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For the seriesRCo; (R=rare-earth atopnvarious parameters occurring in the two-sublattice model of
rare-earth—transition-metal intermetallid®cal magnetic moments, intersublattice exchange fields, crystal
field parameters, as well as magnetic hyperfine fields and electric field gradieetsalculated within the
framework of the local-spin-density approximatiohSDA) and the full-potential linear-muffin-tin-orbital
theory. Special emphasis is given to a determination of the crystal field parafdetétris shown that it is
absolutely indispensable to include the States at th® site into the valence band and to avoid any spherical
approximation for the effective potential. The quant$ depends on the orientation of the asphericl 4
charge density, in contrast to a basic assumption of the two-sublattice model. As a result, the experiments in
general yield some kind of average effective values which are different for different experiments. Application
of the LSDA introduces rather large uncertainties Agrwhich cannot be totally removed but at least drasti-
cally reduced by physically motivated measures.

I. INTRODUCTION AND BASIC CONCEPTS arising from the application of the LSDA. In Sec. Il test
calculations are performed for Smgaoand in Sec. IV the
results for the whole serié2Co; are reported.

Intermetallic compounds of rare-earth atoms and
transition-metal atoms are of great importance both for the
technological application as well as from the viewpoint of )
basic research. First, the most powerful permanent magnets 1he question whether thef &tates of the rare-earth met-
are among this class of materid&Second, they represent a als are to be considered as core states or as band' states has
big challenge for the electron theory, because their propertied€€n discussed for many years. The general trend is that the
are determined by two totally different types of eIectronicIocaI_IZatlon of the 4 states is too weak In LSDA. Therefare,
states, i.e., the highly correlated and strongly localizéd 4 treating the 4 states as band states yields a too strong hy-

states of the rare-earth atomR)(and the valence states of bridization with the other valence states, and thus the density

the transition-metal atoms which are comparatively weakl of states at the Fermi level is much too lafgeo obtain good
. P y Yresults for the ground state properties, especially for the co-
correlated and more delocalized. In the present paper 3

. . f hich the 4 b i esive properties, thef4states therefore were treated as core
Investigate systems for which the 4tates may be consid- 4164 in many publicatiorisee, for instance, Refs. 3), 7.,

ered as core states. For these materials a variety of propertigs, as assumed that thef 4shells in the rare-earth metals
(local magnetic moments and hyperfine fields, intersublattic%ssentia"y retain an atomic character determined by Hund’s
exchange couplings, electric field gradients, and crystal fielyjes and that there are no hybridization effects with other
parametershave been calculatét by theab initio electron  states. This model is called the standard model or ionic
theory in local-spin-density approximatidhSDA). Among  model of rare-earth metals.

these properties the crystal field parameters are most difficult |t should be noted that the standard model is of course not
to obtain because mathematically they are determined by agble to account for all aspects of rare-earth magnetism. First,
integral which involves the folding between the charge denit is sometimes argued that the correct structure of the Fermi
sities of the 4 states and the conduction electron statessurface may only be obtained by taking into account the
which depends extremely sensitively on these two densitiedybridization of a narrow and energetically high-lying mi-
In the present paper we therefore extensively discuss howority spin f band with the transition-metal—like valence
reliably these charge densities may be obtained within thetates. This was discussed for Gd by Sifigh,viewpoint,
framework of the LSDA. The calculations are performed forwhich, however, was criticized by Bylander and Kleinman
the technologically important systerR€a; and are based on and by Ahujaet all° Temmermaret al* have shown that
the full-potential linear-muffin-tin-orbital theory-LMTO).  when including the self-interaction correction in an LSDA
The paper is organized as follows. In Secs. | B and | C thecalculation for Pr the occupiedbands occur well below the
standard model of rare-earth metals and the two-sublattickottom of the conduction bands, whilst the high-lyifig
model of rare-earth intermetallics are discussed. In Sec. | Dbands hybridize strongly with the conduction state€at

the basic formulas for the calculation of the crystal field pa-creating flatd bands at the Fermi level and a Fermi surface
rameters are given. Section Il considers the computationah agreement with experiments. Experimentally, a particular
details concerning the FLMTO method and the problemanode of magnetic excitation in Pr recently found by inelastic

A. Rare-earth—transition-metal intermetallics

B. The standard model of rare-earth magnetism
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TABLE |. Test of the validity of the inequalityl) for various representatives of the serieg-e ,B. The
values ofA andSy are from Ref. 14, the values 8, from Ref. 5, and the values & from Eq.(7) of Ref.
4 with data forJ anda; from Ref. 14, values fotr?),; from Ref. 15, and witiRef. 17 A3=300 K/& for
the whole series.

Pr Nd Sm Tb Dy Ho Er Tm Yb
A 3.33 2.54 0.83 1.24 2.79 5.38 9.71 18.4 51.2
2up2S Bey
R
%SBEX 3.08 9.7 10 10 7.3 16.2 11.7 3.3 15
cf

neutron scattering experimetftslso may be a hint towards states to the ground state due to the exchange interactions
hybridization effects betweenfd4and conduction-electron with the conduction electron system, so thais a good
states. Second, and even more important, the properties gfiantum number. The second part guarantees that there is no
Ce compounds—especially those of the heavy fermiommixture of variousM; states due to the crystal field interac-
systems—can only be reproduced by taking into account théon, so that altogether the ground state is described by
hybridization of the strongly correlatefdstates with the de- (J,|M,|=J). From Table I it becomes obvious that the first
localized conduction states; see, for instance, Ref. 13. part of the inequality is not fulfilled for Th and especially for

In the present paper | and the following papers Il and Ill,Sm, so that in the latter case the exchange splitting probably
we assume that many properties of rare-earth intermetallideads to a mixture of different multiplet states. Nevertheless,
(the Ce compounds are excludedan be essentially de- in the present paper we mainly consider Sm@ond assume
scribed by considering thef4states as core states, and wethat theR®" ion is basically in the ground state multiplet of
discuss the problems related to the use of the LSDA for thishe freeR*" ion. The reason for investigating Smgis the
situation. Furthermore, it is assumed that in the intermetallichigh technological importance and the fact that various other
all rare-earth atoms are in the trivalent state, i.e., that therstudies based on this assumption are at hand for comparison.
areR®" ionic cores’™ This is by no means trivial, because The basic results of the present paper concerning the appli-
most of the free rare-earth ions are divalent and the elementahbility of the LSDA and the validity of several assumptions
rare-earth metals are trivalent except for Eu and Yb, but it iof the two-sublattice model aneot affected by these prob-
justified a posterior? by the good agreement between thelems for Sm, however, the problems should be taken into
theoretical results and the experimental data for the magnet&ccount when comparing the theoretical data with the experi-
moments. mental result§Sec. IV C of paper |

Based on the above discussed separation of thstates
and the conduction electron states the two-sublattice mean-
field model(see, for instance, Refs. 1, 5,)1fdr the energy

~ Although the standard model does not allow for a hybrid-of the transition-metal sublatticd} and the rare-earth sub-
ization of the 4 states with the conduction electron states|attice (R) has been introduced,

there are of course interactions between these two electronic

systems which are responsible for most of the interesting

physics _of the .rare—earth intermetallics.. Thes_e are t.he ex- E= _ZMBE (Sr)BexR) + Egm+ E4(R). 2)
change interactions between the respective spin densities and R

the electrostatic interaction between the respective charge ,
densities. In the standard model it is assumed that the cold€re 2ug(Sg) denotes the thermal average of the magnetic
plings within those two electronic subsystems are stronge?Pin moment at the rare-earth sReB,, is the above intro-
than those between the two subsystems, so that the two sufiuced intersublattice exchange fiélhich is proportional to
systems retain their general properties in spite of the interadhe thermal averaggsy) of the transition-metal atomEy;is
tion. For instance, it is often assumed that for tifeefec-  the magnetic anisotropy energy of the transition metal sub-

C. An interaction hierarchy and the two-sublattice model

trons the following hierarchy of interactions is fulfilled: lattice (which is usually described by a phenomenological
ansatz with a few anisotropy paramejerand E«(R) de-
A (2ug)(2SR)Bo,>Eoy. (1)  scribes the magnetic anisotropy energy of the rare-earth ion

at siteR. The rare-earth anisotropy thereby originates from
HereA is the lowest excitation energy from the ground statethe electrostatic interaction of the asphericlcharge cloud
of the freeR*" ion, the second term in E@l) represents the with the crystal field produced by all the other charges in the
exchange-overall splitting of thB®" multiplet level due to  system: when applying a strong external magnetic field ob-
the exchange fieldB,, imposed to theR®*" ion by the lique to the axis of the uniaxial anisotropy, thé ghoment
transition-metal sublatticé® is the projection of the total and the magnetic moment of the transition-metal sublattice
spin of theR®" core on the quantization axis which is given (which is coupled to the #moment viaB,,) rotate out of the
by the total angular momentud), andE is the crystal field easy axis direction, thef4charge density is corotated rigidly
interaction energy between thé 4harge density and all the due to the strong spin-orbit coupling in thé dore, the ori-
other charges in the system. The first part of the inequalitentation of the asphericalf4charge cloud in the crystal field
(1) ensures that there is no admixture of higher multipletbecomes less favorable and the resulting increase in electro-
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static energy is the magnetic anisotropy enekyy. This  tion electron states when rotating the aspherichicharge

energy may be represented'y-16-1° density, and because the crystal field parameters are very
sensitive quantities they are considerably modifi&kc.
~ ; m ; ;
E.=S Am@m I D), i.e., theA] d_epend to some extent on _the orientation
cf %1 n(Cnar @ of the 4f moment, in contrast to the assumption of the two-

ublattice model. Concerning thd 4tates, if the inequalities
1) were not fulfilled, the ground state could not be classified
by the quantum number§),|M,|=J) but there would be a
mixture of states with different values dfandM; depending
on the relative orientation of the transition-metal moments
<(":m> = 0y (™ (O™ ¢ 4) and the rarejea_rth moments and on the orientation qf the 4
n/4t™ Yam’ 74\ n /a4t charge density in the crystal. As a result, the magnetic prop-
Here thed, , are Steven’s factot&'®which characterize the erties of the 4 core(for instanceSy) and the aspherity of the
asphericity of the # charge densityr"),; are the 4 radial ~ 4f charge density would be different for different orienta-
expectation values of", and (O[),; are the expectation tions, again in contrast to the assumption of the two-
values of Steven's operatof$?! sublattice model. It is one of the objectives of the present
The basic assumption of the two-sublattice model is thapaper to investigate the basic assumption of the two-
IBey» [(SR)], [(ST)l, the anisotropy parameters enterlfy;as  sublattice model.
well as the parameters;), 6; ,, and(r"),; do not depend on
the orientation of the transition-metal moments and the rare-
earth moments. Concerning the conduction electron sublat-
tice, it indeed turned outthat the effective spin quantum
numberS; is nearly independent of the relative orientation From the electrostatic interaction energy between the 4
between the transition-metal sublattice and the rare-eartbharge densityy,;(r) at the rare-earth atom under consider-
sublattice. On the other hand, although the coupling betweeation and the charge densipr') produced by all the other
the core- and the conduction-electron charge density is vergharges in the system the following expression for the crystal
small (see abovg there will be small changes of the conduc- field parameters was obtairféd

where theA [ denote the crystal field parameters determine
by all charges in the system except for the charge of the 4
core under consideration and th€ ') are the expectation
values of the 4 multipole moments, with

D. Crystal field parameters and intersublattice
exchange couplings

41 "
Ar=onT1 Crn”f dsf'f’(r')znvm(W)Jdr r? et patiam(F) /fdr P2 gt m(T)- (5)

Here thec|' are numerical factorésome of them are com- other charges outside the sphere is called “lattice contribu-
piled in Ref. 23, Z,,, denotes the cubic harmonidalso tion”). Whereas the results of the first model depend ex-
called Tesseral harmonics, as in Ref),18. (r.) is the tremely sensitively on the choice of the point chargbme
smaller(largep of |r’| and|r| and p,s., o, are the radial ex- Vvalence model together with the atomic-sehere approxima-
pansion coefficients for the expansion of the aspherial 4 tion for the effective potential yieldéd**?>~*or the whole
charge density into cubic harmonics seriesR,Fe B values forAJ in semiquantitative agreement
with the experiments. Later, however, calculatfdrt?°be-
yond the atomic-sphere approximation for SrgCand
par(n)=> patnm(NZnm(6, ). (6)  GdCa demonstrated that both the valence contribution and
nm the lattice contribution of the remaining charges are impor-
tant. Because both contributions are large and opposite in
If we assume that the expansion coefficiepis, , are in-  sign, the accurate calculation A8 depends extremely sen-
dependent oh andm, then we can replace in E@5) the sitively on the overlap of the charge densitipg’) and
Pat:n.m(r) by one unique radial functiop,¢(r) and Eq.(5)  p4(r) especially concerning the finest details of the tail of
reduces to Eq(3) of Ref. 21, which was obtained already by p,:(r). The main objective of Sec. Il is to find out whether
Coehoorr? for A9. It should be notetf?°-??that the often the LSDA is able to yield sufficiently accurate densities for a
assumed proportionality betweekd and the electric field reliable determination of crystal field parameters. Treating
gradient would only be valid if the Acharge density,; was the 4f states as band states in LSDA would certainly produce
not overlapping witho(r’). a too extended #icharge density. Furthermore, it would lead
For the calculation ofp(r’) two extreme models have to some hybridization with the other conduction electron
been used in the past, the point-charge model which represtates, and the decomposition of the total charge density into
sents the metal by an assembly of fictitious point chargfes p,; andp which is required for the discussion of crystal field
outside theR atom under consideration and the valenceparameters would be questionable. We therefore will treat the
modef+>?224=2hyhich exclusively considers the contribution occupied 4 states as core states.
of the conduction states in the atomic sphere aroundRhis  For a determination of the intersublattice exchange field
atom (“valence contribution,” the contribution from all the B, we have used the method developed in Refs. 5, 26, 27,
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30—33 via thab initio calculations of the changkE in total  the LMTO's. In most cases it is not necessary to keep track

energy upon inversion of thef4moments. of all the resulting angular momentum components, but it is
sufficient to terminate the expansion of the charge density
Il. COMPUTATIONAL DETAILS and the effective potential up tol 2<2l;. In the original
_ program version of Savrasov and SavraSalhe Hartree part
A. Full-potential LMTO method VL& of the effective potential inside the muffin-tin sphere

Theab initio calculations are performed within the frame- aroundR originating from charges outside the respective on-
work of the LSDA with the exchange-correlation functional site polyhedral cell is calculated via the multipole moments,
of Barth and Hedir* The Kohn-Sham equatiofrs are
solved by a full-potential LMTO program based on a code
originally developed by Savrasov and Savra¥owhich we
have modified'see below and for which we have written a ) )
spin-polarized version. In this program the crystal is parti-Where the integrations extend over the polyhedral ceIIs_ cen-
tioned into appropriately defindtlatom-centered polyhedral tered atR" and theY,, , denote the spherical harmonics.
cells, and for these cells inscribed muffin-tin spheres andFven though the asphericity of the charge density) is
circumscribed spheres centered at the atoms are defined. TBgnerally small, considerable multipole moments may be
basis functions, i.e., the linear-muffin-tin orbitdlsare con- 9enerated via the integration over a polyhedral cell if the
structed from Hankel functions for fixed energy-«? cen- geometry of this cell strongly deviates from a sphere. It turns
tered at the basis aton® in the unit cell described by the Out that for small angular momentuitthe partV}':™ of the
translation vectort. These Hankel functions correspond to Hartree potential,
angular qguantum numbets=(l,m). Inside its own muffin-

MR,L,~fp(l’R,)rIR,’,YVm/(fR,)dSI’R/, (9)

tin sphere each Hankel function is smoothly augmetitey H,ex .l *k=0 _ /
a respective linear combination of numerical radial func- Vi (re) rRRZ[, SrurL (K= 0Mpr /(217 +D),
tions, namely the solutionpg(e,r.) Of the Schrdinger ' (10

equation for the effective potential averaged spherically )
around the considered basis at@in the unit cell and for nevertheless converges rapidly withbecause the elements

an appropriate|y Qhosen fixed energyg,, as well as its of structure matri)SEIl_(’E(,)L, are small for small and Iargd '
energy derivative g (s,5.). Inside all the off-centered However, the higher-components oV}, converge only
polyhedral cells aroun®’+t’ the Hankel functions are sub- slowly with increasingl’. Concerning the total energy, it
stituted by their expansions into spherical Bessel functions ogeems to converge rapidly when increadigdor low values
angular momentun” around the nuclei centered Rt +t’  of Iy, but when increasing further, the total energy dis-
up to a maximum angular momenturn=1+, and inside the approves and it will come back close to the lbyy-value
respective off-site muffin-tin spheres the Bessel functions arenly for very large values ofy,. For quantities which are
smoothly augmented by linear combinations ¢, and nearly exclusively determined by the smaltomponents of
érr . Finally, from the so obtained LMTO's g (r—t  Vim (rg) there is no convergence problem in Eg0). For
—R) the Bloch-transformed basis functions the calculation of the crystal field parameters, however, the
higher! components are also relevant, and we therefore have
. introduced in our program an option to determine
XiRLZEI e R xR (T—t=R) () Vi#(rg) for 1>3 directly via a three-dimensional numeri-
cal integration in real space. Because this is very time con-
are constructed, and then the eigenfunctigh&(r) (band  suming we take this option only for the final steps in the
index n, wave vectork) are represented by a linear combi- self-consistency cycle, whereas for the early stepgHi).is
nation, used.
| We thus have defined the most important technical param-
nk g kK eters of the method, namely the angular momentum cutoffs
¥ (r):; IZO BirXirL(T), ® 14,17, andly, the number and the values of differeds in
’ Eq. (8) and the values of different,z, . Because the crystal
where thel summation runs up to a maximum angular mo-field parameters are very sensitive quantities, we have care-
mentumlg . Because of the use of the above discussed exfully checked the influence of all these technical parameters
pansions of the LMTO's into functions defined with respecton theA. It turned out that the results were converged for
to centers of the polyhedral cells, the calculation of the(lg,l+,2ly)=(2,8,10. The influence of the other parameters
Hamiltonian matrix and the overlap matrix may be reduceds discussed below.
to the determination of radial integrals. The integrations In the following we distinguish between core states, semi-
within the muffin-tin spheres are simple, and the integrationore states, and valence states. The core states are strongly
within the interstitial space between the muffin-tin spheredocalized within the own muffin-tin sphere and energetically
and the geometrically complicated boundaries of the polyhewell separated from the other states at the same atom, so that
dral cells are performed via a Chebyschev integratiomo hybridization occurs. The semicore states correspond to
technique®® The electron density is calculated in the usualthe states of a closed outer shell in an atom, which in a
way from the eigenfunctiong”®, which are linear combina- crystal exhibit some spatial overlap with states at other at-
tions of LMTO's up to an angular momentuire | g but con-  oms, but because they are energetically well separated from
tain I’ components up td; because of the expansions of other states they hybridize only with the states of the same
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kind at neighboring atoms, yielding narrow semicore bandsonly way to test for the two-sublattice model therefore is to
They are described by the eigenfunctioi® for just one  adopt tentatively its basic assumption, i.e., to neglect these
value of| and just one value ok’. The related energy pa- hybridization effects, to calculate the parameters of the
rametere, g, iS chosen in such a way that the function model(for instance B, Ap, etc) by theab initio electron
dr(e,r) €xhibits the same node structure as the corretheory and to compare the theoretical results with the experi-
sponding state of the atomic outer shell. Finally, to allow formental data.

all hybridization effects among the valence states an eigen- Even if there are no hybridization effects between the
function of type(8) with differentl components is used, and occupied 4 states and the conduction electron states there is
for an accurate description of the eigenfunction in the interof course a coupling between these two subsystems via the
stitial region generally various values &f are required. effective potential to which the exchange and spin densities
Again, the energy parameters are chosen according to th# both subsystems contribute. It is known that although the
correct node structuréexcept for¢s; see Sec. I B2 All energetics of the # core states is badly described by the
states experience the same effective potential, but the Hamil-SDA, the charge and spin density is quite well reproduced.
tonian matrix for the semicore states is separately diagonaFor instance, the #spin form factor of a free G ion as
ized from the one of the valence states, and as a result trmlculated by the LSDAREef. 6 is in excellent agreemetit
valence states are in general not orthogonal to the othewith an experiment on ionic G®; and with mixed configu-
states. It should be noted that in several full-potentialration Dirac-Fock calculations. In this section we want to
linearized-augmented-plane-wave code$LAPW) the  discuss how reliably thefdcore charge density and the con-
eigenfunctions for a semicore calculation contain the sameduction electron charge density can be obtained by the LSDA
angular momentum components as the eigenfunctions for ia a metal.

valence calculation but the energy parameters are chosen in

such a way that for the two types of calculations a different 1. The 4f core

node structure appears for eacbhannel. To account for the strong Hund’s rule couplings in the 4

In some systems the energy of the atomic outer shellpo grookset al0 have fixed the occupation numbarg;

states is rather close to the energy of the atomic valencg,y, | tor the two spin channels in such a way that the sum
states. Then both types of states_should k_)e_ mc_:luded in th orresponds to the total number of £lectrons in the free
ansatz8) in order to allow for possible hybridization effects R3" ion

in the crystal. This is the case for many rare-earth com-

pounds, where thefbstategwhich are core states in the free 1 L 3t
atom) are energetically close to thes66p, and 5 states of N+ Nar=Nar(R7), (1)
the rare-earth atom. It is therefore importésge Sec. Il A
to include in the eigenfunctiofB) |=1 stateqi.e., p states
with 5p characterthree nodes in the muffin-tin spherand
with 6p character(four node$]. This is technically possible
if we evaluate the respective LMTO)’zs';RL for two different | !
values of«?. (It should be noted that in a FLAPW code this Ngs—Ngr=2(9y—1)J, (12
may be achievell when supplementing the FLAPW basis
set by localized orbitals.

and the difference corresponds to the projection of the free-
ion 4f spin moment along the direction of the totdl #o-
ment,

whereld is the total angular momentum quantum number and
g, denotes Lands factor. Adopting a spherical approxima-
tion for the 4f charge density,; and the 4 magnetization

B. Problems related to the application of the LSDA densitym,; they arrived at

The standard model discussed in Sec. | C is based on the
strict separation of the occupied 4tates and the conduction
electron states. If there are considerable hybridization effects
between these two states, the two-sublattice model is no
longer valid. For instance, the assumption that the crystalvhere thee}; are the radial functions for thef4core as
field parameters are independent of the orientation of the 4obtained from the LSDA calculation, subject to the con-
charge density then is definitely wrong. The first task for astraints(11) and(12) and normalized according to
test of the two-sublattice model therefore in principle would
be to explore the hybridization effects, which is rendered
difficult because of the following reasons: first, the energet- f rédrleg(n)|>=1, (14
ics of the 4 states is not correctly described in the pure
spin-density functional theory because of the lack of orbitalgs well as
polarization effect§Hund’s second rule and it is also badly
described by the LSDAeven if the self-interaction correc-

T v 2a el [l (ey(2
P4f(r):\/ﬁ[n4f|@4f(r)| + gl @2¢(r)]*1Zgo, (13

tion is performed as in the paper of Temmernearl ! there My (r)= Rl [k @b (1)|2=nk | 04(r)]21Z0o. (15)
are problems related to the nonlinearity of the exchange- Var

correlation potential in LSDARef. 9], so that altogether the

small hybridization effects are difficult to study. Second, it isTo account for the asphericity of thef &ore, we can go
hard to estimate how strongly the two-sublattice modelbeyond the constraints of Broolks al*® and fix in addition
would be violated by these small hybridization effects. Thethe asphericity numberrs;}ﬂ;z"o and nﬁ'ffzm in
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3 localization potential which is steeper the@ for large dis-
par(r)=e>, [n]l'f‘?2|’0| @he(1)]? tances, yielding a localization which, however, depends on
=0 the explicit form of the localization potential. Steinbeck

41 ; ;

1,3 I 2953 et al™* represented the true effective crystal potential by a
+n5521,0l @a¢(N]71Z3 o 3, 0) (16) superposition of aperiodic on-site potentials and included the

and the Corresponding expression m!f(r) Here theZ%ho self-interaction CorreCt|0m8|C) (See, for instance, Ref. 11

denote the cubic harmonics for the polar axis parallel to thd0 the LSDA when determining Ji/(r) in such an on-site
total angular momenturd of the 4f core. Thenﬂx%, , are potential. The deconvolution of the crystal potential into on-

fixed to the numbers which are obtained for a ffe8 ion site potentials is of course not unique, but Steinbethl.

adopting the Russel-Saunders coupling scheme and repr%[gued that because of the stronger localization of the SIC
X ; : wave functions as compared to the LSDA wave functions the
senting the many-particle wave function of thé dore by a

Slater determinant of the single-particle wave functions forfunCt'onS‘PM (r) depend only slightly on the detailed form

: ) . - of the on-site potentialwe give a comment on this point in
the spherically averaged effective potential witli'(r) for  goc /g 1. ngever, thisgdoes not mean that thépWave

the radial part, respectively. Transforming to a system Withynctions are determined without any arbitrariness, because

polar axis parallel to the externalaxis, we arrive at already the calculation of the wave functions in a nonperi-

odic potential instead of the periodic crystal potential intro-

Par(r) duces an arbitrariness: we are convinced that an LSDA-

- i 1 241 1 2 SIC band calculation in the true crystal potential for the
=2, e[ny, r)|*+ng. Nl*1Z, (3, ¢), ,

n,zm [afinml @3 (Pl 03DV (D) occupied 4 states would lead to more expanded wave func-

~— J tions. In our calculations, we prescribe a localization sphere

Pafinn(r) with radius Ry¢ joc Which is between the muffin-tin sphere

17 and sphere circumscribing the polyhedral cell. The degree of
localization is controlled by the value &, . and by the
with n}ilo o=nji*/\4, which is used when calculating the logarithmic derivative D, at the sphere boundary. For
effective potential. The square bracket can be identified witlP4s=— the wave function vanishes &, oc. Brooks
the radial expansion coefficientg;., n(r) occurring in Eq. €t al*® have argued that the functiop}'(r) is probably
(6). Assuming that the functions};(r) ande}(r) are iden- better described within the localization sphere by imposing a

tical and given byep,(r), we arrive at finite negativeD,;, for instanceD ,=—1—1=—4 which .
would correspond to the energy of the center of a hypotheti-
Patnm(F)=€(Nht nmt Nigonm) | @ar(1)|2, (18  cal 4f band. Our guess is that thef 4vave function is

) ) . slightly more expanded than the one of a fRRE ion, but
and with the same assumption the sum of occupation numhat it is quite similar to this. We therefore chod®g |, and

bers can be obtained from E@) as Dy in such a way that the radial expectation valded)
; . m occurring in Eq(5) for the A are close to those obtained by
Nat:nm® Nag;nm= 02,n(On)ar - (19 Dirac-Fock calculatiors for the freeR®" ion. From Table II

it becomes obvious that in Smgadhis is the case for
Dyr=—= and 3.46 <Ry ,c=4.10 g (the radius of the
muffin-tin sphere is 3.14 g2 The dependence df"),; on
the choice of the boundary conditions is of course not sur-
prising. However, it will be shown in Sec. Il E 1 that the
crystal field parameteA depends extremely sensitively on
the choice o4, Ryt oc. This is really shocking and dem-
onstrates that within the framework of an LSDA calculation
Nl @b |2+ nki| @ke|? one has to make an additional assumption guided by physical
atl Paf afl Paf _ intuition for an appropriate choice of the boundary condi-
Nhe+ N4 tions. As outlined above we think that the best choice is the
(200 one for which the values ofr"),; are close to the Dirac-

3+
Finally, we have to select boundary conditions for the deterFOCK values for the fre&™" ion.

mination of @it (r) by the solution of the radial Kohn-Sham 2 The valence states

equation. To do this, the true effective potential, spherically ) ) .

averaged in the muffin-tin sphere, is continued beyond the Having described the occupied 4tates as core states, we
muffin-tin sphere by include in the basis set for the valence omslyp, andd

functions. Nevertheless, the decomposition of the so-
o @ obtained valence states into different angular momentum
o= +D, (21)  contributions with respect to the center of the muffin-tin
sphere also containfs contributions. This becomes obvious
where the coefficienta andb are chosen in such a way that from the one-center expansions of the Hankel functions into
the potential is continuous and has a continuous radial despherical Bessel functiong discussed in Sec. Il A. Aug-
rivative. If we impose atomic boundary conditions at infinity, menting the Bessel functiop; by a radialf function ¢,;
the functione i (r) is too far extended to correspond to a with an energy which corresponds to the center of gravity of
core situation with no hybridization, i.e., we have to localizethe occupied valence band unfortunately yie{dse to the
@4 (r) in some way. To do this, Richtet al?! introduced a wrong energetics of the f4states in LSDA an f function

Equation(17) and the corresponding equation for the mag-
netization density will be used in Sec. lll as constraints for
the self-consistent calculation. For the calculatiorAgt ac-
cording to Eq.(5) we partly take into account that}, and
o4 are slightly different, and we therefore repldeg;|* by

a weighted average ovép|> and |¢j|° arriving at the
expression

P4f;n,m(r)~ (nl,f;n,m'i_ nﬁf;n,m)
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TABLE 1. Influence of Ry joc and D4¢ on {r")4; (in units of &) for SmCaq. The column DF exhibits the results of a Dirac-Fock
calculation(Ref. 15 for the free S" ion.

Rat 1od 8]

3.14 3.46 3.78 4.10 DF
—o (r=3)as 6.90 6.79 6.75 6.72 6.89
(r%)a¢ 0.98 1.03 1.06 1.08 0.97
(r*)af 2.03 2.44 2.66 2.89 2.26

(r® s 6.82 9.84 11.7 14.0 10.6
—l-1=—4 (r=3)a 6.69 6.65 6.64 6.63 6.89
D (r%)a¢ 1.09 1.13 1.15 1.17 0.97
(r*)ar 2.82 3.30 3.52 3.81 2.26

(r®a 125 17.6 20.4 24.5 10.6
0 (r 3y 6.23 6.34 6.39 6.41 6.89
(r%)a¢ 1.40 1.41 1.40 1.42 0.97
(r*)as 5.30 6.08 6.28 6.92 2.26

(r® s 32.0 45.4 50.8 63.7 10.6

which looks very much like the one of & £ore state, i.e., it sphere. The influence of thef augmentation energy on the
exhibits a maximum in the muffin-tin sphe(€ig. 1). Be-  crystal field parameters is discussed in Sec. Il E 2.
cause the valence states are not orthogonal to our core states,
an unrealistically large # contribution to the valence states
arises. Although its weight is still small compared to the,
andd contributions it deteriorates the results fof' because SmCaq crystallizes in the CaGustructure with one Sm
of the folding of the 4 core densityp,:(r) and the density site (1a) and two crystallographically different Co sité3g
p(r') in Eq. (5). To get rid of this problen{? we augment the and x). The calculations were performed for experimental
Bessel functionj; in the muffin-tin sphere by af4radial lattice parameterda=9.4563 g, c¢/a=0.7933. For the
function ¢,; with negative energy. As shown in Fig. 1, the Brillouin zone integration we used the tetrahedron method
maximum of ¢, in the muffin-tin sphere gradually vanishes with the correction of Blohl et al*® The results were satis-
when decreasing the energy and for moderate negative endactorily converged for 4k points in the irreducible part of
gies ¢, is similar to the Bessel functiop; and to a typical the Brillouin zone and forlg,I+,21,,) =(2,8,10. In the fol-
nodeless augmentation function of an almost unoccupied vdewing we discuss the influence of various other parameters
lence state. It is not appropriate to choose extremely lowand details of the calculations. It thereby should be noted that
values of the energy, because then the wave function is steepthen testing for the influence of one of these parameters, it
ened very sharply at the surface of the muffin-tin sphere, ani not always required to converge the results with respect to
a very high¢,; contribution would be required to obtain the all the other parameters. This must be taken into account
continuation to thef Bessel function outside the muffin-tin when comparing the data of the following tables and figures.
Except for Sec. Ill C we assume for the calculation of the
— effective potential that the f4charge density is spherically
=, symmetric[Eq. (13)].

o

Ill. TEST CALCULATIONS FOR SmCo 5

2r L .
E,=081Ry (Dyp=-1-1=-4) A. Subdivision into various energy panels

and augmentation energies

The energetics of the states at the Sanslte and the Co
2c site is represented in Fig. 2. The highest true core states
4l Eur=-30Ry are the Sm-d and the Co-8 states. All the states which are
E,¢=-10Ry, higher in energy represent band states which are labeled by
Ei=O0Ry E,¢=-5Ry their dominant contributions, and the centers of gravity of
Z the various contributions are indicated by the full horizontal
lines. In Table 11l we represent the results of three different
== calculations of the crystal field parametéx§' and the larg-
0 1 2 3 est componenY of the diagonalized electric field gradient
rayl at the Sm site. The calculations differ by allowing for the
hybridization among the electronic states within different
FIG. 1. ¢4(r) for various augmentation energies in SmCo subsets of the various electronic states shown in Fig. 2. The
The broken line is the Bessel functigg for <2=0.4 Ry. Hamiltonian matrices for the different subsets are di-
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ETRy] states. It should be noted that the change in going from col-
Sm{1a) Co(2c) umnA to B in Table 11l is opposite in sign to the contribution
LR L of the 5p semicore states in Refs. 28, 29. This might result
////m,f/g/g’%/—w,,//,/,,,%% from a slightly different meaning of the semicore treatment
between FLMTO and FLAPWsee Sec. Il A, or from the
IO ’ fact that when going fromA to B we simultaneously switch

from the treatment of thebstates at Sm and of thep3states
at Co as core states to a treatment as semicore states, whereas
in Refs. 28, 29 these states seem to be treated as core states.

= 2 Vi

=37 When including the p states in the valence band, the
sl A results become virtually independeféxcept for the 4
states; see Sec. lll B 2f the energy parameters,g at
-5t which we evaluatepg, and ¢g, (Sec. Il A). We use in the
following calculations for these parameters the energfes
| 3s for the casd >z and the respective centers of gravity of the
-7l occupied part of thd-projected band for the cadeslg.

When including only the p states in the valence band, the
results depend criticallyespecially for multix calculation$
4d on the choice of the b augmentation energy. The reason is
that the function¢g, (r) for the Sm site withi=1 exhibits
FIG. 2. Energetics of the states of the Smsite and the Co@  near the lower band edge of the valence band a change of the
site in SmCgq (see text number of nodes from 46 p”) to 3 (“5 p”). Altogether,
this demonstrates that the inclusion of thp States in the
agona“zed Separatebsec_ 1] A), and the Corresponding ei- valence band is indispensable, and this statement will be fur-
genvalues define the corresponding energy panels. In calcther underpinned by the comparison between theoretical and
lation A the 6s, 6p, and 5 states of Sm and thes44p, and ~ experimental resulttSec. IV).
3d states of Co are treated as band stééth «°=0.4 Ry),
and all the other states are core states. Calcul&@ioonsid- B. Values of the kinetic energy parameters«?
ers the same band states, but tlseabd 5 states of Sm and

For a good representation of the wave function in the
§tterstitial spacgSec. Il A) Bloch functionsxiRL [Eq. (7)]
for various values ak? are required in E(8). This is clearly
demonsirated by the dependenceé\dfon the choice of? in
4 onex calculation: varying<® between 0.2 Ry and 0.5 Ry
changes the value @3 by nearly a factor of 2. We therefore
have to chzeck convergence with respect to the number and
i > ; values of«“. It thereby should be noted that we cannot use
essential for the determination 8 andV,, to include the unlimited many values ok, because this would induce nu-

gc?n?gtsist:ftﬁénr:?tgér-ir\ézlfr;?estt);nf?e?ds ma?:rlﬁglz?somwhic merical instabilities due to the overcompleteness of the basis
9 y p ’ t%et. Generally, the difference between variofs values

are mainly determ_ined by the _Iatti_ce contribution Origi.n.atingshould be larger than 0.2 Ry. Table IV represents the results
from charges outside the muffin-tin sphere, the quantm%s for different numbers of include&? values.(Please note that

and V., exhibit strong valence contributions from the r the onex calculation the p states cannot be included in

o L f
charges inside the muffin-tin sphere of the Sm atom, an L
these contributions are strongly influenced by the hybridiza(fﬂe band calculation; see Sec. lAlready for the threee

. calculation the results are more or less independent of the
tion effects between the b states and the other valence detailed values of?.

respectively. Finally, in calculatio®€ the 5p state of Sm,
which is energetically close to thes6p, 5d states is not
considered as a semicore state, but it is included togeth
with the 6s, 6p, and I states in the band calculatigwith
K¥“=—-0.9 Ry; see Sec. Il A Table Il shows that calcula-
tions A andB yield very similar results, but that it is really

TABLE III. Influenqe of the subdivision into various energy C. Asphericity of the effective potential
panels on the crystal field paramet&§ (total as well as valence ) 5222527 )
and lattice contributionsand the electric field gradient, at the In caI(_:uIatloné' o based on the atomic-sphere ap-
Sm site(without the contribution from the #4core); see text. proximation(see Sec. |} the self-consistent effective po-
tential is spherically averaged in each atomic sphere. Then,
A B C the eigenfunctions are evaluated for this potential by one
PR further iteration step, yielding the aspherical valence-charge
A[Kag?] —-377 —411 —246

density. The feedback of the asphericity of the charge density

Valence —1568 —1607 —1447 on the effective potential is neglected. In the OLCAO
Lattice 1191 1196 1201 calculationd™*! the effective potential is constructed from
Af[Kay“] —-10.4 —-9.7 —-9.6 overlapping extended site potentials, but for each site poten-
Ag[Kay®] 0.23 0.23 0.22  tial the intra-atomic asphericity is again quenched by azi-
AglKag®] -9.2 -9.0 —-8.9 muthal averaging over the site charge density during the it-
Vee(SM) [1071V m™2] 20.0 19.7 8.7 erations. To investigate the feedback of the asphericity of the

charge density on the effective potential, we performed a
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TABLE IV. Test of convergence with respect to the numberxbfvalues forAT, V. at the Sm site
(without 4f contribution, total momentw,;, the energy differencA E from which the intersublattice ex-
change fieldB,, is calculated, and the total energy of the unit cell. The value€ @ire x2=0.4 Ry (one«);
k3=—0.9 Ry, k5=0.4 Ry (two «); k2=—0.9 Ry, k3=0.1 Ry, x3=0.7 Ry (three«); k3=—0.9 Ry, k3=—0.2
Ry, k3=0.2 Ry, x3=0.7 Ry (four «).

Number of k? 1 2 3 4
AdKag?] —441 —248 —455 —486
AKag4 -9.8 -9.6 —-115 -10.8
AdKay® 0.22 0.21 0.26 0.23
A8Kay ] -8.7 -8.6 76 -6.9
Veo(Sm) [1072V m™2] 19.9 8.9 8.4 8.6
ot [ 1] 7.67 7.68 7.75 7.74
AE [1073 Ry] 8.69 8.96 9.03 9.05
Eiot [RY] —34750.312 —34750.314 —34750.365 —34750.376

calculation where we averaged the effective potential withirstates. In calculations which treat thp States as core states
each polyhedral cell before starting the next iteration stepthe influence of the # asphericity therefore probably does
Compared to our full-potential calculations, this type of cal-not become apparent.
culation yielded considerably smaller absolute values for the Because the asphericity of the 4harge density is rel-
valence contribution teA3. This explains why the former evant, the value oA2 depends on the orientation of thé 4
atomic-sphere calculations which considered only the Vacharge density in contrast to the assumption of the two-
Ie(r)lce contribution resulted in seemingly correct values okypattice model. The comparison of the results from calcu-
A_z. Altogether, it means that_a re_al fgll-_pofcentlal calculation|gtions A andC give a feeling for the dependence Ag on
without any potential approximation is indispensable. the orientation of the # moment and hencévia the very
strong spin-orbit couplingof the 4f charge density, when
the orientation of a moment is changed by the application
of an external field. As a consequence, the quanthigeb-

In all formerab initio calculations ofA™M it was assumed tained from a multiparameter fit to experimental data based
that—in line with the two-sublattice model discussed in Secon the assumption that there is no dependence on orientation
| C—the various parameters of the two-sublattice model argepresent effective parameters which may be different for

D. Asphericity of the 4f charge density and validity
of the two-sublattice model

independent of the properties of thé dore (orientation of
the moment, asphericity, multiplet statédccordingly, all

different experiments. The complication due to the aspheric-
ity of the 4f charge density arises also for experiments where

calculations we performed for magnetic moments aligninghe orientation of the magnetization is fixed, but the tempera-

along the crystallographic axis, and for the & core a
spherically symmetric charge densjifyg. (13)] was inserted.

ture is raised. It is well knowrisee, for instance, Ref. 44
that the time scale for the thermal orientational disordering

To test this assumption, we have performed the followingof the magnetic moments in a metal is much larger than a
four calculationgTable V). CalculationA corresponds to the typical electronic time scale. As a result, from an electronic
ground state orientation of thef 4noment which is along the viewpoint the system of thefdmoments at finite temperature
c axis and antiparallel to the orientation of the transitionmay be envisaged as being stuck for rather long times in a
metal moments, and a spherically symmetrfccharge den- state with fixed and more or less random moment directions
sity is used. In calculatio® the orientation of the # mo-  at every site, before moving rapidly to another state with
ments is reversed. In calculatidb we again consider the modified moment directions, etc. In each state, the local
ground state orientation, but instead of the spherically avererystal field parameter depends on the local orientation of the
aged 4 charge density13) we insert the aspherical charge respective 4 moment. Fitting the experimental data in the
density given by Eq(17). CalculationD corresponds to cal- usual way therefore again yields effective parameters which
culationA with the Sm ion being in the first excited multiplet should depend on temperature, because the degree of thermal
state(J=7/2 instead of]=5/2 for the ground staje disordering depends on temperature, again in contrast to the
From Table V it becomes obvious that most of the param-assumption of the two-sublattice model. Finally, the situation
eters(except for the small valence contribution to the mag-is even more complicated if we consider systems for which
netic moment of the Sm atom and the related hyperfine)fieldthe interaction hierarchyl) from Sec. | C is not fulfilled
do indeed not depend strongly on the properties of the 4 (Sm, for instanc®) so that there is an admixture of higher
core. Exceptions are the quanti and the electric field multiplet states to the ground state of the fR¥E ion. From
gradient at the Sm site, which are dramatically influenced bya comparison of calculations andD one realizes that there
the asphericity of the # core charge density. The main rea- should be only a small influence of this admixture as long as
son is the polarization of thegbstategwhich are included in  a spherically averagedf4&harge density is considered. How-
the valence band in the calculation for Table by the as-  ever, it should be noted that the asphericity of tHechharge
phericity of the 4 core and probably also the modification density is very large for thd=7/2 state, so that even a small
of the hybridization of the p states with the other valence admixture of this state to thd=5/2 ground state would
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TABLE V. Test for the dependence of various physical quantities on the properties of teel Shown
are the crystal field parametefs,' (total as well as valence and lattice contributiprithe electric field
gradientV at the Co sites and the Sm sfteithout the contribution of the Aicore), the valence contribution
1’ of the magnetic moment at the Sm site, the local magnetic moments at the two Co sites, the total
magnetic momenjyy Per unit cell, the contact hyperfine fielBg; and the exchange fieBl, describing the
intersublattice exchange coupling. For the meaning of the calculafie/i see text. All calculations have
been performed with twa values.

A B C D
AfKag?]
—246 —217 —699 —235
Valence —-1447 —-1423 —-1879 —-1439
Lattice 1201 1206 1181 1204
AflKag“]
-9.6 -9.4 -9.0 -9.6
Valence 0.3 0.5 0.7 0.2
Lattice -9.9 -10.0 -9.7 -9.9
AllKag ]
0.22 0.22 0.22 0.22
Valence -0.09 -0.09 -0.09 -0.09
Lattice 0.31 0.31 0.31 0.31
AdKaz® -8.9 -8.9 -8.8 -89
Valence 2.1 2.1 2.2 2.1
Lattice -11.0 -11.0 —-10.9 -11.0
Veo(Sm) [107 vim?] 8.7 8.4 21.2 8.6
V..(Co 3g) [10?* VIm?] 6.6 6.3 6.6 6.5
V.(Co 2c) [10°* VIm?] -5.0 -5.0 -4.9 -5.0
£2(Sm) [us] -0.37 -0.17 -0.37 -0.30
u (Co 39) [ug] 1.53 1.50 1.53 1.52
u (Co 2¢) [ug] 1.51 1.48 1.50 1.50
Hrotal [ 18] 6.93 7.04 6.91 6.97
Br(Sm) [T] —51.7 -12.4 —52.4 —38.8
Bi(Co 3g) [T] —-19.8 —22.0 —20.0 —20.5
Bi(Co 2¢) [T] -12.3 -12.6 -12.4 -12.4
Bex [T] 280 280 278 278
probably have a big effect. Because the degree of admixture 1. The 4f core

and hence the asphericity of thé dharge density depend on
the orientation of the # moment, this constitutes a further
reason why the experiments yield effective sets of param
etersA"" which might be different for different experiments.

Table VI represents the dependenceidfon the localiza-
tion radius Ry oc and the logarithmic derivativ® . For
each choice of the two parameters for thie gbre we kept

Altogether, if we want to compare our theoretical resultsthe density of all the other charges in the system according to

with the experimental data we must also obtain an effectivé® self-cqns!stent .calculat|on WitRyr joc=3.14 @ (which is
value ofAQ. The definition of this effective parameter, how- the muffin-tin radiusandD = —o=. In the brackets of Table
ever, would depend on the experimental situation. The only/! We have included the data obtained by a self-consistent
thing we can do is to determine an effective value whichtalculation for the core and the valence charge densities. It
seems to be representative for the variety of various effectiveecomes obvious from this table that the valueadtepend
values obtained by various experiments. We think that this i€Xxtremely sensitively on the choice of the boundary condi-
obtained by inserting for the calculation of the effective po-tions. For instanceA; changes by a factor of nearly 3 when
tential a spherical # charge density according to E(L3)  90ing from Ryt 5c=3.14 @, Dys=— t0 Ryf,10c=4.10 &,

instead of the aspherical charge density, and we proceed @Zm=—4'. althougm2>4f changes only from 9-9853_0 117
this line in all following calculations. 8. Confining ourselves td,=— as outlined in Sec.

IIB1, we find for the reasonable range of values for
R4t 1oc: 3-46 @=<Rys oc<4.10 g, a variation inAS between
—195 Kg?2 and —159 Kg?2. (The variation is slightly

In this section the problems related to the application ofsmaller for the self-consistent calculation for the core and the
the LSDA for a determination of thefdcore charge density valence charge densitigsThe energy differenc@E from
and the valence charge density are discussed. which we calculate the intersublattice exchange fiBlg

E. Application of the LSDA
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TABLE VI. Influence of Ry oc and D4 on A3 (in Kag?); see
text for the meaning of the numbers in brackets.
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TABLE VII. Influence of the 4 augmentation energy on the
crystal field parameters and the electric field grad¥gt (without
the contribution of the #i core A: 0.4 Ry;B: —2 Ry; C: —30 Ry.

Rat.1od 8]

3.14 3.46 3.78 4.10 A B C

—o0 —229 —-195 -178  —159 A9Kag?] —1033 —500 —455
(-229 (-210 (—199 — A%Kag“] 3.0 -11.1 —115

D¢ Ad[Kag —0.09 0.27 0.26
—l-1=—4  —169 —-129 —-110 —-86 AdKag® 26.5 -7.9 -7.6
Veo(Sm) [1072V m ™2 7.9 7.8 8.4
0 —26 43 65 114

(Sec. ) also depends sensitively on the choiceRaf |o. (for
Ruf10c=3.14 g and 3.78 git is 8.46 mRy and 9.27 mRy,

C already deteriorates the electric field gradient. We have
investigated the influence of thef £nergy parameter on the
electric field gradient more thoroughly by a orezalcula-
tion and found that the results start to deteriorate when going

respectively, whereas the higher-order crystal field param-beyond—5 Ry. We thus note that it is reasonable to choose
eters, the magnetic moments and the magnetic hyperfinew 4f energy parameters to avoid the LSDA problems dis-
fields are virtually independent. According to the suggestiorcussed in Sec. Il B 2, but this creates an uncertainty of about
of Steinbeck et al** and Novak and Kuripladi (Sec. 50 Kay? for A, because there is not strict lower limit for
I1B 1), we have included the self-interaction correction inthis energy parameter.
our 4f core calculation, for the cas®,;=-=, Ry oc
=3.78 . Instead of our old result of 198 Ka,?, we ob-
tained a value of-205 Ka,?, demonstrating that the influ-
ence of the self-interaction correction is smaller than the in- We have performed in Sec. llI for the case of Srg@b
fluence of different choices fdRys joc. initio calculations of various parameters occurring in the
We thus have shown that the application of the LSDA fortwo-sublattice model of rare-earth—transition-metal interme-
the calculation of the # core density introduces a big uncer- tallics within the framework of the local-spin-density ap-
tainty of A3. In order to reduce the uncertainty we must takeProximation(LSDA) and the full-potential linear-muffin-tin-
the physically motivated measures described in Sec. |1 B 1 t@rbital theory. Special emphasis is put on the crystal field
obtain reasonable values for the two parameRyg,. and parameterAd, which appears to be the most sensitive one
Dy The remaining uncertainty of about 30 gfacannot be ~among the parameters of the two-sublattice model, because it

considerably reduced by the application of the self-iS mathematically given by an integral which involves the
interaction correction. folding between the charge densities of tHestates and the

conduction electron states. The main objective was to find
out whether it is possible to obtain via LSDA charge densi-
ties which are sufficiently accurate for the calculationAgt
According to Sec. Il B 2 the application of the LSDA to The main conclusions are the following.
the calculation of the valence states again requires special (i) It is absolutely indispensable to include thp States
physically motivated measures: we must augment thef the rare-earth atom in the valence band.
Bessel functionj; in the muffin-tin sphere by a f4radial (i) It is also indispensable to perform a full-potential cal-
function ¢,; with negative energy, but we should not go to culation without any spherical approximation for the effec-
too low values in order to avoid numerical problems. To findtive potential.
a reasonable lower limit we calculate simultaneously the (iii) The crystal field parametek) and the electric field
largest componer¥ .. of the electric field gradient tensor at gradient at the Sm site depend strongly on the orientation of
the Sm sitglwithout the contribution from the aspherical 4 the aspherical # charge density, in contrast to a basic as-
core), which also depends on the asymmetry of the chargsumption of the two-sublattice model. As a result, the experi-
density, but the calculation of which does not involve themental analysis based on this model yields effective param-
folding between the charge densities of tHeoére states and etersA9 which are different for different experiments.
the conduction electron states. Therefore, the results do not (iv) The application of the LSDA introduces rather large
suffer from the problems with the f4contribution to the uncertainties foA9, which cannot be totally removed but at
valence states discussed in Sec. Il B 2, and they are more tgast drastically reduced by physically motivated measures.
less independent of thef 2nergy parameter except for very
low values where numerical problems appear, which is the
case for energies smaller tharb Ry. Table VIl represents

F. Conclusions on the applied calculational method

2. The 4f part of the valence states

IV. RESULTS FOR RCog

the data of a three- calculation forA' and V.. for the
4f-energy parameters 0.4 Rgccording to the center of
gravity of the occupied valence band, calculatin —2 Ry
(calculationB), and —30 Ry (calculationC). It becomes ob-
vious that calculatiorA yields totally unrealistic values for
AT, and that the very low #ienergy parameter of calculation

We now report on our results for the seriB€o;. As
outlined in Sec. lll, it is very difficult to converge the results
with respect to all convergence parameters of any calcula-
tional method. We therefore have obtained highly accurate
results only for SmCgand GdCgq. The first material was
chosen because it is of high technological importance and
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TABLE VIII. Theoretical results for the radial expectation val-
ues (r"y,; and the crystal field parametess;' of SmCg and

FULL-POTENTIAL LINEAR-MUFFIN-TIN-... . L

GdCg;.
Pr Nd Sm Gd

smca Gdce Vo(R) [10% Vim?] 7.0 8.0 9.3 10.8
(r?)a¢[a] 0.979 0.868 V.(Co 3g) [10% V/m?] 6.2 6.4 6.7 7.1
A9Kap?] —-519 —584 Vio(Co ) [107*Vvim?] -48 -49 -53 -53
Valence —1485 —-1602 WAAR) [us] -0.32 -035 -037 -—043
Lattice 966 1018 ioc(Co 39) [us] 1.49 1.51 1.53 1.55
AN(r?) 4[K] —508 —-509 Hioc(CO 20) [ug] 1.48 1.50 1.52 1.52
(r*)arlad] 2.041 1.650 Hrotal [148] 10.00 1014  7.66 —0.07
AdKag“] -9.8 ~10.6 B(R) [T] 296 -298 -329 -388
Valence 1.4 0.9 Bn(Co 3g) [T] -205 -20.1 -—-195 -185
Lattice -11.2 -115 Bni(Co 2c) [T] -129 -130 -12.7 -125
A4 4[K] -19.9 -17.4 Bex [T] 326 311 280 250
(r®alag] 6.866 5.215
AdKag®] 0.27 0.31
Valence —-0.08 —0.08 anisotropy and hence the crystal field parameters cannot be
Lattice 0.35 0.39 investigated experimentally. In Sec. IVA we report on
Ad(r®) 4[K] 1.86 1.61 highly accurate results for Smgand GdCg, and on not
(r®[af] 6.866 5.215 totally converged data for the seriB€o; to study the quali-
Ag[Kag®] -8.0 -86 tative behavior across the series. In Secs. IV B and IV C we
Valence 29 3.0 compare with results from other calculations and with ex-
Lattice ~10.9 ~11.6 perimental data.
AS(r®) 4[K] —54.7 —44.6
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TABLE X. Same as Table IX, now fdR=Pr, Nd, Sm, Gd. Note
that the results of this table are not totally convergsee text

A. Results of the present calculations

We first give some computational details for the highly
because there arab initio calculationd!*’ based on the accurate calculations on Smgand GdCg, referring to
optimized-linear-combination-of-atomic-orbitals method Secs. Il and lll. The calculations were performed for the
(OLCAO) for comparison. For GdGathere are also calcu- experimental lattice parametétsa=9.4563 g (9.3976 @)
lations based on the OLCAQ@Ref. 23 and on the full- andc/a=0.7932(0.7981 for SmCg, (GdCgq;). The Brillouin
potential linearized-augmented-plane-wave methigt*®  zone integration was according to Sec. lll. The results were
(FLAPW) for comparison. Because for the sphericélcbre  satisfactorily converged for 40points in the irreducible part
of Gd the problem discussed in Sec. lll D does not arise ouof the Brillouin zone and for Ig,l+,2l)=(2,8,10. A
data for the electric field gradient may be directly and quanthree« calculation(«?=—0.9 Ry for the % states which are
titatively compared with experiments. On the other hand, foiincluded in the valence ban&3=0.1 Ry and«3=0.7 Ry for
a spherically symmetric # core there is no magneticf4 the 6s, 6p, 5d states ofR and for the 4, 4p, 3d states of
Co) was performed. The$states ofR and the 3 states of
Co were treated in a common semicore panel wftk —2.8

Ry. We used for the augmentation energies the vakider
val

sites, the valence contributiqi; of the local magnetic moment at I>1g and the respectlve centers of gravity of the occupied
the R site, the local magnetic moments at the Co sites, the totaPart of thel-projected band foil<Ig, except for the 4
magnetic momenixqg per formula unit, the magnetic contact hy- States(—2 Ry) and the § states(Dg,=1.5). A spherically
perfine fieldsB;; at theR site and the Co sites and the intersublat-
tice exchange fiel®8,,, for SmCg and GdCg.

TABLE IX. Theoretical results for the electric field gradievi,
at theR site (without the contribution of the #core and at the Co

TABLE Xl. Same as Table X, now foR=Tb, Dy, Ho, Er.

SmCq GdCa Tb Dy Ho Er
Veo(R) [107 V/im?] 8.6 9.8 Veo(R) [107t Vim?] 11.3 12.0 12.6 13.3
V..(Co 3g) [10?* V/m?] 52 55 V.o(Co 3g) [10?! Vim?] 7.2 7.3 7.3 7.4
Veo(Co 2¢) [107* Vim?) 41 44 V.(Co 2¢) [10'V/m?] -53 -53 -53 -55
ME(R) [1a] ~0.37 —0.43 w2 (R) [ug] ~038 -035 -0.32 -0.30
Hioc (Co 39) [ue] 1.58 1.59 Hioc (Co 39) [1e] 1.55 1.55 1.58 1.57
Mioc (Co 2¢) [ug] 1.55 1.56 HMioc (Co 2¢) [ug] 1.51 1.51 1.53 1.53
Hrotal [1g] 7.74 0.01 Hiotal Lug] -2.04 —-299 -283 -181
Bni(R) [T] —-31.9 —40.5 Bri(R) [T] -38.7 -378 —33.0 -307
Bni(Co 3g) [T] -19.0 —-18.1 By (Co 3g) [T] -18.7 —-19.0 -19.2 193
Bn(Co 2c) [T] -11.0 -11.1 Bt (Co 2c) [T] -124 124 -126 -12.8
Bex [T] 279 239 Bex [T] 231 216 203 189
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FIG. 3. Comparison of theoreticéahot completely converged FIG. 4. Comparison of theoretical and experimental values for

and experimental values fax3(r2),; across the serieBCos. The ~ A4(r*)4s across the serieRCas. The full circles(full squares are
full circles (full squares are the theoretical results for the experi- the theoretical results for the experimental lattice parameters
mental lattice parametergor the lattice parameters fixed to the the lattice parameters fixed to the values of GgCOpen diamond:
values of GAdCg). Open triangle up: Givorét al. (Ref. 50; open  Sankaret al. (Ref. 59; crosses: Zhaet al. (Ref. 61); open tri-

circle: Buschowet al. (Ref. 58; open diamond: Sankaet al.  angle down: Decrogt al. (Ref. 63.
(Ref. 59; open squares: Radwski (Ref. 60; crosses: Zhao
et al. (Ref. 61); open triangle down: Decroet al. (Ref. 63. affects mainly the crystal field parametmg, whereas the

other quantities are considerably less influenced.

Before going into a detailed comparison of our results
with other theoretical and experimental data we want to
make some general remarks.

symmetric 4 core according to Eq$11)—(15) was assumed
for the calculation of the effective potential. It was outlined

) 0 g
in Sec. Il E 1 that the values i, depend extremely sensi (a) For the whole series the lattice contribution&§ s of

gvely on otlhﬁ ChﬁlcefOf theh Io'calilzatlon'para:jmeté}g and the same order of magnitude but of opposite sign than the
at,loc aNd that therefore physically motivated measures musfajence contribution, so that a delicate situation of balance

be taken to obtain reasonable values for these two paramyises.
eters. The central idea was to select the parameters in such a(p) The quantitiesAg<r6>4f are generally considerably

way that the expectation valugs"),; are close to those |arger than the quantitie&%(r*),; and therefore cannot be
obtained by the Dirac-Fock calculatidfigor the freeR®  neglected for the analysis of experimental datecontrast to
ions. For SmCgthis was achieved foD ,s=— and if the  common use

localization radius was slightly larger than the muffin-tin ra-  (c) The magnetic moments on the two crystallographically
dius. Because it would be a very hard job to optimize thedifferent Co sites are very similar, whereas the magnetic hy-
localization parameters separately for all the representativgserfine fields differ drastically. It is often assumed in the
of the serieRCo;, we insert in the following for all systems literature for the interpretation of Mwsbauer experiments
the valuesD 4= —% andRy; ,c=muffin-tin radius. The val-

ues for(r?),¢ and(r*),; obtained in this way are indeed very 1000

close to the Dirac-Fock values, and the values(f8),; are 2 a0k x
slightly smaller. = i
In Tables VIII and IX we represent our results for the & 800r
radial expectation value&"),; of the 4f core, the crystal 700 |-
field parameteré\!' as well as the products of the two quan- 600 -
tities, respectively, and for the local magnetic moments and L =
hyperfine fields, the intersublattice exchange fiBlg and 500
the maximum component. of the electric field gradient. L0+
To investigate the qualitative trends across the series oy 2
. _ 300 8
RCos we reduced the computational effort by confining to a 3 t.,
two-« calculation(x3=—0.9 Ry for the % statesx3=0.4 Ry 200} xS e
. N 1.0 0 a ooo0o%$3800Q
for the other valence stateand by using 20 instead of 40 100k
points in the irreducible part of the Brillouin zone. The cal- ol Pr Pm Eu Tb Ho Tm
culations were again performed at the experimental lattice Ce Nd Sm Gd D'y Er Yb

parameters, and it was assumed that the magnetization is

aligned to the hexagonal axis. The results are given in FIG. 5. Comparison of theoreticéull circles) and experimental
Tables X and Xl and Figs. 3—-5. Comparing the data for Smyalues for the intersublattice exchange field across the sRfes.

and Gd with those given in Tables VIII and IX it becomes Meaning of the symbols as in Fig. 2. The star represents the experi-
obvious that the confinement to twovalues and 2& points  mental value of LoewenhaugRef. 62.
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TABLE Xll. Comparison of results from our FLMTO calculations and from OLCAO calculations in the
r#localization potentialRef. 21) and in an appropriately defined on-site potertiizéf. 47 including the SIC
correction(see text The quantitiegr™) ¢ pr denote the Dirac-Fock expectation values according to Ref. 15.

The different signs foA§ result from different definitions of the coordinate systems.

SmCaq GdCaq;

FLMTO OLCAO-4 OLCAO-SIC FLMTO OLCAO+*
(r?)a¢af] 0.98 1.07 1.02 0.87 0.94
AdKag?] —519 —870 —775 —584 —1010
ANr?) 4[K] —508 —930 —790 —507 —950
AXr?) 4 pdK] —-503 —844 —-752 —507 —879
(r*)aflag] 2.04 2.99 2.93 1.65 2.32
AdKag4] -10 -13 -13 -1 -13
AN 4[K] -20 -38 —-37 -17 -31
AYr*) 41 oA K] -22 -28 -29 -19 —24
(r®ailag] 6.87 17.3 22.2 5.21 12.2
AdKag®] 0.27 0.35 0.50 0.31 0.4
A(r® 4[K] 1.9 6 11 1.6 5
AXr® ¢ b K] 2.9 3.7 5.3 2.4 3.1
(r®aslad] 6.87 17.3 222 5.21 12.2
A8Kay ] -8.0 8.7 13.1 -8.6 9
AS(r® 4[K] -55 150 290 —45 100
A% 41 o K] -85 92 139 —-67 70

that the local magnetic moments are proportional to the local

For GdCg our result ofB,,=239 T agrees perfectly with

magnetic hyperfine fields. As outlined in Ref. 5 this assumpthe data from LMTO calculatioR$ in atomic-sphere ap-
tion is generally not correct, and this statement is convincproximation (ASA) (239 T) and from ASW-ASA
ingly underpinned by the present results REo. An analy-  calculations® (239 T). For SmCg our value ofB,=279 T
sis of the contributions of core and valence electrons to théliffers only slightly from the value obtained by LMTO-ASA
local hyperfine fields reveals that the core contributions ar&alculations® (270 7).

indeed very similar for the two Co sites, whereas the valence For the crystal field parameters, we refrain from compar-
contributions are not. ing our results with those based on the point-charge model,

because they depend extremely sensitively on atiehoc
assumptions for the point chargeee Sec. | R We also do
not compare with calculations based on the atomic sphere
The results for the local magnetic moments in Sm@ad  approximation (see Sec. | these calculations use a
GdCaq; agree quite well with those from OLCAQRef. 2] spherical approximation for the potential, although it is ab-
and FLAPW(Ref. 48 calculations. For the Co sites the local solutely indispensable to consider the true effective potential
magnetic moments are about @g3smaller than the values for a determination of thé\['. Furthermore, they consider
from neutron scattering experimeﬁ?spossible reasons are only the valence contribution and neglect the lattice contri-
the neglect of the orbital contribution and the fact that thebution toA3, although both contributions are large but op-
neutron scattering experiments do not resolve the diffuse POSite in sign so that a small total value resuliee Table
and p-contribution to the spin densitgwhich is negative ~ VIII)- It remains to compare with the OLCAO

5 1,47 .
The calculated contact hyperfine field at the Gd site agree%‘a‘lcu,""‘t'c?ng (Table XII, the separate valence and lattice
well with the values obtained by Coehoorn and Busctow contributions are not discussed because they are differently
with the augmented-spherical-wavéASW) method in defined in the LMTO and OLCAO calculationand with the

, o e : FLAPW calculation&?%“8(Table XIII).
atomic-sphere approximation, but it differs drastically from L
: 52 g There are three main differences between the OLCAO
g;gpzxnpceyrlir:ir;ltgle\ﬁlue of 7.4 T>“ The reason for this dis- and our ELMTO calculations.
: L . B 1 (i) Different basis sets are used for the representation of
Our result for the electric field gradied,,=9.8x10? the wave functions.

V/m? at the Gd site is about a factor of 2 smaller than the (i) The 4f core states are treated in a different W&gc
28,29,48 ; . ’
FLAPW result: The reason i that in the FLAPW g 1). In the OLCAO calculations the f4states are calcu-

calculations the p states are treated as semicore stédes |ated either in a*-localization potentidf or in an appropri-
remark below or core states, whereas we included them intoately defined on-site potentfal(the superposition of all on-
the valence ban(reating the $ states as semicore states wesjte potentials yielding the crystal potenialn the latter
also obtained a value which was about a factor of 2 larger case the self-interaction correcti¢8IC) was usedsee Sec.
The fact that our value agrees excellently with the experidl B 1). In the FLMTO calculation the #states are evaluated
mental valu& of 9.7x10** V/m? clearly demonstrates that it in the spherically averaged effective potential f5,=—x

is indispensable to include thep5states into the valence at the surface of the muffin-tin sphere around the rare-earth
band. atom.

B. Comparison with other calculations
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TABLE XIll. Comparison of results for GdGofrom our FLMTO calculations and from FLAPW calcu-
lations. The quantitieér"),; pr denote the Dirac-Fock expectation values of the R8¢ ion according to

Ref. 15.
FLMTO FLAPW
5p semicore 5p semicore
5p valence ™ semicore (Refs. 28 and 29 (Ref. 48

(r?)asaf] 0.868 0.867 0.93 0.984
A9[Kag?] —584 -717 —824 —724
Valence —-1602 —-1747 —-1878
Lattice 1018 1029 1054
ANr?) 4[K] —-507 —-622 -763 —-707
AXr?) 4 odK] -507 -622 717
(r*)aslag] 1.650 1.649 2.11
AKag4] -10.6 -11.1 -12.8
Valence 0.9 0.4 -1.4
Lattice -115 —11.4 —11.4
AN 4K] -17.4 -18 -27
AYr* 4.0dK] -19.2 -20.1 -23

(iii) Whereas the FLMTO calculations deal with the true (iv) Our FLMTO calculations have showgsee Sec. Il A
effective potential of the crystal, the OLCAO method con-that it is indispensable to take into account hybridization
siders overlapping extended site potentials but for each siteffects between thefbstates and the other valence states. In
potential the intra-atomic asphericity is quenched by azithe FLAPW calculations of Refs. 28, 29 the States are
muthal averaging over the site charge density during the ittreated as semicore states, i.e., they are considered as band
erations. It has been shown in Sec. Il C that it is absolutelystates but no hybridization with the valence states is allowed.
indispensable to refrain from any kind of potential approxi-For 3 comparison, we have included in Table XIII also our
mation: when performing a spherical average of the effecy| MTO results which we obtained by treating thp States

tive potential in each polyhedral cell at the beginning of each,s semicore state@ote, however, the slightly different

iteration step we arrive at a smaller negative valence COﬂtrIr-neaning of a semicore calculation in both methods as dis-

bution ang hence at a considerably smaller positive totaJ:ussed in Sec. Il A In the FLAPW calculation of Ref. 48
value of A3. ) : )
From Table XII it becomes obvious that the qualitative the 5p states are treated either as core states or as band
states. It does not become clear from the paper whether the

trends among the differesk ' are similar in both calcula- : .
tions but that the absolute values of Al are larger for the 5p band states are considered as semicore states or whether

OLCAO calculation. As discussed in poifiti) these differ- hybridization with the valence states is taken into account.
ences in the absolute values are even increased when adopfl€re are two hints on the treatment as semicore states. First,
ing in the FLMTO calculation a similar potential approxima- @S outlined in Sec. Il At is possible to include both the 5
tion as in the OLCAO calculation. The quantitative and the § states in a common band if the FLAPW basis set
differences therefore must arise from poifijsand(ii). From 1S supplemented by localized orbitals, but no localized orbit-

these differences it becomes again obvious that the cryst&S aré mentioned in Ref. 48. Second, the _changA%rin
field parametersA™ depend extremely sensitively on the R€f- 48 when going from thefbcore calculation to thep
computational details. band calculation is consistent with the contribution made in

The comparison of the FLMTO calculations with FLAPW Refs. 28, 29 by the |5 semicore states both in magnitude and

calculations is more natural because both methods deal witH9N- _ _

the true effective potential and augment the original basis |t ecomes obvious from Table XIlI that there is a rough
functions by the same type of radial functions in the muffin-2greement between all calculations as long as hetates

tin spheres. Nevertheless, the comparison is aggravated 1§y reated as semicore states. When dealing phetdies as
the following problems. valence states in the FLMTO calculation there is still a good

(i) Because of the use of different basis sets the degree &greement for th% lattice contributions/gcﬂ‘, but the valence
convergence cannot be compared. contributions toA3 and hence the total; are smaller nega-

(i) In Ref. 28 the occupied f4states are treated as core tive.
states, but no computational details for this core calculation
are given. As demonstrated in Sec. Ill E 1, the crystal field
parameters depend very sensitively on these details. In Ref.
48 the occupied # states are treated as band states. Basically, two types of experiments have been used for

(ii) In Sec. Il Ait has been demonstrated that the resultthe determination of the crystal field parametar8 and the
for A depend sensitively on thef Z/augmentation energies. intersublattice exchange field in the serRGo..

In the published FLAPW calculations the augmentation en- (1) High-field measurements at constant temperature.
ergies are not given. Here a rotation of the magnetization out of the easy direc-

C. Comparison with experiments
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TABLE XIV. Comparison between our theoretical results and experimental data for the crystal field
parameterdA1(r"),¢ and for the intersublattice exchange filgd,. The different signs foAS result from
different definitions of the coordination systems.

Theory Experiments
Ref. 59 50 60 58 61
AN(r?) 4[K] -508 —-420 —200+50 -185 -180 -165
A4 4[K] -20 -25 050 -6.3
Ad(r® 4[K] 2 1 50+50 0
Ar) K] —55 6 0
Bex [T] 279 358 261 151 298 328

tions and a canting between the magnetization of the rarder different experimentsand different from the parameters
earth sublattice and the transition-metal sublattice is inducedbtained in the calculationsand which should depend on

by a strong external magnetic fiell. The analysis of the temperature. Interestingly enough, a temperature dependence
experimental data is based on the two-sublattice model, Eqsf AJ as deduced by fitting the experimental data for the
(2-(4), with the Zeeman terms for the interactions betweeranisotropy constar, at various temperatures was reported
the two sublattice magnetizations and the external magnetioy Zhaoet al®*

field added. Of course, these problems for e’ have also an influ-

(2) Measurements of the temperature depend@ife®®  ence on the intersublattice exchange fields, which are deter-
of the magnetization and/or the magnetic anisotropy of thenined simultaneously in the above discussed multiparameter
rare-earth sublattice. Whereas E{®.—(4) yield the mean- fits. An exception is the Gd compound, GdCor which the
field energy of the system fagiventhermal averages of the 4f core is spherically symmetric. As a consequence, there is
rare-earth spins and the transition-metal spins, the calcularo rare-earth contribution to the magnetic anisotropy, i.e.,
tion of these temperature dependences with the twoproblem(ii) does not arise and there are only a few fit pa-
sublattice model starts from the Hamiltonian equivalents todameters in the two-sublattice model. Accordingly, for
Egs. (2)—(4) (including the Zeeman term®btained by re- GdCa; our value ofB,,=239 T agrees very well with the
placing the thermal averagéSg) and(C ") by the respec- value ofB.,=236 T obtained by inelastic neutron scattering
tive operators(while keeping the thermal averad&;) as experiment$? In contrast, for SmCgall the above discussed
function of temperature as inpuwith the use of the energy problems pertain. Here our value &,=279 T is in the
eigenvalues obtained from a diagonalization of this Hamil-wide range of experimental values, spanning from 151 T to
tonian within the subspace of the ground state multiplef 358 T (see Table XIV. Because of the perfect agreement
the freeR®" ion the partition function is calculated from between theory and experiment for GdCwe think that our
which all the thermodynamic information can be obtained.theoretical values foB., are more reliable than the experi-
The situation is more complicated in cases where the intemental ones and could be used as fixed input parameters for
action hierarchy, Eq.), is not fulfilled, so that the exchange the data analysis.
splitting leads to an admixture of excited multiplet states to The comparison with the experimental results for &g
the multiplet ground state of the fré&* ion, which depends of SmCa is also given in Table XIV. Our theoretical value
on the orientation of the 4 moment in the intersublattice for A%—while being considerably smaller in absolute value
exchange field,, produced by the transition-metal sublat- than the one of the OLCAO calculaticiéd’—is in turn con-
tice. Then the properties of thef 4core, for instance the siderably larger in absolute value than the experimental val-
magnetic moment, depend on the orientation. To account fanes. Table VI shows that the absolute value would decrease a
this admixture of higher multiplet states, the spin-orbit cou-bit when allowing for a further extension of thef Zore
pling term is added to the above discussedstates, but this alone will certainly not bring down the theo-
Hamiltonian®®°°®1 The diagonalization then is carried out retical value to the range spanned by the experimental data.
within the subspace of the ground state and one or a fewt is more likely that the discrepancy is related to the prob-

excited multiplets. lems (i) and (ii) discussed above. The higher order crystal
The following problems which arise for both types of experi-field parameters are either neglected in the experimental
ments should be kept in mind. analysis or they exhibit a considerable uncertainty because

(i) Because the number of parameters in the two+the fits are rather insensitive to a variation of their values.
sublattice model is large, the fits to the experimental data arBecause they are strongly determined by the lattice contribu-
far from being unambiguous, and in general sevathhoc tions (Table VIII), which—in contrast to the valence
assumptions are introduced to facilitate the procedBe:  contributions—depend only weakly on the computational de-
cause the higher order crystal field parameters have only tils, we think that our theoretical results are more reliable
minor effect, the fits are rather insensitive to a variation withthan the experimental data and could be used as fixed input
respect to these quantities and as a result they can be oparameters for the data analysis.
tained with large uncertainty onlyn Ref. 60 they are totally In Figs. 3—5 we compare our theoretical results for the
neglected therefoje crystal field parameter& ;(r"),; and the intersublattice ex-

(ii) According to Sec. Il D the experiments yield some change fieldB,, across the serieRCo; with experimental
kind of average effective parameteks' which are different data. It should be cautioned again that the theoretical data of
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these figuresiespecially forA9) are not completely con- Figure 4 exhibits theoretical and experimental data for
verged. We nevertheless think that the tendencies across thg,(r“),; across the series. The theoretical absolute values of
series are well represented. Our absolute values $9r?) A%(r* . decrease slightly across the series and agree
increase when going through the series from the left to théoughly with the experimental data of Zhabal® Figure 5
right. To test whether this tendency results from the variatioreXhibits theoretical and experimental data By, across the

of the lattice parameters we also performed calculations foperies. The decrease of the theoretical values when going
which we have fixed the lattice parameters at the values folfO™ the left to the right is smaller than the decrease of the
GdCq, (full squares in Figs. 3 and)4yielding the same experimental values reported by Zhabal>* (It should be

tendencies. Experimentally, no clear tendency can be oloted that RadwansKi started his analysis by thad hoc
served, the very extensive analysis of Zie@l®! arrives at  2SSumption thaB,, is constant across the serielSor GdCg

a more or less irregular behavior across the sefieshould where there are no cry_stal f|(_eld effects the agreement be-
be noted that RadwanéRistarted his analysis from thed tween theory and 'experlment is nearly perfect. We therefore
hoc assumption thaf\J is constant across the series, and h assume that the discrepancy R Gd results from the prob-

arrived at the continuously decreasing absolute values f:ms_(i) and especiallyii) discussed at the beginning of this
AYr?),; (open squares in Fig)dy inserting for(r2),, the ~ Scction-
theoretical results from Dirac-Fock calculatiohior the free

R3' ion.] Tables X and XI show that an increase of the
absolute values across the series is also found for the electric We are indebted to Dr. S. Savrasov for supplying us with
field gradient of theR site (without the contribution of the his FLMTO program as a starting point for the development
R3* ion). It would be interesting to know whether this can be of our FLMTO code. Most of the calculations were per-
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