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Thermodynamic properties ofS52 antiferromagnetic Heisenberg chains are studied not only under the
periodic boundary condition but also under the open one employing a quantum Monte Carlo method. Tem-
perature and size dependences of the energy, the specific heat, and the magnetic susceptibility are calculated
and edge effects on them are investigated in detail. The specific heat shows a well-pronounced Schottky
anomaly but the maximum is located at a temperature much larger than the Haldane gap of the system. As
temperature goes to zero, the magnetic susceptibility vanishes for the periodic chains, while it diverges for the
open chains. The edge contribution in the open-chain susceptibility is attributed to the twoS51 effective spins
localized at the chain ends at low temperatures, while to anS52 free spin at high temperatures. This is a
visualization of a quantum-classical crossover and an evidence that the present model is a Haldane system.
High-temperature behaviors of the thermodynamic quantities are also discussed with the help of a series-
expansion method.

I. INTRODUCTION

Haldane’s conjecture1 caused integer-S linear-chain
Heisenberg antiferromagnets to catch a great deal of atten-
tion. The so-called Haldane gap immediately above the
ground state is now widely believed to exist and a precise
estimate of theS51 Haldane gap2,3 has been recently given.
Besides the gap, various nontrivial ground-state properties of
the Haldane antiferromagnets have been revealed so far, such
as the exponential decay of the spin correlation function,2–6

the effective spins localized at chain ends,7,8 and the hidden
antiferromagnetic order.9 It should be also noted that an ex-
actly solvable model10 introduced by Affleck, Kennedy, Lieb,
and Tasaki has played an important role in understanding the
underlying physical mechanism of these phenomena.

The experimental study has been successfully carried out
especially since the synthesis of anS51 quasi-one-
dimensional antiferromagnet, Ni~C2H8N2) 2NO2ClO4 ,

11

which is abbreviated as NENP. Renardet al.11 demonstrated
that magnetic susceptibility and inelastic neutron scattering
experiments on NENP are well explained by the existence of
an energy gap between the ground state and the first excited
state. Katsumataet al.12 further performed magnetization
measurements on NENP and confirmed that NENP is actu-
ally a Haldane-gap material. Since then, a variety ofS51
linear-chain antiferromagnets13–15 have been successfully
synthesized and they have in general supported Haldane’s
conjecture. Motivated by these stimulative experiments, the
present author and Miyashita have recently studied on
thermodynamic16,17 and magnetic18 properties ofS51 anti-
ferromagnetic Heisenberg chains using a quantum Monte
Carlo method. Few theoretical studies on finite-temperature
properties of the Haldane antiferromagnet had been well pre-
sented until these investigations. Of course, before Haldane’s
conjecture, there had already been several pioneering
works19–21 on thermodynamic quantities of the integer-S
chains, which employed a numerical diagonalization method.
However, in these works, any remarkable property peculiar
to the Haldane system was not yet mentioned. It was also

unfortunate in the works that the calculations were restricted
to rather short chains. A few more fine works22,23on thermal
properties of theS51 chains were presented during the last
decade. Betsuyaku and Yokota22 calculated temperature and
anisotropy dependences of the energy and the specific heat
using a quantum transfer-matrix method. However, their
work seems to have aimed at demonstrating usefulness of the
method rather than inquiring into the Haldane problem.
While Narayanan and Singh23 investigated the specific heat
in the bulk by means of a cluster expansion method in lattice
gauge theories, boundary condition and size dependences of
the quantity were not explicitly discussed. In such above-
mentioned circumstances, our works8,16–18 laid special em-
phasis on the open-chain properties and treated the Haldane
problem in connection with the edge effects. The edge
state,7,8 as well as the Haldane gap, is a fascinating subject
not only theoretically but also experimentally in that it is a
macroscopic consequence of quantum cooperative phenom-
ena. Recent experiments24–30are actually showing an interest
in the doped materials aiming to observe the edge effects.

In order to obtain an essential understanding of the
Haldane problem, it is necessary to study theS52 systems.
However, in comparison with a variety ofS51 studies, the
S52 systems have been less discussed so far partly because
of the large degree of freedom. Therefore, it is great encour-
agement to theS52 study to have been demonstrated31,32

that the valence-bond approach10 is still successful in the
S>2 cases. There are, on the other hand, recent numerical
attempts33–39 to treat the pureS52 Heisenberg chains. Al-
though the Haldane gap is expected to decrease rapidly asS
increases, several authors35–39 have given pioneering esti-
mates of theS52 Haldane gap, which are still somewhat
different from one another. All the recentS52 works are
stimulative, whereas they have not yet discussed the finite-
temperature properties. Thus we here carry out Monte Carlo
calculations of thermodynamic properties ofS52 antiferro-
magnetic Heisenberg chains. We investigate temperature de-
pendences of the energy, the specific heat, and the~zero-
field! magnetic susceptibility not only for the periodic chains
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but also for the open ones. The present study is also moti-
vated by recent admirable experimental attempts40,41 to ob-
serve magnetic properties of theS52 linear-chain Heisen-
berg antiferromagnet and possibly discuss theS52 Haldane
phenomena. It is unfortunate that all the existingS52
materials40,41exhibit the three-dimensional antiferromagnetic
order at temperatures much larger than the Haldane gap pre-
dicted theoretically.35–39We hope thatS52 Haldane antifer-
romagnets will be successfully synthesized in the future and
the present study can be of some help to analysis of the
experimental results on them.

In Sec. II, we describe in detail the Monte Carlo proce-
dure. Obtaining numerically reliable results with feasible
Monte Carlo steps in theS52 cases is not so trivial as that in
the smaller-S cases due to the large degree of freedom. The
present numerical accuracy is checked employing a quantum
transfer-matrix method and also in comparison with exact
diagonalization results. In Sec. III, we present the results and
discuss them. Section IV is devoted to summary.

II. METHOD

We treat theS52 antiferromagnetic Heisenberg chains
described by the Hamiltonian

H5(
i51

L

JiSi•Si112gmBH(
i51

L

Si
z , ~2.1!

whereg is theg factor of the spin,mB the Bohr magneton,L
the number of spins, andSL115S1 . The exchange interac-
tion Ji is taken according to the boundary condition as

J15J25•••5JL5J for the periodic chains,
~2.2a!

J15J25•••5JL215J, JL50 for the open chains.
~2.2b!

The partition functionZ5Tr@e2bH# is approximately de-
composed as42

Z.TrF S )
i51,3, . . .

e2bhi /n )
i52,4, . . .

e2bhi /nD nG , ~2.3!

wheren is a Trotter number,b5(kBT)
21 with the Boltz-

mann constantkB , and

hi5JiSi•Si112
gmBH

2
~Si

z1Si11
z ! ~2.4!

is the local Hamiltonian. Using the local Boltzmann factor
@Fig. 1~a!#,

r i
~m!5^Si

~m! ,Si11
~m! ue2bhi /nuSi

~m11! ,Si11
~m11!&, ~2.5!

which is represented as a square matrix of 25325 size, Eq.
~2.3! is rewritten as

Z. (
$Si

~m!%
)
l51

n S )
i51,3, . . .

r i
~2l21! )

i52,4, . . .
r i

~2l !D , ~2.6!

whereSi
(2l21) andSi

(2l ) are Ising spins at thei th site on the
l th Trotter layer. Here,Si

(2n11)5Si
(1) andSi

(m) takes 0,61,

and62. ($Si
(m)% denotes the summation over all the configu-

rations of the Ising spins on the transformed (111)-
dimensional checkerboard,43 which is here evaluated through
an importance sampling.44

Now let me describe the actual Monte Carlo procedure to
update the spin configuration. The local flips@Fig. 1~b!# are
the most fundamental and are carried out keeping the total
magnetization of the chain constant. The global flips along
the chain direction@Fig. 1~c!#, which also keep the total mag-
netization constant, change the winding number43 of the spin
configuration and are thus necessary only for periodic chains.
Although the global flips of this type should be in principle
taken into account, they are sometimes neglected due to their
small effect. However, we have confirmed that, in the present
case, an improvement of the Monte Carlo estimate owing to
this type of global flips is generally beyond the numerical
uncertainty. Therefore, we have taken them into the calcula-
tional procedure. It seems that this type of global flip be-
comes more effective asS increases. In contrast to the
above-mentioned flips, the global flips along the Trotter di-
rection @Fig. 1~d!# are carried out to let the total magnetiza-

FIG. 1. Various types of Monte Carlo flips on the transformed
two-dimensional Ising system, where the circles denote the Ising
spins, the hatched plaquettes the local Boltzmann factors, and the
shaded circles the spins to be updated.~a! Plaquette with the four-
body interaction, whereSi

(m) takes 0,61, and62. Herei andm are
the indices representing a site and a Trotter layer, respectively:
i51,2, . . . ,L; m51,2, . . . ,2n. ~b! Local flip which updates a set
of four spins as $Si

(m11) ,Si11
(m11) ,Si

(m12) ,Si11
(m12)%→$Si

(m11)

1d,Si11
(m11)2d, Si

(m12)1d,Si11
(m12)2d%, whered takes 0,61, and

62. ~c! Global flip along the chain direction which updates a set of
L spins as $S1

(m) ,S2
(m) , . . . ,SL

(m)% →$S1
(m)1d,S2

(m)2d, . . . ,SL
(m)

2(21)Ld%, whered takes 0,61, and62. ~d! Global flip along the
Trotter direction which updates a set of 2n spins as
$Si

(1) ,Si
(2) , . . . ,Si

(2n)%→$Si
(1)1d,Si

(2)1d, . . . ,Si
(2n)1d%, whered

takes 0,61, and62. The local flips~b! and the global flips~c! are
done keeping the total magnetization of the chain constant. The flips
~c! change the winding number of the spin configuration and are
therefore necessary only for periodic chains. The total magnetiza-
tion of the chain fluctuates through the global flips~d!. The flips of
types~b! and ~c! represent quantum fluctuations, while the flips of
type ~d! thermal fluctuations.
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tion change. All the flips are schematically shown in Fig. 1,
where d takes 0,61, and62. It is not necessary for the
ergodic distribution thatd takes62. We also admit that
more candidates for a new configuration in the flipping pro-
cedure make the numerical argorithm more complicated.
Nevertheless, we have providedd with the five values be-
cause we have found out that the simulation withd50,61
sometimes gives initial-configuration-dependent results. This
is a serious problem which may be left unnoticed from an
ergodic point of view but is essential in the actual calcula-
tions. We cannot be too careful with the large degree of
freedom.

In order to check the numerical accuracy in the present
method, we compare, in Table I, the Monte Carlo estimates
and the exact values for the energy~in the unit ofJ! of the
434 (L54 andn52! Ising system at various temperatures,
where 33104 and 23105 Monte Carlo steps have been
spent on the initial thermalization and the Monte Carlo sam-
pling, respectively, at each temperature, and the numerals in
parentheses are the statistical uncertainties in the sampling.
Here the exact energies have been calculated by means of a
quantum transfer-matrix method,22,45,46that is, by tracing out
all the configurations of the system. We find that the preci-
sion of the Monte Carlo data is, at least, almost three digits,
namely, there is, at worst, small uncertainty in the first deci-
mal place. Under the open boundary condition, the differ-
ences between the Monte Carlo estimates and the exact val-
ues are all within the statistical uncertainties, while under the
periodic boundary condition, they are generally beyond
those. The small but nontrivial deviations under the periodic
boundary condition result from the winding-number problem
and are therefore expected to decrease with increase of the
system size. On the other hand, the statistical errors are gen-
erally enhanced with increase of the Trotter number, because
the acceptance ratio of the global flips along the Trotter di-
rection is strongly reduced for large Trotter numbers. Thus,
in the actual calculations which have been carried out for
largeL ’s andn’s, the dominant numerical uncertainties in the
Monte Carlo data generally come from the statistical errors.
We list in Table II sets of the Trotter numbers used at various
temperatures, together with the Monte Carlo steps spent for
each Trotter number. With decrease of temperature, larger

Trotter numbers are taken not to freeze the spin configuration
and more Monte Carlo steps are spent on equilibrating the
system.

We have to extrapolate a set of Monte Carlo data for finite
Trotter numbers into then→` limit to obtain a final result.
The n dependence is extrapolated by the least squares
method with a formula45

A~n!5A`1
A1

n2
1
A2

n4
. ~2.7!

We show in Fig. 2 how the Monte Carlo data for the energy
are extrapolated, whereL58 and kBT/J50.02. Since the
temperature is low enough to represent the ground-state
properties, then→` extrapolated values are expected to co-
incide with the exact-diagonalization results47 for the
ground-state energy. The open-chain result is in excellent
agreement with the exact one, while the periodic-chain re-
sult, as expected, shows a slight deviation from the exact

TABLE I. Monte Carlo estimates and exact transfer-matrix calculations of the energy of the 434 Ising
system at various temperatures, where PBC and OBC mean the periodic and open boundary conditions,
respectively.

PBC OBC

kBT/J Monte Carlo Exact Monte Carlo Exact

0.1 223.99605 (0.00244) 223.99946 217.97939 (0.00158) 217.97937
0.2 223.87768 (0.00346) 223.91735 217.69235 (0.00605) 217.69099
0.3 223.47065 (0.00664) 223.55246 217.18408 (0.00848) 217.18291
0.4 222.93137 (0.00834) 223.02476 216.70855 (0.00838) 216.70624
0.5 222.41956 (0.01000) 222.51492 216.29418 (0.01035) 216.29322
0.6 221.95668 (0.00944) 222.05656 215.92750 (0.00946) 215.92750
0.8 221.14744 (0.01294) 221.25486 215.29670 (0.01399) 215.29197
1.0 220.44814 (0.01902) 220.55565 214.72980 (0.01574) 214.72834

TABLE II. Sets of the Trotter numbers used and the Monte
Carlo steps~MCS! spent for each Trotter number at various tem-
peratures.

kBT/J n MCS

0.08
u

0.11
12, 16, 24, 32 63105

0.13 10, 14, 20, 28 53105

0.15 8, 12, 16, 24 53105

0.20 6, 8, 12, 16 53105

0.30
u

0.50
4, 6, 8, 12 43105

0.60
u

1.00
2, 4, 6, 8 33105

1.20
u

10.00
2, 4, 6, 8 23105
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one. However, even the periodic-chain result has almost
three-digits reliability and its deviation almost disappears
into the statistical uncertainty.

Now we may say that the numerical accuracy of the final
results is between three and two digits at low temperatures
and between four and three digits at high temperatures. The
worst accuracy is found in the low-temperature calculations
of the specific heatC which has been directly evaluated
through a formula48

C5
1

kBT
2 ~^Q2&2^Q&21^Q8&!, ~2.8!

where

Q5(
i ,m

F 1

r i
~m!

]r i
~m!

]b G ,
~2.9!

Q85(
i ,m

F 1

r i
~m!

]2r i
~m!

]b2 2S 1

r i
~m!

]r i
~m!

]b D 2G ,
and ^A& denotes the thermal average ofA at a given tem-
perature. On the other hand, the data for the energyE which
have been obtained through a formula48

E52^Q&, ~2.10!

generally have higher accuracy than those for the specific
heat. Therefore, the specific heat at low temperatures
(kBT/J<0.6) has been calculated by numerically differenti-
ating the energy with respect to temperature, though the ac-
curacy still did not reach three digits. The magnetic suscep-
tibility x has been calculated through a formula

x5
g2mB

2

kBT
~^M 8&2^M &2!, ~2.11!

where

M5
1

2n (
i ,m

Si
~m! ,

~2.12!

M 85
1

2n (
m

S (
i
Si

~m!D 2.
III. RESULTS AND DISCUSSION

A. Energy

We show in Fig. 3 temperature dependences of the energy
per spin in the periodic@Fig. 3~a!# and open@Fig. 3~b!#
chains. Though a weak size dependence is observed for the
open chains, both the periodic and open chains show almost
the same behavior atL596, that may be regarded as the bulk
property. A stationary point atkBT/J.2 suggests the exist-
ence of the Schottky anomaly in temperature dependences of
the specific heat. Let us confirm the high-temperature behav-
ior of the energy by means of a series-expansion method.
Carefully treating the edge effect, we find that

EL5
Tr@He2bH#

Tr@e2bH#

5HE`L[EL
per for the periodic chains,

E`L1E0[EL
open for the open chains,

~3.1!

FIG. 2. Trotter number dependences of the Monte Carlo data for
the energy in the periodic (s) and open (L) chains withL58 at
kBT/J50.02. The statistical uncertainties in the data are smaller
than their symbols.d andl denote then→` values obtained by
extrapolating the datas andL, respectively. The arrows indicate
the ground-state energies~Ref. 47! of the L58 periodic and open
chains, which were calculated by means of a numerically exact
diagonalization method.

FIG. 3. Temperature dependences of the energyEL per spin in
the periodic~a! and open~b! chains with various lengthsL. The
solid line represents a high-temperature series-expansion result for
the periodic chain within the up-to-(bJ)3 approximation.
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where

E`5JS 212bJ1
204

5
~bJ!3D1O~ ~bJ!5! , ~3.2a!

E05JS 12bJ2
244

5
~bJ!3D1O~ ~bJ!5! . ~3.2b!

We have plotted in Fig. 3~a! the expression~3.2a!, which is
in good agreement with the numerical data especially at
kBT/J*65@S(S11)#S52 . Figure 4 shows that the expres-
sion ~3.2b! also well fits the numerical result for the finite-
size correctionE05EL

open2EL
per at high temperatures. We

have confirmed that all the data forL532, 64, 96 give al-
most the same results forE0 . The dashed line in Fig. 4
represents the temperature dependence of the energy of an
antiferromagnetically coupledS52 classical spin pair,

E53J3
16 sinh@4bJ#116 sinh@2bJ#14 sinh@bJ#

4 cosh@4bJ#18 cosh@2bJ#14 cosh@bJ#19
,

~3.3!

which well explains the numerical data atkBT/J*4. We find
that at high temperatures, the system can be regarded as a
group of almost free spins which are weakly coupled to one
another. On the other hand, the edge effects at low tempera-
tures should be understood in connection with the edge states
which are composed of quantum mechanically correlated
spins, as will be shown in Sec. III C.

B. Specific heat

We show in Fig. 5 temperature dependences of the spe-
cific heat per spin in the periodic@Fig. 5~a!# and open@Fig.
5~b!# chains. The temperature dependence atL596 is in
good agreement with theL→` result20 obtained by extrapo-
lating the numerical-diagonalization data forL<5, except
for small deviations at low temperatures. There exists a well-
pronounced maximum~Schottky anomaly! due to the exist-

ence of an energy gap. However, the temperature dependence
should not be simply attributed to the Haldane gap of the
system, which is probably smaller than 0.1J,35–39 because
the maximum is located atkBT/J.2. While the open chains
show a weak size dependence as expected, it is significant
around the Schottky anomaly rather than at low tempera-
tures. An asymptotic high-temperature behavior of the spe-
cific heat is straightforwardly obtained from Eqs.~3.1! and
~3.2! as

CL5HC`L[CL
per for the periodic chains,

C`L1C0[CL
open for the open chains,

~3.4!

where

C`5kBS 12~bJ!22
612

5
~bJ!4D1O~ ~bJ!6! , ~3.5a!

C05kBS 212~bJ!21
732

5
~bJ!4D1O~ ~bJ!6! .

~3.5b!

The expression~3.5a! has been also shown in Fig. 5~a!.
Due to the Haldane gap, it is expected that the specific

heat vanishes exponentially asT→0. Unfortunately, how-
ever, we were unable to calculate the specific heat success-

FIG. 4. Temperature dependence of the finite-size correction in
the energy,E05EL

open2EL
per, obtained from theL596 data. The

solid line represents a high-temperature series-expansion result
within the up-to-(bJ)3 approximation. The dashed line represents
the temperature dependence of the energy of an antiferromagneti-
cally coupledS52 classical spin pair.

FIG. 5. Temperature dependences of the specific heatCL per
spin in the periodic~a! and open~b! chains with various lengthsL.
The solid line represents a high-temperature series-expansion result
for the periodic chain within the up-to-(bJ)4 approximation.
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fully at such low temperatures. On the other hand, it is inter-
esting that aT-linear behavior exists over a finite interval.
The behavior is, within 10% deviation, consistent with Ku-
bo’s antiferromagnetic spin-wave theory result49

CL

LkB
5

pkBT

3JS
. ~3.6!

There is a variational approach50 concluding that aT-linear
behavior of the specific heat may also exist over a certain
interval for finite-gap systems. It seems that formula~3.6!

holds better for large spins than for small ones.20 There are
also recent reports35,39 that the elementary excitation spec-
trum of the present system is, within 10% deviation, consis-
tent with Anderson’s spin-wave theory result51 except for the
qualitative difference at the boundaries and center of the
Brillouin zone. While we have to keep it in mind that Ander-
son’s approach is a semiclassical one,51 we may say that the
spin-wave picture generally comes to hold better asS in-
creases.

C. Magnetic susceptibility

We show in Fig. 6 temperature dependences of the mag-
netic susceptibility per spin in the even-length periodic
chains@Fig. 6~a!#, the even-length open chains@Fig. 6~b!#,
and the odd-length open chains@Fig. 6~c!#. As T→0, xL
vanishes for the periodic chains, while diverges for the open
chains. We note that the divergence in the present system is
essentially different from one in the half-odd-integer-S

FIG. 6. Temperature dependences of the magnetic susceptibility
xL per spin in the periodic~a! and open@~b! and ~c!# chains with
various lengthsL. The solid line represents a high-temperature
series-expansion result for the periodic chain within the up-to-
(bJ)3 approximation.

FIG. 7. Schematic representations of the VBS state on a periodic
chain~a! and a VBS-like state on an open chain~b! in the cases of
S51 andS52, where the symbold and the segment denote a spin
1/2 and a singlet pair, respectively. The circle represents an opera-
tion of constructing a spinS by symmetrizing the 2S spin 1/2’s
inside.

FIG. 8. Temperature dependence of the edge contribution in the
magnetic susceptibility,xC5xL11

open2xL
per, obtained from the

L596 data. The solid and dashed lines represent the curves,
xCJ/g

2mB
25(4/3)(kBT/J)

21 andxCJ/g
2mB

252(kBT/J)
21, respec-

tively, which are expected for two isotropic spins ofS51 and for
an isotropic spin ofS52.
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chains,52 where asT→0, regardless of the boundary condi-
tion, xL vanishes for the even-length chains, while it di-
verges for the odd-length chains. It is the quasi-nine-fold
degeneracy36 of the open-chain ground states that bears the
divergence in Fig. 6, as will be made clear in the following.
The (S11)2-fold degenerate ground states of an open chain
are a remarkable property probably common throughout the
Haldane systems10,53,54and have been actually detected for
theS51 ~Refs. 7, 8, and 55! andS52 ~Ref. 36! Heisenberg
Hamiltonians. It has been also pointed out10,55 that the mag-
netic ground states of the same origin is further found for a
variety of models with Haldane gap. Thus the low-
temperature behavior of the susceptibility shown here is evi-
dence that the present system is in a massive phase of
Haldane type.

The mechanism of this phenomenon is well understood by
means of a valence-bond approach10,53 schematically shown
in Fig. 7. Since the so-called valence-bond-solid~VBS! state
@Fig. 7~a!# is the exact ground state of a certain extended
Heisenberg Hamiltonian10 and generally exhibits the proper-
ties inherent in the Haldane phase,10,31,32,54we can consider
the state as an approximate ground state of the Heisenberg
Hamiltonian. If we try to construct the VBS state on an open
chain, the spin-S/2 degree of freedom is left unpaired at both
the ends@Fig. 7~b!#. We are consequently led to the conclu-
sion that the ground states of the spin-S open chain may be
(S11)2-fold degenerate. The unpaired magnetic moment at
each end is delocalized on the inner sites and weakly interact
with each other in the real ground state.7,8 It seems that the
effective interaction between them is antiferromagnetic for
evenL ’s, while ferromagnetic for oddL ’s.56 More explicitly,
the quasidegenerate ground-state level structure of the spin-S
open chain seems to be generally given as

~Stotal50!,~Stotal51!,•••,~Stotal5S! for even L ’s,

~Stotal5S!,~Stotal5S21!

,•••,~Stotal50! for odd L ’s,

whereStotal denotes the total spin of the state. In theL→`
limit, the effective spinS/2’s are decoupled and give the
exactly (S11)2-fold degenerate ground state.

Now we are ready enough to discuss Fig. 6. Careful ob-
servation of Fig. 6 shows that the divergence is less sharp for
evenL ’s than for oddL ’s. However, the quantitative differ-
ence in the diverging behavior becomes less significant asL
increases. They are all consistent with the above argument.
In order to observe more explicitly the edge effect on the
susceptibility, let us define the edge contributionxC as16,17

xC5xL11
open2xL

per, ~3.7!

wherexL
per and xL

open are the susceptibilities of theL-sites
periodic and open chains, respectively. Comparing Figs. 7~a!
and 7~b!, we find that the bulk contribution inxL11

open should
be identified withxL

per rather thanxL11
per . In Fig. 8 we show a

temperature dependence ofx C obtained through Eq.~3.7!
with L596. We have confirmed that all the data for
L532, 64, 96 give almost the same results forxC . We here
observe that the numerical calculation ofxC is well fitted by
two curves according to temperature as

xCJ

g2mB
2

55
4J

3kBT
523

1

3FS~S11!J

kBT
G
S51

at low temperatures,

2J

kBT
5
1

3 FS~S11!J

kBT
G
S52

at high temperatures.

~3.8!

Thus it turns out that the divergence at low temperatures is
actually caused by the two edge moments withS51, while
the edge contribution at high temperatures is simply attrib-
uted to anS52 free spin. There is also a transitional period
between the above-mentioned temperature ranges, where the
system is no more in the Haldane phase but a certain influ-
ence of the Haldane phase still remains. The fact thatxC
approaches the solid line from below suggests that the edge
moment is an effective spin which is quantum-cooperatively
constructed little by little with decrease of temperature. What
we have observed here is a macroscopic evidence of a
quantum-classical crossover in thermalization process and
has been also found in theS51 system.57

The high-temperature behavior of the susceptibility is
given by a series-expansion method as

xL5
g2mB

2

kBT

Tr@~( i51
L Si

z!2e2bH#

Tr@e2bH#

5H x`L[xL
per for the periodic chains,

x`L1x0[xL
open for the open chains,

~3.9!

where

x`5
g2mB

2

J ~2bJ28~bJ!2116~bJ!3!1O~ ~bJ!4! ,
~3.10a!

x05
g2mB

2

J ~8~bJ!2232~bJ!3!1O~ ~bJ!4! .
~3.10b!

Expression~3.10a! has been also shown in Fig. 6~a!, which
well fits the numerical data atkBT/J*65@S(S11)#S52 .
Now an asymptotic behavior ofxC is straightforwardly ob-
tained as

xCJ

g2mB
2 52bJ216~bJ!31O~ ~bJ!4!→2bJ~8~bJ!2!1! ,

~3.11!

which is consistent with Eq.~3.8!. If we represent the
quantum-to-classical transitional period asT1,T,T2 ,
kBT1 should be roughly identified with the Haldane gapD of
the system, whileT2 may be given through Eq.~3.11! as
kBT2 /J.2A2, which is in good agreement with Fig. 8 and
is also consistent with Fig. 4. It is to our interest to mention
other integer-S cases. Representing the susceptibility of the
L-site chain as Eq.~3.9!, we obtain
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x`5
g2mB

2

J S 23bJ2
8

9
~bJ!21

16

27
~bJ!3D1O~ ~bJ!4! ,

~3.12a!

x05
g2mB

2

J S 89 ~bJ!22
32

27
~bJ!3D1O~ ~bJ!4! ,

~3.12b!

for S51 and

x`5
g2mB

2

J ~4bJ232~bJ!21128~bJ!3!1O~ ~bJ!4! ,
~3.13a!

x05
g2mB

2

J ~32~bJ!22256~bJ!3!1O~ ~bJ!4! ,
~3.13b!

for S53. Therefore, high-temperature behaviors ofxC for
S51 andS53 are, respectively, described as

xCJ

g2mB
2 5

2

3
bJ2

16

27
~bJ!31O~ ~bJ!4!→

2

3
bJ S 89 ~bJ!2!1D ~3.14!

and

xCJ

g2mB
2 54bJ2128~bJ!31O~ ~bJ!4!→4bJ ~32~bJ!2!1! . ~3.15!

Here, (2/3)bJ in Eq. ~3.14! and 4bJ in Eq. ~3.15! are to be
regarded as (1/3)@S(S11)J/kBT#S51 and (1/3)@S(S
11)J/kBT]S53 , respectively. Now we obtainkBT2 /J
.2A2/3 for S51 andkBT2 /J.4A2 for S53. The present
discussion forS51 is actually consistent with the numerical
result.57 It seems that while T2 increases with S,
T2 /S(S11) stays constant. A quantum-classical crossover
of the same origin has been also observed in magnetization
process of theS51 system,18 where the transitional field
range is, as expected, given byH1,H,H2 with
gmBH1.D andgmBH2.kBT2 . AsS increases, the Haldane
gap rapidly goes to zero,1 and the integer-S and half-odd-
integer-S chains become less distinguishable. However, the
influence of the quantum cooperation inherent in the Haldane
phase remains far beyond the critical temperature~field!,
T1 (H1).

IV. SUMMARY

We have calculated thermodynamic quantities ofS52 an-
tiferromagnetic Heisenberg chains under the periodic and
open boundary conditions. The specific heat shows a well-
pronounced Schottky anomaly atkBT/J.2. However, we
should note that the maximum is located at a temperature
much larger than the Haldane gap, and the boundary condi-
tion, which affects the low-energy structure, has no signifi-
cant effect on the temperature dependence. Therefore, in the
present system, the temperature dependence of the specific
heat should not be simply attributed to the energy gap be-
tween the ground state and the first excited state. It was
unfortunate that the technical problem prevented us from ob-
serving the expected low-temperature behaviorC}e2D/kBT.
On the other hand, the magnetic susceptibility strongly de-
pends on the boundary condition. AsT→0, the susceptibility
vanishes for the periodic chains, while it diverges for the
open chains. The edge contribution, which is obtained by
subtracting theL-site periodic-chain susceptibility from the
(L11)-site open-chain one, is attributed to the twoS51

effective spins in the boundaries at low temperatures, while
to anS52 free spin at high temperatures. This is a visual-
ization of a quantum-classical crossover in thermalization
process and a strong evidence of the existence of the Haldane
gap. It is rather difficult to extract an estimate of theS52
Haldane gap from the present study. However, identifying
the temperatureT1 , below which the edge states are well
formed, withD, we can roughly estimate the gaps for finite
chains,D(L). They have been obtained asD(32)/J;0.2,
0.12&D(64)/J&0.14, andD(96)/J;0.1 ~see Fig. 8!. These
estimates are consistent with ones obtained through other
methods.35,39 Therefore we may at least conclude that the
S52 Haldane gap is smaller than 0.1J. A more precise es-
timate of the S52 Haldane gap will be presented
elsewhere39 through a quite different approach.

All the properties obtained here are also found in theS51
case.16,57 It has also turned out to be quite likely that all the
arguments presented here are still valid forS53. Now we
may say that there are certain generic properties peculiar to
the integer-S linear-chain quantum antiferromagnets. If we
adopt an asymptotic formula1 derived by Haldane,

D}S~S11!e2pAS~S11!, ~4.1!

together with the widely accepted numerical estimate2,3 of
the S51 Haldane gap,D/J.0.4105, we find three distinct
temperature ranges as follows:

T,T1 : Haldane region,

T1,T,T2 : quantum-to-classical transitional period,

T2,T : classical region,

where
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kBT1
JS~S11!

.0.23 exp@2p~AS~S11!2A2!#,

~4.2a!

kBT2
JS~S11!

.
A2
3
. ~4.2b!

There are also recent works31,32 discussing a possibility that
the Haldane phase for an arbitrary integer spin is character-
ized by a generic string order parameter.9 The spectrum of
low-lying states of the Haldane system may be in general
explained by domain-wall excitations in the hidden
order.2,16,32We hope that the present work will motivate fur-

ther study on theS.1 Haldane systems not only in the theo-
retical field but also in the experimental one.
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