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The static critical behavior of a weakly frustrated ferromagnetic Ising model on the two-dimensional~2D!
quasiperiodic octagonal tiling is studied by means of Monte Carlo simulations and finite-size scaling analysis.
Our results strongly suggest that this frustrated Ising model on the octagonal tiling belongs to the same
universality class as the ferromagnetic Ising model on 2D periodic lattices. The infinite tiling critical tempera-
ture, kTc /J51.4960.02, agrees with previous studies indicating that tendency to ferromagnetic ordering is
higher in quasiperiodic tilings than in periodic lattices.

I. INTRODUCTION

The discovery of quasicrystals in 1984 is responsible for
studies about quasiperiodic tilings.1,2 In particular, numerical
simulations about the nonfrustrated ferromagnetic Ising
model on the two-dimensional~2D! Penrose tiling and the
2D octagonal tiling have been performed in order to study
the static critical behavior.3–5 For the Penrose tiling, finite-
size scaling analysis of a phenomenological Monte Carlo
renormalization group using periodic approximants with pe-
riodic boundary conditions provided the critical temperature
kTc /J52.39260.004.3 Another Monte Carlo investigation
on periodic approximants with periodic boundary conditions
leaded to a consistent valuekTc /J52.40160.005.4 More
recently, a study of the ferromagnetic Ising model on the
octagonal tiling with free boundary conditions provided
kTc /J52.3960.01.5 Since the mean number of interacting
spins in the Penrose tiling and in the octagonal tiling are
equal to 4, as in the square lattice, these results indicate that
tendency to ferromagnetic ordering is higher in quasiperiodic
tilings than in periodic lattices (kTc /J52.269 in the square
lattice6!. Moreover, calculated critical exponents for the Pen-
rose tiling and for the octagonal tiling are in reasonable
agreement~h'1/4 andn'1! and strongly suggest that the
nonfrustrated ferromagnetic Ising model on 2D quasiperiodic
tilings belongs to the same universality class as the ferro-
magnetic Ising model on 2D periodic lattices.

On the other hand, very few studies have been devoted to
frustrated spin systems on quasiperiodic tilings. For example,
numerical simulations about theXY model on the Penrose
tiling have indicated a Kosterlitz-Thouless transition as in
2D periodic lattices.7 For the frustrated antiferromagnetic
Ising model on the Penrose tiling, numerical studies allowed
to determine a complex phase diagram.8 As far as we know,
no study about the effects of the combination of quasiperi-
odicity and frustration on the critical behavior has been car-
ried out. In this paper, we investigate the static critical be-
havior of a weakly frustrated ferromagnetic Ising model on
the octagonal tiling which is a 2D quasiperiodic tiling with
an eightfold orientational symmetry~Fig. 1!.5,9,10Because of
the topological properties of the octagonal tiling, the nearest-
neighbor interaction (J1), which corresponds to the short
diagonal of the rhombuses, is a nonpercolating interaction.
More precisely, it can only connect the spins into very small

clusters~maximum size: eight spins!.11 The aim of this work
is to study the effects on the critical behavior of such an
unusually frustrating interaction which cannot exist in peri-
odic lattices. Moreover, we shall test the validity of the
finite-size scaling theory on frustrated quasiperiodic Ising
spin systems with free boundary conditions.

With this aim in view,J1 was taken to be antiferromag-
netic, while the next-nearest-neighbor interaction (J2),
which corresponds to the edges of the squares and the rhom-
buses is ferromagnetic. It should be noted that since all oc-
tagonal tilings are locally isomorphic, the ground states, the
critical temperature, and the static critical exponents do not
depend on the special tiling on which numerical simulations
are performed.5,12 Here, we have considered the octagonal
tiling with a perfect eightfold symmetry around its center
~Fig. 1!. Before starting our investigation, we checked, by
Monte Carlo simulation, that the ground state of our frus-
trated system (J152J2,0) is ferromagnetic. Then, the
suitable order parameter is still the spontaneous magnetiza-
tion per spin.

The models, simulation techniques, and finite-size scaling

FIG. 1. The octagonal tiling and the six local environments.
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analysis are described in Sec. II. Results and discussion are
presented in Sec. III and a summary is given in Sec. IV.

II. BACKGROUND

A. Spin Hamiltonian

We have considered the frustrated Ising model with the
Hamiltonian

H5J(
^ i , j &

SiSj2J(
^ i ,k&

SiSk ~J.0!,

where the spins, which take on the values61, are located at
the vertices of the octagonal tiling.Sj , Sk are, respectively,
the nearest and the next-nearest neighbors of a given spin
Si . The mean numbers of interacting neighbors in the infi-
nite tiling are, respectively,̂ z1&52A2/(11A2) for the
nearest neighbors and̂ z2&54 for the next-nearest
neighbors.11

B. Numerical simulation

Numerical simulations were carried out on finite octago-
nal tilings of size N5185, 481, 1169, 2481, 3801, and
5497 with free boundary conditions. The procedure is the
Monte Carlo simulated annealing method.13 In our proce-
dure, the temperature is slowly decreased or slowly increased
according to a geometric law (Tn115tTn) with a rate
t50.99 ort50.9921. At each temperature, thermal equilib-
rium is achieved after few thousands Monte Carlo steps
~MCS! per spin following the Metropolis algorithm.14 The
first 20 000 MCS per spin were discarded before averaging
over the next 80 000 MCS per spin (N5185) up to 480 000
MCS per spin (N55497).

All simulations were done using the CRIHAN high-
performance computer consisting of a CONVEX C 3420
vector computer. The speed of the program is roughly
325 000 spin-flip trials per second.

C. Finite-size scaling theory

The static critical behavior of an infinite system may be
deduced from the size dependence of several thermodynamic
quantities such as the specific heat,

C~T,L !5L2d ^E2&2^E&2

kT2
,

the spontaneous magnetization per spin,

m~T,L !5^umu&5L2dK U(
i51

N

SiU L ,
and the true susceptibility,

x~T,L !5Ld
^m2&2^m&2

kT

(d is the dimensionality of the system,Ld5N is the number
of spins,E is the total energy and̂& means thermal average
at temperatureT). According to this theory,15,16 for a suffi-
ciently large system at temperatureT close enough to the
infinite critical temperatureTc :

C~T,L !;La/nC0~ tL1/n!,

m~T,L !;L2b/nm0~ tL1/n!,

x~T,L !T;Lg/nx0~ tL1/n!,

where

t5uT2Tcu/Tc

and a, b, g, and n are the static critical exponents of the
infinite system.17

The critical exponentn can be estimated without knowing
Tc from the logarithmic derivatives of ^umun&,
fn(T,L)5(1/k)(^E&2^umunE&/^umun&!.18 Sincefn

max;L1/n,
the slope of the log-log plot of size dependence offn

max is
n21. In our analysis, we have consideredf1 andf2.

With n, the infinite tiling critical temperature can be de-
duced from the ‘‘effective transition temperatures,’’Tc(L),
corresponding to the location of the maxima in the specific
heat, the finite tiling susceptibility,

FIG. 2. Time dependence of the energy per spin for the first
5000 MCS per spin atkT/J52 ~a! and kT/J51.45 ~b! (N
52481).

53 3313STATIC CRITICAL BEHAVIOR OF A WEAKLY FRUSTRATED . . .



x8~T,L !5Ld
^m2&2^umu&2

kT
,

and the derivative of the spontaneous magnetization per spin,
]m/]T215(1/k)(^umu&^E&2^umuE&). The ‘‘effective tran-
sition temperatures,’’Tc(L), vary with the system size, as-
ymptotically, as19

kTc~L !

J
5
kTc
J

1aL21/n,

wherea is a quantity-dependent constant.
At the critical point (t50), the spontaneous magnetiza-

tion per spin has the scaling behaviorm(Tc ,L);L2b/n and
the true susceptibility satisfiesx(Tc ,L);Lg/n. Moreover,
some studies which have shown thatx8 diverges with the
same critical exponentg asx does20,21 provided the scaling
form xmax8 ;Lg /n. Thus, the log-log plot of size dependence
of m(Tc ,L) and the log-log plot of size dependence of
x(Tc ,L) and xmax8 are straight lines with slopes2b/n and
g/n, respectively.

III. RESULTS

For each size, a run witht50.99~cooling! and a run with
t50.9921 ~annealing! were performed. The final thermody-
namic quantities have been obtained by averaging over the
two runs. For each plot, three different linear fits were per-
formed using system sizesNmin<N<5497 withNmin5185,
481, or 1169.

The time dependence of the internal energy per spin for
the first 5000 MCS per spin atkT/J52 andkT/J51.45 is
shown in Fig. 2. It can be seen that the magnitude of the
fluctuations is slightly larger atkT/J51.45 indicating that
the critical point is closer to 1.45 than 2.

A. Evidence for a second-order phase transition

In order to check that the transition is second order, we
plotted in Fig. 3 the maximum of the specific heat as a func-
tion of system size on a semilogarithmic scale@Cmax(L)
; ln(L) if the transition is second order witha50, while
Cmax(L);Ld if the transition is first order#. This plot indi-
cates that the data are well described by a linear fit as for the
2D Ising model on periodic lattices. No significant deviation
to the asymptotic linear regime has been noticed. This result
agrees with the energy histograms which exhibit only one
maximum at all temperatures.

B. Determination of n and Tc

In Fig. 4, we plot the maximum value of the thermody-
namic quantitiesf1 andf2 as a function of system size on a
log-log scale. For each quantity, the three linear fits evidence
that the asymptotic finite-size scaling regime is already
reached byN5185 as for the nonfrustrated ferromagnetic
Ising model.5 The two estimates ofn deduced fromf1 and
f2 ~linear fits withNmin5185) are, respectively, 1.0460.02
and 1.0460.01. Combining these two estimates, we find
n51.0460.01 which is in reasonable agreement with the 2D
nonfrustrated Ising value~n51!.

The size dependence of the ‘‘effective transition tempera-
tures’’ extracted fromC, x8, and ]^m&/]T21 is plotted in
Fig. 5. Since no significant deviation to the asymptotic linear
regime was noticed for the data fromC andx8, we consid-
ered the two linear fits withNmin5185 which provided the
same valuekTc /J51.4960.02. On the other hand,Tc(N
5185) obtained from the derivative of the magnetization
seems to be out of the asymptotic linear behavior. So, we
estimated the critical pointkTc /J51.4860.01 from the fit
with Nmin5481. Since the data from the specific heat seem
more reliable, we estimate the infinite tiling critical point at
kTc /J51.4960.02. The slope of the linear fits extracted
from C, x8, and]^m&/]T21 is, respectively,22.3860.15,

FIG. 3. Semilogarithmic plot of the size dependence of the
maximum value of the specific heat.

FIG. 4. Log-log plot of the size dependence of the maximum
value off1 andf2.
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21.6860.14, and21.8560.19. For comparison, we note
that the absolute value of the slope of the size dependence of
Tc(L) for the specific heat and the finite tiling susceptibility
are lower than the values of the nonfrustrated ferromagnetic
Ising model:a'23.16 anda'22.09.5

In order to analyze the effects of quasiperiodicity and
frustration on ferromagnetic ordering, we have estimated the
critical temperature of a frustrated ferromagnetic Ising spin
system on the square lattice22,23 (J1

sq.0 and J2
sq,0 with

J2
sq/J1

sq.21/2) which exhibits the same ground-state energy
as our frustrated quasiperiodic spin system:

z1J1
sq1z2J2

sq5^z1&J11^z2&J2 .

Setting downl5J2
sq/J1

sq and replacing each term by its nu-
merical value, we obtain the relation (414l)J5@4
22A2/(11A2)#J, that is l520.292 89, which provides
the critical temperaturekTc /J'1.32 for the square lattice.

Then, it is interesting to compare the ratio
(kTc /J)octagonal/(kTc /J)square without and with frustration.
We find 2.39/2.269'1.053 for nonfrustrated system5 and
1.49/1.32'1.129 for frustrated systems. It should be noted
that the ratio is greater than 1 in the two cases indicating that
tendency to ferromagnetic ordering is higher in quasiperiodic
tilings than in periodic lattices.3–5 Moreover, the difference
between the octagonal tiling and the square lattice is bigger
for frustrated systems. This can be explained by the different
nature of the frustrating interaction in the octagonal tiling
(J1) and in the square lattice (J2

sq): J1 is a nonpercolating
interaction in the octagonal tiling which only induces local
frustration, whileJ2

sq is a percolating interaction in the square
lattice.

C. Determination of b and g

In order to determineg, we plot in Fig. 6 the size depen-
dence of the maximum in the finite quasilattice susceptibility
and the size dependence of the true susceptibility atkT/J
51.487('kTc /J) on a log-log scale. For each plot, no sig-
nificant deviation to the asymptotic linear regime has been
noticed and the quality of the fits is roughly independent of
Nmin . The estimates ofg from the fits withNmin5185 are,
respectively, 1.6660.08 and 1.7160.04. Combining these
two estimates, we obtain a final valueg51.6960.06 which
is in reasonable agreement with the 2D periodic value
g51.75. For comparison, we also plot in Fig. 6 the size
dependence of the true susceptibility atkT/J51.502. The

FIG. 6. Log-log plot of the size dependence of the maximum
value of the finite quasilattice susceptibility and the true suscepti-
bility at kT/J51.487 andkT/J51.502.

FIG. 7. Log-log plot of the size dependence of the spontaneous
magnetization per spin atkT/J51.487 and kT/J51.502 ~the
straight lines are linear fits withNmin5481).

TABLE I. Slopes of the linear fits of the magnetization per spin
vs system size atkT/J51.487 andkT/J51.502.

Nmin s(kT/J51.487) s(kT/J51.502)

185 0.1460.01 0.2160.01
481 0.1160.02 0.1960.02
1169 0.08960.035 0.19860.037

FIG. 5. Size dependence of the ‘‘effective transition tempera-
tures’’ ~where not shown, error bars are smaller than the symbols!.
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data are well described by a linear fit but the slope is lower
than the slope of the size dependence atkT/J51.487 ~1.58
60.03 from the fit withNmin5185).

The size dependence of the spontaneous magnetization
per spin atkT/J51.487 andkT/J51.502 is plotted on a
log-log scale in Fig. 7. The slopes of the three linear fits at
each temperature are reported in Table I.

As can be seen in Table I, it is difficult to estimateb from
the linear fits at kT/J51.487 with good accuracy
@(Ds/^s&)(1.487)5(0.1420.089)/̂ s&'0.45#. On the other
hand, the quality of the fits atkT/J51.502 are better~what-
ever is Nmin) and (Ds/^s&)(1.502)'0.1 is lower than
(Ds/^s&)(1.487). However, although the estimate ofb from
the scaling behavior of the spontaneous magnetization at the
critical point seems to be very difficult, the values of the
slope s(1.487) are consistent with the expected value
b50.5(dn2g).24

IV. CONCLUSION

Our investigation of a weakly frustrated ferromagnetic
Ising model on the octagonal tiling has been carried out us-

ing a finite-size scaling analysis of quasilattices with free
boundary conditions. Our results indicate a second-order
transition with the 2D periodic Ising critical exponents and
show that weak local frustration induced by the nonpercolat-
ing nearest-neighbor interactionJ1 has no influence on the
nature of the transition. As for the nonfrustrated ferromag-
netic Ising model on the octagonal tiling,5 the critical expo-
nentsn andg can be determined with reasonable accuracy.
On the other hand, one should note that it is very difficult to
calculate the critical exponentb. The different estimates of
the infinite tiling critical temperature which have been deter-
mined from several thermodynamic quantities are clearly
consistent. However, because of frustration, the use of the
fourth-order magnetization cumulant20 would require more
MCS per spin at each temperature. In agreement with previ-
ous works on quasiperiodic tilings,3–5 the infinite tiling criti-
cal temperature has been found slightly higher than the criti-
cal temperature of an ‘‘equivalent’’ frustrated Ising spin
system on the square lattice. In the near future, it is planned
to investigate the critical behavior of some more frustrated
Ising spin systems on the octagonal tiling for which the
ground state is still unknown.
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