructed little by little with decrease of temperature. What
the state as an approximate ground state of the Helsenbe\g\ge have observed here is a macroscopic evidence of a

Hamlltoman._lfwe try to construct thg VBS state.on an Openquantum-classical crossover in thermalization process and
chain, the spirs/2 degree of freedom is left unpaired at both : 7

te enddFia. . Wi b led to th . has been also found in tig=1 systen.

the endg[Fig. 7(b)]. We are consequently led to the conclu- The high-temperature behavior of the susceptibility is

sion that the ground states of the sf@epen chain may be iven by a series-expansion method as
(S+1)2-fold degenerate. The unpaired magnetic moment a? y P

each end is delocalized on the inner sites and weakly interact 92ul TI(S-,S7)2%e A7
with each other in the real ground stéfélt seems that the _2te =177

. . . . . . XL kaT Tr[efﬁ.//]
effective interaction between them is antiferromagnetic for B
evenlL’s, while ferromagnetic for odd’s.>® More explicitly,
the quasidegenerate ground-state level structure of theSspin- (3.9
open chain seems to be generally given as XL+ xo=x"" for the open chains,

x-L=xP*" for the periodic chains,

(Stota=0) <(Spota=1) < - - - <(Siota=S) for evenlL'’s, where

oia=S) <(Sioa=S—1 2us
(Sour™5)=(Soa=S~1) xwzgJ”“B(zﬁJ—S(ﬁJ>2+16</3J>3)+O(<ﬁa>4),
<. <(Sya=0) for odd L’s,

(3.10a
where S, denotes the total spin of the state. In theso
limit, the effective spinS/2’s are decoupled and give the gz,,Lé
exactly (S+1)?-fold degenerate ground state. Xo="5 (8(BI)?=32BI)%) +O((BI*).
Now we are ready enough to discuss Fig. 6. Careful ob- (3.10b

servation of Fig. 6 shows that the divergence is less sharp for

evenlL'’s than for oddL’s. However, the quantitative differ- Expression(3.10a has been also shown in Fig(ah, which

ence in the diverging behavior becomes less significaht as well fits the numerical data atgT/J=6=[S(S+1)]s->.

increases. They are all consistent with the above argumenilow an asymptotic behavior of: is straightforwardly ob-
In order to observe more explicitly the edge effect on thetained as

susceptibility, let us define the edge contributjpn as-®*’

XxcJ

9°u

xc=x0r1—xte (3.7

N

=2B3—16(83)%+0((BI)*) ~2BI(8(BI)?<1),
per open

where x{~ and x """ are the susceptibilities of the-sites (3.1)
periodic and open chains, respectively. Comparing Fig®. 7 which is consistent with Eq(3.8). If we represent the
and 7b), we find that the bulk contribution in{"°]' should  quantum-to-classical transitional period &&<T<T,,

be identified withyP*" rather thanyP%', . In Fig. 8 we show a  kgT; should be roughly identified with the Haldane gamf
temperature dependence pfc obtained through Eq3.7)  the system, whileT, may be given through Eq3.11) as
with L=96. We have confirmed that all the data for kBTZ/J~—~2\/§, which is in good agreement with Fig. 8 and
L=32, 64, 96 give almost the same results fgr. We here is also consistent with Fig. 4. It is to our interest to mention
observe that the numerical calculationygf is well fitted by ~ other integelS cases. Representing the susceptibility of the
two curves according to temperature as L-site chain as Eq3.9), we obtain



53 THERMODYNAMIC PROPERTIES OFS=2 ... 3371

g?ud (2 8 16 9%u3
Xo= fB(gﬂJ—§<BJ>2+ (B +0((BY)*), Xa= 52 (4BI=32BI+ 1288)%) +O((B)*),
(3.123 (3.133
2
Ous(8 ., 32 4 XO=92“ 2 (32083)%—256(83)%) +O((BI)*),
Xo==3—| g(BI?*= 55(BI*| +O((BI)*), J
(3.128 (3.13h
for S=3. Therefore, high-temperature behaviorsqf for
for S=1 and S=1 andS=3 are, respectively, described as
xcd 2 16 2 8
m—§BJ—2—7(/33)3+O((/33)4)—>§BJ (5(,33)2<1) (3.19
and
gxz(;jé=4BJ—128(BJ)3+O((,BJ)4)—>4,8J (32BJ)°<1). (3.15

Here, (2/383J in Eqg. (3.14 and 48J in Eq. (3.15 are to be effective spins in the boundaries at low temperatures, while
regarded as (1/BB(S+1)J/kgT]s—1 and (1/3)S(S to anS=2 free spin at high temperatures. This is a visual-
+1)J/kgT]s=3, respectively. Now we obtainkgT,/J ization of a quantum-classical crossover in thermalization
~2 \/5/3 for S=1 andkgT,/J=4 \/E for S=3. The present Pprocess and a strong evidence of the existence of the Haldane
discussion foiS=1 is actually consistent with the numerical gap. It is rather difficult to extract an estimate of t8e 2
result” It seems that while T, increases withS, Haldane gap from the present study. However, identifying
T,/S(S+1) stays constant. A quantum-classical crossovefhe temperaturd’;, below which the edge states are well
of the same origin has been also observed in magnetizatioiermed, withA, we can roughly estimate the gaps for finite
process of theS=1 systemt® where the transitional field chains,A(L). They have been obtained ag32)/J~0.2,
range is, as expected, given by;<H<H, with  0.12<A(64)/J=<0.14, andA(96)/J~0.1(see Fig. 8 These
gugH=A andgugH,=kgT,. As Sincreases, the Haldane estimates are consistent with ones obtained through other
gap rapidly goes to zerband the intege® and half-odd- methods’®3° Therefore we may at least conclude that the
integerS chains become less distinguishable. However, thé=2 Haldane gap is smaller than 0.1A more precise es-
influence of the quantum cooperation inherent in the Haldangmate of the S=2 Haldane gap will be presented
phase remains far beyond the critical temperatiiield), elsewher& through a quite different approach.

T, (Hy). All the properties obtained here are also found in$hel
caset®’ It has also turned out to be quite likely that all the
arguments presented here are still valid 8 3. Now we
may say that there are certain generic properties peculiar to

We have calculated thermodynamic quantitieSef2 an-  the integerS linear-chain quantum antiferromagnets. If we
tiferromagnetic Heisenberg chains under the periodic an@dopt an asymptotic formulalerived by Haldane,
open boundary conditions. The specific heat shows a well-
pronounced Schottky anomaly &T/J=2. However, we AxS(S+1)e”™SETD), (4.0
should note that the maximum is located at a temperature
[_nuch Iﬁ_rgﬁr tf?ar][ tr,lﬁ Hlaldf;me 9ap, fmdtthe bhoundary_co:_(ﬁagether with the widely accepted numerical estirhatef
ion, which aftects the low-energy structure, nas no Signiliy,e s— 1 Haidane gapA/J=0.4105, we find three distinct
cant effect on the temperature dependence. Therefore, in t i

te&mperature ranges as follows:

present system, the temperature dependence of the specific
heat should not be simply attributed to the energy gap be-
tween the ground state and the first excited state. It was T<T;: Haldane region,
unfortunate that the technical problem prevented us from ob-
serving the expected low-temperature beha@ore “/keT,
On the other hand, the magnetic susceptibility strongly de- T1<T<T,: quantum-to-classical transitional period,
pends on the boundary condition. As-0, the susceptibility
vanishes for the periodic chains, while it diverges for the T.<T:
open chains. The edge contribution, which is obtained by 2=
subtracting the_-site periodic-chain susceptibility from the
(L+1)-site open-chain one, is attributed to the t8¢1  where

IV. SUMMARY

classical region,



3372

I(BTl
mzo.zx exd — 7(VS(S+1)—2)],
(4.2a
keT, 2

There are also recent works? discussing a possibility that
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ther study on th&>1 Haldane systems not only in the theo-
retical field but also in the experimental one.
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