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For the seriesRCo5 ~R5rare-earth atom! various parameters occurring in the two-sublattice model of
rare-earth–transition-metal intermetallics~local magnetic moments, intersublattice exchange fields, crystal
field parameters, as well as magnetic hyperfine fields and electric field gradients! are calculated within the
framework of the local-spin-density approximation~LSDA! and the full-potential linear-muffin-tin-orbital
theory. Special emphasis is given to a determination of the crystal field parameterA2

0. It is shown that it is
absolutely indispensable to include the 5p states at theR site into the valence band and to avoid any spherical
approximation for the effective potential. The quantityA2

0 depends on the orientation of the aspherical 4f
charge density, in contrast to a basic assumption of the two-sublattice model. As a result, the experiments in
general yield some kind of average effective values which are different for different experiments. Application
of the LSDA introduces rather large uncertainties forA2

0 which cannot be totally removed but at least drasti-
cally reduced by physically motivated measures.

I. INTRODUCTION AND BASIC CONCEPTS

A. Rare-earth–transition-metal intermetallics

Intermetallic compounds of rare-earth atoms and
transition-metal atoms are of great importance both for the
technological application as well as from the viewpoint of
basic research. First, the most powerful permanent magnets
are among this class of materials.1,2 Second, they represent a
big challenge for the electron theory, because their properties
are determined by two totally different types of electronic
states, i.e., the highly correlated and strongly localized 4f
states of the rare-earth atoms (R) and the valence states of
the transition-metal atoms which are comparatively weakly
correlated and more delocalized. In the present paper we
investigate systems for which the 4f states may be consid-
ered as core states. For these materials a variety of properties
~local magnetic moments and hyperfine fields, intersublattice
exchange couplings, electric field gradients, and crystal field
parameters! have been calculated3–5 by theab initio electron
theory in local-spin-density approximation~LSDA!. Among
these properties the crystal field parameters are most difficult
to obtain because mathematically they are determined by an
integral which involves the folding between the charge den-
sities of the 4f states and the conduction electron states,
which depends extremely sensitively on these two densities.
In the present paper we therefore extensively discuss how
reliably these charge densities may be obtained within the
framework of the LSDA. The calculations are performed for
the technologically important systemsRCo5 and are based on
the full-potential linear-muffin-tin-orbital theory~FLMTO!.
The paper is organized as follows. In Secs. I B and I C the
standard model of rare-earth metals and the two-sublattice
model of rare-earth intermetallics are discussed. In Sec. I D
the basic formulas for the calculation of the crystal field pa-
rameters are given. Section II considers the computational
details concerning the FLMTO method and the problems

arising from the application of the LSDA. In Sec. III test
calculations are performed for SmCo5, and in Sec. IV the
results for the whole seriesRCo5 are reported.

B. The standard model of rare-earth magnetism

The question whether the 4f states of the rare-earth met-
als are to be considered as core states or as band states has
been discussed for many years. The general trend is that the
localization of the 4f states is too weak in LSDA. Therefore,
treating the 4f states as band states yields a too strong hy-
bridization with the other valence states, and thus the density
of states at the Fermi level is much too large.6 To obtain good
results for the ground state properties, especially for the co-
hesive properties, the 4f states therefore were treated as core
states in many publications~see, for instance, Refs. 3, 7!, i.e.,
it was assumed that the 4f shells in the rare-earth metals
essentially retain an atomic character determined by Hund’s
rules and that there are no hybridization effects with other
states. This model is called the standard model or ionic
model of rare-earth metals.

It should be noted that the standard model is of course not
able to account for all aspects of rare-earth magnetism. First,
it is sometimes argued that the correct structure of the Fermi
surface may only be obtained by taking into account the
hybridization of a narrow and energetically high-lying mi-
nority spin f band with the transition-metal–like valence
states. This was discussed for Gd by Singh,8 a viewpoint,
which, however, was criticized by Bylander and Kleinman9

and by Ahujaet al.10 Temmermanet al.11 have shown that
when including the self-interaction correction in an LSDA
calculation for Pr the occupiedf bands occur well below the
bottom of the conduction bands, whilst the high-lyingf
bands hybridize strongly with the conduction states atEF ,
creating flatd bands at the Fermi level and a Fermi surface
in agreement with experiments. Experimentally, a particular
mode of magnetic excitation in Pr recently found by inelastic
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neutron scattering experiments12 also may be a hint towards
hybridization effects between 4f and conduction-electron
states. Second, and even more important, the properties of
Ce compounds—especially those of the heavy fermion
systems—can only be reproduced by taking into account the
hybridization of the strongly correlatedf states with the de-
localized conduction states; see, for instance, Ref. 13.

In the present paper I and the following papers II and III,
we assume that many properties of rare-earth intermetallics
~the Ce compounds are excluded! can be essentially de-
scribed by considering the 4f states as core states, and we
discuss the problems related to the use of the LSDA for this
situation. Furthermore, it is assumed that in the intermetallics
all rare-earth atoms are in the trivalent state, i.e., that there
areR31 ionic cores.3–5 This is by no means trivial, because
most of the free rare-earth ions are divalent and the elemental
rare-earth metals are trivalent except for Eu and Yb, but it is
justified a posteriori5 by the good agreement between the
theoretical results and the experimental data for the magnetic
moments.

C. An interaction hierarchy and the two-sublattice model

Although the standard model does not allow for a hybrid-
ization of the 4f states with the conduction electron states
there are of course interactions between these two electronic
systems which are responsible for most of the interesting
physics of the rare-earth intermetallics. These are the ex-
change interactions between the respective spin densities and
the electrostatic interaction between the respective charge
densities. In the standard model it is assumed that the cou-
plings within those two electronic subsystems are stronger
than those between the two subsystems, so that the two sub-
systems retain their general properties in spite of the interac-
tion. For instance, it is often assumed that for the 4f elec-
trons the following hierarchy of interactions is fulfilled:

D@~2mB!~2SR!Bex@Ecf . ~1!

HereD is the lowest excitation energy from the ground state
of the freeR31 ion, the second term in Eq.~1! represents the
exchange-overall splitting of theR31 multiplet level due to
the exchange fieldBex imposed to theR31 ion by the
transition-metal sublattice~SR is the projection of the total
spin of theR31 core on the quantization axis which is given
by the total angular momentumJ!, andEcf is the crystal field
interaction energy between the 4f charge density and all the
other charges in the system. The first part of the inequality
~1! ensures that there is no admixture of higher multiplet

states to the ground state due to the exchange interactions
with the conduction electron system, so thatJ is a good
quantum number. The second part guarantees that there is no
mixture of variousMJ states due to the crystal field interac-
tion, so that altogether the ground state is described by
~J,uMJu5J!. From Table I it becomes obvious that the first
part of the inequality is not fulfilled for Tb and especially for
Sm, so that in the latter case the exchange splitting probably
leads to a mixture of different multiplet states. Nevertheless,
in the present paper we mainly consider SmCo5 and assume
that theR31 ion is basically in the ground state multiplet of
the freeR31 ion. The reason for investigating SmCo5 is the
high technological importance and the fact that various other
studies based on this assumption are at hand for comparison.
The basic results of the present paper concerning the appli-
cability of the LSDA and the validity of several assumptions
of the two-sublattice model arenot affected by these prob-
lems for Sm, however, the problems should be taken into
account when comparing the theoretical data with the experi-
mental results~Sec. IV C of paper II!.

Based on the above discussed separation of the 4f states
and the conduction electron states the two-sublattice mean-
field model~see, for instance, Refs. 1, 5, 17! for the energy
of the transition-metal sublattice (T) and the rare-earth sub-
lattice (R) has been introduced,

E522mB(
R

^SR&Bex~R!1Eani
T 1Ecf~R!. ~2!

Here 2mB^SR& denotes the thermal average of the magnetic
spin moment at the rare-earth siteR, Bex is the above intro-
duced intersublattice exchange field~which is proportional to
the thermal averagêST& of the transition-metal atom!, Eani

T is
the magnetic anisotropy energy of the transition metal sub-
lattice ~which is usually described by a phenomenological
ansatz with a few anisotropy parameters!, and Ecf~R! de-
scribes the magnetic anisotropy energy of the rare-earth ion
at siteR. The rare-earth anisotropy thereby originates from
the electrostatic interaction of the aspherical 4f charge cloud
with the crystal field produced by all the other charges in the
system: when applying a strong external magnetic field ob-
lique to the axis of the uniaxial anisotropy, the 4f moment
and the magnetic moment of the transition-metal sublattice
~which is coupled to the 4f moment viaBex! rotate out of the
easy axis direction, the 4f charge density is corotated rigidly
due to the strong spin-orbit coupling in the 4f core, the ori-
entation of the aspherical 4f charge cloud in the crystal field
becomes less favorable and the resulting increase in electro-

TABLE I. Test of the validity of the inequality~1! for various representatives of the seriesR2Fe14B. The
values ofD andSR are from Ref. 14, the values ofBex from Ref. 5, and the values ofEcf from Eq.~7! of Ref.
4 with data forJ andaJ from Ref. 14, values for̂r 2&4 f from Ref. 15, and with~Ref. 17! A 2

05300 K/a0
2 for

the whole series.

Pr Nd Sm Tb Dy Ho Er Tm Yb

D

2mB2S
RBex

3.33 2.54 0.83 1.24 2.79 5.38 9.71 18.4 51.2

2mB2S
RBex

Ecf

3.08 9.7 10 10 7.3 16.2 11.7 3.3 1.5
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static energy is the magnetic anisotropy energyEcf . This
energy may be represented by1,4,5,16–19

Ecf5(
n,m

An
m^Ĉn

m&4 f , ~3!

where theAn
m denote the crystal field parameters determined

by all charges in the system except for the charge of the 4f
core under consideration and the^Ĉ n

m& are the expectation
values of the 4f multipole moments, with

^Ĉn
m&4 f5uJ,n^r

n&4 f^On
m&4 f . ~4!

Here theuJ,n are Steven’s factors
18,19which characterize the

asphericity of the 4f charge density,̂r n&4 f are the 4f radial
expectation values ofr n, and ^On

m&4 f are the expectation
values of Steven’s operators.18,19

The basic assumption of the two-sublattice model is that
uBexu , u^SR&u, u^ST&u, the anisotropy parameters enteringEani

T as
well as the parametersAn

m, uJ,n , and^r n&4 f do not depend on
the orientation of the transition-metal moments and the rare-
earth moments. Concerning the conduction electron sublat-
tice, it indeed turned out5 that the effective spin quantum
numberST is nearly independent of the relative orientation
between the transition-metal sublattice and the rare-earth
sublattice. On the other hand, although the coupling between
the core- and the conduction-electron charge density is very
small ~see above!, there will be small changes of the conduc-

tion electron states when rotating the aspherical 4f charge
density, and because the crystal field parameters are very
sensitive quantities they are considerably modified~Sec.
III D !, i.e., theAn

m depend to some extent on the orientation
of the 4f moment, in contrast to the assumption of the two-
sublattice model. Concerning the 4f states, if the inequalities
~1! were not fulfilled, the ground state could not be classified
by the quantum numbers~J,uMJu5J! but there would be a
mixture of states with different values ofJ andMJ depending
on the relative orientation of the transition-metal moments
and the rare-earth moments and on the orientation of the 4f
charge density in the crystal. As a result, the magnetic prop-
erties of the 4f core~for instanceSR! and the aspherity of the
4 f charge density would be different for different orienta-
tions, again in contrast to the assumption of the two-
sublattice model. It is one of the objectives of the present
paper to investigate the basic assumption of the two-
sublattice model.

D. Crystal field parameters and intersublattice
exchange couplings

From the electrostatic interaction energy between the 4f
charge densityr4 f~r ! at the rare-earth atom under consider-
ation and the charge densityr~r 8! produced by all the other
charges in the system the following expression for the crystal
field parameters was obtained20:

An
m5

4p

2n11
cn
mE d3r 8r~r 8!Zn,m~u,f!E dr r 2

r,
n

r.
n11 r4 f ;n,m~r ! YE dr r 2r nr4 f ;n,m~r !. ~5!

Here thec n
m are numerical factors~some of them are com-

piled in Ref. 21!, Znm denotes the cubic harmonics~also
called Tesseral harmonics, as in Ref. 19!, r, (r.) is the
smaller~larger! of ur 8u and ur u andr4 f ;n,m are the radial ex-
pansion coefficients for the expansion of the aspherical 4f
charge density into cubic harmonics

r4 f~r !5(
n,m

r4 f ;n,m~r !Zn,m~u,f!. ~6!

If we assume that the expansion coefficientsr4 f ;n,m are in-
dependent ofn andm, then we can replace in Eq.~5! the
r4 f ;n,m~r! by one unique radial functionr4 f~r! and Eq.~5!
reduces to Eq.~3! of Ref. 21, which was obtained already by
Coehoorn22 for A2

0. It should be noted4,5,20–22that the often
assumed proportionality betweenA2

0 and the electric field
gradient would only be valid if the 4f charge densityr4 f was
not overlapping withr~r 8!.

For the calculation ofr~r 8! two extreme models have
been used in the past, the point-charge model which repre-
sents the metal by an assembly of fictitious point charges1,23

outside theR atom under consideration and the valence
model4,5,22,24–27which exclusively considers the contribution
of the conduction states in the atomic sphere around thisR
atom ~‘‘valence contribution,’’ the contribution from all the

other charges outside the sphere is called ‘‘lattice contribu-
tion’’ !. Whereas the results of the first model depend ex-
tremely sensitively on the choice of the point charges,23 the
valence model together with the atomic-sphere approxima-
tion for the effective potential yielded4,5,22,25–27for the whole
seriesR2Fe14B values forA2

0 in semiquantitative agreement
with the experiments. Later, however, calculations21,28,29be-
yond the atomic-sphere approximation for SmCo5 and
GdCo5 demonstrated that both the valence contribution and
the lattice contribution of the remaining charges are impor-
tant. Because both contributions are large and opposite in
sign, the accurate calculation ofA2

0 depends extremely sen-
sitively on the overlap of the charge densitiesr~r 8! and
r4 f~r ! especially concerning the finest details of the tail of
r4 f~r !. The main objective of Sec. III is to find out whether
the LSDA is able to yield sufficiently accurate densities for a
reliable determination of crystal field parameters. Treating
the 4f states as band states in LSDAwould certainly produce
a too extended 4f charge density. Furthermore, it would lead
to some hybridization with the other conduction electron
states, and the decomposition of the total charge density into
r4 f andr which is required for the discussion of crystal field
parameters would be questionable. We therefore will treat the
occupied 4f states as core states.

For a determination of the intersublattice exchange field
Bex we have used the method developed in Refs. 5, 26, 27,
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30–33 via theab initio calculations of the changeDE in total
energy upon inversion of the 4f moments.

II. COMPUTATIONAL DETAILS

A. Full-potential LMTO method

Theab initio calculations are performed within the frame-
work of the LSDA with the exchange-correlation functional
of Barth and Hedin.34 The Kohn-Sham equations35 are
solved by a full-potential LMTO program based on a code
originally developed by Savrasov and Savrasov,36 which we
have modified~see below! and for which we have written a
spin-polarized version. In this program the crystal is parti-
tioned into appropriately defined36 atom-centered polyhedral
cells, and for these cells inscribed muffin-tin spheres and
circumscribed spheres centered at the atoms are defined. The
basis functions, i.e., the linear-muffin-tin orbitals,37 are con-
structed from Hankel functions for fixed energy«5k2 cen-
tered at the basis atomsR in the unit cell described by the
translation vectort. These Hankel functions correspond to
angular quantum numbersL5( l ,m). Inside its own muffin-
tin sphere each Hankel function is smoothly augmented37 by
a respective linear combination of numerical radial func-
tions, namely the solutionfRl(«vRL) of the Schro¨dinger
equation for the effective potential averaged spherically
around the considered basis atomR in the unit cell and for
an appropriately chosen fixed energy«vRL , as well as its
energy derivativeḟRl(«vRL). Inside all the off-centered
polyhedral cells aroundR81t8 the Hankel functions are sub-
stituted by their expansions into spherical Bessel functions of
angular momentumL8 around the nuclei centered atR81t8
up to a maximum angular momentuml 85 l T , and inside the
respective off-site muffin-tin spheres the Bessel functions are
smoothly augmented by linear combinations offR8 l 8 and
ḟR8 l 8 . Finally, from the so obtained LMTO’sxkRL(r2t
2R) the Bloch-transformed basis functions

xkRL
k 5(

t
eik~R1t!xkRL~r2t2R! ~7!

are constructed, and then the eigenfunctionscnk~r ! ~band
index n, wave vectork! are represented by a linear combi-
nation,

cnk~r !5(
k,R

(
l50

l B

bkRL
nk xkRL

k ~r !, ~8!

where thel summation runs up to a maximum angular mo-
mentuml B . Because of the use of the above discussed ex-
pansions of the LMTO’s into functions defined with respect
to centers of the polyhedral cells, the calculation of the
Hamiltonian matrix and the overlap matrix may be reduced
to the determination of radial integrals. The integrations
within the muffin-tin spheres are simple, and the integrations
within the interstitial space between the muffin-tin spheres
and the geometrically complicated boundaries of the polyhe-
dral cells are performed via a Chebyschev integration
technique.36 The electron density is calculated in the usual
way from the eigenfunctionscnk, which are linear combina-
tions of LMTO’s up to an angular momentuml5 l B but con-
tain l 8 components up tol T because of the expansions of

the LMTO’s. In most cases it is not necessary to keep track
of all the resulting angular momentum components, but it is
sufficient to terminate the expansion of the charge density
and the effective potential up to 2l w,2l T . In the original
program version of Savrasov and Savrasov36 the Hartree part
Vl ,m
H,ext of the effective potential inside the muffin-tin sphere

aroundR originating from charges outside the respective on-
site polyhedral cell is calculated via the multipole moments,

MR8L8;E r~rR8!rR8
l 8 Yl 8m8~ r̂ R8!d

3rR8 , ~9!

where the integrations extend over the polyhedral cells cen-
tered atR8 and theYl 8,m8 denote the spherical harmonics.
Even though the asphericity of the charge densityr~rR8! is
generally small, considerable multipole moments may be
generated via the integration over a polyhedral cell if the
geometry of this cell strongly deviates from a sphere. It turns
out that for small angular momentuml the partVl ,m

H,ext of the
Hartree potential,

Vl ,m
H,ext~rR!;rR

l (
R8,L8

SRL;R8L8
* k50

~k50!MR8L8 /~2l 811!,

~10!

nevertheless converges rapidly withl 8 because the elements
of structure matrixSRL,R8L8

* k50 are small for smalll and largel 8.
However, the higher-l components ofVl ,m

H,ext converge only
slowly with increasingl 8. Concerning the total energy, it
seems to converge rapidly when increasingl W for low values
of l W , but when increasingl W further, the total energy dis-
approves and it will come back close to the low-l W value
only for very large values ofl W . For quantities which are
nearly exclusively determined by the small-l components of
Vl ,m
H,ext(rR) there is no convergence problem in Eq.~10!. For

the calculation of the crystal field parameters, however, the
higher-l components are also relevant, and we therefore have
introduced in our program an option to determine
Vl ,m
H,ext(rR) for 1.3 directly via a three-dimensional numeri-

cal integration in real space. Because this is very time con-
suming we take this option only for the final steps in the
self-consistency cycle, whereas for the early steps Eq.~10! is
used.

We thus have defined the most important technical param-
eters of the method, namely the angular momentum cutoffs
l B , l T , andl W , the number and the values of differentk’s in
Eq. ~8! and the values of different«yRL . Because the crystal
field parameters are very sensitive quantities, we have care-
fully checked the influence of all these technical parameters
on theAn

m. It turned out that the results were converged for
( l B ,l T,2l W)5~2,8,10!. The influence of the other parameters
is discussed below.

In the following we distinguish between core states, semi-
core states, and valence states. The core states are strongly
localized within the own muffin-tin sphere and energetically
well separated from the other states at the same atom, so that
no hybridization occurs. The semicore states correspond to
the states of a closed outer shell in an atom, which in a
crystal exhibit some spatial overlap with states at other at-
oms, but because they are energetically well separated from
other states they hybridize only with the states of the same
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kind at neighboring atoms, yielding narrow semicore bands.
They are described by the eigenfunctions~8! for just one
value of l and just one value ofk2. The related energy pa-
rameter «yRL is chosen in such a way that the function
fRL(«yRL) exhibits the same node structure as the corre-
sponding state of the atomic outer shell. Finally, to allow for
all hybridization effects among the valence states an eigen-
function of type~8! with different l components is used, and
for an accurate description of the eigenfunction in the inter-
stitial region generally various values ofk2 are required.
Again, the energy parameters are chosen according to the
correct node structure~except forf3; see Sec. II B 2!. All
states experience the same effective potential, but the Hamil-
tonian matrix for the semicore states is separately diagonal-
ized from the one of the valence states, and as a result the
valence states are in general not orthogonal to the other
states. It should be noted that in several full-potential
linearized-augmented-plane-wave codes~FLAPW! the
eigenfunctions for a semicore calculation contain the same
angular momentum components as the eigenfunctions for a
valence calculation but the energy parameters are chosen in
such a way that for the two types of calculations a different
node structure appears for eachl channel.

In some systems the energy of the atomic outer shell
states is rather close to the energy of the atomic valence
states. Then both types of states should be included in the
ansatz~8! in order to allow for possible hybridization effects
in the crystal. This is the case for many rare-earth com-
pounds, where the 5p states~which are core states in the free
atom! are energetically close to the 6s, 6p, and 5d states of
the rare-earth atom. It is therefore important~see Sec. III A!
to include in the eigenfunction~8! l51 states@i.e., p states
with 5p character~three nodes in the muffin-tin sphere! and
with 6p character~four nodes!#. This is technically possible
if we evaluate the respective LMTO’sxkRL

k for two different
values ofk2. ~It should be noted that in a FLAPW code this
may be achieved38 when supplementing the FLAPW basis
set by localized orbitals.!

B. Problems related to the application of the LSDA

The standard model discussed in Sec. I C is based on the
strict separation of the occupied 4f states and the conduction
electron states. If there are considerable hybridization effects
between these two states, the two-sublattice model is no
longer valid. For instance, the assumption that the crystal
field parameters are independent of the orientation of the 4f
charge density then is definitely wrong. The first task for a
test of the two-sublattice model therefore in principle would
be to explore the hybridization effects, which is rendered
difficult because of the following reasons: first, the energet-
ics of the 4f states is not correctly described in the pure
spin-density functional theory because of the lack of orbital
polarization effects~Hund’s second rule!, and it is also badly
described by the LSDA@even if the self-interaction correc-
tion is performed as in the paper of Temmermanet al.11 there
are problems related to the nonlinearity of the exchange-
correlation potential in LSDA~Ref. 9!#, so that altogether the
small hybridization effects are difficult to study. Second, it is
hard to estimate how strongly the two-sublattice model
would be violated by these small hybridization effects. The

only way to test for the two-sublattice model therefore is to
adopt tentatively its basic assumption, i.e., to neglect these
hybridization effects, to calculate the parameters of the
model ~for instance,Bex, An

m, etc.! by theab initio electron
theory and to compare the theoretical results with the experi-
mental data.

Even if there are no hybridization effects between the
occupied 4f states and the conduction electron states there is
of course a coupling between these two subsystems via the
effective potential to which the exchange and spin densities
of both subsystems contribute. It is known that although the
energetics of the 4f core states is badly described by the
LSDA, the charge and spin density is quite well reproduced.
For instance, the 4f spin form factor of a free Gd31 ion as
calculated by the LSDA~Ref. 6! is in excellent agreement39

with an experiment on ionic Gd2O3 and with mixed configu-
ration Dirac-Fock calculations.15 In this section we want to
discuss how reliably the 4f core charge density and the con-
duction electron charge density can be obtained by the LSDA
in a metal.

1. The 4f core

To account for the strong Hund’s rule couplings in the 4f
shell Brookset al.40 have fixed the occupation numbersn 4 f

↑

andn 4 f
↓ for the two spin channels in such a way that the sum

corresponds to the total number of 4f electrons in the free
R31 ion,

n4 f
↑ 1n4 f

↓ 5n4 f~R
31!, ~11!

and the difference corresponds to the projection of the free-
ion 4f spin moment along the direction of the total 4f mo-
ment,

n4 f
↑ 2n4 f

↓ 52~gJ21!J, ~12!

whereJ is the total angular momentum quantum number and
gJ denotes Lande´’s factor. Adopting a spherical approxima-
tion for the 4f charge densityr4 f and the 4f magnetization
densitym4 f they arrived at

r4 f~r !5
e

A4p
@n4 f
↑ uw4 f

↑ ~r !u21n4 f
↓ uw4 f

↓ ~r !u2#Z00, ~13!

where thew 4 f
↑↓ are the radial functions for the 4f core as

obtained from the LSDA calculation, subject to the con-
straints~11! and ~12! and normalized according to

E r 2druw4 f
↑↓~r !u251, ~14!

as well as

m4 f~r !5
mB

A4p
@n4 f
↑ uw4 f

↑ ~r !u22n4 f
↓ uw4 f

↓ ~r !u2#Z00. ~15!

To account for the asphericity of the 4f core, we can go
beyond the constraints of Brookset al.40 and fix in addition
the asphericity numbersn4 f ;2l ,0

↑,J andn4 f ;2l ,0
↓,J in
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r4 f~r !5e(
l50

3

@n4 f ;2l ,0
↑,J uw4 f

↑ ~r !u2

1n4 f ;2l ,0
↓,J uw4 f

↓ ~r !u2#Z2l ,0
J ~q,w! ~16!

and the corresponding expression form4 f~r !. Here theZ 2l ,0
J

denote the cubic harmonics for the polar axis parallel to the
total angular momentumJ of the 4f core. Then4 f ;2l ,0

↑↓,J are
fixed to the numbers which are obtained for a freeR31 ion,
adopting the Russel-Saunders coupling scheme and repre-
senting the many-particle wave function of the 4f core by a
Slater determinant of the single-particle wave functions for
the spherically averaged effective potential withw 4 f

↑,↓(r ) for
the radial part, respectively. Transforming to a system with
polar axis parallel to the externalz axis, we arrive at

r4 f~r !

~17!

with n4 f ;0,0
↑,↓ 5n4 f

↑,↓/A4p, which is used when calculating the
effective potential. The square bracket can be identified with
the radial expansion coefficientsr4 f ;n,m(r ) occurring in Eq.
~6!. Assuming that the functionsw 4 f

↑ (r ) andw 4 f
↓ (r ) are iden-

tical and given byw4 f(r ), we arrive at

r4 f ;n,m~r !5e~n4 f ;nm
↑ 1n4 f ;n,m

↓ !uw4 f~r !u2, ~18!

and with the same assumption the sum of occupation num-
bers can be obtained from Eq.~4! as

n4 f ;n,m
↑ 1n4 f ;n,m

↓ 5uJ,n^On
m&4 f . ~19!

Equation~17! and the corresponding equation for the mag-
netization density will be used in Sec. III as constraints for
the self-consistent calculation. For the calculation ofAn

m ac-
cording to Eq.~5! we partly take into account thatw 4 f

↑ and
w 4 f
↓ are slightly different, and we therefore replaceuw4 f u

2 by
a weighted average overuw 4 f

↑ u2 and uw 4 f
↓ u2, arriving at the

expression

r4 f ;n,m~r !;~n4 f ;n,m
↑ 1n4 f ;n,m

↓ !
n4 f
↑ uw4 f

↑ u21n4 f
↓ uw4 f

↓ u2

n4 f
↑ 1n4 f

↓ .

~20!

Finally, we have to select boundary conditions for the deter-
mination ofw 4 f

↑,↓(r ) by the solution of the radial Kohn-Sham
equation. To do this, the true effective potential, spherically
averaged in the muffin-tin sphere, is continued beyond the
muffin-tin sphere by

Veff
av5

a

r
1b, ~21!

where the coefficientsa andb are chosen in such a way that
the potential is continuous and has a continuous radial de-
rivative. If we impose atomic boundary conditions at infinity,
the functionw 4 f

↑,↓(r ) is too far extended to correspond to a
core situation with no hybridization, i.e., we have to localize
w 4 f
↑,↓(r ) in some way. To do this, Richteret al.21 introduced a

localization potential which is steeper thanVeff
av for large dis-

tances, yielding a localization which, however, depends on
the explicit form of the localization potential. Steinbeck
et al.41 represented the true effective crystal potential by a
superposition of aperiodic on-site potentials and included the
self-interaction correction~SIC! ~see, for instance, Ref. 11!
to the LSDA when determiningw 4 f

↑,↓(r ) in such an on-site
potential. The deconvolution of the crystal potential into on-
site potentials is of course not unique, but Steinbecket al.
argued that because of the stronger localization of the SIC
wave functions as compared to the LSDA wave functions the
functionsw 4 f

↑,↓(r ) depend only slightly on the detailed form
of the on-site potential~we give a comment on this point in
Sec. III E 1!. However, this does not mean that the 4f wave
functions are determined without any arbitrariness, because
already the calculation of the wave functions in a nonperi-
odic potential instead of the periodic crystal potential intro-
duces an arbitrariness: we are convinced that an LSDA-
SIC band calculation in the true crystal potential for the
occupied 4f states would lead to more expanded wave func-
tions. In our calculations, we prescribe a localization sphere
with radiusR4 f , loc which is between the muffin-tin sphere
and sphere circumscribing the polyhedral cell. The degree of
localization is controlled by the value ofR4 f , loc and by the
logarithmic derivativeD4 f at the sphere boundary. For
D4 f52` the wave function vanishes atR4 f , loc . Brooks
et al.40 have argued that the functionw 4 f

↑,↓(r ) is probably
better described within the localization sphere by imposing a
finite negativeD4 f , for instanceD4 f52l21524 which
would correspond to the energy of the center of a hypotheti-
cal 4f band. Our guess is that the 4f wave function is
slightly more expanded than the one of a freeR31 ion, but
that it is quite similar to this. We therefore chooseR4 f , loc and
D4 f in such a way that the radial expectation values^r n&4 f
occurring in Eq.~5! for theAn

m are close to those obtained by
Dirac-Fock calculations15 for the freeR31 ion. From Table II
it becomes obvious that in SmCo5 this is the case for
D4 f52` and 3.46 a0<R4 f , loc<4.10 a0 ~the radius of the
muffin-tin sphere is 3.14 a0!. The dependence of^r n&4 f on
the choice of the boundary conditions is of course not sur-
prising. However, it will be shown in Sec. III E 1 that the
crystal field parameterA2

0 depends extremely sensitively on
the choice ofD4 f , R4 f , loc . This is really shocking and dem-
onstrates that within the framework of an LSDA calculation
one has to make an additional assumption guided by physical
intuition for an appropriate choice of the boundary condi-
tions. As outlined above we think that the best choice is the
one for which the values of̂r n&4 f are close to the Dirac-
Fock values for the freeR31 ion.

2. The valence states

Having described the occupied 4f states as core states, we
include in the basis set for the valence onlys, p, and d
functions. Nevertheless, the decomposition of the so-
obtained valence states into different angular momentum
contributions with respect to the center of the muffin-tin
sphere also containsf contributions. This becomes obvious
from the one-center expansions of the Hankel functions into
spherical Bessel functionsj l discussed in Sec. II A. Aug-
menting the Bessel functionj 3 by a radial f function f4 f
with an energy which corresponds to the center of gravity of
the occupied valence band unfortunately yields~due to the
wrong energetics of the 4f states in LSDA! an f function
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which looks very much like the one of a 4f core state, i.e., it
exhibits a maximum in the muffin-tin sphere~Fig. 1!. Be-
cause the valence states are not orthogonal to our core states,
an unrealistically large 4f contribution to the valence states
arises. Although its weight is still small compared to thes, p,
andd contributions it deteriorates the results forAn

m because
of the folding of the 4f core densityr4 f~r ! and the density
r~r 8! in Eq. ~5!. To get rid of this problem,42 we augment the
Bessel functionj 3 in the muffin-tin sphere by a 4f radial
function f4 f with negative energy. As shown in Fig. 1, the
maximum off4 f in the muffin-tin sphere gradually vanishes
when decreasing the energy and for moderate negative ener-
giesf4 f is similar to the Bessel functionj 3 and to a typical
nodeless augmentation function of an almost unoccupied va-
lence state. It is not appropriate to choose extremely low
values of the energy, because then the wave function is steep-
ened very sharply at the surface of the muffin-tin sphere, and
a very highḟ4 f contribution would be required to obtain the
continuation to thef Bessel function outside the muffin-tin

sphere. The influence of the 4f augmentation energy on the
crystal field parameters is discussed in Sec. III E 2.

III. TEST CALCULATIONS FOR SmCo 5

SmCo5 crystallizes in the CaCu5 structure with one Sm
site (1a) and two crystallographically different Co sites~3g
and 2c!. The calculations were performed for experimental
lattice parameters~a59.4563 a0, c/a50.7932!. For the
Brillouin zone integration we used the tetrahedron method
with the correction of Blo¨chl et al.43 The results were satis-
factorily converged for 40k points in the irreducible part of
the Brillouin zone and for (l B ,l T,2l w)5~2,8,10!. In the fol-
lowing we discuss the influence of various other parameters
and details of the calculations. It thereby should be noted that
when testing for the influence of one of these parameters, it
is not always required to converge the results with respect to
all the other parameters. This must be taken into account
when comparing the data of the following tables and figures.
Except for Sec. III C we assume for the calculation of the
effective potential that the 4f charge density is spherically
symmetric@Eq. ~13!#.

A. Subdivision into various energy panels
and augmentation energies

The energetics of the states at the Sm 1a site and the Co
2c site is represented in Fig. 2. The highest true core states
are the Sm-4d and the Co-3s states. All the states which are
higher in energy represent band states which are labeled by
their dominant contributions, and the centers of gravity of
the various contributions are indicated by the full horizontal
lines. In Table III we represent the results of three different
calculations of the crystal field parametersAn

m and the larg-
est componentVcc of the diagonalized electric field gradient
at the Sm site. The calculations differ by allowing for the
hybridization among the electronic states within different
subsets of the various electronic states shown in Fig. 2. The
Hamiltonian matrices for the different subsets are di-

TABLE II. Influence ofR4 f , loc andD4 f on ^r n&4 f ~in units of a0
n! for SmCo5. The column DF exhibits the results of a Dirac-Fock

calculation~Ref. 15! for the free Sm31 ion.

R4 f , loc@a0#
3.14 3.46 3.78 4.10 DF

2` ^r23&4 f 6.90 6.79 6.75 6.72 6.89
^r 2&4 f 0.98 1.03 1.06 1.08 0.97
^r 4&4 f 2.03 2.44 2.66 2.89 2.26
^r 6&4 f 6.82 9.84 11.7 14.0 10.6

2l21524 ^r23&4 f 6.69 6.65 6.64 6.63 6.89
D4 f ^r 2&4 f 1.09 1.13 1.15 1.17 0.97

^r 4&4 f 2.82 3.30 3.52 3.81 2.26
^r 6&4 f 12.5 17.6 20.4 24.5 10.6

0 ^r23&4 f 6.23 6.34 6.39 6.41 6.89
^r 2&4 f 1.40 1.41 1.40 1.42 0.97
^r 4&4 f 5.30 6.08 6.28 6.92 2.26
^r 6&4 f 32.0 45.4 50.8 63.7 10.6

FIG. 1. f4 f (r ) for various augmentation energies in SmCo5.
The broken line is the Bessel functionj 3 for k250.4 Ry.
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agonalized separately~Sec. II A!, and the corresponding ei-
genvalues define the corresponding energy panels. In calcu-
lationA the 6s, 6p, and 5d states of Sm and the 4s, 4p, and
3d states of Co are treated as band states~with k250.4 Ry!,
and all the other states are core states. CalculationB consid-
ers the same band states, but the 5s and 5p states of Sm and
the 3p states of Co are treated as separate semicore states,
respectively. Finally, in calculationC the 5p state of Sm,
which is energetically close to the 6s, 6p, 5d states is not
considered as a semicore state, but it is included together
with the 6s, 6p, and 5d states in the band calculation~with
k2520.9 Ry; see Sec. II A!. Table III shows that calcula-
tionsA andB yield very similar results, but that it is really
essential for the determination ofA2

0 andVcc to include the
5p states of Sm into the valence band as in calculationC. In
contrast to the higher-order crystal field parameters, which
are mainly determined by the lattice contribution originating
from charges outside the muffin-tin sphere, the quantitiesA2

0

and Vcc exhibit strong valence contributions from the
charges inside the muffin-tin sphere of the Sm atom, and
these contributions are strongly influenced by the hybridiza-
tion effects between the 5p states and the other valence

states. It should be noted that the change in going from col-
umnA toB in Table III is opposite in sign to the contribution
of the 5p semicore states in Refs. 28, 29. This might result
from a slightly different meaning of the semicore treatment
between FLMTO and FLAPW~see Sec. II A!, or from the
fact that when going fromA to B we simultaneously switch
from the treatment of the 5s states at Sm and of the 3p states
at Co as core states to a treatment as semicore states, whereas
in Refs. 28, 29 these states seem to be treated as core states.

When including the 5p states in the valence band, the
results become virtually independent~except for the 4f
states; see Sec. III E 2! of the energy parameters«yRL at
which we evaluatefRL and ḟRL ~Sec. II A!. We use in the
following calculations for these parameters the energiesk2

for the casel. l B and the respective centers of gravity of the
occupied part of thel -projected band for the casel< l B .
When including only the 6p states in the valence band, the
results depend critically~especially for multi-k calculations!
on the choice of the 6p augmentation energy. The reason is
that the functionfRL(r ) for the Sm site withl51 exhibits
near the lower band edge of the valence band a change of the
number of nodes from 4~‘‘6 p’’ ! to 3 ~‘‘5 p’’ !. Altogether,
this demonstrates that the inclusion of the 5p states in the
valence band is indispensable, and this statement will be fur-
ther underpinned by the comparison between theoretical and
experimental results~Sec. IV!.

B. Values of the kinetic energy parametersk2

For a good representation of the wave function in the
interstitial space~Sec. II A! Bloch functionsxkRL

k @Eq. ~7!#
for various values atk2 are required in Eq.~8!. This is clearly
demonstrated by the dependence ofA2

0 on the choice ofk2 in
a one-k calculation: varyingk2 between 0.2 Ry and 0.5 Ry
changes the value ofA2

0 by nearly a factor of 2. We therefore
have to check convergence with respect to the number and
values ofk2. It thereby should be noted that we cannot use
unlimited many values ofk2, because this would induce nu-
merical instabilities due to the overcompleteness of the basis
set. Generally, the difference between variousk2 values
should be larger than 0.2 Ry. Table IV represents the results
for different numbers of includedk2 values.~Please note that
for the one-k calculation the 5p states cannot be included in
the band calculation; see Sec. II A.! Already for the three-k
calculation the results are more or less independent of the
detailed values ofk i

2.

C. Asphericity of the effective potential

In calculations4,5,22,25–27based on the atomic-sphere ap-
proximation ~see Sec. I D!, the self-consistent effective po-
tential is spherically averaged in each atomic sphere. Then,
the eigenfunctions are evaluated for this potential by one
further iteration step, yielding the aspherical valence-charge
density. The feedback of the asphericity of the charge density
on the effective potential is neglected. In the OLCAO
calculations21,41 the effective potential is constructed from
overlapping extended site potentials, but for each site poten-
tial the intra-atomic asphericity is again quenched by azi-
muthal averaging over the site charge density during the it-
erations. To investigate the feedback of the asphericity of the
charge density on the effective potential, we performed a

FIG. 2. Energetics of the states of the Sm 1a site and the Co 2c
site in SmCo5 ~see text!.

TABLE III. Influence of the subdivision into various energy
panels on the crystal field parametersAn

m ~total as well as valence
and lattice contributions! and the electric field gradientVcc at the
Sm site~without the contribution from the 4f core!; see text.

A B C

A 2
0@Ka0

22# 2377 2411 2246
Valence 21568 21607 21447
Lattice 1191 1196 1201
A 4
0@Ka0

24# 210.4 29.7 29.6
A 6
0@Ka0

26# 0.23 0.23 0.22
A 6
6@Ka0

26# 29.2 29.0 28.9
Vcc~Sm! @1021 V m22# 20.0 19.7 8.7
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calculation where we averaged the effective potential within
each polyhedral cell before starting the next iteration step.
Compared to our full-potential calculations, this type of cal-
culation yielded considerably smaller absolute values for the
valence contribution toA2

0. This explains why the former
atomic-sphere calculations which considered only the va-
lence contribution resulted in seemingly correct values of
A2
0. Altogether, it means that a real full-potential calculation

without any potential approximation is indispensable.

D. Asphericity of the 4f charge density and validity
of the two-sublattice model

In all formerab initio calculations ofAn
m it was assumed

that—in line with the two-sublattice model discussed in Sec.
I C—the various parameters of the two-sublattice model are
independent of the properties of the 4f core ~orientation of
the moment, asphericity, multiplet state!. Accordingly, all
calculations we performed for magnetic moments aligning
along the crystallographicc axis, and for the 4f core a
spherically symmetric charge density@Eq. ~13!# was inserted.
To test this assumption, we have performed the following
four calculations~Table V!. CalculationA corresponds to the
ground state orientation of the 4f moment which is along the
c axis and antiparallel to the orientation of the transition
metal moments, and a spherically symmetric 4f charge den-
sity is used. In calculationB the orientation of the 4f mo-
ments is reversed. In calculationC we again consider the
ground state orientation, but instead of the spherically aver-
aged 4f charge density~13! we insert the aspherical charge
density given by Eq.~17!. CalculationD corresponds to cal-
culationA with the Sm ion being in the first excited multiplet
state~J57/2 instead ofJ55/2 for the ground state!.

From Table V it becomes obvious that most of the param-
eters~except for the small valence contribution to the mag-
netic moment of the Sm atom and the related hyperfine field!
do indeed not depend strongly on the properties of the 4f
core. Exceptions are the quantityA2

0 and the electric field
gradient at the Sm site, which are dramatically influenced by
the asphericity of the 4f core charge density. The main rea-
son is the polarization of the 5p states~which are included in
the valence band in the calculation for Table V! by the as-
phericity of the 4f core and probably also the modification
of the hybridization of the 5p states with the other valence

states. In calculations which treat the 5p states as core states
the influence of the 4f asphericity therefore probably does
not become apparent.

Because the asphericity of the 4f charge density is rel-
evant, the value ofA2

0 depends on the orientation of the 4f
charge density in contrast to the assumption of the two-
sublattice model. The comparison of the results from calcu-
lationsA andC give a feeling for the dependence ofA2

0 on
the orientation of the 4f moment and hence~via the very
strong spin-orbit coupling! of the 4f charge density, when
the orientation of a 4f moment is changed by the application
of an external field. As a consequence, the quantitiesA2

0 ob-
tained from a multiparameter fit to experimental data based
on the assumption that there is no dependence on orientation
represent effective parameters which may be different for
different experiments. The complication due to the aspheric-
ity of the 4f charge density arises also for experiments where
the orientation of the magnetization is fixed, but the tempera-
ture is raised. It is well known~see, for instance, Ref. 44!
that the time scale for the thermal orientational disordering
of the magnetic moments in a metal is much larger than a
typical electronic time scale. As a result, from an electronic
viewpoint the system of the 4f moments at finite temperature
may be envisaged as being stuck for rather long times in a
state with fixed and more or less random moment directions
at every site, before moving rapidly to another state with
modified moment directions, etc. In each state, the local
crystal field parameter depends on the local orientation of the
respective 4f moment. Fitting the experimental data in the
usual way therefore again yields effective parameters which
should depend on temperature, because the degree of thermal
disordering depends on temperature, again in contrast to the
assumption of the two-sublattice model. Finally, the situation
is even more complicated if we consider systems for which
the interaction hierarchy~1! from Sec. I C is not fulfilled
~Sm, for instance45! so that there is an admixture of higher
multiplet states to the ground state of the freeR31 ion. From
a comparison of calculationsA andD one realizes that there
should be only a small influence of this admixture as long as
a spherically averaged 4f charge density is considered. How-
ever, it should be noted that the asphericity of the 4f charge
density is very large for theJ57/2 state, so that even a small
admixture of this state to theJ55/2 ground state would

TABLE IV. Test of convergence with respect to the number ofk2 values forAn
m, Vcc at the Sm site

~without 4f contribution!, total momentmtot , the energy differenceDE from which the intersublattice ex-
change fieldBex is calculated, and the total energy of the unit cell. The values ofk2 arek1

250.4 Ry ~onek!;
k1
2520.9 Ry,k2

250.4 Ry ~two k!; k1
2520.9 Ry,k2

250.1 Ry,k3
250.7 Ry ~threek!; k1

2520.9 Ry,k2
2520.2

Ry, k3
250.2 Ry,k4

250.7 Ry ~four k!.

Number ofk i
2 1 2 3 4

A 2
0@Ka0

22# 2441 2248 2455 2486
A 4
0@Ka0

24# 29.8 29.6 211.5 210.8
A 6
0@Ka0

26# 0.22 0.21 0.26 0.23
A 6
6@Ka0

26# 28.7 28.6 27.6 26.9
Vcc~Sm! @1021 V m22# 19.9 8.9 8.4 8.6
mtot @mB# 7.67 7.68 7.75 7.74
DE @1023 Ry# 8.69 8.96 9.03 9.05
Etot @Ry# 234750.312 234750.314 234750.365 234750.376
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probably have a big effect. Because the degree of admixture
and hence the asphericity of the 4f charge density depend on
the orientation of the 4f moment, this constitutes a further
reason why the experiments yield effective sets of param-
etersAn

m which might be different for different experiments.
Altogether, if we want to compare our theoretical results

with the experimental data we must also obtain an effective
value ofA2

0. The definition of this effective parameter, how-
ever, would depend on the experimental situation. The only
thing we can do is to determine an effective value which
seems to be representative for the variety of various effective
values obtained by various experiments. We think that this is
obtained by inserting for the calculation of the effective po-
tential a spherical 4f charge density according to Eq.~13!
instead of the aspherical charge density, and we proceed on
this line in all following calculations.

E. Application of the LSDA

In this section the problems related to the application of
the LSDA for a determination of the 4f core charge density
and the valence charge density are discussed.

1. The 4f core

Table VI represents the dependence ofA2
0 on the localiza-

tion radiusR4 f , loc and the logarithmic derivativeD4 f . For
each choice of the two parameters for the 4f core we kept
the density of all the other charges in the system according to
a self-consistent calculation withR4 f , loc53.14 a0 ~which is
the muffin-tin radius! andD4 f52`. In the brackets of Table
VI we have included the data obtained by a self-consistent
calculation for the core and the valence charge densities. It
becomes obvious from this table that the values ofA2

0 depend
extremely sensitively on the choice of the boundary condi-
tions. For instance,A2

0 changes by a factor of nearly 3 when
going fromR4 f , loc53.14 a0, D4 f52` to R4 f , loc54.10 a0 ,
D4 f524, althougĥ r 2&4 f changes only from 0.98 a0

2 to 1.17
a0
2. Confining ourselves toD4 f52` as outlined in Sec.
II B 1, we find for the reasonable range of values for
R4 f , loc , 3.46 a0<R4 f , loc<4.10 a0, a variation inA2

0 between
2195 Ka0

22 and 2159 Ka0
22. ~The variation is slightly

smaller for the self-consistent calculation for the core and the
valence charge densities.! The energy differenceDE from
which we calculate the intersublattice exchange fieldBex

TABLE V. Test for the dependence of various physical quantities on the properties of the 4f core. Shown
are the crystal field parametersAn

m ~total as well as valence and lattice contributions!, the electric field
gradientVcc at the Co sites and the Sm site~without the contribution of the 4f core!, the valence contribution
mval of the magnetic moment at the Sm site, the local magnetic moments at the two Co sites, the total
magnetic momentmtotal per unit cell, the contact hyperfine fieldsBhf and the exchange fieldBex describing the
intersublattice exchange coupling. For the meaning of the calculationsA–D see text. All calculations have
been performed with twok values.

A B C D

A 2
0@Ka0

22#

2246 2217 2699 2235
Valence 21447 21423 21879 21439
Lattice 1201 1206 1181 1204
A 4
0@Ka0

24#

29.6 29.4 29.0 29.6
Valence 0.3 0.5 0.7 0.2
Lattice 29.9 210.0 29.7 29.9
A 6
0@Ka0

26#

0.22 0.22 0.22 0.22
Valence 20.09 20.09 20.09 20.09
Lattice 0.31 0.31 0.31 0.31
A 6
6@Ka0

26# 28.9 28.9 28.8 28.9

Valence 2.1 2.1 2.2 2.1
Lattice 211.0 211.0 210.9 211.0
Vcc~Sm! @1021 V/m2# 8.7 8.4 21.2 8.6
Vcc~Co 3g! @1021 V/m2# 6.6 6.3 6.6 6.5
Vcc~Co 2c! @1021 V/m2# 25.0 25.0 24.9 25.0
mval~Sm! @mB# 20.37 20.17 20.37 20.30
m ~Co 3g! @mB# 1.53 1.50 1.53 1.52
m ~Co 2c! @mB# 1.51 1.48 1.50 1.50
mtotal @mB# 6.93 7.04 6.91 6.97
Bhf~Sm! @T# 251.7 212.4 252.4 238.8
Bhf~Co 3g! @T# 219.8 222.0 220.0 220.5
Bhf~Co 2c! @T# 212.3 212.6 212.4 212.4
Bex @T# 280 280 278 278
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~Sec. I! also depends sensitively on the choice ofR4 f , loc ~for
R4 f , loc53.14 a0 and 3.78 a0 it is 8.46 mRy and 9.27 mRy,
respectively!, whereas the higher-order crystal field param-
eters, the magnetic moments and the magnetic hyperfine
fields are virtually independent. According to the suggestion
of Steinbeck et al.41 and Novak and Kuriplach46 ~Sec.
II B 1!, we have included the self-interaction correction in
our 4f core calculation, for the caseD4 f52`, R4 f , loc
53.78 a0. Instead of our old result of2198 Ka0

22, we ob-
tained a value of2205 Ka0

22, demonstrating that the influ-
ence of the self-interaction correction is smaller than the in-
fluence of different choices forR4 f , loc .

We thus have shown that the application of the LSDA for
the calculation of the 4f core density introduces a big uncer-
tainty ofA2

0. In order to reduce the uncertainty we must take
the physically motivated measures described in Sec. II B 1 to
obtain reasonable values for the two parametersR4 f , loc and
D4 f . The remaining uncertainty of about 30 Ka0

22 cannot be
considerably reduced by the application of the self-
interaction correction.

2. The 4f part of the valence states

According to Sec. II B 2 the application of the LSDA to
the calculation of the valence states again requires special
physically motivated measures: we must augment the
Bessel functionj 3 in the muffin-tin sphere by a 4f radial
functionf4 f with negative energy, but we should not go to
too low values in order to avoid numerical problems. To find
a reasonable lower limit we calculate simultaneously the
largest componentVcc of the electric field gradient tensor at
the Sm site~without the contribution from the aspherical 4f
core!, which also depends on the asymmetry of the charge
density, but the calculation of which does not involve the
folding between the charge densities of the 4f core states and
the conduction electron states. Therefore, the results do not
suffer from the problems with the 4f contribution to the
valence states discussed in Sec. II B 2, and they are more or
less independent of the 4f energy parameter except for very
low values where numerical problems appear, which is the
case for energies smaller than25 Ry. Table VII represents
the data of a three-k calculation forAn

m and Vcc for the
4 f -energy parameters 0.4 Ry~according to the center of
gravity of the occupied valence band, calculationA!, 22 Ry
~calculationB!, and230 Ry ~calculationC!. It becomes ob-
vious that calculationA yields totally unrealistic values for
An

m, and that the very low 4f energy parameter of calculation

C already deteriorates the electric field gradient. We have
investigated the influence of the 4f energy parameter on the
electric field gradient more thoroughly by a one-k calcula-
tion and found that the results start to deteriorate when going
beyond25 Ry. We thus note that it is reasonable to choose
low 4 f energy parameters to avoid the LSDA problems dis-
cussed in Sec. II B 2, but this creates an uncertainty of about
50 Ka0

22 for A2
0, because there is not strict lower limit for

this energy parameter.

F. Conclusions on the applied calculational method

We have performed in Sec. III for the case of SmCo5 ab
initio calculations of various parameters occurring in the
two-sublattice model of rare-earth–transition-metal interme-
tallics within the framework of the local-spin-density ap-
proximation~LSDA! and the full-potential linear-muffin-tin-
orbital theory. Special emphasis is put on the crystal field
parameterA2

0, which appears to be the most sensitive one
among the parameters of the two-sublattice model, because it
is mathematically given by an integral which involves the
folding between the charge densities of the 4f states and the
conduction electron states. The main objective was to find
out whether it is possible to obtain via LSDA charge densi-
ties which are sufficiently accurate for the calculation ofA2

0.
The main conclusions are the following.

~i! It is absolutely indispensable to include the 5p states
of the rare-earth atom in the valence band.

~ii ! It is also indispensable to perform a full-potential cal-
culation without any spherical approximation for the effec-
tive potential.

~iii ! The crystal field parameterA2
0 and the electric field

gradient at the Sm site depend strongly on the orientation of
the aspherical 4f charge density, in contrast to a basic as-
sumption of the two-sublattice model. As a result, the experi-
mental analysis based on this model yields effective param-
etersA2

0 which are different for different experiments.
~iv! The application of the LSDA introduces rather large

uncertainties forA2
0, which cannot be totally removed but at

least drastically reduced by physically motivated measures.

IV. RESULTS FOR RCo5

We now report on our results for the seriesRCo5. As
outlined in Sec. III, it is very difficult to converge the results
with respect to all convergence parameters of any calcula-
tional method. We therefore have obtained highly accurate
results only for SmCo5 and GdCo5. The first material was
chosen because it is of high technological importance and

TABLE VI. Influence ofR4 f , loc andD4 f on A2
0 ~in Ka0

22!; see
text for the meaning of the numbers in brackets.

R4 f , loc@a0#
3.14 3.46 3.78 4.10

2` 2229 2195 2178 2159
~2229! ~2210! ~2198! —

D4 f

2l21524 2169 2129 2110 286

0 226 43 65 114

TABLE VII. Influence of the 4f augmentation energy on the
crystal field parameters and the electric field gradientVcc ~without
the contribution of the 4f core! A: 0.4 Ry;B: 22 Ry;C: 230 Ry.

A B C

A 2
0@Ka0

22# 21033 2500 2455
A 4
0@Ka0

24# 3.0 211.1 211.5
A 6
0@Ka0

26# 20.09 0.27 0.26
A 6
6@Ka0

26# 26.5 27.9 27.6
Vcc~Sm! @1021 V m22# 7.9 7.8 8.4
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because there areab initio calculations21,47 based on the
optimized-linear-combination-of-atomic-orbitals method
~OLCAO! for comparison. For GdCo5 there are also calcu-
lations based on the OLCAO~Ref. 21! and on the full-
potential linearized-augmented-plane-wave method28,29,48

~FLAPW! for comparison. Because for the spherical 4f core
of Gd the problem discussed in Sec. III D does not arise our
data for the electric field gradient may be directly and quan-
titatively compared with experiments. On the other hand, for
a spherically symmetric 4f core there is no magnetic 4f

anisotropy and hence the crystal field parameters cannot be
investigated experimentally. In Sec. IV A we report on
highly accurate results for SmCo5 and GdCo5, and on not
totally converged data for the seriesRCo5 to study the quali-
tative behavior across the series. In Secs. IV B and IV C we
compare with results from other calculations and with ex-
perimental data.

A. Results of the present calculations

We first give some computational details for the highly
accurate calculations on SmCo5 and GdCo5, referring to
Secs. II and III. The calculations were performed for the
experimental lattice parameters49 a59.4563 a0 ~9.3976 a0!
andc/a50.7932~0.7981! for SmCo5 ~GdCo5!. The Brillouin
zone integration was according to Sec. III. The results were
satisfactorily converged for 40k points in the irreducible part
of the Brillouin zone and for (l B ,l T,2l W)5~2,8,10!. A
three-k calculation~k1

2520.9 Ry for the 5p states which are
included in the valence band,k2

250.1 Ry andk3
250.7 Ry for

the 6s, 6p, 5d states ofR and for the 4s, 4p, 3d states of
Co! was performed. The 5s states ofR and the 3p states of
Co were treated in a common semicore panel withk2522.8
Ry. We used for the augmentation energies the valuesk2 for
l. l B and the respective centers of gravity of the occupied
part of the l -projected band forl< l B , except for the 4f
states~22 Ry! and the 6p states~D6p51.5!. A spherically

TABLE VIII. Theoretical results for the radial expectation val-
ues ^r n&4 f and the crystal field parametersAn

m of SmCo5 and
GdCo5.

SmCo5 GdCo5

^r 2&4 f @a0
2# 0.979 0.868

A 2
0@Ka0

22# 2519 2584
Valence 21485 21602
Lattice 966 1018
A 2
0^r 2&4 f @K# 2508 2509

^r 4&4 f @a0
4# 2.041 1.650

A 4
0@Ka0

24# 29.8 210.6
Valence 1.4 0.9
Lattice 211.2 211.5
A 4
0^r 4&4 f @K# 219.9 217.4

^r 6&4 f @a0
6# 6.866 5.215

A 6
0@Ka0

26# 0.27 0.31
Valence 20.08 20.08
Lattice 0.35 0.39
A 6
0^r 6&4 f @K# 1.86 1.61

^r 6&4 f @a0
6# 6.866 5.215

A 6
6@Ka0

26# 28.0 28.6
Valence 2.9 3.0
Lattice 210.9 211.6
A 6
6^r 6&4 f @K# 254.7 244.6

TABLE IX. Theoretical results for the electric field gradientVcc

at theR site ~without the contribution of the 4f core! and at the Co
sites, the valence contributionmloc

val of the local magnetic moment at
the R site, the local magnetic moments at the Co sites, the total
magnetic momentmtotal per formula unit, the magnetic contact hy-
perfine fieldsBhf at theR site and the Co sites and the intersublat-
tice exchange fieldBex, for SmCo5 and GdCo5.

SmCo5 GdCo5

Vcc(R) @1021 V/m2# 8.6 9.8
Vcc~Co 3g! @1021 V/m2# 5.2 5.5
Vcc~Co 2c! @1021 V/m2# 24.1 24.4
mloc
val(R) @mB# 20.37 20.43

mloc ~Co 3g! @mB# 1.58 1.59
mloc ~Co 2c! @mB# 1.55 1.56
mtotal @mB# 7.74 0.01
Bhf(R) @T# 231.9 240.5
Bhf~Co 3g! @T# 219.0 218.1
Bhf~Co 2c! @T# 211.0 211.1
Bex @T# 279 239

TABLE X. Same as Table IX, now forR5Pr, Nd, Sm, Gd. Note
that the results of this table are not totally converged~see text!.

Pr Nd Sm Gd

Vcc(R) @1021 V/m2# 7.0 8.0 9.3 10.8
Vcc~Co 3g! @1021 V/m2# 6.2 6.4 6.7 7.1
Vcc~Co 2c! @1021 V/m2# 24.8 24.9 25.3 25.3
mloc
val(R) @mB# 20.32 20.35 20.37 20.43

mloc~Co 3g! @mB# 1.49 1.51 1.53 1.55
mloc~Co 2c! @mB# 1.48 1.50 1.52 1.52
mtotal @mB# 10.00 10.14 7.66 20.07
Bhf(R) @T# 229.6 229.8 232.9 238.8
Bhf~Co 3g! @T# 220.5 220.1 219.5 218.5
Bhf~Co 2c! @T# 212.9 213.0 212.7 212.5
Bex @T# 326 311 280 250

TABLE XI. Same as Table X, now forR5Tb, Dy, Ho, Er.

Tb Dy Ho Er

Vcc(R) @1021 V/m2# 11.3 12.0 12.6 13.3
Vcc~Co 3g! @1021 V/m2# 7.2 7.3 7.3 7.4
Vcc~Co 2c! @1021 V/m2# 25.3 25.3 25.3 25.5
mloc
val (R) @mB# 20.38 20.35 20.32 20.30

mloc ~Co 3g! @mB# 1.55 1.55 1.58 1.57
mloc ~Co 2c! @mB# 1.51 1.51 1.53 1.53
mtotal @mB# 22.04 22.99 22.83 21.81
Bhf(R) @T# 238.7 237.8 233.0 230.7
Bhf ~Co 3g! @T# 218.7 219.0 219.2 219.3
Bhf ~Co 2c! @T# 212.4 212.4 212.6 212.8
Bex @T# 231 216 203 189
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symmetric 4f core according to Eqs.~11!–~15! was assumed
for the calculation of the effective potential. It was outlined
in Sec. III E 1 that the values ofA2

0 depend extremely sensi-
tively on the choice of the localization parametersD4 f and
R4 f , loc and that therefore physically motivated measures must
be taken to obtain reasonable values for these two param-
eters. The central idea was to select the parameters in such a
way that the expectation values^r n&4 f are close to those
obtained by the Dirac-Fock calculations15 for the freeR31

ions. For SmCo5 this was achieved forD4 f52` and if the
localization radius was slightly larger than the muffin-tin ra-
dius. Because it would be a very hard job to optimize the
localization parameters separately for all the representatives
of the seriesRCo5, we insert in the following for all systems
the valuesD4 f52` andR4 f , loc5muffin-tin radius. The val-
ues for^r 2&4 f and^r 4&4 f obtained in this way are indeed very
close to the Dirac-Fock values, and the values for^r 6&4 f are
slightly smaller.

In Tables VIII and IX we represent our results for the
radial expectation valueŝr n&4 f of the 4f core, the crystal
field parametersAn

m as well as the products of the two quan-
tities, respectively, and for the local magnetic moments and
hyperfine fields, the intersublattice exchange fieldBex and
the maximum componentVcc of the electric field gradient.

To investigate the qualitative trends across the series
RCo5 we reduced the computational effort by confining to a
two-k calculation~k1

2520.9 Ry for the 5p states,k2
250.4 Ry

for the other valence states! and by using 20 instead of 40k
points in the irreducible part of the Brillouin zone. The cal-
culations were again performed at the experimental lattice
parameters, and it was assumed that the magnetization is
aligned to the hexagonalc axis. The results are given in
Tables X and XI and Figs. 3–5. Comparing the data for Sm
and Gd with those given in Tables VIII and IX it becomes
obvious that the confinement to twok values and 20k points

affects mainly the crystal field parameterA2
0, whereas the

other quantities are considerably less influenced.
Before going into a detailed comparison of our results

with other theoretical and experimental data we want to
make some general remarks.

~a! For the whole series the lattice contribution toA2
0 is of

the same order of magnitude but of opposite sign than the
valence contribution, so that a delicate situation of balance
arises.

~b! The quantitiesA 6
6^r 6&4 f are generally considerably

larger than the quantitiesA 4
0^r 4&4 f and therefore cannot be

neglected for the analysis of experimental data~in contrast to
common use!.

~c! The magnetic moments on the two crystallographically
different Co sites are very similar, whereas the magnetic hy-
perfine fields differ drastically. It is often assumed in the
literature for the interpretation of Mo¨ssbauer experiments

FIG. 3. Comparison of theoretical~not completely converged!
and experimental values forA 2

0^r 2&4 f across the seriesRCo5. The
full circles ~full squares! are the theoretical results for the experi-
mental lattice parameters~for the lattice parameters fixed to the
values of GdCo5!. Open triangle up: Givordet al. ~Ref. 50!; open
circle: Buschowet al. ~Ref. 58!; open diamond: Sankaret al.
~Ref. 59!; open squares: Radwa´nski ~Ref. 60!; crosses: Zhao
et al. ~Ref. 61!; open triangle down: Decropet al. ~Ref. 63!.

FIG. 4. Comparison of theoretical and experimental values for
A 4
0^r 4&4 f across the seriesRCo5. The full circles~full squares! are

the theoretical results for the experimental lattice parameters~for
the lattice parameters fixed to the values of GdCo5!. Open diamond:
Sankaret al. ~Ref. 59!; crosses: Zhaoet al. ~Ref. 61!; open tri-
angle down: Decropet al. ~Ref. 63!.

FIG. 5. Comparison of theoretical~full circles! and experimental
values for the intersublattice exchange field across the seriesRCo5.
Meaning of the symbols as in Fig. 2. The star represents the experi-
mental value of Loewenhaupt~Ref. 62!.
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that the local magnetic moments are proportional to the local
magnetic hyperfine fields. As outlined in Ref. 5 this assump-
tion is generally not correct, and this statement is convinc-
ingly underpinned by the present results forRCo5. An analy-
sis of the contributions of core and valence electrons to the
local hyperfine fields reveals that the core contributions are
indeed very similar for the two Co sites, whereas the valence
contributions are not.

B. Comparison with other calculations

The results for the local magnetic moments in SmCo5 and
GdCo5 agree quite well with those from OLCAO~Ref. 21!
and FLAPW~Ref. 48! calculations. For the Co sites the local
magnetic moments are about 0.3mB smaller than the values
from neutron scattering experiments.50 Possible reasons are
the neglect of the orbital contribution and the fact that the
neutron scattering experiments do not resolve the diffuses-
and p-contribution to the spin density~which is negative!.
The calculated contact hyperfine field at the Gd site agrees
well with the values obtained by Coehoorn and Buschow51

with the augmented-spherical-wave~ASW! method in
atomic-sphere approximation, but it differs drastically from
the experimental value of27.4 T.52 The reason for this dis-
crepancy is unclear.

Our result for the electric field gradientVcc59.831021

V/m2 at the Gd site is about a factor of 2 smaller than the
FLAPW result.28,29,48 The reason is53 that in the FLAPW
calculations the 5p states are treated as semicore states~see
remark below! or core states, whereas we included them into
the valence band~treating the 5p states as semicore states we
also obtained a value which was about a factor of 2 larger!.
The fact that our value agrees excellently with the experi-
mental value52 of 9.731021 V/m2 clearly demonstrates that it
is indispensable to include the 5p states into the valence
band.

For GdCo5 our result ofBex5239 T agrees perfectly with
the data from LMTO calculations54 in atomic-sphere ap-
proximation ~ASA! ~239 T! and from ASW-ASA
calculations55 ~239 T!. For SmCo5 our value ofBex5279 T
differs only slightly from the value obtained by LMTO-ASA
calculations56 ~270 T!.

For the crystal field parameters, we refrain from compar-
ing our results with those based on the point-charge model,
because they depend extremely sensitively on thead hoc
assumptions for the point charges~see Sec. I D!. We also do
not compare with calculations based on the atomic sphere
approximation ~see Sec. I D!: these calculations use a
spherical approximation for the potential, although it is ab-
solutely indispensable to consider the true effective potential
for a determination of theAn

m. Furthermore, they consider
only the valence contribution and neglect the lattice contri-
bution toA 2

0, although both contributions are large but op-
posite in sign so that a small total value results~see Table
VIII !. It remains to compare with the OLCAO
calculations21,47 ~Table XII, the separate valence and lattice
contributions are not discussed because they are differently
defined in the LMTO and OLCAO calculations! and with the
FLAPW calculations28,29,48~Table XIII!.

There are three main differences between the OLCAO
and our FLMTO calculations.

~i! Different basis sets are used for the representation of
the wave functions.

~ii ! The 4f core states are treated in a different way~Sec.
II B 1!. In the OLCAO calculations the 4f states are calcu-
lated either in ar 4-localization potential21 or in an appropri-
ately defined on-site potential47 ~the superposition of all on-
site potentials yielding the crystal potential!. In the latter
case the self-interaction correction~SIC! was used~see Sec.
II B 1!. In the FLMTO calculation the 4f states are evaluated
in the spherically averaged effective potential forD4 f52`
at the surface of the muffin-tin sphere around the rare-earth
atom.

TABLE XII. Comparison of results from our FLMTO calculations and from OLCAO calculations in the
r 4 localization potential~Ref. 21! and in an appropriately defined on-site potential~Ref. 47! including the SIC
correction~see text!. The quantitieŝ r n&4 f ,DF denote the Dirac-Fock expectation values according to Ref. 15.
The different signs forA6

6 result from different definitions of the coordinate systems.

SmCo5 GdCo5

FLMTO OLCAO-r 4 OLCAO-SIC FLMTO OLCAO-r 4

^r 2&4 f @a0
2# 0.98 1.07 1.02 0.87 0.94

A 2
0@Ka0

22# 2519 2870 2775 2584 21010
A 2
0^r 2&4 f @K# 2508 2930 2790 2507 2950

A2
0^r 2&4 f ,DF@K# 2503 2844 2752 2507 2879

^r 4&4 f @a0
4# 2.04 2.99 2.93 1.65 2.32

A 4
0@Ka0

24# 210 213 213 211 213
A 4
0^r 4&4 f @K# 220 238 237 217 231

A4
0^r 4&4 f ,DF@K# 222 228 229 219 224

^r 6&4 f @a0
6# 6.87 17.3 22.2 5.21 12.2

A 6
0@Ka0

26# 0.27 0.35 0.50 0.31 0.4
A 6
0^r 6&4 f @K# 1.9 6 11 1.6 5

A6
0^r 6&4 f ,DF@K# 2.9 3.7 5.3 2.4 3.1

^r 6&4 f @a0
6# 6.87 17.3 22.2 5.21 12.2

A 6
6@Ka0

26# 28.0 8.7 13.1 28.6 9
A 6
6^r 6&4 f @K# 255 150 290 245 100

A6
6^r 6&4 f ,DF@K# 285 92 139 267 70
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~iii ! Whereas the FLMTO calculations deal with the true
effective potential of the crystal, the OLCAO method con-
siders overlapping extended site potentials but for each site
potential the intra-atomic asphericity is quenched by azi-
muthal averaging over the site charge density during the it-
erations. It has been shown in Sec. III C that it is absolutely
indispensable to refrain from any kind of potential approxi-
mation: when performing a spherical average of the effec-
tive potential in each polyhedral cell at the beginning of each
iteration step we arrive at a smaller negative valence contri-
bution and hence at a considerably smaller positive total
value ofA2

0.
From Table XII it becomes obvious that the qualitative

trends among the differentAn
m are similar in both calcula-

tions but that the absolute values of allAn
m are larger for the

OLCAO calculation. As discussed in point~iii ! these differ-
ences in the absolute values are even increased when adopt-
ing in the FLMTO calculation a similar potential approxima-
tion as in the OLCAO calculation. The quantitative
differences therefore must arise from points~i! and~ii !. From
these differences it becomes again obvious that the crystal
field parametersAn

m depend extremely sensitively on the
computational details.

The comparison of the FLMTO calculations with FLAPW
calculations is more natural because both methods deal with
the true effective potential and augment the original basis
functions by the same type of radial functions in the muffin-
tin spheres. Nevertheless, the comparison is aggravated by
the following problems.

~i! Because of the use of different basis sets the degree of
convergence cannot be compared.

~ii ! In Ref. 28 the occupied 4f states are treated as core
states, but no computational details for this core calculation
are given. As demonstrated in Sec. III E 1, the crystal field
parameters depend very sensitively on these details. In Ref.
48 the occupied 4f states are treated as band states.

~iii ! In Sec. III A it has been demonstrated that the results
for A2

0 depend sensitively on the 4f augmentation energies.
In the published FLAPW calculations the augmentation en-
ergies are not given.

~iv! Our FLMTO calculations have shown~see Sec. III A!
that it is indispensable to take into account hybridization
effects between the 5p states and the other valence states. In
the FLAPW calculations of Refs. 28, 29 the 5p states are
treated as semicore states, i.e., they are considered as band
states but no hybridization with the valence states is allowed.
For a comparison, we have included in Table XIII also our
FLMTO results which we obtained by treating the 5p states
as semicore states~note, however, the slightly different
meaning of a semicore calculation in both methods as dis-
cussed in Sec. II A!. In the FLAPW calculation of Ref. 48
the 5p states are treated either as core states or as band
states. It does not become clear from the paper whether the
5p band states are considered as semicore states or whether
hybridization with the valence states is taken into account.
There are two hints on the treatment as semicore states. First,
as outlined in Sec. II A it is possible to include both the 5p
and the 6p states in a common band if the FLAPW basis set
is supplemented by localized orbitals, but no localized orbit-
als are mentioned in Ref. 48. Second, the change inA2

0 in
Ref. 48 when going from the 5p core calculation to the 5p
band calculation is consistent with the contribution made in
Refs. 28, 29 by the 5p semicore states both in magnitude and
sign.

It becomes obvious from Table XIII that there is a rough
agreement between all calculations as long as the 5p states
are treated as semicore states. When dealing the 5p states as
valence states in the FLMTO calculation there is still a good
agreement for the lattice contributions toAn

m, but the valence
contributions toA2

0 and hence the totalA2
0 are smaller nega-

tive.

C. Comparison with experiments

Basically, two types of experiments have been used for
the determination of the crystal field parametersAn

m and the
intersublattice exchange field in the seriesRCo5.

~1! High-field measurements at constant temperature.
Here a rotation of the magnetization out of the easy direc-

TABLE XIII. Comparison of results for GdCo5 from our FLMTO calculations and from FLAPW calcu-
lations. The quantitieŝr n&4 f ,DF denote the Dirac-Fock expectation values of the freeR31 ion according to
Ref. 15.

FLMTO FLAPW

5p valence 5p semicore
5p semicore

~Refs. 28 and 29!
5p semicore

~Ref. 48!

^r 2&4 f @a0
2# 0.868 0.867 0.93 0.984

A 2
0@Ka0

22# 2584 2717 2824 2724
Valence 21602 21747 21878
Lattice 1018 1029 1054
A 2
0^r 2&4 f @K# 2507 2622 2763 2707

A2
0^r 2&4 f ,DF@K# 2507 2622 2717

^r 4&4 f @a0
4# 1.650 1.649 2.11

A 4
0@Ka0

24# 210.6 211.1 212.8
Valence 0.9 0.4 21.4
Lattice 211.5 211.4 211.4
A 4
0^r 4&4 f @K# 217.4 218 227

A4
0^r 4&4 f ,DF@K# 219.2 220.1 223
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tions and a canting between the magnetization of the rare-
earth sublattice and the transition-metal sublattice is induced
by a strong external magnetic field.57 The analysis of the
experimental data is based on the two-sublattice model, Eqs.
~2!–~4!, with the Zeeman terms for the interactions between
the two sublattice magnetizations and the external magnetic
field added.

~2! Measurements of the temperature dependence50,58–61

of the magnetization and/or the magnetic anisotropy of the
rare-earth sublattice. Whereas Eqs.~2!–~4! yield the mean-
field energy of the system forgiven thermal averages of the
rare-earth spins and the transition-metal spins, the calcula-
tion of these temperature dependences with the two-
sublattice model starts from the Hamiltonian equivalents to
Eqs. ~2!–~4! ~including the Zeeman terms! obtained by re-
placing the thermal averages^ŜR& and ^Ĉ n

m& by the respec-
tive operators~while keeping the thermal average^ŜT& as
function of temperature as input!. With the use of the energy
eigenvalues obtained from a diagonalization of this Hamil-
tonian within the subspace of the ground state multipletJ of
the freeR31 ion the partition function is calculated from
which all the thermodynamic information can be obtained.
The situation is more complicated in cases where the inter-
action hierarchy, Eq.~1!, is not fulfilled, so that the exchange
splitting leads to an admixture of excited multiplet states to
the multiplet ground state of the freeR31 ion, which depends
on the orientation of the 4f moment in the intersublattice
exchange fieldBex produced by the transition-metal sublat-
tice. Then the properties of the 4f core, for instance the
magnetic moment, depend on the orientation. To account for
this admixture of higher multiplet states, the spin-orbit cou-
pling term is added to the above discussed
Hamiltonian.58,59,61 The diagonalization then is carried out
within the subspace of the ground state and one or a few
excited multiplets.
The following problems which arise for both types of experi-
ments should be kept in mind.

~i! Because the number of parameters in the two-
sublattice model is large, the fits to the experimental data are
far from being unambiguous, and in general severalad hoc
assumptions are introduced to facilitate the procedure.5 Be-
cause the higher order crystal field parameters have only a
minor effect, the fits are rather insensitive to a variation with
respect to these quantities and as a result they can be ob-
tained with large uncertainty only~in Ref. 60 they are totally
neglected therefore!.

~ii ! According to Sec. III D the experiments yield some
kind of average effective parametersAn

m which are different

for different experiments~and different from the parameters
obtained in the calculations! and which should depend on
temperature. Interestingly enough, a temperature dependence
of A 2

0 as deduced by fitting the experimental data for the
anisotropy constantK1 at various temperatures was reported
by Zhaoet al.61

Of course, these problems for theAn
m have also an influ-

ence on the intersublattice exchange fields, which are deter-
mined simultaneously in the above discussed multiparameter
fits. An exception is the Gd compound, GdCo5, for which the
4 f core is spherically symmetric. As a consequence, there is
no rare-earth contribution to the magnetic anisotropy, i.e.,
problem~ii ! does not arise and there are only a few fit pa-
rameters in the two-sublattice model. Accordingly, for
GdCo5 our value ofBex5239 T agrees very well with the
value ofBex5236 T obtained by inelastic neutron scattering
experiments.62 In contrast, for SmCo5 all the above discussed
problems pertain. Here our value ofBex5279 T is in the
wide range of experimental values, spanning from 151 T to
358 T ~see Table XIV!. Because of the perfect agreement
between theory and experiment for GdCo5, we think that our
theoretical values forBex are more reliable than the experi-
mental ones and could be used as fixed input parameters for
the data analysis.

The comparison with the experimental results for theAn
m

of SmCo5 is also given in Table XIV. Our theoretical value
for A 2

0—while being considerably smaller in absolute value
than the one of the OLCAO calculations21,47—is in turn con-
siderably larger in absolute value than the experimental val-
ues. Table VI shows that the absolute value would decrease a
bit when allowing for a further extension of the 4f core
states, but this alone will certainly not bring down the theo-
retical value to the range spanned by the experimental data.
It is more likely that the discrepancy is related to the prob-
lems ~i! and ~ii ! discussed above. The higher order crystal
field parameters are either neglected in the experimental
analysis or they exhibit a considerable uncertainty because
the fits are rather insensitive to a variation of their values.
Because they are strongly determined by the lattice contribu-
tions ~Table VIII!, which—in contrast to the valence
contributions—depend only weakly on the computational de-
tails, we think that our theoretical results are more reliable
than the experimental data and could be used as fixed input
parameters for the data analysis.

In Figs. 3–5 we compare our theoretical results for the
crystal field parametersAn

m^r n&4 f and the intersublattice ex-
change fieldsBex across the seriesRCo5 with experimental
data. It should be cautioned again that the theoretical data of

TABLE XIV. Comparison between our theoretical results and experimental data for the crystal field
parametersAn

m^r n&4 f and for the intersublattice exchange fieldBex. The different signs forA6
6 result from

different definitions of the coordination systems.

Theory Experiments

Ref. 59 50 60 58 61
A 2
0^r 2&4 f @K# 2508 2420 2200650 2185 2180 2165

A 4
0^r 4&4 f @K# 220 225 0650 26.3

A 6
0^r 6&4 f @K# 2 1 50650 0

A 6
6^r 6&4 f @K# 255 6 0

Bex @T# 279 358 261 151 298 328
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these figures~especially forA2
0! are not completely con-

verged. We nevertheless think that the tendencies across the
series are well represented. Our absolute values forA 2

0^r 2&4 f
increase when going through the series from the left to the
right. To test whether this tendency results from the variation
of the lattice parameters we also performed calculations for
which we have fixed the lattice parameters at the values for
GdCo5 ~full squares in Figs. 3 and 4!, yielding the same
tendencies. Experimentally, no clear tendency can be ob-
served, the very extensive analysis of Zhaoet al.61 arrives at
a more or less irregular behavior across the series.@It should
be noted that Radwanski60 started his analysis from thead
hoc assumption thatA2

0 is constant across the series, and he
arrived at the continuously decreasing absolute values of
A 2

0^r 2&4 f ~open squares in Fig. 3! by inserting for^r 2&4 f the
theoretical results from Dirac-Fock calculations15 for the free
R31 ion.# Tables X and XI show that an increase of the
absolute values across the series is also found for the electric
field gradient of theR site ~without the contribution of the
R31 ion!. It would be interesting to know whether this can be
confirmed experimentally.

Figure 4 exhibits theoretical and experimental data for
A 4

0^r 4&4 f across the series. The theoretical absolute values of
A 4

0^r 4&4 f decrease slightly across the series and agree
roughly with the experimental data of Zhaoet al.61 Figure 5
exhibits theoretical and experimental data forBex across the
series. The decrease of the theoretical values when going
from the left to the right is smaller than the decrease of the
experimental values reported by Zhaoet al.61 ~It should be
noted that Radwanski60 started his analysis by thead hoc
assumption thatBex is constant across the series.! For GdCo5
where there are no crystal field effects the agreement be-
tween theory and experiment is nearly perfect. We therefore
assume that the discrepancy forRÞGd results from the prob-
lems~i! and especially~ii ! discussed at the beginning of this
section.

ACKNOWLEDGMENTS

We are indebted to Dr. S. Savrasov for supplying us with
his FLMTO program as a starting point for the development
of our FLMTO code. Most of the calculations were per-
formed at the HLRZ in Ju¨lich.

1K. H. J. Buschow, Rep. Prog. Phys.54, 1123~1991!.
2H. Kronmüller, K.-D. Durst, S. Hock, and G. Martinek, J. Phys.

~Paris! Colloq. 49, C8-623~1988!.
3M. S. S. Brooks and B. Johansson, inHandbook of Magnetic
Materials, Vol. 7, edited by K. H. J. Buschow~Elsevier Science,
New York, 1993!, p. 139.

4R. Coehoorn, inElectron Theory in Alloy Design, edited by D. G.
Pettifor and A. H. Cottrell~The Institute of Materials, London,
1992!, p. 234 ff.
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