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Onset of incommensurability at the valence-bond-solid point in theS=1 quantum spin chain
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Most of the present understanding of tBe 1 quantum spin chains displaying the Haldane gap is coming
from the so-called valence-bond-so(MBS) Hamiltonian which has an exactly known ground state. We show
that this point is characterized by the onset of short-range incommensurate spin correlations in the one-
parameter family of Hamiltoniansl ,=cosf%,S - S, ;+sing=(S - S..1)2. This gives a physical meaning to
this special point. We establish precise values for the gaps, correlations, the string order parameter, and identify
the VBS point as a disorder point in the sense of classical statistical mechanics. It is a quantum remnant of the
classical transition between a ground state with long-range dteer and a ground state with incommensurate
long-range order.

. INTRODUCTION the sum in Eq(1.1) S-S, 1+(S-S.)?%3 is the projector
on the spinS=2 state of the two neighboring sping + 1.

It has been conjectured by Halddrthat antiferromag- This fact leads to a simple ground-state wave functidhe
netic quantum spin chains have a disordered ground staiganavior of this model as a function 6fhas been studied by
with a gap to spin excitation when the spins are integer. Thi$,;merous author®-3° If one increases starting from the
phenomenon has been studied extensively over the YealSiinear Hamiltonian §=0. which is known to possess a
and a simple physical picture has emerged through the CONsaldane gap, there is n(; phase transition @i# m/4, and

sideration of the so-called valence-bond-soli/BS) thus the VBS Hamiltonian ygss=atan(1/3)</d) is

Hamiltonian? This peculiar Hamiltonian contains, in add- smoothly connected to the usual bilinear Heisenberg model
tion to the simplest isotropic bilinear nearest-neighbor ex- y 9 )

change, a biquadratic term in the case of the Spirl. chain. Howeve'r, its precise physical meaning has remained so far
This modification transforms the Hamiltonian in a sum ofunexpla_uned. . . )

projection operators, and, as a consequence, the ground state!n this paper, we clarify the physical meaning of the VBS
is known exactly and has a simple structure. This is differenP0int in the phase diagram of the familg.1) of models.
from the exactly integrable models: Here nothing is exactlyconsider first the classical limig—c of Eq. (1.1). For
known about the excited states. It is believed that this modef=0 the ground state is antiferromagnetically long-range or-
is smoothly connected to the usual nearest-neighbor antifeglered with ordering wave vectar= (Neel stat¢. When
romagnetic: they share the same physics. More precisely is increased, the order becomes incommensurate when
there is a hidden topological long-range oftiérat is com- 6> 6, with tand.= 3: the wave vector shifts fromg= 7. As

mon to both Hamiltoniar’® and that is revealed clearly in a consequence, the static structure fag@y) has as peak

the VBS Hamiltonian. It is interesting to note that a similar at =7 when <6, and aé peak atqg<w when 6> 6, .
situation also happens in the fractional quantum Hall effect: Now, in the quantum cas<e with S integer fluctuations
Here the Laughlin wave function, which is the exact groundwash out long-range order and we are left with short-range
state of an approximate Hamiltonian, does possess the hidrder below a characteristic correlation lengthaccording
den order, which is revealed in the anyonic gauge. The VB30 Haldane’s conjecture. Th& peak ofS(q) is thus smeared
nature of the ground state of tt8=1 spin chain has led to and acquires a finite width given by *.

the curious consequence of effective spis; at the end of It is important to note that, because of this finite width,
open chains: This has been observed theoretichlfynu-  the incommensurate behavior cannot be seen immediately in
merical means and experimentdfy. the quantityS(q) whenq shifts away from the commensu-

If we concentrate on the VBS model in tlse=1 case, it rate position. This is best understood by considering the ana-
can be written as the sum of a bilinear and a biquadratitytic structure ofS(q) in the complexq plane. Short-range
spin-spin interaction between nearest neighbors. It is thusrder means that singularitigpoles or branch pointsare
natural to study it as a special case of the general bilinearaway from the real axis at a distanset ™. In the commen-
biguadratic isotropic quantuf=1 chain: surate phase, the real part of the nearest singularity snd

the peak of5(q) for g real is also atj= 7. If we increase the
_ . 5 parameterd, at some value the real part of the leading sin-
Ho= COSBEi S"S‘+1+S'n02 (S5-S+0% @D gularity will move away fromg=: this means that real-
space correlations oscillate with a new period. However, be-
with @ varying between 0 and®2 All energies are measured cause of the width of the peak in the structure factor, the
in units of the global exchange coupling, which is omittedmaximum ofS(qg) remains atg=  till the shift Aq of the
everywhere in this paper. The VBS Hamiltonian correspondseal part reaches a val@(&~1). Then for larger values of
to the valuef g5 With tanf,gs= 3. In this case, each term in 6, the structure factor will exhibit an incommensurate peak.
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2 ~0.41). The static structure fact@®(q) is a square-root
Lorentzian peaked ai= 7.

0=0.10247r (tand=1/3). This is the VBS model with
exact valence-bond-solid ground state. The spin correlations
are purely exponential with a correlation length
£=(In3)"1=~0.91. There is a gap in the spectrum

(A=0.664).

H (AFM) 0=0.25r. This is the Lai-Sutherland model, the Hamil-
tonian is a sum of permutation operators and exactly inte-
grable by the Bethe ansaf%!! The ground state is unique,
and the model is critical. The corresponding conformal
theory is SU3),-,. There are zero-energy modes for

—/4 q=0,i 2ml3.

0= —0.257. This model is solvable exactly by the nested
Bethe ansat?>*® One finds a critical system with a unique
ground state. The conformal theory is @U._,. There are
FIG. 1. Phase diagram of the bilinear-biquadr&te1 isotropic ~ Z€ro-energy modes at=0,7.

guantum spin chain as a function @f Solid lines: transition points; 6= —0.50r. The physics is that of a dimerized state; the

dashed lines: other special poinks.(antiferromagnetic isotropic ~ order parameter is given by the coefficientin the singlet-

antiferromagnet; VBS: the valence-bond-solid modelthe cross-  singlet correlation:

over point studied in Ref. 2% (ferromagnetit isotropic ferro-

magnet. ((SS+1)(SSj+1))—C1+(—1) ey, (2.1

for |i—j|—o. The ground state is twice degenerate in the
?hermodynamic limit, and the spectrum is gapped
?A=0.17). The correlation length is given &s42.2: these
are exact result$ -2

0= —0.75r. Possible location of a continuous phase tran-
sition from a ferromagnetic to a dimerized ph&3é&>2°

0=. This is the isotropic ferromagnetic Heisenberg
model. There is ferromagnetic order with gapless excitations.
The ground state is the ferromagnetic state for
w2< 6<57/4A.

ferromagnetic

ﬁaldane

phase

order;

H (FM) gapless

dimerized

gapped
—3n/4

We have obtained evidence that, right at the VBS point, th
correlations become incommensurate in real space: it is
“disorder” point in the language of classical statistical
mechanics! For alarger value of 6, the functionS(q) ex-
hibits the signature of incommensurabilfyThis point is
properly called a Lifshitz point. This splitting of the classical
phenomenon a4, is typical of systems with only short-range
order.

We proceed by first recalling briefly in Sec. Il the state of

knowledge on the bilinear-biquadrat=1 quantum spin With these points, one constructs the following phase

chain. In Sec. Ill we import the concepts of so-called disor-d.a 1417 Garti to= find dered ferro-
der points from classical statistical mechanics. They are digc'agram. arting atg=1r, one Ninas an ordered ferro-
cussed by use of simple classical spin models. In Sec. Ivmagnetlc_state without gap. The ferromagneu_c_ phase termi-
using the density matrix renormalization-gropMRG) “at‘?s aty=—0.75r. A continuous phase tra%s't'on leads to
algorithm?? we calculate energy gaps, correlation functions,a. dlm_enzed state. A prediction by Chubu \Df, a non-

and correlation lengths, as well as tBe 1 string order pa- dimerized nematic phase seems refuted bythFand

. 25,26 ; : R
rameter in the neighborhood of the VBS point. We demon—s.dyom' . In the dimerized phase, the ground state is a
inglet with a double degeneracy because @f aymmetry

strate that the spin correlations exhibit a change of behavioEreakin The order parameter is givendyin the correla-
in real space right at the VBS point and that this point is ion fugétion 2.0 pA continuougs hase transition at
guantum example of a disorder point. Section V contains oue_ 0957 Ieadé té 2 Haldane phasclaa with a unique disor-

conclusions. ) . :
dered ground state, exponentially decaying correlations, and
a gapped spectrum. This gapped phase ends at the Lai-
Il. PHASE DIAGRAM OF THE BILINEAR-BIQUADRATIC Sutherland point= +0.257, where a continuous transition

SPIN CHAIN leads to a ph:_ise th.at is p_ossibly tlrimeriz(ede Refs. 25 anq
26 for a detailed discussi@nOne is back to ferromagnetic
Let us represent the phase diagram of modéjsas in  phase ford=+0.57. This phase diagram is displayed in
Fig. 1. For6=0 and 8=, one find the isotropi¢antifer-  Fig. 1. Up to now, the VBS point appears to be generic in the
romagnetic quantum Heisenberg model. Antiferromagnetitdaldane phase.
(ferromagnetit models corresponds te- 7/2< <+ 7/2 Recently, Bursill, Xiang, and Gehriﬁ%considered, using
(+ 7/2<0<3w/2). Some points in the phase diagram havethe DMRG, the Fourier transform of the spin-spin correla-
been studied in detail, and we summarize below the currertions, i.e., the static structure factor:
knowledge.
0#=0. Isotropic antiferromagnetic quantum Heisenberg .
model: This well-studied model has a nondegenerate disor- S(Q):En: e' (S, ), (2.2
dered ground state with exponentially decaying antiferro-
magnetic  correlations obeying a law(S-S,) In the Haldane phase, at the isotropic pa#t0, S(q) is a
~(—)”exp(—n/§)/\/ﬁ and a gapped spectruthlaldane gap square-root Lorentzian with a peak @t 7. Since parity is
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unbroken in the phases we discuss, we restrict the momenta
to the interval (Og). It was found that the peak of the Fou- T (disordered)
rier transformS(q) starts to move away from= 7 towards
q=*2m/3. This happens at ta#+0.43806(4) or
0=0.1314r. They found also that wheft— 0.25, the peak
reaches /3, in agreement with the period-3 zero modes
that are seen at the Lai-Sutherland point. Their conclusion is
then that there are three regions betweér0 and
0=0.50r: 0<#<< O with short-ranged antiferromagnetic

correlations, #< §<0.25r with short-rangedspiral order commensurate incommensurate
(the peak of the Fourier transform shifts froq=# to
q=2w/3; the spectrum is stil gappgd and (ordered) (ordered)
0.257<6,0.507 with a possible trimerized phase beyond P
the Lai-Sutherland phase transition.

If one considers the classical limit of modél1), there is FIG. 2. Schematic phase diagram: a disordered Rigihase is
a related phenomenon. Far smaller thané.=arctan§) linked by two continuous transitions to two ordered l@wphases.

=0.148r, the ground state is the usual commensuratel Ne P is a parameter that controls the nature of the ground state. The
order with wave vectog= 7, while beyond this value of dashed line represent the disordBr) (and Lifshitz L) lines, where

the ground state becomes an incommensurate spiral chargBe behavior of the correlations changes in real and in Fourier space
terized by wave vectoq such that cog=—3icotarg. Of  respectively.

course the classical ground states have long-range ordering,

and, when going to finite spin values, this order becomesvolves continuously. We not any parameter that controls
short ranged. We will show in Sec. IV that this short-rangethe zero-temperature phase transitierg., anisotropy, pres-
order naturally splits the commensurate-incommensurateure, ratio of exchange couplings, ¢té\ generic phase dia-
transition intwo distinct phenomena: one happensfags, gram is given in Fig. 2. We consider the case where these
where the spin oscillations become incommensurate in reabw-temperature phases are separated from the disordered
space, and one happenséatwhere incommensurability be- Paramagnetic high-temperature phasecbytinuoustransi-
comes obvious in the structure factor. Before discussing ouions [if the classical system is two dimensior(@D), then
results, we now recall the corresponding concepts of classthe T is zero and the reasoning is unchanpéis clear that

cal statistical physics, first developed by Stepheridon. the short-ranged correlations in the disordered phase will be
of variable nature: “Close” to the commensurate phase, they

will be commensurate; “close” to the incommensurate
ll. SHORT-RANGE ORDER AND DISORDER POINTS phase, they will be incommensurate. One can guess that
there will be a line in this phase diagram, where the correla-
If one starts from a classical model and considers finitgjons change their behavior; this change will be linked to
integer spins, then, according to Haldane’s conjecture, thergorrelations of very short range, thus to a state with a mini-
is only short-range order and a finite correlation length. Thisnum of short-range order. Hence, the name of the disorder
is, roughly speaking, an example of “quantum paramagnetiine. If one moves along path in the paramagnetic phase in
ism.” Finite spin is, in a sense, equivalent to a finite temperafig. 2, there should be a change in the correlations.
ture. In Haldane’s mappirigonto a nonlinear model, the If one considers the real-space spin-spin correlations
coupling constant is equal to the inverse of the spin, while inalong pathA, they will develop incommensurate oscillations
the nonlinears model describing classical two-dimensional at some pointA, . If one considers now the correlations in
systems the coupling is the temperature itself. This meansourier spaces(q), one finds that the peaks of the Fourier
that an integer spin chain has a physics that is related to th@tansform still stays at the value for commensurate correla-
of a two-dimensional spin system at nonzero temperaturejons, even though the real-space correlations are already in-
Since there is no long-range ordering in such a twocommensurate, because of the finite correlation length: The
dimensional System aCCOfding to the Mermin-Wagner thEOpeak width is linked t@fl_ Itis on|y “closer” to the incom-
rem, the ground state of the spin chain is short-range ofmensurate phase that the peak will start to shift. This will
dered. We consider, thus, classical systems in theihappen at a second poiAt on pathA in Fig. 2. This is easy

paramagnetic phase to understand the physics of finite-spiy understand by taking a simplified form f&¢q):
chains. Strictly speaking, one should consider classical two-

dimensional systems, but, in fact, for our purposes, the phys- 1
ics is absolutely similar to that of three-dimensional systems S(q)= 5 —.
above the critical temperature. a(q—0))“+(q—0ay)"+§
Let us consider a magnetic Hamiltonian that exhibits two

ordered low-temperature phases, one with commensurateor convenience, we shift the momenta to ggt0. It is
correlations and the other with incommensurate correlationonly for «<0 thatS(q) has a double-peak structure. When
One may think, for example, of a square lattice of classicak>0 is large enoughy®>4¢~2, all the poles of3.1) are on
spins with nearest-neighbor exchangieand third-nearest- the imaginary axis in compleg-space, and the real-space
neighborJ;: When J;3/J;>1/8, one destabilizes the ‘e  correlations do not oscillate, but wherf<4&~ 2, the poles
order and obtains an incommensurate spiral whose pitchave a real part, and thus there are real-space oscillations. It

(3.9
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one considers the correlation functions and compares them to
correlation length an Ornstein-Zernicke correlation functi¢for x large for a
d-dimensional system:
(S(0)S(x))=e X&Mrld-102 (3.3

disorder point

of the first kind one sees that the correlation functions are thosel fol, as
expected for a chain, except at the disorder point: formally,
they correspond td= —1. Let us add that the incommensu-
rate correlations are given by a wave veaggrwhich shifts
continuously from the commensurate valye 0; the expo-
nent3 is, however, nonuniversal.
: In the spin chain problem witB= 1, we are always in the
P P paramagnetic phase, i.e., we are following a path Ak&n
Fig. 2 when varying the parametérin the model(1.1). We

FIG. 3. Correlation length at a disorder point of the first kind thu.s expect to cross the disorder point and thg Lifshitz.point,

(schematical from RPA the commensurate phase is to the left. ~ Which are the quantum remnants of the classical transition at
-

is only when the real part of the poles is large enough that
the structure factor itself displays a two-peak shape. This V. THE NEIGHBORHOOD OF THE VBS POINT
effect is entirely caused by the finite correlation length
i.e., short-range ordering and finite width of the peak in
S(q). It is clear from the simple example above that it is
only the analytic structure d&(q) that matters and not our

For our calculations, we use the DMRG: See Ref. 32 for a
detailed discussion of the algorithm. We apply it to chains of
a lengthL=96 and keepM =80 states. This is sufficient to
find truncation errors smaller than 1% in the considered
region. It is therefore not necessary to extrapolate results in
'i\/l, as they are extremely close to the exact results. For the
VBS point, we recover the exact results within machine pre-
cision. Because of the very small correlation lengttypi-

point. It extends in the plane of Fig. 2 in a disorder liDe
The starting point for the double-peak structuré&{ig) is the
Lifshitz point, extending in a ling& in Fig. 2. In experlments, ally smaller than B a lengthL =96 is sufficient to obtain
one normally measures the structure factor in reciproc S

. - : he results of the thermodynamic limit. From the DMRG
space and will thus observe this line. It is also clear that the

two lines must end in the multicritical point, where the threeVieWpomt’ this situation is ideal. There is, however, & prob-
A point, Where | lem with purely computational errors: The spin-spin correla-
phases meet, which is thus necessary for their existence.

. N ions are, for a distance of 30 to 40 sites, of the order
To avoid unnecessary generalizations, we take the resulis 13 X .
or less. As they are obtained by summing small num-

from an example treated by a random—phase-apprOX|matloBers below machine precisidm a double precision calcula-

(RPA) method in Ref. 33. It is an Ising spin chain with aGIion), they must be rejected. To judge the importance of this

ferromagneticl, interaction between nearest neighbors an ff h d d the followi i h
an antiferromagnetid, between next-to-nearest neighbors effect, we have adopted the following strategy: As the system
2 ~under study is isotropic and disordered in the region where

T_he RPA treatment shows that there are three regimes. Tqﬁe Haldane and the trimerized phase meet, the spin-spin
disorder temperature is

correlations must obey the relation

TDZJi/4|J2|+2|J2|. (3.2 <S|+S;>=<$XS}(+S)’SJY>=2<S|ZS]-Z ] 4.0
One derives the following expressions fotarge: These two quantities are calculated independently; we reject
correlations that show a deviation of more than a thousandth
T<Tp: (S(0)S(x))=e XM, from this relation. As a matter of fact, we find that the cor-
relations(S’S;) reach a minimum value that oscillates ran-
T=Tp: (S(0)S(x))=xe ¥ with costkpa=J,/4/J,|,  domly around 10% whereagS's;") continues to diminish

regularly. We conclude that the values for the latter correla-
tion are more precise; analyzing the calculation, we find that
for the latter all the important contributions and weights
show the same sign, whereas it changes for the former.
with q(T)~(T—Tp)"2 The key to our analysis is not to analyze the Fourier trans-
form of the correlations but to analyze them directly in real
For £.(T) one finds that, on the commensurate side, thespace. We will thus show that the VBS point, so far without
correlation length exhibits an infinite derivativeTa ; it will special role in the phase diagram, is effectively a disorder
typically be very small, but not necessarily a minimum orpoint. It shows all the characteristics of a disorder point of
zero. The derivative on the incommensurate side is figite  the first kind, as described in Sec. lIl.
Fig. 3. This characterizes a disorder line of the first kind.  Consider the real-space correlatidfigg. 4) for some val-
There are two more special properti€i3: The susceptibility —ues of@ between 0.1@ and 0.125r. This includes the VBS
shows a particularly simple form at the disorder liKie) If point (Aygs= 0.10247). The correlations fo#<0.1024r are

T>Tp: (S(0)S(x))=e ¥4 Dcogq(T)x]
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FIG. 4. Real-space spin-spin correlations as a function of the
distance, for several values 6fbelow and above the VBS poifet . . . .
- : . FIG. 5. Comparison between the spin-spin correlations pre-
Oves=0.10247). The modulations appear above the VBS point. . S .
HereK :In[|(—)”\/ﬁ(80-8h>|] dicted (solid line) and calculated numericallysquares-dashed
n ’ line) for §=0.1157, above 5 but below . The dotted line is

—\n id li i — —
perfectly antiferromagnetic; this is most evident in a Ioga-( )"nexp(/g)(SS), and the solid line is cogn—¢)(7—a)].
o AN . . .
gg;g'l‘;tgr?; °‘;h|é i&r\feﬁ@ho‘?ﬁ' nFoorr:QELel;rtci);]ngniggveOf a disorder point of the first kind. The curve would be
Byss=0.1024r, the logarithmic plots show oscillations with C‘r’mf’a“b'etir‘;‘”t:“’ 2, but we are in no position to give a
periods that become shorter for increasifigto end at a precise estimate. :
period of 3 forg—0.25x. Thus the VBS point is a disorder We have a_Iso calculf'ited the FOL_mer transform o_f the cor-
point. The correlations are no longer antiferromagnetic bu{?\lg[l'qog fuBnucrt;ﬁln ;(iig?q f'n:m;eélg:ﬁir% ietr%r‘;a(\a/négnt (;/;/rl]tthh?Sose
already incommensurate: This point is missed if one consid%0 S gcial si’ nificagr;ce for its .behavior' pthe oint
ers only the Fourier transform, as in Ref. 29. These modula- "~ P hg h K hif ’ :
tions can be understood from the classical law for an incom?= 0-13147, where the peak starts to shift, can now be iden-
tified as a Lifshitz point: see Fig. 7. As expected in a system

mensurate high-temperature phdsdapted tal=2): with short-range order, it is distinct from the disord¥iBS)
e N/E0) point.
(Sy- So)~cogq(6)n] For the correlation lengths, we find that they show a mini-
Jn mum for the VBS point, with an infinite slop@umerically

—nIEo) very largg for ¢ in the commensurate regime
e (0<0.10247), and a slow increase in the incommensurate
—(— n — )
(—1)fcog(m—a)n] Jn o 4.2 regime with a finite slope, given in Fig. 8. The correlation
lengths have been found by different methods: In the regime

The modulations should thus show a periad(7—q),
which is easier to see than the period originating directly
from cogyn. To show that the correlation functions can be
well described by4.2), we have attempted a direct fit of our 020
results. This fit is complicated by the fact that there are ef- B
fectively three parameters to be controlled, the wave vector y ’
g, the correlation lengtl and also a phase factgf, from 0.15 F ]
replacingn=i—j by (n— ¢) in the argument of the cosine. i
We find that the fit is extremely sensitive to the parameter . y
values, which allows for a good fit. As an example, we take =010k i
0=0.1157, sensibly below the point given so far for the y
change of the correlations. We obtain the fit shown in Fig. 5, /
for $=0.65, £=1.08, andm—q=0.1987. The wave vector !
g has already shifted by 20% from the antiferromagnetic }
valueq= . i
For 6 close to the VBS point, the fit is made more com- i
plicated by the errors in the correlation function because of (9100 * 0 1‘05 0 1'10 0 1'15 n 1'20
the finite precision of the computer. To estimate the behavior ' ' 9/n ' '
g(6), we therefore consider the periodicity: For a period
p,m—q~mx/p. The discrete nature of the problem limits this  FIG. 6. Wave vectorr-q characteristic of the spin correlations.
approach. We find the behavior shown in Fig. 6. Clearly, it iSThere is a singularity at the VBS point consistent with the identifi-
compatible withgec (0' — 6ygs) ” with 0< o<1, the behavior cation of a disorder point.




ONSET OF INCOMMENSURABILITY AT THE VALENCE-BOND . ..

3309
08 T T
5 ﬁ
5
06 F g8 E
/s )
B S \
< , ®
g // \N
E3 Soat A ho -
5 , \
5 5 \
22 3
02t A : L
. o
1 " '\
’ VBS \\
0 0 bZ ' : —
~0.2 -0.1 0 0.1 0.2
0/n
FIG. 7. The Fourier transfori8(q) as a function of momentum

0> 6=0.1314r, while nothing is seen afps .

FIG. 9. Gaps in the Haldane phase as a functionf.ofThe
for various values ofd. The two-peak structure appears only for maximum value is between the VBS point and the Lifshitz point.

bility are too long to separate them well from the exponential
b
0<6ygs, We have compared the spin-spin correlations n“'(—r/g)/\/F

merically and graphically to a law exp(n/£)/+/n, which

ehavior. On the other hand, neither a fit exgé nor exp
is satisfactory. We do not know whether this ob-

c | ) servation is because of the crossover of the behavior of the
were in all cases in good agreement. We estimate the precéorrelation function or simply because of problems of the

therefore be excluded. Fdr=96 and é~1-2, finite-size

sion of the results of the order of 1%: The truncation errorsnumerical method. In any case, the results indicate strongly

are of the order 10, and a serious underestimation canan extrapolation to the VBS point with a finite slope.

The other important quantities are the gap and the string
effects are of no importance. The situation is more compli-order paramete© (i ,j)=(S|ZeprwEf;1,1S§)$. The gap
cated for the regimé> 6,,z5. As we have seen, the fit of the shows a maximum fo#~0.123r, which is thus linked nei-

complex. If one considers a plot 6f—1)"/n(S - S;)| (Fig.

=i
theoretically expected behavior to the found curve is rathether to the disorder nor the Lifshitz point: See Fig. 9. For the

transition pointsf= *+0.25r we have not obtained serious
4), one finds that a linear fit for the maxima is quite good.€stimates: The critical fluctuations imply a grealr and
This is stable in the sense that a factorgonfluences the

the vanishing gap is difficult to see. Our results are well
logarithm least when it is close to 1. Very generously esti-compatible with a zero gap but not precise enough to give a

5%. We estimate that fow>0.15r the underestimation

mated, the error of the graphical evaluation should be beloy€/ous estimate. The poidt=—0.20r is sufficiently close

caused by a non-negligible truncation error dominates. Fog

to the transition to cause the same problem. For the VBS
Oyes< 6=<0.11s, we could not obtain the correlation length:

On the one hand, the periods caused by the incommensur
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FIG. 8. Correlation lengths for various values @fThe mini-

mum is at the VBS point.

oint, we find a gap valua =0.664, in agreement with Ref.
5. Since the gap is smooth é{gs, this implies that the
gpin—wave velocity has a singularity at this poigt{A¢).

The string order parameter in the thermodynamic limit
i —j—o has its extremum for the VBS poif® .| = 4/9: See
Fig. 10. One sees that the VBS point, though a point of
minimal spin order, is a point of maximum hidden topologi-
cal order.

To complete the identification of the VBS point as a dis-
order point, we note that there is the equivalent of the par-
ticularly simple form of the susceptibility of the classical
model of Sec. lll. The exact correlations at the VBS point
obey a one-dimensional Ornstein-Zernicke form: They are

purely exponentialno prefactoy, whereas the nonlinear
model yields two-dimensional correlation laws. This “di-
mensional reduction” is accompanied by a particularly
simple form of the Hamiltonian: It can be decomposed into a
sum of local projection operators. The problem loses its
quantum character and turns into a classical one-dimensional
problem.

V. CONCLUSION

We have shown that the VBS pdfris a disorder point in
the sense of classical statistical mechanics. It is thus identi-
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correlations, the Haldane phase with a gapped spectrum. A

generic description is given by the VBS model and also the
isotropic antiferromagnetic Heisenberg model.
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Oyps< 6< 6. There are incommensurate short-range cor-
relations with a wave vectog<, that shifts away from
7 as m—qx (60— Oygs)?,0~1/2. In the Fourier transform,

the peak stays at=m. The spectrum is gapped: We expect
that the low-lying Haldane modes are now at the incommen-

surate wave vector. Part of the VBS physics remains valid:
the gap, the hidden order, and the free sgifas the ends of
\ an open chain.

~

<

[
T
~

string order parameter
N

@
=
T

6<0<0.257. The physics is similar to that of the pre-
vBS ‘

ceding region; the peak of the Fourier transform shifts from
! g=m to q= = 27/3 and the incommensurate correlations be-
o7 o1 o o1 02 come visible. The spectrum is gapped. There is, however, no
6/

profound physical difference between this region and the
preceding one.
FIG. 10. String order paramet¢©,| in the thermodynamic

The above picture does not challenge conventional wis-
limit in the Haldane phase. The maximum is exactly at the vBsdom in the sense that the usual Heisenberg Hamiltonian
point.

=0 shares the same physics with the VBS Hamiltonian and
there are no additional phase transitions between the
fied as a point that is not just by chance exactly solvable buoint>*> §=—0.25r and the Lai-Sutherland point
shows this property for more profound physical reasons. Thé= +0.257. However, the VBS point itself means that the
results of Bursill, Xiang, and Gehring, who have consideredPhysics has changed beyomkgs: Because of the incom-
the Fourier transform of the spin-spin correlations, fit natu-mensurate correlations, it is no longer possible to capture the
rally in the picture we have developed: The point they idendow-lying excitations by a nonlineaic model with a
tify as the point where correlations change is simply the Lif-Symmetry-breaking pattei@(3)/O(2) as used originally by
shitz point f0||owing the definition given above. Quantum Haldane. In the incommensurate regime, the full rotation
fluctuations in the integer spin chain wash out long-rangegroup is broken down. Appropriate nonlineamodels have
order. As a consequence, the transition that happens at tfen contemplated befot.Since they involve a non-
classical level foré, is no longer a phase transition. How- Abelian symmetry, they are generically massive, consistent
ever, the change of short-range correlations still happens iwith the gapped nature of the Haldane phase.
the quantum system at the VBS point in real space. Because With the present algorithm, we cannot calculate dynami-
of the finite correlation length, this is not seen immediatelycal quantities. Fop=0, it is known that the dynamical struc-
in S(g) and, hence, we have the Lifshitz point, which is ture factor is dominated by the Haldane mode whose mini-
distinct. Sinceé—o when the spin increases, one expectsmum energy is afj= . The simplest expectation is that this

that these two points should merge in the classical limit rightninimum will shift away fromq= 7. The simplest expecta-
at 6. This is summarized in Fig. 11. tion is that this minimum will shift away frongj= 7 right at
This implies the following description of the phase dia- the VBS point(because the Lifshitz point has priori no
gram: There are three regions fox®<0.25z. dynamical meaningand will evolve continuously till it soft-
0<6<6ygs. There are short-range antiferromagneticens foré=m/4 at a wave vectog=27/3 in agreement with

the Bethe-Ansatz excitation spectrum at the Lai-Sutherland
point.
s

disorder point (VBS There is an interesting relationshimith the fractional
isorder point ( )L.f I quantum Hall effectFQHE). The present understandiigf
Fez poin the physics of the FQHE at filling=1/m, m odd, is based

S=1

short-range

on Laughlin’s wave functiony,,,, which is the exact ground
'\‘ /l' short-range
comim. v/ /incommensurate
Yooy
i

order

state of a truncated Hamiltonian. In addition, this function
order

embodies the hidden long-range-order that is revealed in the

anyonic gauge. This is similar to the situation of the VBS

wave function. Expectation values computed with the
Laughlin wave function correspond to a classical statistical

‘e o problem, which is the two-dimensional one-component

(v

T=0

plasma(2D OCB: This is Laughlin’s plasma analogy. The

case of the full Landau leve); corresponds to the special
FIG. 11. Schematic phase diagram of integer spin chains wittpoint® T'=2 of the 2D OCP [' being the ratio of the
biquadratic coupling: modefL.1). Here the inverse spin plays the Squared electric charge to the temperatatavhich the den-
role of a temperature: Th8=1 case corresponds to short-range Sity correlations begin to oscillate in real space, a precursor

ordered phases. Of course this picture may be altered by other typgdienomenon of the crystallization that occurslat 140
of ordering, such as dimerization.

when the plasma is dilute enough. This special point also has
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some of the properties expected from a disorder pBifihis  disorder point: In the classical limit the increaseJgfleads
is similar to what we observe at the VBS point. to incommensurabilitfas the biquadratic term in the=1

We also note that a similar phenomenon happens in theasg. Because of the short-range order, the incommensura-
spin4 Heisenberg chain with next-to-nearest-neighbor interbility will take place in real space right at the disorder point
actionJ,. WhenJ, is large enough, the antiferromagnetic (Majumdar-Ghos)y and the structure factor will display the
state with algebraically decaying correlations is destroyediwo-peak structure only for a larger value df.
and dimerization takes place. Inside the dimerized phase,
there is the so-called Majumdar-Ghosh pdihtyhere the . ACKNOWLEDGMENTS
correlation between dimers vanishes and the ground state is a
simple wave function. In the dimerized phase, the antiferro- It is a pleasure to thank N. Elstner and O. Golinelli for
magnetic spin order is short ranged contrary to the dimefruitful discussions. We also thank D. P. Arovas for interest-
order, and we thus expect that the Majumar-Ghosh point is &ng correspondence.
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