PHYSICAL REVIEW B VOLUME 53, NUMBER 1 1 JANUARY 1996-I
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A microscopically based Hamiltonian of the generalized-J model is presented. Two types of the addi-
tionalt’ terms are discussed. The numerical range of the amplitudes corresponding to the additiemas
for the real Cu@ planes is derived from the three-band model calculations. Using the variational spin-polaron
approach the single-carrier dispersions in the generatizéel model are calculated both for the hole- and
electron-doped systems. The hole and electron band minima are found to be at point8,£ 7/2),
(0,£ ), and (= ,0), respectively. The band minima shift§ g ;) (z/2,2| are not small -J). The band-
widths for both cases of doping are found to be 1.5—4.0 times larger than thosetid thedel.

[. INTRODUCTION times bandwidth suppression results from the distortion of
the spin background by the carrier hopping from one sublat-
There is a general agreement that the three-band Hubbatide to the other. In this situation, when the characteristic
model is an appropriate basis for consideration of the spinergy scale becomds even smal(compared td) single-
and charge excitations in the CwpOplanes of high- sublattice hopping’ can be the key parameter for the subtle
temperature superconductdfs.One of the interesting prob- details of the energy spectrum and other features of the
lems for these systems is the hole energy spectrum. One-hol®ped systems. This is clear since the single-sublattice mo-
energy calculation in the framework of the above-mentionedion does not disturb the spin background. Hence, a careful
model has been done by Barabareival*® who used the analysis of the low-energy single band limit of the realistic
variational approach. This method seems to be too complid-p models should be done keeping all essential terms over
cated since the characteristic energy scale of the three-batidet’/J (nott’/t) parameter.
model is a few electron volts while that of the hole energy The simplest form of the additional terms can be writ-
spectrum is several tenths of an electron volt. Therefore, it isen as
natural to obtain first the low-energy limit of the three-band
modef~12and then to investigate the spin and charge degrees S &g
of freedom in the framework of this effective modét!’ Hy =t €i\aCj.a 2
It is widely accepted by now that the simple model which
contains in itself the interacting spin and charge degrees d¥mphasizing that the nonzero O-O hopping provides large

freedom is the so-calledJ model enough transfer amplitude to the next-nearesij)6)
neighbor®2! This term(2) alone has been found to be re-

sponsible for the CuPplane electron-hole asymmetry and to

_ 2t
HH_t(iE)a Ci,acj',aJ“](iz> SS, (D) pe useful for the interpretation of the recent angle-resolved
I . photoemission experiments.
where(ij) denotes the nearest-neighbor sitgsis the local The goal of the present paper is to exhibit theneral

spin operatorf:ifa(éi,a) is the constrained fermion creation form of the additionat’ terms which one can get from the
(annihilatior) operator. The explicit form of this constraint three-band Hubbard or the other first-principle models, to
depends on the type of doping. determine numerical ranges of all essential parameters for
The considerable attention that this model has receivethe real CuQ planes, and to calculate a single-particle dis-
originates partly from the fact that it can be derived from thepersion using the spin-polaron ideas. Namely, we will dem-
above-mentioned three-band or more genelgd models  onstrate that two types of the additiortdl terms naturally
which take into account the detailed electronic structure obriginate in the single-band modéi) the terms arising from
the copper oxides. Recently it has been shbwhat this the 0-O hopping, andii) the second-order high-energy
derivation can be done quantitatively for the real GuO channels term&>~2°The importance of both of them will be
planes by the use of an additional calculation of some exelearly shown. The first ones are the key parameters for the
perimentally observable values. band minima shifts, while the second ones lead to the grow-
The behavior of a single quasiparticle in thé model has  ing of the bandwidth. A quite similar model was investigated
been studied intensively using both analytical and numericaih the mean-field approximation for a special range of pa-
techniqued*>192%These investigations have clearly shown rameters in the work by Onufrievet al?® This approxima-
that the naive tight-binding picture is completely inadequatdion neglects some essential features of the Itelectron-
for the carrier motion on the antiferromagnetic backgroundspin interaction and thus has only a qualitative character.
Namely, for the realisti¢/J=2—3 the bandwidth is of the Single-hole energy calculation in the limiting case of the
order of 2J, not Wy=8t. This strong(of the order of 10 three-band model using the self-consistent Born approxima-
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tion has been done in the work by Staryéthal 2’ In spite of TABLE 1. t',t”,t5,tN hopping parameters for the hole and elec-
neglecting some features of the problem, the results of thigon. First and second rows show the lower and upper limits, re-
approach are in a qualitative agreement with the present p&pectively.

per.

The quantitative reduction of the three-band model devel- t/lt /I el ]
oped in Ref. 18 for the real CyOsystem provides the pgle 0.01 0.12 0.01 007
method of the derivation of a set of thealistic ranges for all t,/3=2.5 0.25 0.16 0.07 0.16
additionalt’ terms. We will show that the band minima shifts
as well as the bandwidths are not small for these ranges ¢f,..ion -0.09 011 0.07 0.10
parameters. Also, the density of stat@0S) characteristic t./J=—3.0 0.03 012 011 012

features will be discussed.
The paper is organized as follows. In Sec. Il we give the

generr;:l form of tkrl]e coLrectiong tlo the Hamiltonidn, dis-  pefs 12 and 28. In spite of the contribution of the highest
cuss them, and show the possible parameters ranges. In Sggyes the lowest singlet is the most important. The main

[l we discuss our results f(_)r the _spin-polaron dispersiongatures of these terms in the effective Hamiltoniah re-
and for the DOS features. Finally, in Sec. IV, we draw con- i unchanged, i.e() signt) = —sign(tS) = + 1 both for

clusions. the electron and hole, an@) [tN|~|tS=J/4, so that they
are not negligible.
IIl. REALISTIC LOW-ENERGY MODEL _ In addition, one can point out that at the mean-field level,
The most accurate form of the effectiveterms that fol- N andS operators shoulq be replaced with their averages
lows from the three-band Hubbard model§&2 (N) and(S), which effectively leads to
Ho=t' X &l& +t" X BLE, +t" X &l.& N HMS=T 3 &8 +1 X & .8.. 6
(ij)2.a (ij)z.a (ilj),a (ij),a hazla (ij)3. hatla
+15 > &, 05aCi 4S, (3 with I"=2t"=2((N)tN+(S)t%), where the additional factor
(ili).aB 2 for the diagonal hopping integral as compared to the

where (ij),3) denotes the secondthird) next-nearest- “oversite” t” arises from the two possible ways for the vir-
neighbor sites(ilj ) denotes the three nearest-neighbor sitegual processes on the square lattice. Thus, the second-order
(i), (jl)), Ny is the number of fermions operatdg=3  terms in the Hamiltoniar{3) can be approximately consid-
cl, 0.4C1, is the local spin operator is the Pauli matrix, ered as the renormalizations of the “barg’t” amplitudes
a=—a. The differences in the explicit form of the (5).As was noted, these renormalizations do not change the
¢! (& ) operators for the hole- and electron-doped system§igns under changing of the doping type. o
as well as the signs of ,t”,tN,tS will be discussed later. Now, return to the first two terms of the Hamiltoni&®).
Now we will consider the origin of the/,t” andt™,tS terms. They are the first-order terms arising in the first-principles
Let us begin from the last ones. The second-order pertuff0dels for the Cu@plz'fme from the ”Og‘sz%rglp'o hopping.
bation treatment of the usual Hubbard model near half filling!Vhile inclusion of thet” term is evident,™" inclusion of
provides the effective superexchange interactipfq. the t” term requires an additional explanation. Physically,
()] and the so-called “three-site spin-dependentonly thet’ term can arise for the next-nearest neighbor
hopping.2*2°~*LTheir importance for both the spectrum of CUO:-CuQ; local states due to the,, matrix element.*
the charge excitation and the hole-hole interaction wadtowever, as was showfi***the correct state of the oxygen
noted?® These terms in Eq3), manifestly, have the rotation- 10W-energy degrees of freedom are the orthogonalized Wan-
ally invariant form. In the case of the usual Hubbard modelni€r states. Consequently, some “unphysical” transition am-
mapping to thet-t’-J model, the expressions for th®,tS  Plitudes to the more distant neighbors arise. These ampli-

terms have the simplest form: tudes fall rapidly with distance, and only tré,t” terms
should be kept in the low-energy modgl.
N 14 2 As was recently proposed in many works, the absolute
U==-5=50"%" (4 sign of thet’ terms for the electron- and hole-doped GuO

systems could be the source of the strong electron-hole

It should be noted that this expressit# is valid for both  asymmetry in the magnetic phase diagrérif: The electron-
types of doping, and that the signstdfandtS are the same hole asymmetry arises naturally in the three-band
for the electron and hole due to the second-order nature afiodel”*>®28Not only the signs of the hopping integrals,
these terms. What would one expect from the three- or morebut also the orders of the elementary processes, that lead to
band Hubbard model mapping? the effective hopping, differ for the electron and hole. Con-

Much more high-energy channdlsiplet, etc) are opened sideration of a simple limiting case as well as discussion of
for the virtual second-order transitions in comparison withthe electron-hole asymmetry and the dependence of the ef-
the usual Hubbard singlet only ca&eThis leads to two ef- fective hopping integrals on the initial parameters are pre-
fects: (i) tN+—(1/2)t5, and i) t)-S#t)-°, wheree andh  sented in Appendix A. Numerical results for the ranges of the
denote the electron and hole hopping integrals, respectivelgffective parameters, based on the exact formulas of Ref. 28
The exact expressions for'Y) eh @nd (ts)eyh were derived in  and the approach developed in Ref. 18, are shown in Table I.
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Further, we will consider thes@able ) t’,t”,tN,tS values

where the operators (in; ,) project out the double hole
andt,=2.5J, t,=—3.01*%18as therealistic ones.

occupancy. An alternative way is to consider the physical
hole as a “hole”(vacancy in the upper Hubbard bari;*®
and the physical electron as the “particl¢Single in the
lower one. This freedom in choosing is not connected with
Before doing the energy spectrum calculation let us disthe initial orbital structure of the CuOplane, but follows
cuss the sense of the constrained Fermi oper@{®) in-  from the algebra of the Hubbard operators in Efj. Hence,

troduced in Eq(1). Both the hole and electron single-band gq. (9) for an extra electron on the electron background can
low-energy Hamiltonians derived from the three-band Hub-pe written as

bard model are naturally expressed in terms of the Hubbard
operators at the site

Ill. SINGLE-CARRIER ENERGY SPECTRUM

ene

ij',—a

— T e
Hel_ 2 t ei,aej,anj,fa'

(10

(6)

here the statea,b are either spin or singldévacancy local
states. Since the undoped state of the £plane is set up by
the localized holes in the Cd'® and Op® orbitals, the ad-
ditional low-energy hole forms a singlet with the local one,
whereas the electron in this background is a vacancy. Ther
fore, it is convenient to rewritet’ parts of Eqs(1), (3) as

X2=|ai)(bil,

Hhole: Z tir}xfaxjgs_*— 2 thisaxquNl
(ij)n @ (ilj),ep

+ D EXXP(04,9),
(ilj),ap

Ho= 2 tEXP*X0+ X thXPoxeoN,
(il)n e (iyap

+ D X X(0,9),
(ilj ),ap

where |@)=|1),||) is a local spin state|s) and |0) are
singlet and vacancy states, respectivély), denotes all es-

()

sential neighbor sites. Note, that the signs of the next-nearest,plT

hopping parameters shown in Table | are relatedhtese
particular[Eq. (7)] order of the Hubbard operators. The signs
of the nearest-neighbor hopping arg,>0, t7,,<0. The

latter is not essential, since for the antiferromagnetic back
ground the shift of the quasimomentum space by the vectos :

of the reciprocal lattic® = (7, ) changes the sigh(;,) but
physically changes nothing.

We wish to stress that when the kinetic-energy part is o
the single-band typgas in Eq.(7)], mapping of the Hubbard

operators onto the constrained Fermi operator basis is two;

fold.

If one prefers to retain the singlet ideology for the hole-
doped system, the first term of the Hamiltonig® can be
rewritten identically a¥

h.h
ijNi,—a

T h
hi,ahj,anj,faf

Hhole= E t

ij)n.a

(8)

and the background is created by the, hole at every site.
n'_,=h!_,hi _, is the projection operator which project
out the vacancy statgsdouble electron occupancy’ This
representation for the electron over the hole background is

-3

(ij)n.a

h

i,—a

h
ji—a

Hel th(1—nP_)hl h (1=n"_), (9

(ij)n e

At first glance, it would seem that the choice of the particle
[Eg. (10)] or “vacancy” [Eq. (9)] language leads to the
change of the sign of the quasiparticle energy. This is not
true, since the vacancy energy has the sign;ofeversed
compared to the particle enerty’ Therefore, Eqs(9) and

§10) lead to thesameenergy.

Thus, the explicit form of the constrained operators in
Egs. (1) and (3) is Ei,a=hiyanf"a(ei‘anﬁa) for the physical
hole (electror) system. Hereafter, we will work with the
Hamiltonian Eqgs.(1) and (3), constraint from Eqs(8) and
(10), and parameters from Table I.

Properties of the single-particle in an antiferromagnetic
background were studied in detail by many
author§®14192037-3%5ing different approaches. Their re-
sults coincide at the point that the carriers are strongly
dressed by the spin waves, i.e., quasiparticles are the mag-
netic polarons of a small radius with a strongly anisotropic
dispersion law and small enough quasiparticle residue. We
base our calculations on the results of Ref. 14. The suggested
trial function of an extra particle has the simple fdfm

1

t t t -
2 chn,T-r +Sn25 Mk, 5Cn+5,| explikry),

IN/2iE)
(13)

valid also for ¢f  after changing?<| and S*<S.

el (l) means the sita of the spin-up-down) sublattice,

s the unit vector to the nearest-neighbor site. The explicit
expressions fow, and u s are given in Appendix B. From

n

ghe string picture point of view this simplest ansét) con-

sists of the “bare” particle and four shortest “strings” of the

lattice constant length. It was sho%{®=#?that the one-hole

dispersion as well as two-hole contact and long-range inter-

actions, and even many-hole properties of thkmodel are

quantitatively well described using the above ansatz.
Consideration of the generalizet terms[Eq. (3)] does

not require any changes in the trial functi@tl). Roughly,

this is due to the following reason§) thet’ terms lead to
the motion of the particle ovesne sublattice without distor-
tion of the spin background, that enables bare particle

to
propagate freelyfii) the motion of the “dressed” particle
(with a string mainly leads to longer strings, whose contri-
bution to the energy is of the order ofi/t and parametri-

cally small att=3J. Hence, the expansion of the ansatz

makes a small decrease in the energy, since the part of the

ansatZ11), which would be mainly affected by thé Hamil-
tonian (3), is the bare one. The last statement will be dem-
onstrated below.



338 V. I. BELINICHER, A. L. CHERNYSHEV, AND V. A. SHUBIN 53

As was noted, the’-induced transitions occur in one su- subject of the prime interest. As was notetf®= ,?=0.5,
blattice, therefore a good preliminary consideration of thethat is larger than in other works3® where
role of each term in Hamiltoniaf3) can be done for the fbae=72~0.35-0.41. Forn!s""%=4|,|?>~=0.42 the agree-
Ising background. It allows us to find easily the leading con-ment is bettern® s"""%=0.44. This discrepancy is due to the
tribution to the band minima shifts, bandwidths, and effec-transfer of the weight from the rest of te&actparticle wave
tive masses. Thil andS operators in3) should be replaced  function (with the infinite number of stringgo the weight of
with (NY=1, (S)=(S*)==+1/2. The eigenenergy of the the bare particle in the approximate ansékz). Thus, our
magnetic polarori1l) is main approximation lies not in the shortness of the ansatz,

but in the overestimation of the bare particle weight. This
_<'7[fk|(Ht—J+ He)l o) problem can be overcome by the simple renormalization of

€k <¢k|¢k> :E0+Bl’yi+ﬂ2(')’k_)21 2 to 72,
Let us discuss now what changes of the above results can
,81:4u2(t’+2t”+4t'\'—2t3), be expected for the Né background. The main changes
arise from the fact that due to the spin fluctuations the pure
Bo=4v2(2t"—t"), t-J model particle is given the possibility to propagate. Evi-
dently, this will provide additions tg3;,8, and the band-
yv= 12 cogky) + cogky)], width W. Also, the “dressed” part will lead to some coherent
transitions. Due to the more complex structure of the matrix
i =1/ cogk,) — cogk,)], (120  elements of the Hamiltoniail), (3) for the Neel back-

ground, the simple tight-binding relations betwegen, 3,
where we omitted all high-ordertf/t) terms. E is the andW no longer hold.
depth of the bandB;,3, are the inverse masses in the di-  The puret-J dispersion lat**!is
rections ortogonal and parallel to the magnetic Brillouin-
zone boundary, respective_ly. Since for the Ising case a paret—J(k)=2J— V(0.661)%+4.58%— 2.8%y2+0.01t|(y, )2
ticle of the puret-J model is dispersionleds,» and . are
constants and at the realistit=(2—3)J |v|?=1/2, =ES Y+ B 2+ B N (v)? (13
|w|2=1/8. Expressior(12) for the energy coincides almost s -
exactly with that obtained for the free spinless fermighs. where 81 "=+0.65t| and g, “=+0.01t|. Due to thek

The main difference is the presence of the weight of the baréependence of the trial wave function componentsy
particle| |2 in Eq. (12). In the realistic region of,t’,t” etc., ~and the nonzero matrix elements for the string components,

E, is very close to itg-J, model valueE,= — 2t. the first-order contribution to the energy from tHieHamil-
Two notes should be made. Firstly, tigg term (12) rep-  tonian (3) contains extra terms with the highest powers of

resents the dispersion which is degenerate along thei

(7,0)—(0,7) line, whereas theg, term lifts out this degen-

eracy, placing the minima at the=(z/2, + w/2) (if 8,>0) or e(K)=€eI(K) + Se'’ (k) e,
(x#,0),(0x7) (if B,<0) points. The difference

A (0.7~ (ml2,712)= B2 is proportionalonly to the “first-order” (K)=S8Ey+ 4 2. 5 ~y2r

termst’,t” (12) and does not depend on the second-order ot OBuiict OB n)

tV, tS terms. Secondly, one can see from ELp) that in the + A+ Beyi(ve )2, (14

casetN>0, t5<0 and sign(’)= —sign({t”) B; and band-
width W(= 8, or B,— 3,) are mostly determined by a few Where theéB;y, B2k, Ay, and By coefficients weakly
(2tN—15), depend ork through the v, |? and|u,|? quantities(see Ap-
The above qualitative calculation for the simple IsingPPendix B. As was discussed earlier, the highest-order cor-
background results in conclusions, which remain valid forrections to the energy from Eq3) are of the order of
the Nel case. The energy difference between theter/t, and for the realisti¢/J=(2—3) andt’ from Table |
(m/2,7/2) and @r,0) points, which is the crucial value for can be neglected~1/10). Sincg »,|* is almost constant, the
the various calculations, has different signs for the hole- angienormalization to the “normal’{»|? can be accomplished
electron-doped systems andrist smallfor both cases. It by the simple replacingv o -|=|v ol?=|vod?=|7|?
means that if the single-particle picture is valid for the finite =0.35.
doping regime, the quasiparticle Fermi surface will be lo- Figures 1-4 present our results for the hole and electron
cated(up to the high enough doping leveatear the points dispersions. The contour plot in Fig. 1 shows the character-
(@2, +w/2) and (*,0),(0+7) for the hole- and istic feature of the hole dispersion in the whole Brillouin
electron-doped systems, respectively. zone. The magnetic Brillouin-zone boundary as well as
Also, it can be shown from Eq12) that, at least for the the 1'(0,0)—=M(7/2,7/2)—Z(m, 7)—Y(0,m)—I" and
upper limit of thet’,t”,t5tN hopping parameterélable ), Y—M—X(,0) directions are shown. Figures 2—4 show
the bandwidths are large enough. Thus, one would expedhe dispersions along the -M—Z—Y—I', and
decrease of the DOS compared to the pudemodel one. Y—M—X lines. Figure 2 demonstrates the characteristic
Finally, the role of the bare particle for the consideredt’-J hole dispersion(solid line) for the average parameters
simple case is crucial, since the dressed part cannot propfom Table |, puret-J model hole dispersiodashed ling
gate freely in the absence of the spin fluctuations. Thereforegnd puret’-J dispersiont=0 (dotted ling. This qualitative
the weight of the bare part in the trial wave function is thepicture clearly demonstrates that due to théerms the sys-
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Y A

r M z Y r y M X

FIG. 3. Dispersion curves along the lines as in Fig. 2 for a hole.

Solid curves correspond to the upper and lower limits of the
parametergTable 1. Dotted curves correspond to the same with
renormalized bare carrier weight. Dashed curve is the pule

model dispersion.

FIG. 1. Contour plot ofe(k) for a hole.t,/J=2.5,t",t",tNt> s very close to the results for the Ising background and that
are taken as the average values of the upper and lower limit fronthe dressed particle contribution plays a minor rote0(2)
Table I. Inner square is the magnetic Brillouin-zone boundary.compared to the bare one. Using the data from Table I, the
I'(0,0) M(7/2,m/2),Z(7,m),Y(0,m), andX(w,0) points are indi-  yariations of the inverse mass values and the bandwidths for

cated.

tem becomes less strongly correlated because of the liberat-
ing of the bare carrier. Figures 3 and 4 show dispersions
along the same lines. Figure 3 describes the hole-doped sys-
tem, and Fig. 4 the electron-doped one. Solid curves are
related to the upper and lower limit for thet” tN,tS param-
eters from Table |, the dotted satellites are related to the same
parameters for the renormalized bare carrier weigipt to

the hole and electron are found as follows:

Bh=(3.8-5.3J, BS=(3.5-5.0J,
Bh=(1.3-3.)J, pB5=-(0.7-1.6)J, (15)

Wh=(5.1-7.1)J, W°=(5.2-8.4)J.

0.35. The dashed lines demonstrate the pugemodel dis- ~ Despite some changes in the inverse mass vall®s the
persions. features discussed earlier for the Ising case are still valid.
Our calculations of the’ part(14) in the dispersion dem- Thus, the shifts of the band minima are rather large, the

onstrate that the bare particle contribution for theeNease ~Pandwidths are substantially wider as compared to those in
the t-J model, and the role of the bare particle weight re-

20

0.0

E/J

-2.0

FIG. 2. Dispersion curves along the linfs-M —-Z—Y—T,
andY—M—X. Solid curve is thet-t’-J hole dispersion for the
same parameters as in Fig. 1, dotted curve is the gudedisper-
sion (t=0), dashed curve is the putel model dispersion. an

E/J

4.0 . - mains the most important.

2.0

-8.0

FIG. 4. Dispersion curves along the same lines as in Fig. 2 for
electron. All notations as in Fig. 3.
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4.0 remains rather large at low energigsince (3-8)J<8t],
l — b - upper limit and the peaks in the DOS shift to higher concentrations
E = h - lower limit (Omax—0.4—0.5), compared to the t-J case
300 T e - upper limit (5max~o-1_ 0-2)-
:: ° e - lower limit
—_ E': RS | IV. CONCLUSIONS
E ]
Z To summarize, in this paper we have studied the micro-

2.0fr
1
1
]
1
\

scopically derived extended type of the’-J model. Previ-
ous investigations of the three-band model allowed us to
establish the necessary next-neighbor terms for the low-
energy single-band model. In this work the efficient scheme,
developed previously for the calculation of tie] model
parameters of the real Cy@ystems, has been applied to the
effectivet’-terms calculation. This has enabled us to deter-
mine numerical ranges for dl terms both for the electron-
and hole-doped systems.
FIG. 5. DOS vs energ§/J for the puret-J model and electron We also have performed simple calculations of the single-
and holet-t’-J model (upper and lower limits in Table).| particle dispersion using the variational approach to the spin-
polaron problem. Both types of doping have been considered
One of the unsolved prob|ems of thel type models is within the above-mentionealistic values of tha, t,ef'f pa-
whether the free-particle approximation works for the dopedameters. The importance afl t.; terms has been clearly
systems344Therefore, the extension of the single-particle demonstrated: the, t terms of the second-order origin are
calculation onto the case of finite doping indeed requiresesponsible for the widening of the bandwidth, and the
justifications. Some of them can be found in Refs. 20, 311" terms arising from the O-O hopping bring about the shift
and 38. We simply accept the free particle picture and havef the groundstate minima. It has been found that the minima
calculated the chemical potential as the function of concenshifts are large enough<(J) and have opposite signs for the
tration for the dispersion laWl3), (14). From Figs. 1-4 itis hole and electron systems. Also, the bandwidths have been
clear that the ground state i ¢r/2,* 7/2) for the hole, and found to be 1.5 4.0 times larger than those in the puré
(0,= ), (+=,0) for the electron. Both minima are not shal- model.
low: |A (0.m)— (mf2,mi2)l ~J. At the same time, the bandwidths  An investigation of the finite doping regime for the simple
are larger thari-J ones W' 7~2J), and the accumulation free-particle approximation has been carried out. The Van
of the DOS at low energy is smaller than for thé model Hove peak in the DOS has been found to decrease and move
case. This point may be of interest in view of intensive dis-to a higher doping level from its-J model position.
cussion of the possible Van Hove singularity at the optimal
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APPENDIX A

It will be useful for the future discussion to consider the
simple limiting case of the three-band model, when the Cu-O
hopping is much less than both the Cu-Cu Coulomb repul-
FIG. 6. DOS vs concentratiod. sionUgy and Cu-O levels splittingh (t,g< Ug,A).
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The additional hole moves over the spin background as gonventional basis, namelg|gs), where|gs) means the
Zhang-Rice(ZR) singlet? whereas the electron moves as aground state(one fermion per site andc! is the creation
vacancy. Corresponding hopping integrals in the lowest ordegperator of the additional fermion. This careful approach
of t,q/A are leads to the signs of the hopping amplitudes as presented in

2 g _Eq. E)Al) a?d ir;]TapIe II I}Iote .that. thirs] dilffe(ence ?f the basles
pd pp| tpd is absent for the single fermion in the lattice or for particles
th:o'53z+o'27app' le=— ( 1'06+2'03X) X obeying Bose statistics. To obtain E#&1) we have used the
general expressions fog; from our previous works?*®

Approximate expression@l) for t, t’ andt” are good
enough for large and even moderate Thus, our calcula-
tions of thet, t', t” realistic values for the Cu{plane, show
that |t'|<|t"| at least for small values d¥,q (Cu-O Cou-

, top tf,d lomb repulsion. This is due to the partial compensation of
te=—10.18- 0-92X = the Cu-O and O-O contribution to thé term, that can be
seen in Eq(Al). It should be noted that thg, contribution
to the hopping of the vacancy arises only in the third order of
toa/A (tpp/A). The above-mentioned compensation of the
e 0-0 and Cu-O amplitudes for the electronterm is even
more pronounced than for the hole. The exact forntélas
t t2d provide very smalt, for V,4=0.
te=— ( 0.105+0.465% | £, To be more specific, in our calculations we have followed
A A the idea of the narrowing of the uncertainty region for the

t2,
’r_ p
th= O.OQX —0.124,,,

t2
t;;=0.053%j +0.062

~ low-energy model parameters using some experimentally ob-
A=A-1.43,. (A1) served values. This approach was developed in Ref. 18 and

The first two expressions for the hole hopping integrals co€nabled us to calculate, andt, for the real CuQ planes.

incide with those in the work by Jeffersa al,® except the Our results for the’,t”,t",t> hopping integrals obtained in

signs. The signs are opposite for the following reasons.  the same way for the two types of doping are shown in Table
In calculation of the transfer amplitudes of thd model )

singlet or vacancy from the three-band model, it is conve- We wish to stress the strong,q dependence of’ both

nient to construct the basis of the wave functions as the difor the hole and electron carriers. THI{V,q) dependence

rect product of the states at the sites:can be easily understood. The rising\gfy requires the low-
(Al|0),®AJ|0),® ...). The Al operators can be consid- €ing of theA for the fixed values of the observable quanti-

ered as the Hubbard operators at the sitwhich create the ~ ti€S: Thus, the occupation number of oxygen sites also rises,
singlet or spin state over the vacuum stdg . Namely, the vyhlch immediately leads to the growing of thg, contribu-
two-site wave function of the forrs);®|1); has been used tion. Note, that due to the smaller role of the oxygen degrees
for the calculation of the singlet);) hopping integralgsee of frgedom for the electron, |ts. hgpplng integrals are less
Refs. 7, 8, and 28 This convenience is due to the complex varying than those for hole. This is in agreement with the

singlet (double copper occupangyan oxygen onddouble
oxygen occupangy and a copper-oxygen one. This state is
hardly expressed in the terms of the Fermi creation operator

which acts on the spin background. However, the use of the

direct-product basis is incorrect when more than one Hub- APPENDIX B
bardA;r operators are of the Fermi type. This is evident from
their anticommutativity. In other words, the wave function of
the half-filled backgroundone fermion per sitecannot be
uniquely determined in this basis. Formally, the two-site

Explicit expressions for the componentg, w, (Ref. 19

i i - i 1[Ag+2S]¥2
wave function|s);®|1); is determined correctly since the ye=o| —~ X
singlet|s); is the boson. Nevertheless, for the matrix ele- 2 X&
ments of the hopping Hamiltonian, which consists of the
creation and annihilation operators of an additional fermion, ;= ut+ u2ye'*?
one gets
t .
_ _ iks
ti(Thie(siLAs)(TD;-(1)(shilshel 1), “IVS(Agt 25t (E o)~ (Ut mer,
=t (1l (1l 11i®l1);. (A2) (B1)

Thus, the matrix element reduces to the projection of the onehere parameterX, Y, u, andv are expressed in terms of
half-filled state to the other and hence has an uncertain sigground-state correlatdfs and for the Nel state are
Therefore, to avoid this uncertainty one has to use a mord,=1.33), X=0.8, Y=0.72, u=042, v=0.12.
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Sc=€"J(k) is the puret-J model dispersion13). Since
Sc~|t] att>J, v andui, u? are weakly varying functions
of k.

Explicit expressions for théB;y, 682k, Ak, By coeffi-
cients[Eq. (14)] are

8B1x=VEC1+ (ui)*Ci+ (1) *CI+ pigniCy,

OB2k=vkCo+ (i) *Co+ (i) *Co+ pichuicC3,
VCa+ (i) "C+ (1) C+ pienicC3,

Bi=vCs+ (1) *Ci+ (1) *C3+ nyuiCs,

(B2)

where

V. I. BELINICHER, A. L. CHERNYSHEV, AND V. A. SHUBIN

Ci=3t'+6t"+12N-8.45 C?=-58"-58"-1.65

Ci=-8.2a"-8.2N+2.95

C1=9.8'—6."+12.8N+3t5,

C3=—3t'+6t", Ci=—1&S C3=C3=C3=C;=0,

C3=5.8"+11.5"+23N-12.25,

C3=10.6'+16.4"+37.2N-15.15,
Ci=11.3'+23"+23xN-30.45,

C2=-58'+11.8"+4.65

C3=-10.6'+16.4"—4.9"+3.5°5,

Ci=—11.5"+23". (B3)

The numbers in Eq(B3) result from(S'S)), (S'S;"), and
other spin correlators for various neighbor sites.
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