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Most of the present understanding of theS51 quantum spin chains displaying the Haldane gap is coming
from the so-called valence-bond-solid~VBS! Hamiltonian which has an exactly known ground state. We show
that this point is characterized by the onset of short-range incommensurate spin correlations in the one-
parameter family of HamiltoniansHu5cosu(iSi•Si111sinu(i(Si•Si11)

2. This gives a physical meaning to
this special point. We establish precise values for the gaps, correlations, the string order parameter, and identify
the VBS point as a disorder point in the sense of classical statistical mechanics. It is a quantum remnant of the
classical transition between a ground state with long-range Ne´el order and a ground state with incommensurate
long-range order.

I. INTRODUCTION

It has been conjectured by Haldane1 that antiferromag-
netic quantum spin chains have a disordered ground state
with a gap to spin excitation when the spins are integer. This
phenomenon has been studied extensively over the years,
and a simple physical picture has emerged through the con-
sideration of the so-called valence-bond-solid~VBS!
Hamiltonian.2 This peculiar Hamiltonian contains, in addi-
tion to the simplest isotropic bilinear nearest-neighbor ex-
change, a biquadratic term in the case of the spinS51 chain.
This modification transforms the Hamiltonian in a sum of
projection operators, and, as a consequence, the ground state
is known exactly and has a simple structure. This is different
from the exactly integrable models: Here nothing is exactly
known about the excited states. It is believed that this model
is smoothly connected to the usual nearest-neighbor antifer-
romagnetic: they share the same physics. More precisely,
there is a hidden topological long-range order3 that is com-
mon to both Hamiltonians4,5 and that is revealed clearly in
the VBS Hamiltonian. It is interesting to note that a similar
situation also happens in the fractional quantum Hall effect:6

Here the Laughlin wave function, which is the exact ground
state of an approximate Hamiltonian, does possess the hid-
den order, which is revealed in the anyonic gauge. The VBS
nature of the ground state of theS51 spin chain has led to
the curious consequence of effective spinsS5 1

2 at the end of
open chains: This has been observed theoretically7 by nu-
merical means and experimentally.8,9

If we concentrate on the VBS model in theS51 case, it
can be written as the sum of a bilinear and a biquadratic
spin-spin interaction between nearest neighbors. It is thus
natural to study it as a special case of the general bilinear-
biquadratic isotropic quantumS51 chain:

Hu5cosu(
i
Si•Si111sinu(

i
~Si•Si11!

2, ~1.1!

with u varying between 0 and 2p. All energies are measured
in units of the global exchange coupling, which is omitted
everywhere in this paper. The VBS Hamiltonian corresponds
to the valueu VBS with tanuVBS5 1

3. In this case, each term in

the sum in Eq.~1.1! Si•Si111(Si•Si11)
2/3 is the projector

on the spinS52 state of the two neighboring spinsi ,i11.
This fact leads to a simple ground-state wave function.2 The
behavior of this model as a function ofu has been studied by
numerous authors.10–30 If one increasesu starting from the
bilinear Hamiltonianu50, which is known to possess a
Haldane gap, there is no phase transition tillu5p/4, and
thus the VBS Hamiltonian (uVBS5atan(1/3),p/4) is
smoothly connected to the usual bilinear Heisenberg model.
However, its precise physical meaning has remained so far
unexplained.

In this paper, we clarify the physical meaning of the VBS
point in the phase diagram of the family~1.1! of models.
Consider first the classical limitS→` of Eq. ~1.1!. For
u50 the ground state is antiferromagnetically long-range or-
dered with ordering wave vectorq5p ~Néel state!. When
u is increased, the order becomes incommensurate when
u.uc with tanuc5

1
2: the wave vector shifts fromq5p. As

a consequence, the static structure factorS(q) has ad peak
at q5p when u,uc and ad peak atq,p when u.uc .
Now, in the quantum caseS,` with S integer, fluctuations
wash out long-range order and we are left with short-range
order below a characteristic correlation lengthj, according
to Haldane’s conjecture. Thed peak ofS(q) is thus smeared
and acquires a finite width given byj21.

It is important to note that, because of this finite width,
the incommensurate behavior cannot be seen immediately in
the quantityS(q) whenq shifts away from the commensu-
rate position. This is best understood by considering the ana-
lytic structure ofS(q) in the complexq plane. Short-range
order means that singularities~poles or branch points! are
away from the real axis at a distance'j21. In the commen-
surate phase, the real part of the nearest singularity isp, and
the peak ofS(q) for q real is also atq5p. If we increase the
parameteru, at some value the real part of the leading sin-
gularity will move away fromq5p: this means that real-
space correlations oscillate with a new period. However, be-
cause of the width of the peak in the structure factor, the
maximum ofS(q) remains atq5p till the shift Dq of the
real part reaches a valueO(j21). Then for larger values of
u, the structure factor will exhibit an incommensurate peak.
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We have obtained evidence that, right at the VBS point, the
correlations become incommensurate in real space: it is a
‘‘disorder’’ point in the language of classical statistical
mechanics.31 For a larger value ofu, the functionS(q) ex-
hibits the signature of incommensurability:29 This point is
properly called a Lifshitz point. This splitting of the classical
phenomenon atuc is typical of systems with only short-range
order.

We proceed by first recalling briefly in Sec. II the state of
knowledge on the bilinear-biquadraticS51 quantum spin
chain. In Sec. III we import the concepts of so-called disor-
der points from classical statistical mechanics. They are dis-
cussed by use of simple classical spin models. In Sec. IV,
using the density matrix renormalization-group~DMRG!
algorithm,32 we calculate energy gaps, correlation functions,
and correlation lengths, as well as theS51 string order pa-
rameter in the neighborhood of the VBS point. We demon-
strate that the spin correlations exhibit a change of behavior
in real space right at the VBS point and that this point is a
quantum example of a disorder point. Section V contains our
conclusions.

II. PHASE DIAGRAM OF THE BILINEAR-BIQUADRATIC
SPIN CHAIN

Let us represent the phase diagram of modelsHu as in
Fig. 1. Foru50 andu5p, one find the isotropic~anti!fer-
romagnetic quantum Heisenberg model. Antiferromagnetic
~ferromagnetic! models corresponds to2p/2,u,1p/2
(1p/2,u,3p/2). Some points in the phase diagram have
been studied in detail, and we summarize below the current
knowledge.

u50. Isotropic antiferromagnetic quantum Heisenberg
model: This well-studied model has a nondegenerate disor-
dered ground state with exponentially decaying antiferro-
magnetic correlations obeying a law ^S0•Sn&
'(2)nexp(2n/j)/An and a gapped spectrum~Haldane gap

'0.41). The static structure factorS(q) is a square-root
Lorentzian peaked atq5p.

u50.1024p (tanu51/3). This is the VBS model with
exact valence-bond-solid ground state. The spin correlations
are purely exponential with a correlation length
j5(ln3)21'0.91. There is a gap in the spectrum
(D50.664).

u50.25p. This is the Lai-Sutherland model, the Hamil-
tonian is a sum of permutation operators and exactly inte-
grable by the Bethe ansatz.10,11 The ground state is unique,
and the model is critical. The corresponding conformal
theory is SU~3! k51 . There are zero-energy modes for
q50,62p/3.

u520.25p. This model is solvable exactly by the nested
Bethe ansatz.12,13 One finds a critical system with a unique
ground state. The conformal theory is SU~2! k52 . There are
zero-energy modes atq50,p.

u520.50p. The physics is that of a dimerized state; the
order parameter is given by the coefficientc2 in the singlet-
singlet correlation:

^~SiSi11!~SjSj11!&→c11~21! i2 j c2 , ~2.1!

for u i2 j u→`. The ground state is twice degenerate in the
thermodynamic limit, and the spectrum is gapped
(D50.17). The correlation length is given asj542.2: these
are exact results.18–21

u520.75p. Possible location of a continuous phase tran-
sition from a ferromagnetic to a dimerized phase.23,25,26

u5p. This is the isotropic ferromagnetic Heisenberg
model. There is ferromagnetic order with gapless excitations.
The ground state is the ferromagnetic state for
p/2,u,5p/4.

With these points, one constructs the following phase
diagram:14,17 Starting atu5p, one finds an ordered ferro-
magnetic state without gap. The ferromagnetic phase termi-
nates atu520.75p. A continuous phase transition leads to
a dimerized state. A prediction by Chubukov22 of a non-
dimerized nematic phase seems refuted by Fa´th and
Sólyom.25,26 In the dimerized phase, the ground state is a
singlet with a double degeneracy because of aZ2 symmetry
breaking. The order parameter is given byc2 in the correla-
tion function ~2.1!. A continuous phase transition at
u520.25p leads to a Haldane phase, with a unique disor-
dered ground state, exponentially decaying correlations, and
a gapped spectrum. This gapped phase ends at the Lai-
Sutherland pointu510.25p, where a continuous transition
leads to a phase that is possibly trimerized~see Refs. 25 and
26 for a detailed discussion!. One is back to ferromagnetic
phase foru510.5p. This phase diagram is displayed in
Fig. 1. Up to now, the VBS point appears to be generic in the
Haldane phase.

Recently, Bursill, Xiang, and Gehring29 considered, using
the DMRG, the Fourier transform of the spin-spin correla-
tions, i.e., the static structure factor:

S~q!5(
n

eiqn^Sn•S0&, ~2.2!

In the Haldane phase, at the isotropic pointu50, S(q) is a
square-root Lorentzian with a peak atq5p. Since parity is

FIG. 1. Phase diagram of the bilinear-biquadraticS51 isotropic
quantum spin chain as a function ofu. Solid lines: transition points;
dashed lines: other special points.H ~antiferromagnetic!: isotropic
antiferromagnet; VBS: the valence-bond-solid model;L: the cross-
over point studied in Ref. 29;H ~ferromagnetic!: isotropic ferro-
magnet.
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unbroken in the phases we discuss, we restrict the momenta
to the interval (0,p). It was found that the peak of the Fou-
rier transformS(q) starts to move away fromq5p towards
q562p/3. This happens at tanũ50.438 06(4) or
ũ50.1314p. They found also that whenu→0.25p, the peak
reaches 2p/3, in agreement with the period-3 zero modes
that are seen at the Lai-Sutherland point. Their conclusion is
then that there are three regions betweenu50 and
u50.50p: 0,u, ũ with short-ranged antiferromagnetic
correlations, ũ,u,0.25p with short-rangedspiral order
~the peak of the Fourier transform shifts fromq5p to
q52p/3; the spectrum is still gapped!, and
0.25p<u,0.50p with a possible trimerized phase beyond
the Lai-Sutherland phase transition.

If one considers the classical limit of model~1.1!, there is
a related phenomenon. Foru smaller thanuc5arctan(12!
50.148p, the ground state is the usual commensurate Ne´el
order with wave vectorq5p, while beyond this value ofu
the ground state becomes an incommensurate spiral charac-
terized by wave vectorq such that cosq521

2cotanu. Of
course the classical ground states have long-range ordering,
and, when going to finite spin values, this order becomes
short ranged. We will show in Sec. IV that this short-range
order naturally splits the commensurate-incommensurate
transition intwo distinct phenomena: one happens atuVBS,
where the spin oscillations become incommensurate in real
space, and one happens atũ, where incommensurability be-
comes obvious in the structure factor. Before discussing our
results, we now recall the corresponding concepts of classi-
cal statistical physics, first developed by Stephenson.31

III. SHORT-RANGE ORDER AND DISORDER POINTS

If one starts from a classical model and considers finite
integer spins, then, according to Haldane’s conjecture, there
is only short-range order and a finite correlation length. This
is, roughly speaking, an example of ‘‘quantum paramagnet-
ism.’’ Finite spin is, in a sense, equivalent to a finite tempera-
ture. In Haldane’s mapping1 onto a nonlinears model, the
coupling constant is equal to the inverse of the spin, while in
the nonlinears model describing classical two-dimensional
systems the coupling is the temperature itself. This means
that an integer spin chain has a physics that is related to that
of a two-dimensional spin system at nonzero temperature.
Since there is no long-range ordering in such a two-
dimensional system according to the Mermin-Wagner theo-
rem, the ground state of the spin chain is short-range or-
dered. We consider, thus, classical systems in their
paramagnetic phase to understand the physics of finite-spin
chains. Strictly speaking, one should consider classical two-
dimensional systems, but, in fact, for our purposes, the phys-
ics is absolutely similar to that of three-dimensional systems
above the critical temperature.

Let us consider a magnetic Hamiltonian that exhibits two
ordered low-temperature phases, one with commensurate
correlations and the other with incommensurate correlations.
One may think, for example, of a square lattice of classical
spins with nearest-neighbor exchangeJ1 and third-nearest-
neighborJ3: When J3 /J1.1/8, one destabilizes the Ne´el
order and obtains an incommensurate spiral whose pitch

evolves continuously. We noteP any parameter that controls
the zero-temperature phase transition~e.g., anisotropy, pres-
sure, ratio of exchange couplings, etc.!. A generic phase dia-
gram is given in Fig. 2. We consider the case where these
low-temperature phases are separated from the disordered
paramagnetic high-temperature phase bycontinuoustransi-
tions @if the classical system is two dimensional~2D!, then
theTc is zero and the reasoning is unchanged#. It is clear that
the short-ranged correlations in the disordered phase will be
of variable nature: ‘‘Close’’ to the commensurate phase, they
will be commensurate; ‘‘close’’ to the incommensurate
phase, they will be incommensurate. One can guess that
there will be a line in this phase diagram, where the correla-
tions change their behavior; this change will be linked to
correlations of very short range, thus to a state with a mini-
mum of short-range order. Hence, the name of the disorder
line. If one moves along pathA in the paramagnetic phase in
Fig. 2, there should be a change in the correlations.

If one considers the real-space spin-spin correlations
along pathA, they will develop incommensurate oscillations
at some pointAD . If one considers now the correlations in
Fourier spaceS(q), one finds that the peaks of the Fourier
transform still stays at the value for commensurate correla-
tions, even though the real-space correlations are already in-
commensurate, because of the finite correlation length: The
peak width is linked toj21. It is only ‘‘closer’’ to the incom-
mensurate phase that the peak will start to shift. This will
happen at a second pointAL on pathA in Fig. 2. This is easy
to understand by taking a simplified form forS(q):

S~q!5
1

a~q2qx!
21~q2qx!

41j22 . ~3.1!

For convenience, we shift the momenta to setqx50. It is
only for a,0 thatS(q) has a double-peak structure. When
a.0 is large enough,a2.4j22, all the poles of~3.1! are on
the imaginary axis in complex-q space, and the real-space
correlations do not oscillate, but whena2,4j22, the poles
have a real part, and thus there are real-space oscillations. It

FIG. 2. Schematic phase diagram: a disordered high-T phase is
linked by two continuous transitions to two ordered low-T phases.
P is a parameter that controls the nature of the ground state. The
dashed line represent the disorder (D) and Lifshitz (L) lines, where
the behavior of the correlations changes in real and in Fourier space
respectively.
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is only when the real part of the poles is large enough that
the structure factor itself displays a two-peak shape. This
effect is entirely caused by the finite correlation lengthj,
i.e., short-range ordering and finite width of the peak in
S(q). It is clear from the simple example above that it is
only the analytic structure ofS(q) that matters and not our
peculiar Eq.~3.1!. As such, this is a general behavior.

The starting point of real-space oscillations is the disorder
point. It extends in the plane of Fig. 2 in a disorder lineD.
The starting point for the double-peak structure inS(q) is the
Lifshitz point, extending in a lineL in Fig. 2. In experiments,
one normally measures the structure factor in reciprocal
space and will thus observe this line. It is also clear that the
two lines must end in the multicritical point, where the three
phases meet, which is thus necessary for their existence.

To avoid unnecessary generalizations, we take the results
from an example treated by a random-phase-approximation
~RPA! method in Ref. 33. It is an Ising spin chain with a
ferromagneticJ1 interaction between nearest neighbors and
an antiferromagneticJ2 between next-to-nearest neighbors.
The RPA treatment shows that there are three regimes. The
disorder temperature is

TD5J1
2/4uJ2u12uJ2u. ~3.2!

One derives the following expressions forx large:

T,TD : ^S~0!S~x!&.e2x/j2~T!,

T5TD : ^S~0!S~x!&.xe2k0x with coshk0a5J1/4uJ2u,

T.TD : ^S~0!S~x!&.e2x/j1~T!cos@q~T!x#

with q~T!;~T2TD!1/2.

For j6(T) one finds that, on the commensurate side, the
correlation length exhibits an infinite derivative atTD ; it will
typically be very small, but not necessarily a minimum or
zero. The derivative on the incommensurate side is finite~see
Fig. 3!. This characterizes a disorder line of the first kind.
There are two more special properties:~i! The susceptibility
shows a particularly simple form at the disorder line.~ii ! If

one considers the correlation functions and compares them to
an Ornstein-Zernicke correlation function~for x large! for a
d-dimensional system:

^S~0!S~x!&.e2x/j~T!/r ~d21!/2, ~3.3!

one sees that the correlation functions are those ford51, as
expected for a chain, except at the disorder point: formally,
they correspond tod521. Let us add that the incommensu-
rate correlations are given by a wave vectorq, which shifts
continuously from the commensurate valueq50; the expo-
nent 12 is, however, nonuniversal.

In the spin chain problem withS51, we are always in the
paramagnetic phase, i.e., we are following a path likeA in
Fig. 2 when varying the parameteru in the model~1.1!. We
thus expect to cross the disorder point and the Lifshitz point,
which are the quantum remnants of the classical transition at
uc .

IV. THE NEIGHBORHOOD OF THE VBS POINT

For our calculations, we use the DMRG: See Ref. 32 for a
detailed discussion of the algorithm. We apply it to chains of
a lengthL596 and keepM580 states. This is sufficient to
find truncation errors smaller than 10212 in the considered
region. It is therefore not necessary to extrapolate results in
M , as they are extremely close to the exact results. For the
VBS point, we recover the exact results within machine pre-
cision. Because of the very small correlation lengths~typi-
cally smaller than 3!, a lengthL596 is sufficient to obtain
the results of the thermodynamic limit. From the DMRG
viewpoint, this situation is ideal. There is, however, a prob-
lem with purely computational errors: The spin-spin correla-
tions are, for a distance of 30 to 40 sites, of the order
10213 or less. As they are obtained by summing small num-
bers below machine precision~in a double precision calcula-
tion!, they must be rejected. To judge the importance of this
effect, we have adopted the following strategy: As the system
under study is isotropic and disordered in the region where
the Haldane and the trimerized phase meet, the spin-spin
correlations must obey the relation

^Si
1Sj

2&5^Si
xSj

x1Si
ySj

y&52^Si
zSj

z&. ~4.1!

These two quantities are calculated independently; we reject
correlations that show a deviation of more than a thousandth
from this relation. As a matter of fact, we find that the cor-
relations^Si

zSj
z& reach a minimum value that oscillates ran-

domly around 10214, whereaŝSi
1Sj

2& continues to diminish
regularly. We conclude that the values for the latter correla-
tion are more precise; analyzing the calculation, we find that
for the latter all the important contributions and weights
show the same sign, whereas it changes for the former.

The key to our analysis is not to analyze the Fourier trans-
form of the correlations but to analyze them directly in real
space. We will thus show that the VBS point, so far without
special role in the phase diagram, is effectively a disorder
point. It shows all the characteristics of a disorder point of
the first kind, as described in Sec. III.

Consider the real-space correlations~Fig. 4! for some val-
ues ofu between 0.10p and 0.125p. This includes the VBS
point (uVBS50.1024p). The correlations foru,0.1024t are

FIG. 3. Correlation length at a disorder point of the first kind
~schematical from RPA!: the commensurate phase is to the left.
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perfectly antiferromagnetic; this is most evident in a loga-
rithmic plot of u(21)nAn^Sn•S0&u. For antiferromagnetic
correlations, the curve shows no modulations. Above
uVBS50.1024p, the logarithmic plots show oscillations with
periods that become shorter for increasingu, to end at a
period of 3 foru→0.25p. Thus the VBS point is a disorder
point. The correlations are no longer antiferromagnetic but
already incommensurate: This point is missed if one consid-
ers only the Fourier transform, as in Ref. 29. These modula-
tions can be understood from the classical law for an incom-
mensurate high-temperature phase~adapted tod52!:

^Sn•S0&'cos@q~u!n#
e2n/j~u!

An

5~21!ncos@~p2q!n#
e2n/j~u!

An
. ~4.2!

The modulations should thus show a periodp/(p2q),
which is easier to see than the period originating directly
from cosqn. To show that the correlation functions can be
well described by~4.2!, we have attempted a direct fit of our
results. This fit is complicated by the fact that there are ef-
fectively three parameters to be controlled, the wave vector
q, the correlation lengthj and also a phase factorf, from
replacingn5 i2 j by (n2f) in the argument of the cosine.
We find that the fit is extremely sensitive to the parameter
values, which allows for a good fit. As an example, we take
u50.115p, sensibly below the point given so far for the
change of the correlations. We obtain the fit shown in Fig. 5,
for f50.65, j51.08, andp2q50.198p. The wave vector
q has already shifted by 20% from the antiferromagnetic
valueq5p.

For u close to the VBS point, the fit is made more com-
plicated by the errors in the correlation function because of
the finite precision of the computer. To estimate the behavior
q(u), we therefore consider the periodicity: For a period
p,p2q'p/p. The discrete nature of the problem limits this
approach. We find the behavior shown in Fig. 6. Clearly, it is
compatible withq}(u82uVBS)

s with 0,s,1, the behavior

of a disorder point of the first kind. The curve would be
compatible withs' 1

2, but we are in no position to give a
precise estimate.

We have also calculated the Fourier transform of the cor-
relation function and find results in agreement with those
given by Bursill, Xiang, and Gehring.29 The VBS point has
no special significance for its behavior; the point
ũ50.1314p, where the peak starts to shift, can now be iden-
tified as a Lifshitz point: see Fig. 7. As expected in a system
with short-range order, it is distinct from the disorder~VBS!
point.

For the correlation lengths, we find that they show a mini-
mum for the VBS point, with an infinite slope~numerically
very large! for j in the commensurate regime
(u,0.1024p), and a slow increase in the incommensurate
regime with a finite slope, given in Fig. 8. The correlation
lengths have been found by different methods: In the regime

FIG. 4. Real-space spin-spin correlations as a function of the
distance, for several values ofu below and above the VBS point~at
uVBS50.1024p). The modulations appear above the VBS point.
HereKn5 ln@u(2)nAn^S0•Sn&u#.

FIG. 5. Comparison between the spin-spin correlations pre-
dicted ~solid line! and calculated numerically~squares1dashed
line! for u50.115p, aboveuVBS but below ũ. The dotted line is
(2)nAnexp(n/j)^S0zSnz&, and the solid line is cos@(n2f)(p2q)#.

FIG. 6. Wave vectorp-q characteristic of the spin correlations.
There is a singularity at the VBS point consistent with the identifi-
cation of a disorder point.
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u,uVBS, we have compared the spin-spin correlations nu-
merically and graphically to a law exp(2n/j)/An, which
were in all cases in good agreement. We estimate the preci-
sion of the results of the order of 1%: The truncation errors
are of the order 10213, and a serious underestimation can
therefore be excluded. ForL596 andj'122, finite-size
effects are of no importance. The situation is more compli-
cated for the regimeu.uVBS. As we have seen, the fit of the
theoretically expected behavior to the found curve is rather
complex. If one considers a plot ofu(21)nAn^Si•Sj&u ~Fig.
4!, one finds that a linear fit for the maxima is quite good.
This is stable in the sense that a factor cosqx influences the
logarithm least when it is close to 1. Very generously esti-
mated, the error of the graphical evaluation should be below
5%. We estimate that foru.0.15p the underestimation
caused by a non-negligible truncation error dominates. For
uVBS,u<0.11p, we could not obtain the correlation length:
On the one hand, the periods caused by the incommensura-

bility are too long to separate them well from the exponential
behavior. On the other hand, neither a fit exp2r /j nor exp
(2r /j)/Ar is satisfactory. We do not know whether this ob-
servation is because of the crossover of the behavior of the
correlation function or simply because of problems of the
numerical method. In any case, the results indicate strongly
an extrapolation to the VBS point with a finite slope.

The other important quantities are the gap and the string
order parameterOp( i , j )5^Si

zexp(ip(k5i21
j21 Sk

z)Sj
z&. The gap

shows a maximum foru'0.123p, which is thus linked nei-
ther to the disorder nor the Lifshitz point: See Fig. 9. For the
transition pointsu560.25p we have not obtained serious
estimates: The critical fluctuations imply a greaterM , and
the vanishing gap is difficult to see. Our results are well
compatible with a zero gap but not precise enough to give a
serious estimate. The pointu520.20p is sufficiently close
to the transition to cause the same problem. For the VBS
point, we find a gap valueD50.664, in agreement with Ref.
25. Since the gap is smooth atuVBS, this implies that the
spin-wave velocity has a singularity at this point (c5Dj).

The string order parameter in the thermodynamic limit
i2 j→` has its extremum for the VBS point:uOpu54/9: See
Fig. 10. One sees that the VBS point, though a point of
minimal spinorder, is a point of maximum hidden topologi-
cal order.

To complete the identification of the VBS point as a dis-
order point, we note that there is the equivalent of the par-
ticularly simple form of the susceptibility of the classical
model of Sec. III. The exact correlations at the VBS point
obey a one-dimensional Ornstein-Zernicke form: They are
purely exponential~no prefactor!, whereas the nonlinears
model yields two-dimensional correlation laws. This ‘‘di-
mensional reduction’’ is accompanied by a particularly
simple form of the Hamiltonian: It can be decomposed into a
sum of local projection operators. The problem loses its
quantum character and turns into a classical one-dimensional
problem.

V. CONCLUSION

We have shown that the VBS point2 is a disorder point in
the sense of classical statistical mechanics. It is thus identi-

FIG. 7. The Fourier transformS(q) as a function of momentum
for various values ofu. The two-peak structure appears only for
u. ũ50.1314p, while nothing is seen atuVBS .

FIG. 8. Correlation lengths for various values ofu. The mini-
mum is at the VBS point.

FIG. 9. Gaps in the Haldane phase as a function ofu. The
maximum value is between the VBS point and the Lifshitz point.
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fied as a point that is not just by chance exactly solvable but
shows this property for more profound physical reasons. The
results of Bursill, Xiang, and Gehring, who have considered
the Fourier transform of the spin-spin correlations, fit natu-
rally in the picture we have developed: The point they iden-
tify as the point where correlations change is simply the Lif-
shitz point following the definition given above. Quantum
fluctuations in the integer spin chain wash out long-range
order. As a consequence, the transition that happens at the
classical level foruc is no longer a phase transition. How-
ever, the change of short-range correlations still happens in
the quantum system at the VBS point in real space. Because
of the finite correlation length, this is not seen immediately
in S(q) and, hence, we have the Lifshitz point, which is
distinct. Sincej→` when the spin increases, one expects
that these two points should merge in the classical limit right
at uc . This is summarized in Fig. 11.

This implies the following description of the phase dia-
gram: There are three regions for 0,u,0.25p.

0,u,uVBS. There are short-range antiferromagnetic

correlations, the Haldane phase with a gapped spectrum. A
generic description is given by the VBS model and also the
isotropic antiferromagnetic Heisenberg model.

uVBS,u, ũ. There are incommensurate short-range cor-
relations with a wave vectorq,p, that shifts away from
p as p2q}(u2uVBS)

s,s'1/2. In the Fourier transform,
the peak stays atq5p. The spectrum is gapped: We expect
that the low-lying Haldane modes are now at the incommen-
surate wave vector. Part of the VBS physics remains valid:
the gap, the hidden order, and the free spins1

2 at the ends of
an open chain.

ũ,u,0.25p. The physics is similar to that of the pre-
ceding region; the peak of the Fourier transform shifts from
q5p to q562p/3 and the incommensurate correlations be-
come visible. The spectrum is gapped. There is, however, no
profound physical difference between this region and the
preceding one.

The above picture does not challenge conventional wis-
dom in the sense that the usual Heisenberg Hamiltonian
u50 shares the same physics with the VBS Hamiltonian and
there are no additional phase transitions between the
point12,13 u520.25p and the Lai-Sutherland point
u510.25p. However, the VBS point itself means that the
physics has changed beyonduVBS: Because of the incom-
mensurate correlations, it is no longer possible to capture the
low-lying excitations by a nonlinears model with a
symmetry-breaking patternO(3)/O(2) as used originally by
Haldane. In the incommensurate regime, the full rotation
group is broken down. Appropriate nonlinears models have
been contemplated before.34 Since they involve a non-
Abelian symmetry, they are generically massive, consistent
with the gapped nature of the Haldane phase.

With the present algorithm, we cannot calculate dynami-
cal quantities. Foru50, it is known that the dynamical struc-
ture factor is dominated by the Haldane mode whose mini-
mum energy is atq5p. The simplest expectation is that this
minimum will shift away fromq5p. The simplest expecta-
tion is that this minimum will shift away fromq5p right at
the VBS point~because the Lifshitz point hasa priori no
dynamical meaning! and will evolve continuously till it soft-
ens foru5p/4 at a wave vectorq52p/3 in agreement with
the Bethe-Ansatz excitation spectrum at the Lai-Sutherland
point.

There is an interesting relationship6 with the fractional
quantum Hall effect~FQHE!. The present understanding35 of
the physics of the FQHE at fillingn51/m, m odd, is based
on Laughlin’s wave functioncm , which is the exact ground
state of a truncated Hamiltonian. In addition, this function
embodies the hidden long-range-order that is revealed in the
anyonic gauge. This is similar to the situation of the VBS
wave function. Expectation values computed with the
Laughlin wave function correspond to a classical statistical
problem, which is the two-dimensional one-component
plasma~2D OCP!: This is Laughlin’s plasma analogy. The
case of the full Landau levelc1 corresponds to the special
point36 G52 of the 2D OCP (G being the ratio of the
squared electric charge to the temperature! at which the den-
sity correlations begin to oscillate in real space, a precursor
phenomenon of the crystallization that occurs atG'140
when the plasma is dilute enough. This special point also has

FIG. 10. String order parameteruOpu in the thermodynamic
limit in the Haldane phase. The maximum is exactly at the VBS
point.

FIG. 11. Schematic phase diagram of integer spin chains with
biquadratic coupling: model~1.1!. Here the inverse spin plays the
role of a temperature: TheS51 case corresponds to short-range
ordered phases. Of course this picture may be altered by other types
of ordering, such as dimerization.
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some of the properties expected from a disorder point.36 This
is similar to what we observe at the VBS point.

We also note that a similar phenomenon happens in the
spin-12 Heisenberg chain with next-to-nearest-neighbor inter-
action J2 . When J2 is large enough, the antiferromagnetic
state with algebraically decaying correlations is destroyed,
and dimerization takes place. Inside the dimerized phase,
there is the so-called Majumdar-Ghosh point,37 where the
correlation between dimers vanishes and the ground state is a
simple wave function. In the dimerized phase, the antiferro-
magnetic spin order is short ranged contrary to the dimer
order, and we thus expect that the Majumar-Ghosh point is a

disorder point: In the classical limit the increase ofJ2 leads
to incommensurability~as the biquadratic term in theS51
case!. Because of the short-range order, the incommensura-
bility will take place in real space right at the disorder point
~Majumdar-Ghosh!, and the structure factor will display the
two-peak structure only for a larger value ofJ2 .
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26G. Fáth and J. So´lyom, J. Phys. Condens. Matter5, 8983~1993!.
27Y. Xian, J. Phys. C5, 7489~1993!.
28T. Xiang and G. Gehring, Phys. Rev. B48, 303 ~1993!.
29R. J. Bursill, T. Xiang, and G. Gehring, J. Phys. A28, 2109

~1995!.
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