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Berry’s phase and quantum dynamics of ferromagnetic solitons
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We study spin parity effects and the quantum propagation of sol{ilesh wallg in quasi-one-dimensional
ferromagnets. Within a coherent state path integral approach we derive a quantum field theory for nonuniform
spin configurations. The effective action for the soliton position is shown to contain a gauge potential due to
the Berry phase and a damping term caused by the interaction between soliton and spin waves. For tempera-
tures below the anisotropy gap this dissipation reduces to a pure soliton mass renormalization. The quantum
dynamics of the soliton in a periodic lattice or pinning potential reveals remarkable consequences of the Berry
phase. For half-integer spin, destructive interference between opposite chiralities suppresses nearest-neighbor
hopping. Thus the Brillouin zone is halved, and for small mixing of the chiralities the dispersion reveals a
surprising dynamical correlation: Two subsequent band minima belong to different chirality states of the
soliton. For integer spin the Berry phase is inoperative and a simple tight-binding dispersion is obtained.
Finally it is shown that external fields can be used to interpolate continuously between the Bloch wall disper-
sions for half-integer and integer spin.

[. INTRODUCTION Kramers degeneracy, in particular in single domain
ferromagnet$®*8 they typically go beyond this theorem in
Quantum effects in low-dimensional magnetism are a fasrather unexpected way82! It is notably for nonuniform
cinating subject which has attracted much interest over thenagnets that such effects can be quite intriguing, as we know
years. A notable example is antiferromagnetic chains whersince Haldane’s work on antiferromagnét©n the other
the quantum spirfor Berry!) phase leads to remarkable par- hand, there has not been much related study on nonuniform
ity effects. It is for integer spirs only that the ground state ferromagnets, primarily because their ground state is trivial
exhibits an excitatior(or Haldan) gap whereas for half- and did not seem to offer much room for surprises. However,
odd-integralS such gaps are suppressed by interfering Bernthis is by no means so, and it is one of our goals to show that
phases. Related to this phenomenon is the suppression oferromagnets with more than one magnetic domain do ex-
mesoscopic stiffness fluctuations fBrhalf-integral antifer-  hibit interesting spin parity effects and that these effects have
romagnets, whereas such fluctuations grow with chain sizexperimental consequences.
for integerS (similar to universal conductance fluctuations in ~ We address the issue of spin parity in the context of MQP,
mesoscopic metalé although the Berry phase effects discussed here are of gen-
Over recent years, the rapid advances in nanostructureral relevance in low-dimensional magnetism. We start by
technology have opened the door to another class of mageonsidering the coherent quantum propagation of Bloch
netic systems: small single domain particles that displaywvalls in the presence of periodic pinning potentials. Such
striking mesoscopic quantum phenom@ri®IQP) such as potentials are naturally provided by the underlying crystal
guantum coherence, quantum tunneling, or spin parity eflattice or some superlattice structure that can be created by
fects. These particles exhibit one or several directions operiodic  deposition of materials with  different
minimal anisotropy energy between which the spins can tunanisotropie$*“1?®Parenthetically we note that periodic pin-
nel coherently. Motivated by theoretical predictions for uni-ning provides a much smaller barrier height and tunneling
form ferromagnets'°and antiferromagnetsseveral experi- distance than one isolated pinning center would do. Thus the
ments at subkelvin temperatures have shown eithetunneling probability will be drastically enhanced in this
temperature-independent relaxation phenortfefid or a  casé*?! compared to the more traditional scenario where
well-defined resonanée (in the ac susceptibility which  experimer®?”*3and theor§®~3?focus on wall tunneling out
scales exponentially with the number of spfhin accor-  of single pinning centers.
dance with theory* Although these observations have been In a collective coordinate description the Bloch wall is
criticized on the basis of dissipation models, such as thé¢hen seen to behave like a single degree of freedom moving
influence of nuclear spins, the experiments on antiferro- in a periodic structuré? This in turn results in characteristic
magnetic ferriti® provide a strong indication that the spins Bloch bands in reciprocal space, where the bandwidth is de-
indeed tunnel coherently at low temperatures. termined by the tunneling rate through the potential. It is
In subsequent work, it has been shdf¥if'that also tun-  now at this stage where the Berry phase enters the wall dy-
neling depends on the spin parity via Berry phases, and thatamics via an effective gauge potential that depends on the
magnetization switching is allowed only if the total spin of chirality, i.e., the internal rotation sense of the Bloch wall.
the particle is integral, but not otherwise. Similar results havd=or half-integer spins this gauge potential induces a halving
been found in uniform antiferromagnetic particté€%?22®  of the associated Brillouin zone. At the same time a remark-
While such spin parity effects are sometimes related table dynamical correlation occurs: Two subsequent band
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tions of dissipatiofr® as extensively discussed in the con-
text of MQP3’ and show that the spectral function has a gap
due to anisotropies. While there have been a number of
works in various contexts related to intrinsic soliton
damping®~42®we believe that the approach presented here
is most adequate to the combined description of wall dynam-
ics and Berry phases and, moreover, provides the first com-
plete discussion of spin wave dissipation, particularly in the
context of MQP. Finally we note that a brief account of part

of the results presented here has been given béfdte.

FIG. 1. (a) Bloch wall configuration withQ=1, C=—1 in a The outline of the paper is as follows. In Sec. Il we dis-
thin long slab centered at the pinning sKe=0; (b) periodic pin- ~ Cuss the derivation of the spin action plus topological phase
ning potentialV for the wall centeiX. from the Heisenberg model. Details of this derivation via

coherent spin states together with a unified treatment of the
minima belong to opposite chiralities. Thus the chirality of BETY phase in different gauges are given in Appendix A. In

the wall alternates when the system is adiabatically driverﬁec' Il we discuss static Bloch wall solutions and derive the

through the Brillouin zones by an external magnetic field. ASSlne-Gordon action plus gauge term in Sec. [V. To gain con-

we shall argue, this phenomenon can be experimentally odidence in our approach we first consider the uniform Iimit_
served if there is a finite tunneling probability between the@"d show that this gauge term reproduces the known spin

B - 8 .
chiralities, a condition which is not difficult to meet in real Party behaviof:® As a by-product we also obtain the tunnel-

systems. Due to the topological nature of the Berry phas&'9 p;lrefalclztor. In Sec. V we dis%uss tr?e coupling between
these results are independent of details such as the shapeEHPC_ wa a_m_d spin waves and show that Spin wave d.'ss'pa'
the soliton and the pinning potential. Thus we expect thaf'on 1S neg_llglble at I_OW temperatures, te_chnlcal de_talls are
band halving and chirality correlation also occur in the limit p][eﬁented n Ahppendlx ﬁ In|Serc]:. VII\IN(? discuss the mflqer&pe
of a spin-1/2 chain where the soliton width approaches on& the Berry phase on the Bloch wall dynamics in a periodic
lattice constant. potent!al,_ﬂrst' in the nearly fre€Sec. VI B and_ then in the
Besides these spin parity effects, the band structure Ieaquh';bl'fnqmg I|n|1|t (Sec.hVI Q..l:n t.)Oth cases ';"Qi shown th?]t
to interesting coherence effects in the form of Bloch oscilla- or half-integral spin the .B” ouln zone 1s alved a’Fd the
tions of the wall cente?*2As a result the sample magneti- chirality alternates. Experlr_nental implications are given in
zation oscillates in response tostatic magnetic field, a be- Sec. VII, where we also give results for the_ Iey_el spl_|tt|ng
havior which is very similar to the ac-Josephson effect indue to the tunneling between the two wall chiralities. Finally

superconductors. in Sec. VIII we discuss how the interference effects are al-
In principle these results hold for an arbitrary number

tered by external fields. A note regarding the terminology:
N, of coupled ferromagnetic chains. However, observatiorf1€ €rms soliton and Bloctor domain wall are used inter-
of MQP becomes increasingly difficult with increasihg

changeably to denote the transition region between domains
since observability requires tunneling exponertighich in ferromagnets.

grow with N,) to be of the order of Planck’s constant. This

necessarily limits the size of sample cross sectidms not Il. MODEL

their lengthg and restricts considerations to low-dimensional | this section we derive a continuum field theory to de-
ferromagnets, most typically of quasi-one-dimensional siz€gcyipe the quantum dynamics of nonuniform spin configura-
An important consequence of this reduced dimensionality i$ions in ferromagnets. Our starting point is a microscopic
the fact that dissipation due to spin waves has a negligiblggisenberg spin Hamiltonian with local anisotropies. The
effect on the wall dynamics since there is an associated finitg,nsition amplitude between two nonuniform spin configu-
size gap(besides the anisotropy gaim the spin wave spec- rations is then expressed as a coherent state path integral.
trum. It is due to these gaps that at temperatures typicallfne corresponding action differs from the classical micro-
below 100 mK the spin waves freeze out exponentially fastyagnetic expression by a total derivatifé-2*While this

and are thus simply irrelevant for dissipatithey only lead  term does not affect the classical equations of motion, it
to a minor soliton mass renormalization as we shall showyiyes rise to quantum mechanical interference effects and
explicitly). thus leads in a natural way to the quantization of micromag-

To simplify our discussion we consider in the following petics. Several examples of such interference effects will be
the limit of large hard-axis anisotropy® as it occurs, for  giscussed below in Secs. IV and VI=VIII.

instance, in an yttrium iron garn€Y1G) sample of the shape Ferromagnetic insulators can often be described by a
shown in Fig. 1. We can then eliminate the out-of-easy-planep_leisenberg Hamiltonian with anisotropies

degree of freedom and the spin model reduces to that of a

sine-Gordon model plus a gauge term coming from the Berry . ~ ~

phases. In a quantum field approach we introduce collective” = —JiE S-S+, Kyzi (82 + KZEi (SH?, (2.1
coordinates, eliminate the spin waves, and arrive at an effec- "’

tive action for the wall position. The spin waves give rise towhere S denotes the spin operator at the lattice $itd-or

a nonlocal term in the action which can be cast into thesimplicity we assume that the spins form a simple cubic
well-known Caldeira-Leggett form at low temperatures. Inlattice of lattice constard. Throughout this work we shall
this way we make contact with phenomenological formula-use units such thdt= 1. The first term on the right-hand side
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(RHY of (2.1) is the exchange interaction between a spin atwith the Wess-Zumino or Berry phase term

the lattice site and its nearest neighbors at the lattice sites

i+p. The next term is an easy-axis anisotropy alongythe . SN, (8 L/2

axis with anisotropy constar,>0. The third term is a ‘/WZ_'TL de

hard-axis anisotropy of strengkh,>0 which renders they .

plane an easy plane. The spins will thus preferably poinwith ¢=4,¢ and where a gauge has been chosen with the

parallel or antiparallel to thg axis. coherent states underlying the path intedgaP) expressed
The anisotropies that are used {@.1) are effective in the “north-pole” parametrizatioricf. Appendix A). Equa-

anisotropies and may arise from two different microscopiction (2.4) has for closed trajectories the form of the sum over

mechanisms. One contribution is the magnetocrystalline arthe Berry phases of allL/a spins. The energy is given by

isotropy which is due to the interaction of the magnetic mo-

ments with their neighboring atoms via spin-orbit interac- L/2 o )

tion. Consequently this contribution reflects the symmetry of H :NAffude{‘][(‘?xe) + it 0(dx)?]

the crystal lattice. The second contribution is the dipolar in-

teraction between the magnetic moments. Due to its long —K,[sir?6 sirf¢—1]+K,cos6}. (2.5

range nature this contribution depends on the sample shape

and is in general a nonlocal functional of the magnetizatiorNa denotes the number of spins in the cross sectional area

configuration. It is this magnetostatic interaction that gives 7 of the sample, and is the sample length. The parameters

rise to the existence of domains in macroscopic sampledn (2.5 are related to those i2.1) via

However, for quasi-one-dimensional configurations this in- . N

teraction considerably simplifies and can be modeled by lo- J=J%"a, K,,=K,,5/a. (2.6)

cal anisotropies as i2.1).* o - _ _
Our focus in this work will be on elongated samples asThe energy2.5) is identical to the traditional micromagnetic

shown in Fig. 1 with transverse dimensions smaller than th&€neray expressiofi:*’~**J andKy , can now be related to
length scale[ 3/K, ]2 Spin waves running transverse to the 1€ micromagnetic anisotropy and exchange constants
samplé®* then exhibit a finite size gap such that they ared ~ A28 K, =K¢a®, andK,=Kya“. For an elongated slab as
frozen out at low temperaturé®.This condition is met jn Shown in F|g.2 1, we have K3e.: Kecyst and
most experimental situations studied so far and thus we shalfn=Kn,crysth 27Mg, whereMo=gugS/a” is the saturation
use a quasi-one-dimensional model in the following. Trulymagnetization, andKe s, Kn,cyst describe crystalline
three-dimensional samples where all degrees of freedom afisotropies. Note, however, that for other sample geom-
allowed to be excited are of rather limited interest for MQPelries the demagnetizing term enters in a different form. For
since their tunneling ratesnd associated crossover tempera- instance,  for a cylindrical wire we would have
tures(separating the classical from the quantum regiare  Ke=Ke crystt Mg, while the hard-axis anisotropy would be
in general too small to be observéd. of purely crystalline origin(For other examples see Fig. 8 of
We now turn to the path integral formulation of the sys- Ref. 43) The demagnetizing energy is not always important;
tem described by the Hamiltonid@.1). We introduce coher- in particular, for samples with misoriented anisotropy axes
ent spin statd§ at each lattice site, defined by (see p. 15 of Ref. 47the crystalline anisotropies can be
Q,-S|Q,)=95/Q,) whereQ = (sind cosp, sind ¢, cosd)isa  much larger than 2M3.
unit vector. The whole system is then described by a product In saddle point approximationy =0, and rotating to
of coherent states at each of thd lattice sites, i.e., real timet=—ir, we recover the classical Landau-Lifshitz

{Q})=& |Q;). Since we are interested in configurations €quations of motion

that are varying slowly compared to the lattice constant, the
spin state can be described by a smoothly varying unit vector sinda, = — a 5_H

dx ¢(1—cos), (2.4
—L/2

a 1 6H

field Q(x,7) depending on the coordinaxealong the sample 530" " ssing op’
and the imaginary timer. As outlined in Appendix A, the
transition amplitude between the two statd€2,}) and
[{Q}) can then be expressed as @maginary time path
integral

2.7)

<{Qb}|efﬂ'7/|{9a}>=f D¢ I(co)e el 0]
(2.2

where the integration is over all configurations that satisfy
the boundary conditions  €Q(x,0)=Q,(x) and
Q(x,8)=Qp(x) (spatial boundary conditions will be speci-
fied latey. The Euclidean action is given by

8 FIG. 2. The Berry phase factor for one single sp8)
Se=Swz+t f dr H, 2.3 exp{iS;d¢(1—cos)} =dSA whereA is the area on the unit sphere
0 enclosed by the trajectory” traced out byS.
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These classical equations are not affected by the total derivaavariant under rotations byr around each axis in spin
tive ¢ in (2.4) and thus follow from the classical Lagrangian space. Consequently, there are four different Bloch wall so-
density® %= —(SNy/a)d;p cosh+H. lutions of (3.2) (see, e.g., Ref. 47

Note, however, that the term is of crucial importance
for the quantum dynamics: While the path integaP) con-
tains higher-winding-number contributions where a path re-
traces itself, the Wess-Zumino term enforces quantization by
destructive interference of paths which do not satisfy theof width 6= VJ/K,. In order to distinguish the four different
conditionSXZ;A;=2mn, whereA,; is the area enclosed by the soliton configurations we have introduced the “charge”
trajectory of theith spin on the unit sphere cf. Fig. 2. If the Q=(1/2)fdxd,(sin¢) and the “chirality”
¢ term were dropped ifi2.4) — a “gauge” that has some-
times been used in the literature — the afgawould be 1 (=
measured with respect to the equator and one would have to C= ;f dx dy¢p (3.4
impose the additional constraifithat the paths not intersect o
the “dateline.” This constraint is very difficult to handle ¢ o spin configuration. For the Bloch wali8.3 we have

within a path integral formalism. On the other hand, ignoringQ C==1, and all four walls have the same energy
this constraint would lead to a wrong semiclassical quantiza-=~"~ ’

tion of half-integral spins. Moreover, one would not obtain "

the suppresgion of tunngling for half—intfeg_er spins in small Eo=2J NAJ dX(5x¢Qc)2:4NA‘/~J Ky. (3.5

ferromagnetic particle¥ in clear contradiction to Kramers —o

theorem which requires that the ground state not be split. In o o )

Appendix A we ShOW that a” these d|ff|cu|t|es can be The definition of the Ch|ra.||t)(: Slmply tells us whether the

avoided if one starts from one single premise — the singlédngle¢ increases or decreases as we proceed in the positive

valuedness of the coherent states — which leads to a re direction along the sample. The definition of the chagye

stricted set of “admissible” gauges. is motivated by the response of the Bloch wall to an applled
Finally, we remark that if we work in the south-pole pa- magnetic field: For an external field along the posiyvaxis,

rametrization of the coherent stdief. (A2)], the ¢ term in @ Bloch wall of positive charge moves along the positive

(2.4) changes sign but, of course, all physical effects that will2XiS While a negatively charged wall moves in the opposite

be derived below are independent of the ga(mgevided the direction. (We recall that the spin is antiparallel to the mag-
gauge is admissible netization) Within the present description, the spin is al-

lowed to point into an arbitrary direction on the unit sphere

S?. In this case, only the charge is a topological invariant,

i.e., for infinite sample length field configurations of opposite
There are two energetically degenerate spin configurasharge cannot be deformed into each other without overcom-

tions which minimize the energg2.1): uniform configura- ing an infinite energy barrier. Solitons of different chirality

tions with all spins pointing either along the positive or along(but the same chargean be deformed into each other via a

the negativey direction. We are now interested in structures “N€éel wall” configuration where the spin at the wall center

that interpolate between these two configurations. Due to thpoints along the hard axis. It is only in th€Y limit of large

easy-axis anisotropy ifR.1), this transition region will have hard-axis anisotropy where the configuration space of the

a finite width and form a Bloch wallor soliton. Such Bloch  spins becomes a circle and the chirality also becomes a to-

walls may have various origins in realistic samples. They canpological invariant. It will be this limit that shall be consid-

simply be enforced by keeping the spins at both sample end¥ed in the next section, but we shall return to the general

antiparallel to each other. For certain sample geometries;ase when we discuss chirality tunneling in Sec. VILI.

their existence can be favored by long range magnetostatic

interactions which have not been built in.5). Finally, in IV. RELATION TO THE SINE-GORDON MODEL

strictly one-dimensional chains, solitons with width of one

lattice constant rather than spin waves can form the elemen- In some materials such as elongated YIG filoks Fig. 2)

tary excitations1>2 or in garnet crystals with misoriented anisotropy axes, the
A static Bloch wall connects the anisotropy minima hard-axis aniotropy is much larger than the easy-axis anisot-

¢=*x/2 within the easy plan®= /2 and thus satisfies ropy, typically by a factor of 10 or more. As a consequence,

¢Qc(x):—ch+2 arctae®?®, 9=—, (3.3

NI

Ill. BLOCH WALL CONFIGURATIONS

the Euler-Lagrange equations deviations away from the easy plane become energetically
) _ costly and the magnetization will be confined to the easy
Joyp+Ky sing cosp=0. (3.)  plane and the system can effectively be described in the

easy-plane variablé only.
In the limit K,>K, , deviations away from the easy plane
are suppressed and we can expand

With the additional conditio, ¢(=*+)=0, this can be im-
mediately integrated once

J 2
K—y(&xd)) —cos¢=0. 3.2 O(x,7) = mI2— (X, 7), 4.1

This equation exhibits the symmetriegp——¢ and  where|9|<1. Inserting(4.1) into the action(2.4) we obtain
¢— ¢+, which reflect the fact that the enerdf.l) is  up to second order i
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A. Spin tunneling for K,>K,

S
[@Z— 1 — 2
‘/E_NAJ' dXdT{I aa’¢+‘](ax¢) To illustrate the importance of the topological term de-

s rived above, we consider the case of a uniform spin configu-
L2 o ration as, e.g., realized in a nanoscale ferromagnetic particle.
* Kyco§¢> 13004+ ﬂ‘/jﬂ]’ (4.2 We shall show that the reduced mod4l4) reproduces both
the spin parity effe¢f and the tunneling actidrof the full
where Z=—Jd7—J(3,$)°+K,sirPp+K,. If the fluctua- magnetic model in th&XY limit. In addition we shall also
tions in bothd and ¢ have wavelengti\ larger than the evaluate the prefactor of the transition amplitude resulting
domain wall width,\ = &, the hard-axis anisotropy becomes from Gaussian fluctuations around the instanton path.
dominant andZ=K,+ O(K, /K,). With this approximation, For uniform configurationg= ¢( 1), the action(4.4) re-
we insert(4.1) into (2.2) and usingZ cos9=249 we can duces to
perform the Gaussian integrations. The transition amplitude

can then be expressed as a path integral over the azimuthgl _ j . J_a 9
angle & alone. .9136 N | d7|iSo,¢+ = (d.¢)*+Kya cogey, (4.6)

whereN=NjL/a is the total number of spins in the sample.
<{Qb}|efﬁ-7/|{ga}>zf Tpe™"sd ], (4.3  Note that¢ d_escribes the_ a_zimu?hal an_gle of a spin and is a

compact variable ¢+ 2 is identified with¢). The tunnel-
ing amplitude between the anistropy minimadat = 7/2 is

with the boundary conditions ¢(x,0)=¢,(x), and then given by

d(X,B) = ¢p(X). The action has the following form:

. ™ pp=m2 =
S 1 5 ) d):ae :8v/¢:—5 :f g¢esd¢]

o i il $(0)=—m/2

56 NAf dx dT(' 70+ 02(19#1’) + (dxh) @7
The dominant contributions to the transition amplitude are
+K,cose, (44 the extrema of the action which satisfy’sg=0 or

2y 72 ; _
where we have introduced the asymptotic spin wave velocity (JIc%)dz¢+Kysing cosp=0. (4.9
Note that this equation is formally equivalent(@1). Simi-
c=(2a/S)\JK,. (4.5 larly, as a consequence of the symmetry of the actibd)

under s rotations around the hard axis, i.eét— ¢+ m, the
We thus have arrived at the important result thatlarge  two anisotropy minima can be connected by two different
hard-axis anisotropy the dynamics of a mesoscopic ferropaths. These “instanton” and “anti-instanton” trajectories
magnet is described by the sine-Gordon (SG) action plus are given by (7) = — 7/2+ 2 arctare®("~ " and describe a
topological term iSNJ(dx/a) [d7¢. While the reduction to  transition from¢= — /2 to 7/2 in the clockwise &) or
the sine-Gordon model has been known for some fitfé"  anticlockwise direction ¢_). The transition occurs at,
the topological term has not been identified before. This ternwithin a finite imaginary time interval characterized by the
is of central importance for the quantization of the spin sys“jnstanton frequency” w, =c/5=(2a/S)«/KyKZ. Inserting
tem as we shall see below. It is this term that is responsiblgs, into the action(4.6), we recognize that the topological
for observable effects such as band halving and chirality corterm gives rise to a phase which differs in sign for instantons

relation. . _ _ or anti-instantons,
We can now explicitly verify the consistency of our ap- .
proach.” 5 has the same long wavelength excitations as the Ssd p+ = xiaNS+.7,, 4.9

full magnetic model described by the acti¢®.3). In the ) ] 3
latter model, deviations from the uniform statg==/2,  With the tunneling exponefit. o =2NSyK, /K,.

9=/2 along the easy axis have the spin-wave spectrum |N€ effect of the topological phase may now be seen as
w=2(alS) ([IK+ Ky+ K[ k2+Ky])l’2 with k the spin- follows. Adding the contributions of one single instanton and

wave wave vectai For K,>K, andk< \/m this reduces anti-instanton to the action, we obtain wi#h.9) for (4.7)

t0 w=2(a/S) (K[ IK?+K,])Y2=c\k?+ 62 which is iden- ™ ™ Beds)
tical to the spin wave spectrum in the sine-Gordon model <¢’: 2 ¢=- §>°‘02+1 e Tsety
(4.4) around ¢= /2. Similarly, the dynamic soliton solu- N

tions of the spin systerfsee, e.g., Ref. 5avhich correspond =2 cogmNS)e 0.
to moving Bloch walls have their counterpart in the SG 4.10
model in this limit. Even soliton-antisoliton breather solu- '

tions of the spin system have analogues in SG breathefhus the transition amplitude vanishes for half-odd-integer
solutions®’ This is surprising since in the spin model breath-NS since tunneling paths of opposite windirigr “chiral-

ers exhibit a precession around the easy axis and thus do nity” ) interfere destructively with each other. A calculation
stay close to the easy plane as require@4id). The connec-  within the “dilute instanton gas” approximatidh reveals
tion between the spin model and the SG system is therefordhat this interference persists to all orders in the instanton
more general than the above derivation suggests. contributions. Identifying w=2NJa/c>=NS%/2K,a,

e B
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k=NKya, a=—NS, andd=m we obtain (including the

contributions of Gaussian fluctuations around the instanton f dx ¢g(x)e(x,7)=0, (5.2
T T By l2e A for all imaginary timesr. We incorporate this constraint into
5 — 5 )€ P¥sinh f5CoSNS) (41D the path integral by means of the Faddeev-Popov

techniqué?®3which we now briefly sketch. It is based on the

with A=16JN/7mSa(K3K,)¥%e™ 0. Taking the limitg—c  identity

in Eq. (4.12) we conclude that the ground-state energy of the 50

individual potential wellsw,/2 is split into two levels sepa- J' @ _

rated byA provided the total spilNS of the particle is inte- ng(Q[X])detﬁ ! .3

ger. ForNS a half odd integer no splitting occurs. Thus for

arbitrary spinS the splitting AE between the two states of

lowest energy is given by

o= B

with the judiciousl{®%4 chosen functional

Q[X]=f dx ¢o(x—X) (X, 7). (5.4
AE=|cogmN9)|A. (4.12
Inserting (5.1) into (5.4) we recognize that thé function
enforces the constraits.2) as desired.

For configurations which contain one soliton, we thus can
rewrite the transition amplitudéet.3) as follows:

N , 6Q\ .
V. BLOCH WALLS AND SPIN WAVES {Qp} e A7 { Q)= f DX ifdu?(Q)de( y)e 7sd 4]

In this section we discuss the interaction between a Bloch (5.9

wall and 'its surrounding _spin waves. We consider here vhere the action is given b¢4.4). We now perform a sys-
sample withN, (or S) sufficiently large such that spin waves tematic expansion up to second order in both spin waves

are just a small perturbation of the Bloch wall. For a quan- ) . :
titative description of this interaction we use a systematicandX/C' (Note thatX/c<1.5x 10" for YIG as discussed in

approach with the ratio of wall velocity to spin wave velocity S_ec. Vil ano_lgoocllvNA as we Sha!l see belowafter ins_er-
: T . ; tion of (5.1) into (5.5 and expansion to second order in the
X/c as a small parameter. This is justified since typically

: L spin wavesep and second order in the Bloch wall velocit
X<c~10% cm/s. We construct then aab initio theory for >P ® y

the soliton dissipation by integrating out the spin waves. Fi-X/C' the transition amplitude takes the form

nally, by deriving the spectral function of the damping kernel

we can make contact with the phenomenological Caldeira- ({Qb}|e*ﬁ/‘/|{9a}>:f X e SXIE[X], (5.6

Leggett formalism of dissipatiofr. A brief account of the

following results has been given in Refs. 21 and 24.
We consider elongated sampl@s. Fig. 1) of sufficiently

Thus in the uniform limit our theory reproduces the spin
parity effect of Ref. 18; moreover, in the limit,<K,, the
tunneling exponent agrees with Refs. 60 and 9 Andith
Ref. 7.

where

small cross sectional area such that the transverse spin M.
waved*® around the Bloch wall are frozen ot This con- '(/X:f dr[ —iaX+ ?XZ] (5.7)
dition typically requiresN, to be less than ) and thus can

easily be reconciled with the above condition th{>1. s the action of a free Bloch wall, and where
Motivated by materials such as YIG which are favorable for

MQP we consider the limit of large hard-axis anisotropy. 5Q o
This allows us to build upon the results of the last section F[X]= | Z¢ & f ¢6€D)de<§) e Nale- L7+ 7ot 7 ¢}

and we can treat the interaction between Bloch wall and spin 5.9
waves within the sine-Gordon mod&l. ’

For notational simplicity we restrict ourselves for the describes the interaction between the Bloch wall and the spin
moment to one of the Bloch walls (3.3, waves. Here we have introduced the scalar product
$o(X) = dpg-1c-1(X). First we recall thaipo(x—X) is, for  a.b=fdxdra*b and the integral in thé function is under-
arbitrary X, a static solution of5.”ss=0. We now consider stood as an integral ovex:
field configurations describing a Bloch wall at a positXn We now discuss the various terms that have been intro-
surrounded by arbitrary spin waves duced in(5.6)—(5.8). The first term in the actio(b.7) has the

form of a gauge potential

H(X,7) = po(X—X) + o(X= X, 7), (5.1

andelevate X ) to a dynamical variable. However, E¢.1)

contains now a redundant description of a rigid translation oft originates from the topological term i#.4) and from the
the soliton: A translation is described either Kyor by the relationfdx d.¢¢(x—X)=— 7 X since each soliton flips the
“zero-mode” (Goldstone modegy(X,7) = ¢h(x).88To  spins bym= [dx¢g.

avoid double counting, we thus have to impose the constraint The second term ifb.7) is the kinetic energy of the Bloch
that the spin wave modes be orthogonal to the zero mode wall and the mass is given by

a=mSN,y/a. (5.9
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E, N, /K, 1 _
M=2=—7\ 3K (5.10 K()=—-23 Kfe (5.19

This value coincides with the Dimg mas4’ This can also be cast into standard Caldeira-Leggett
M =Npa2/(27y26) with y=gug/4 if the hard-axis anisot- Nhotation?>*
ropy is of purely demagnetizing origirK,=2wM3a? with 1 (=
Mo=gugS/a’. We thus have given microscopic derivation K(7)= _f dwd(w)D (7). (5.16
of the Daing wall mass m™Jo

In (5.7) we have dropped a ter8E, with E, the Bloch
wall energy(3.5) since the Bloch wall already exists in the
sample and is not created thermally. The thermal creation
Bloch wall pairs in the absence of an external field is negli- o
gibly small for temperatures in the kelvin range even for J(w)=—2®(w—w0)\/w2—wg, (5.17
samples as small as 50 X850 A. Only at higher tempera- wod

tures and in the presence of external fields does thermal cr¢ynich vanishes forw < wo=2c/ 5= (4a/S) VK,K,, the an-

HereD (7)=e“!" is theT—0 limit of (B18) and the spec-
Jral function is given b$P

ation of Bloch wall pairs become appreciaffe. isotropy gap of the spin wave$For material values as in
The functionalF (5.8 describes the coupling between y|G, this gap corresponds to a temperatureTgf=0.2 K.
spin waves and the Bloch wall. The operétor Other materials have in general larger anisotropies and thus

higherT.) In deriving(5.17) from (5.19 we have used the
(5.11) renormalization(B10). It is only after this renormalization
' that the memory kernek becomes positive definité@as is

ith k=J/c2 d ib h . d needed for convergence
with «=J/c” describes the spin wave spectrum around a ¢ oy the dynamics ofX is slow compared to the time

static Bloch wall. The remaining operators are responsiblg ;i tion of the damping kernel, i.e., if the instanton
for the dynamic coupling between spin waves and doma”?requency o, (to be evaluated belowis much smaller

wall, than wy=2c/8, and if the temperature is small such
. - - , - that B>w; !, then we may expandX(7)—X(o)
o _ 242 J=— 2 q4n Rad B
HZ2RN0 = 1 Xy, J==26K o (512 ~(7—o0)X(o), and the damping kernel reduces to a pure
Due to the constraint5.2) the exponential irF, Eq. (5.9, mass renormalization. Note that this mass renormalization is
does not contain a term linear in the velockyand in the an O((NA)O? correction of the wall masé <N, . Since all
spin wavese. It has been pointed otft®! that this is an these conditions will be satisfied for the tunneling situations
important difference from the standard Caldeira-Legget€onsidered below, we see that we end up with a deceptively
model® However, despite this nonlinear coupling we shallSimple effective description of the Bloch wall dynamics,
see shortly that at low temperatures the dissipation due tgiven by the first two terms i5.14.
spin waves can — if this should be desirable — perfectly
well be modeled by a Caldeira-Leggett approé&ich cases VI. INTERFERENCE EFFECTS DUE TO THE BERRY
have actually been discussed in Appendix | of Ref), 26 PHASE
though the precise form of the relevant spectral function can
only be obtained from a microscopic calculation as presente
here.
After the evaluation of5.5) which is sketched in Appen-
dix B and collecting Eqs5.7), (B4), (B5), and(B17) we can
express the transition amplitud®.6) as

1-2 secﬁ(%)

o 2 2
O=—=30—kd;+K,

In the last section we derived an effective action for the
gynamics of the Bloch wall position. We showed that damp-
ing due to spin waves leads to a gap in the spectral function
and thus leads to a mere renormalization of the wall mass at
low temperatures. More importantly, we have identified a
topological term in the action which has its origin in the
Berry phase terng2.4) of the original spin action.
({Qb}|e’ﬁ'7‘"|{ﬂa}>=f X e 7eltXl (513 Here we shall generalize these considerations to solitons
¢qc of arbitrary chirality C and chargeQ which are all
with the effective action for the soliton position energetically degenerate. We show that the interference be-
tween states of different chirality gives rise to remarkable
‘ B R Y P effects such as the halving of the Brillouin zone and the
el X]= JO dT[ —iaX+— XZ] alternation of chirality in reciprocal space for half-integral
spin.

18 - These effects originate in the fact that for arbitrary soli-
+ EJO dTJO doK(7—a)[X(7)—X(o)]? tons, the topological terr2.4)

(5.14 iﬁf dxboc(Xx—X)= —iaCX 6.1
p QC =—la (6.2)
The damping kernel has been evaluated for arbitrary tem-
peratures in Appendix B. Here we restrict ourselves to lowdepends on the soliton chirality (but not on its charg€))
temperaturesp— oo, where the damping kernéB19) takes (a=wSN,/a). This chirality dependence can intuitively be
the form understood as follows. As the soliton sweeps across a given
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spin, the spin is rotated by an angter (after the wall is  chiralities contribute equally to the transition amplitude.
sufficiently far away, the rotation sense being uniquely de- However, if the soliton is in a state difinite chirality only
termined by the chirality and the direction of motion of the one path contributes to the transition amplitu@e5b and
Bloch wall. nearest-neighbor hopping is allowebtlo such interference

At low temperatures and for solitons of arbitrary chirality occurs for integero. Note that this interference effect is
the effective actiori5.14) of a soliton in an external potential entirely due to the topological term {i%.2) which in turn is
V(X) thus takes the form a consequence of the topological term in the sine-Gordon
action (4.4).

We now investigate how this interference affects the dis-

. M.
(o7 — — __y2
/IX.C] J dr [ laCX+ 2 XEHV(X)p. (6.2 persion of solitons and in this way can become observable.

Here we have used the ma&s10 rather than the dressed
massM . since the mass renormalizations at low tempera-
tures are smalD((N,)°) and the valug5.10) thus represents In this section we discuss the dynamics of a soliton in an
a good approximation for the experimentally observed wallarbitrarily weak periodic potentiaf(X). The Hamiltonian is
mass. In addition we have introduced a periodic potentiagiven by (6.4) with V,— 0. Despite being simple this case
V(X) of periodd, and we make the natural assumption thatalready captures most of the characteristic features of the
d is some integer multiple of the lattice constantFor defi-  tight-binding limit which will be discussed below. For sim-

B. Dispersion in the nearly free limit

niteness we assume plicity we assume that the period of the potential is given by
d=a.
_ 27X Using periodic boundary conditions, the eigenstates of
VX)=Vo 1_00{ d /|’ 6.3 (6.4) are simply plane waves*X, with k=27n/L, L=Nd,

and the spectrum consists of two parabdtasresponding to

which has amplitude ¥2,.°" Such a potential can have its the two soliton chiralities

origin®*?Lin the discrete nature of the crystal lattice itself, or

for Bloch walls it can arise from a magnetic superlattice of 1

layers with different anisotropies. E(k,C=x1)= m(kmi a)?, (6.6)
The action(6.2) corresponds to the Hamiltonian

1 periodically extended by the reciprocal lattice vector
H==—(p—ac,)’+V(X), (6.4) G=2m/a. [Note that the requirement of gauge invariance
2M alone produces such a periodic extension even in the
wherep=—id/X is the Bloch wall momentum and, is ~ COmPplete absence of a periodic potential. The gauges
the Pauli matrix of the “pseudospin” characterizing the /€8d to  Hamiltonians (6.4) with a—(2n+1)a with
chirality C=+ of the Bloch wall. Obviously, this Hamil- "=0.=1.... . The gauge invariant dispersion is therefore
tonian conserves the chirality. For mathematical conve{he periodic extension d6.6) by a vector 2v.] _
nience, we choose periodic boundary conditions in the fol- e Berry phase thus leads to remarkable spin parity ef-
lowing. However, all our results are finite in the f€CtS in the dispersion: For half-odd-integer spinS, we
thermodynamic limit and none of our conclusions depend offave @=G/4 (mod G) and the parabolas are separated by
this choice of boundary conditiofi&. half the reciprocal lattice vectos/2. Thus the Brillouin
From both(6.2) and(6.4) it is evident that the topological Z0n€ is halved and two subsequent parabolas belong to op-
phase plays the role of a gauge potential whose effect on tHeoSIte ch|raI|t|es as illustrated in Fig. 3. The observability of
wall dynamics will be discussed next. We note that sucthis is discussed in Sec. VI D.

spin-dependent gauge potentials are not uncommon in prob- FOr integer spin, however, the dispersion is analogous to
lems involving Berry phase¥. that of a free particle of massl and the Berry phase is

inoperative since it merely shifts the dispersion by a recipro-
cal lattice vector.

Note that sinceax1l/a is independent of the sample
Before giving a rigorous discussion of the dispersion re4ength, the result is unchanged if we pass to the thermody-

lation, we give an argument to illustrate the interplay be-namic limit. Therefore(6.6) is independent of the boundary
tween the topological phase and soliton propagation. conditions’®

Consider the transition amplitude for the propagation of
the Bloch wall between nearest neighbors, which is given by

A. An illustrative example

C. Tight-binding limit

We now turn to a discussion of the system in the tight-
binding limit whereV(X) is no longer small. In the absence
of tunneling there exists a large number of degenerate
ground states corresponding to the soliton trapped at one
particular pinning site. If the pinning potential is not too
) large, the soliton can tunnel between the sites, and these
where o[ X]=[d7{(M/2)X2+V(X)}. For half-integer ground states split into thdowesh bandE(k,C) with
o=N,Sda, we thus arrive at a most important conclusion:

Nearest-neighbor hopping of the soliton is suppressed if both Hk,Cy=E(k,C)|k,C). (6.7)

d _ -
(O|e’3'7"|d>:§(; fo X daCldXg=70

d
=2 cosad)f gXe o, (6.5
0
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where we used6.7) and the definition o7 In addition, we
have restricted ourselves to the lowest band since we are
interested in the low-temperature limit. Note also that the
LHS of (6.9) does not contain higher-winding-number con-
tributions since we are not interested in finite size effects
arising from the sample topology. We now evaluaig and

get in a first step

a) © integer

L
2= f dX(X+1d,Cle"#7|X,C)
C 0

N"1 rmd+di2 _
:2 2 dXKX,C|k)lze—BE(k,C)+|k|d'
Ck m=0 Jmd-d/2

(6.10

+E where we used periodic boundary conditions and inserted a
complete set of Bloch states. Next, in the tight-binding limit
the main contributions to the integral are coming from the
vicinity of the potential minima,X=md, and the Bloch
C=-1 2e | {1 . functions can be replaced by their harmonic approximations,

—m/d
b) 6 1/2-integer

i.e., [(klmdy[>~|yn(0)|2N=ay/N. Here, ¢, is the ground

lg state in the harmonic approximation of the potential well and
—nd n/2d . ap= VM w/ 7 its normalization(square@l Thus we find
1 N-1
FIG. 3. Dlspgr3|on of a SO!ItOI’] ina weak periodic potential. 2~ _2 2 (md+ Id,C|e_ﬁ‘7/|md,C>. (6.12)
For c=N,Sda integer the dispersion resembles that of a Bloch aAp’C m=0

electron and the gaps at «#/d are due to the periodic pinning . ) . .
potential (6.3. (b) For o half-odd integer the Brillouin zone is USINg & path integral representation {6r11) and employing

halved and two subsequent band minima have opposite chiralitfh€ periodicity of 7 we obtain with(6.9)

Band gaps 2 arise due to tunneling between the chiralities as de- N—1
scribed by(6.22; E, andE_ are the dispersions as given (8/23. Z e—BE(k,C):i E e_ik'de(B)ZIdyx o /IXC]

C aoc=o X(0)=0 '
Since.7Z in (6.4) is invariant under translations by the po- (6.12

tgntial periodd and conserves the chirality pseudos.pin,.thewith 7[X,C] as in(6.2). The path integral on the RHS of
eigenstates are products of Bloch states and chirality €igens 12 is dominated by instantons between the potential
states  |k,C)=|k)®[C)  where 7lk=e*k) and  inima These instantons obey the Euler-Lagrange equation
a,|C)=C[C) with k=2an/Nd, n=01,...N~-1, and 6.1 6X= —M5(+V’(X) =0. For instance, a transition from

L=Nd. .7 is the translation operatdX|.7=(X+d|. _ _ _ N : S
For the evaluation of the band structure in the tight-x 0 toX=d (X=~d) is mediated by theanti-) instanton

binding limit we now develop a formalism which allows us 2

to keep careful track of the topological phases within the X*=+—arctare®("" 7, (6.13

instanton approach. To this end we start from the modified 7

partition functiorf* centered at the arbitary imaginary timg. The instanton
frequencyw=(27/d)yVy/M equals the harmonic oscilla-

2z, =t 7 e P, (6.9 tion frequency in the potential well. The instanton action is

given by

where tr{---} =3 (k,C|---|k,C). We use (6.8 rather V.= [X*,Cl=%FiadC, (6.19

than the usual partition functio=tr{e A"} for the fol-

lowing reason. As we have seen in the previous section, thehere. /= (4/7)dyMV,=8(Vy/w). The unusual second
Berry phase gives rise to a shift of the dispersion with reterm in (6.14) is purely imaginary and is a direct conse-
spect tok. However, the partition functior is insensitive  quence of the gauge potential (6.14 or (6.4) and distin-

to such shiftgat least if there is no perturbation which mixes guishes between instantons and anti-instantons. Note that
the chirality statesand thus represents an insufficient tool this term does not break time reversal invariance as the par-

for the evaluation of the band structure. tition function contains contributions of both chirality states
From (6.8) we can easily extract the dispersion by takingC=* 1.
the Fourier transform The path integral in6.12 can be expressed as the sum

over all distinct sequences ofn, instantons and
N—1 n_=n_,—1| anti-instantons which connect the initial state
S oeikdz =NS e BEKO) (6.9 X=0 with the final _state?((,B)ZId. Within this “dilute in-
=0 C==+ stanton gas approximatior” we obtain



3246 HANS-BENJAMIN BRAUN AND DANIEL LOSS 53

X(B)=Id ,
J' X e /IX.C] a) o integer E
X(0)=0
© =1
C=1
:"51067&0/2 E On, n_+I A
n,n_=0 '~ K
(JKBe /)™ (IKBe )"~ = | a
y B ' B | . (6.15 /d nid
n,! n_! b) ¢ 1/2—integer E

whered= \.7,/27M andK =2w /M arise from the integra-
tion over the zero modes and the Gaussian fluctuations
around an instanton, respectively. Insert{fdlH into (6.12),

using (6.14), and performing the sums, we obtain k
—m/2d m/2d
2 e—ﬁE(k,C):E e—B[w/2+s(k,C)], (616)
C C
FIG. 4. Soliton dispersion in the tight-binding limifa) For
where o=NsSda integer a standard tight-binding dispersion resus.
. For ¢ half-odd integer, the Brillouin zon@nd bandwidthis halved
€(k,C)=—2JKe “ocog (k+ aC)d]. (6.17  and two subsequent band minima belong to opposite chiralities. A
The ground state as a function lofis given by gap 2 de_velops if the two chiralities of the soliton are connected
by tunneling.
1 : . . -
E(k)=— lim =InY, e AEKO) (6.18 This band halving can also be understood in a more intui-
B— ¢ tive way: For half-integetr, a soliton acquires a Berry phase

iC for forward (—iC for backward hopping. In the ground
state this phase gets compensated by the Bloch phase, thus
creating two band minima &d= = 7r/2 which have oppo-
site chirality.
Finally, we give a more explicit formal argument for the
chirality correlation. We find the explicit form of the eigen-
A value E(k,C) by repeating the steps leading to E§.16),
E(k)=— 5cogkd), (6.19  but instead ofZ, we use Z =tr{|C)(C|.7 e A7}, which
projects onto a state of definite chirali@; Thus we find that
which is of standard tight-binding type. (6.19 we dropped E(k,C) is given bye(k,C) in Eq. (6.17. By comparing the

Similarly to the nearly free limit discussed in the previous
subsection, this dispersion is fundamentally different for
o=ad/m=N,Sda integer or half-odd integét:

Inserting (6.16) into (6.18 we obtain for integefor the
following dispersion:

the constantw/2. The bandwidth is given by ground-state energ§6.21) with E(k,C) we see thak inter-
_ vals with positive(negative sinkd belong to negativéposi-
A=80 /Y_’oe_,o (6.20 tive) chirality C. This result is derived in the north-pole pa-
2 ' ' rametrization. If, instead, we wuse the south-pole

parametrization, then the gauge potential(é2) changes
In contrast, foro half-integer we obtain sign and again we find that the chirality alternates, but now
with the opposite assignment between chirality and a gkven
interval. The physical consequence—alternating chirality
(6.21) ) . . ; .
with changingk—is the same in the two gauges, since,
gain, the absolutk value cannot be observed.

A
E(k) = ]sin(kd)].

In (6.19 and(6.21) we have suppressed sign changes whicha
correspond to a global shift & by 7/d. Such a global sign
cannot be measured since the absolute value isfexperi-
mentally not detectable. In the last two sections we have seen that the dispersion is
The dispersion6.21) now has cusps anthe bandwidth strongly affected by the parity ef=N,Sda. For o integer,
and the Brillouin zone are halved as shown in Fig. 3. the dispersion equals that of a particle in a periodic potential
Moreover, we draw from(6.16 and (6.18 the important while for o half-integer a halving of the Brillouin zone oc-
conclusion thastates whose wave vectors differ byhave  curs with alternating chiralities. In the latter case the disper-

D. Discussion and analogies to other physical systems

opposite chirality cf. Fig. 4. sion consists of mutually intersecting parabolas or tight-
Note that this period halving in reciprocal space is a con-inding bands. How can we observe such a dispersion?
sequence of the fact th£|=2cf'0d@Xe*V[x'C]=O for | Let us for definiteness focus on the nearly free limit with

odd [cf. (6.5]. However, one must not conclude from this a dispersion as shown in Fig. 3. Suppose the chirality has
fact that nearest-neighbor hopping is always suppressed: Ateen measured to l@=1 and the system is in its ground
fixed k# 0,= 7r/d, the ground-state conditidi6.18 selects a  state, i.e., in the minimum of &=1 parabola. If we now
branch of the dispersion wittefinite chirality, a dispersion drive the system out of its energy minimum, e.qg., by apply-
that results from nearest-neighbor hopping. Only at the cuspgig an external field along the easy axmee beloy, the

in (6.21) is hopping suppressed. Bloch wall will follow the C=1 parabola. The Bloch wall
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will remain on this parabola even beyond the crossing pointpf the coherent states, we would have obtained the same
providedthat the chiralityC is a conserved quantity. In this dispersion(6.6), (6.19, and(6.21), except for a global shift
sense, the two parabolas f6r=1 andC=—1 behave like k—k+2a which is unobservable.
two different “sheets” of the energy which are completely A dispersion consisting of disjoint parabolas dictated by
disconnected, and their intersection has no observable cogauge invariance and the formation of gaps due to tunneling
sequences if there is no mixing, i.e., tunneling, between thés quite a common phenomenon in condensed matter physics.
chiralities of the Bloch wall. Persistent currents in isolated metal ridfighe Josephson

Nevertheless, the dispersion of Fig(tBin line) is a pre-  effect/® and the tunneling of quasiparticles between edge
cursor of a striking physical effect: As soon as there is tunstates in the fractional quantum Hall regiffieight serve as
neling between the chiralities, the different “sheets” get con-familiar examples.
nected and for half-integer spins a gap develops at the For further illustration let us briefly discuss some relations
crossing points of parabolas belonging @=*=1. At the  between our spin effect and, say, persistent currents. First, in
same time the halving of the Brillouin zone becomes observthe spin system the dispersion remains unaltered in the ther-
able. Formally this can be described as follows. In the presmodynamic limit, whereas persistent currents are a finite size
ence of tunneling between the two wall chiralitisge Sec. effect, resulting from the discreteness of the energy levels. In
VIlI) the Hamiltonian (6.4) acquires an additional term addition, we consider a simply connected sample topology
€0y, while a persistent current relies on the ring geometry of the
sample. In the spin system it is ti$é topology of spin space
restricted to the easy plane, not the topology of the sample,
which is responsible for the interference effect.

An electron of massn confined to a ring of radiug
which is threaded by the electromagnetic fthxs described
by the Hamiltonian

1
.7K=m(p—aaz)2+V(X)+eax, (6.22

such that the chiralityC (i.e., o,) is no longer a conserved
guantity. We are interested in the limit of small chirality tun-
neling and therefore will be much smaller than the band-
width A (estimates fore will be given in Sec. VI). For o
half odd integer, the degeneracy at the poigis-nw/a is
lifted and the dispersion splits into two bands which for
|k—k,|<m/a are given by

hZ
e (i _ 2
= g (T100=®)?, (6.24

1 where ® is measured in units of the flux quantum
E.(k)= W[(k_ Kn)?+ a’* J4a?(k—k,) 2+ €], ®,=hcle, and @ is the azimuthal angle. The eigenfunctions
623 & e'"? with eigenvaluesE,= (4%/2mp?)(n—®)?, where
' n=0,+x1,... . Theground-state energi as a function of
with e=2M e and where, for simplicity, we have stated the flux is the envelope of the set of energy parabolas separated
result in the nearly free limit. In this and the tight-binding by ®,.”” Thus the persistent currept — (e/%)JEg /P is
limit the two bands are separated by a gapa k=k,, as  a sawtooth curve with discontinuities |g|=n/2 where the
shown in Figs. 3 and 4. parabolas intersect. Suppose now that 0 and that the sys-
Solving for the corresponding eigenstates we recognizéem is in its ground state with=0. If the flux is increased
that the chirality continuously switches fro@==*1 to  adiabatically, the system will stay on the=0 parabola even
C=*1 as we pass from one band minimum to an adjacenfor ®>1/2 since the angular momentum is a conserved
one. quantity. Thus the electron will not see the other parabolas
We thus have established that the spectrum give6.6) and the spectrum consists of disconnected “sheets” of pa-
and(6.2]) is reached in the limie— 0. Note that the experi- rabolas. This behavior is analogous to that for the soliton
mental observation of the gap depends on the probabilitgispersion(6.6) for half-integer spin.
of Zener interband transitions and thus on the time scale However, if angular momentum is no longer conserved,
at which the band structure is probed. In the nearly freee.g., due to the presence of a scattering potential, the parabo-
limit, the Zener probabilitf® can be expressed 4s* las will be connected and a gap develops at their crossing
Pxexp{—(m/2)(e’TIHEy)}, whereT=2m/ wg is the time to  points. The scattering potential thus plays a role similar to
cross the Brillouin zone, withvg=Fd/% being the Bloch the eo, term in (6.22 caused by tunneling between the
frequency and- =2gugSNyH/a the driving force due to an chiralities.
external fieldH (along, say, the easy axis, see Sec. VIl The mere existence of interference effects in a metal ring
Eo=(2%/2M)(w/d)? is the kinetic energy at the zone bound- can also be derived from the following argument. Assume
ary. Thus, to optimize observabilty we must havethat®=1/2 and let us imagine having prepared two wave
A= (7/2)(°TIHE)> 1, which is easy to achieve since typi- packets of opposite angular momentum, but otherwise iden-
cally T~10 7 s, giving A~100 for YIG, if we choose tical. If we let these wave packets dynamically evolve until
H~10"2 Oe, d=a, and e~Ey/10~10 mK kg (see Sec. they have traveled half the circumference, one clockwise and
VIl). The alternation of chirality could then be observed, forthe other anticlockwise, they will have picked up Aharonov-
instance, by(optical) dichroism technigues which would be Bohm phases of opposite sign such tiiar ®=1/2) de-
sensitive to the rotation sense of the magnetization within thetructive interference occurs, leading to a vanishing transi-
Bloch wall. tion amplitude between initial and final states. This behavior
We emphasize that these results are gauge independent. i,similar to the spin case described&5), where the clock-
instead, we had started from the south-pole parametrizatiowise and anticlockwise traveling wave packets correspond to
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the two chirality states of the solitdmote again that the real U (X)= — ka secR[(X—x,)/ ] of width & for the wall cen-
space topology of the ferromagnet is irreleyant ter. Thus even whera is of the order of the strength\, of
the periodic potential, the impurity potential only leads to a
small variation ¢/ 8) ka between pinning sites separated by
VIl. EXPERIMENTAL IMPLICATIONS d< 4. This holds also for a random impurity distribution

even in the unrealistic cagéor YIG) of high disorder with

In this section we give numerical estimates for the effectg), o impurity per transverse layer. Under the action of an

discussed in the previous sections. For definiteness Wgyiarnal fieldH, along the easy axis, which can be much

concentrate on material parameters fO[Z\g'G- Exchdhge smaller than the coercivityl., all wells created by the im-
and anisotrop§’ are given byJ=1.65<10"*" erg/cm and puyrities can be rendered unstable such that they no longer
K,=9.61x10"** erglcm, where a cell with lattice constant trap the wall. Localization of the wall is then determined by
a=6.2 A contains ones=5/2 spin implying a saturation quantum intereference effects only which we can character-
magnetizatioﬁ9 of My=194 Oe (i.e., KZ=277MSa2 ize by the Anderson localization length. This length, how-
=9.1x10 % erg/cm), wall width 5=J/K,=414 A, and ever, is sufficiently large and explicity given by
spin wave velocity, Eq(4.5), c=6x 10" cm/s. The pinning aNi(A/2V)2~(5x10%)a.3
potential strength can be related to an experimentally We note that tunneling in periodic pinning potentials al-
observed coercivity by addiiy a Zeeman term lows much higher crossover temperatures than tunneling out
—2.7MgHgX to the pinning potential V(X), with  of a single isolatedmetastable potential. Indeed, in the
#=Nua? the cross sectional area of the sample. Definingpresence of an external field along the easy axis the total
the coercivityH, as the field at which the barrier height energy is U(X)=—VysechX/5—2. ZMH,X where
vanishes, we obtaiW,/.Z2=H .M d/7. Note that the coer- V0:(3\/§/2)5,//9M0HC, The crossover temperature and
civity is proportional to the slop&/o/d of the potential. the WKB exponent are then given byT.=
Looking at the WKB exponent6.14), ./ o= (4/m)dyMVy,  2%45/18)(Qug/kg) VTH Mo and .7,=2%46/5)iNs
we see that a low coercivity does not necessarily imply ax \JH./7Mye* where e=1—Hq/H.. For example, for a
high tunneling probability. The crucial condition is a small y|G sample of 50 Ax200 A withH.=10 Oe, this leads to
potential widthd. crossover temperatures in the millikelvin range
We now assume a coercivifjof H.=2 Oe andd=3a.  0.5<T,<1.4 mK while the WKB exponent changes in the
Note that the wall extends over 22 pinning sites. The instanmterval 0.2<.7, /4 <31.1.
ton frequency then becomes= (27/d) Vo /M = 1.4x 10'° We now turn to a discussion afuantum tunneling be-
s~ 1, and|X/c|=w,d/mc<1.5x10 2. For a sample with tween the two chirality states of a solitowe shall obtain
cross sectional areaz=10* A2 we haveN,=260, and the explicit estimates for the level splitting introduced in Eq.
wall containsN,8/a=2x10* spins. The pinning potential (6.22. In addition, we shall see that chirality tunneling pro-
height takes the value\,= 330 mKkg, and the bandwidth vides a scenario for mesoscopic quantum coherence with one
(6.20 is A/i=10° s~ 1, which is of the order of the mea- important advantage that both barrier height and bias of the
sured resonance frequency in Ref. 15. Theibpmass, Eq. double well can be tuned independently by external fields.
(5.10, corresponding to this cross sectional arédakes the Chirality tunneling involves rotation of the spins out of
valueM =1.24x 10?2 g=(1.36x10°)m,, wherem, is the  the easy plane and thus cannot be described withirkthie
electron mass. The crossover temperature between quantupproximation which we have used so far. To treat this case
tunneling and thermally activated behavior is we must go back to the full actiof2.3) and deal with both
T.=2Vh!.Ykg=hwldkg=28 mK, sincefiw/kg=110 mK  polar anglesp and §. The generalization of the wall dynam-
for d=3a. Note that the bandwidth is extremely sensitive toics to this situation, in particular, the reduction to the collec-
the details of the pinning potential. For instancedifa  tive coordinate and the dissipation due to spin waves, is nec-
(lattice pinning but all other parameters are chosen as abovegssarily more involved but still feasibfé.However, since
we obtain w=2.5x10% s~ (corresponding to 190 mK this generalization is somewhat outside the scope of the
and A/A=1.2x10"° st (since ./y/h=2.3), or A=0.8 present work we shall only quote the essential results here
times the pinning potential heightvg=110 mK kg, while  and give the details in a forthcoming papéiFor definite-
T.=48 mK. ness we concentrate now on ferromagnets where the easy-
We emphasize that these numbers are rather material d@xis anisotropy exceeds the one along the hard axis, i.e.,
pendent. For instance, in an orthoferrite, a canted antiferrd&,>K; typical examples are bubble materiéfsTo take
magnet, the effective wall mass is by a factof Bfnallef’  advantage of the resulting approximate symmetry around the
than the value obtained from the ' Brog wall mass(5.10. z axis, we represent the magnetization field as
Thus tunneling could also occur at much larger potential2= (sinésing, cosd, sin 6 cosd).*’ The Bloch wall is then
heights and higher crossover temperatures. described by a rotation of the spins in the plane about the
Next, we briefly address the issue of impuritféss more  angle ¢, and the chirality switching by a rotation in the
detailed account will be given elsewhéfeThe analysis so plane about the anglé= =+ 7. In addition, we allow for an
far was based on the fact that the magnetic field is constargixternal magnetic fieltH, along the hard axig with which
throughout the sample. A single impuritgr similarly an  one can tune the barrier height that separates the two wall
inhomogeneous fiejJdcan be incorporated into the energy chiralities.
(2.5 by adding a termkad(x— xo)sinf¢ wherex is of the We now integrate out thé fluctuations around the Bloch
order of the anisotropy constali,. Although the impurity ~ wall and restrict ourselves to uniform rotationsdn(which
is pointlike, it leads to an extended potential is valid*’ if the wall width & is less thanyJ/K,). After a
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careful treatment of the zero mode, we obtain an effectiveand ~ the  chirality = has  been  defined as
Langrangian ing(7), C=sgr{[dx¢'(1—cos)} with ¢'=d,¢. Note thata is
proportional to the area on the unit sphere between the north

o Mc., pole and the trajectory which is traced out by a given spin
:’50:7¢ +V(4), (7.3) upon passing of the Bloch waltf. Fig. 4). Since the Bloch
wall shape changes in response to an applied external field,
V=« cof¢+ 5 cosp+ ik, (7.2 a will in general differ from the valuex=N,Sn/a of the
Bloch wall ¢qc, 6=m/2.
where M =N,S*7%6/8a°K, is the effective mass associ-  An external field is taken into account by adding a Zee-

ated with the chirality dynamics, and the parametersnan termgugB-=;S to the spin Hamiltonianz (2.1). Cor-

k=26N,K, and n=gugSNy76H,/a characterize the bar- respondingly, the total enerdy (2.5) is changed into
rier potential V. Defining the anisotropy field by

H,=4aK,/gugSw and noting that the chirality tunnels be- o J _ MBS
tween the potential minima defined by dgg,= H=H+Nah- | dx@, h=g a B.
—H,/H,=v—1, we obtain for the level splitting

(8.3

For fields along the easy axis or the hard axis, the static
6247%\/%6,50, 73 configurations satisfy the Euler-Lagrange equatiéhs=0,

. . . 436" ¢' cosf+ 23" sind+ K sinb sin2
where y is a numerical constant of order 1. The instanton 0" ¢’ cos ¢"sind+K,sing sin2¢

action.”. and frequencyw. are given by +h, sing—hy cosp=0,
B K, —2J6"+sin26[J¢'*— K sinf ¢—K,]+h,cosd cosp
Ve=2mwS(Npbla) K—v3/2, (7.4
y +hycos sing—h,sind=0. (8.4
8a o We first discuss fields along the hard axis as they have the
we="— VKK (7.9 most interesting effect on the Berry phase. Figr,=0 but

h,#0 all four configurations that emerge frogy,c in (3.3

The crossover temperature becomes- w./8kg. Note the are still energetically degenerate: The invariancé2of) un-
characteristic power dependence on the external control paer 7 rotations around the axis (which remains intact for
rameterv=1—H,/H, with which the chirality splittinge = h,#0) implies the degeneracy of configurations of opposite
can be changed over a large range. In the next section weharge but the same chirality. In addition, states of opposite
shall also see how a field, can be used to offset unwanted chirality and charge are also degenerate since with
bias between the potential minima. d(x),0(x) also— ¢p(x),0(x) solve(8.4) (with h, ,=0).

We illustrate these results with some typical numbers. In the limit of large hard-axis anisotrop¥,>K,, the
Choosing N é/a~10%, Ky/K,~10, v~ 103, aK,~1 K  possible¢ configurations are stiltbgc given by (3.3) while
kg, andS=5/2, we find for the chirality splittingg~5 mK
kg, while the crossover temperaturelis~13 mK. The val- cosf=—h,/K,. (8.9
ues for the bandwidtA are roughly the same as before. This Inserting this into(8.2) we have
shows that the splitting can be made quite larg@n the ~
scale ofA) just by tuning the external field along the hard a=a(l+h,/Ky), (8.6)
axis, while the crossover temperature is still reasonably highwhich demonstrates that the topological ph&sd) can in-
Without field, i.e.,p=1, the splittinge is only of nonvanish- deed be tuned by the external field.

ing value if the wall is narrow and/or N4~ 1, which means For arbitrary values of the ratil,/K, no analytical so-
if the system is close to being strictly one dimensional. lution for the soliton structure can be found. However, we
can convince ourselves thatis still field dependent. As is
VIIl. INFLUENCE OF EXTERNAL FIELDS verified by inserting¢’=6'=0 and ¢=* /2 into (8.4),

the spins far away from the soliton get pulled out of the easy
In this section we show that external fields allow us topjane, cos=—h,/[2(K,+K,)]. Thus in general: is different
control the gauge potential. In the presence of external from «.
fields the four degenerate Bloch wall configurations How does the field dependence (8.6) affect the band
$qc,0=ml2 get deformed into new configurations structure? Let us assume thatN,Sd/a is a positive inte-
#(x),6(x). For moving solitons,$(x—X),0(x—X), the  ger, i.e.@=a=mald for h,=0. The dispersion then has the

Berry phase ternf2.4) becomes tight-binding form (6.19 of Fig. 3@ and consists of two
coinciding chirality sheets. With increasing fielti, the
Fng=—I &éfgdr X, (8.1) sheets of~opposite chiralig= = get s%parated, each sh'ifted
0 by Ak=|a—al|. At an external fielch;=K,a/2SN,\d, this

shift becomesAk=7r/2d and the dispersion shown in Fig.
3(b) is reached. Thus a system with integercan be con-
L tinuously transformed until it reaches half-integer behavior,
J dx ¢'(1—cosd)|, 8y  and vice ver.sé.1 N(())tg2 that this behavior is periodic in the
12 field with period 2 .°< Moreover, if the fieldh,(t) and thus

where

NS
a

a=
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a(t) depends on time, it is clear from the effective Hamil- the “Villain-mode” which has been observed in neutron-
tonian (6.22 thatda/dt plays the role of a force driving the scattering experimentsS.E. Nagleret al, Phys. Rev. Lett.
Bloch wall in the positive/negative direction for positive/ 49, 590(1982].
negative chirality. Note that this force has its origin in the
“classical” part of the Berry phasefcosy, and therefore can ACKNOWLEDGMENTS
also be deduced from theassicalLandau-Lifshitz equation
(2.7). (It is somewhat surprising that this force, as far as we V]Yel e:jrg grat(_aful to?ﬁ.s' Arroktthand bA J. Leggetttfo(; T)an%
know, has not been discussed in the literajure. lliISSeEl:?C 'S]PUCSS'OZS' dlsthWOSr . asN eeBnBs)uppor ed by he

A similar driving effect is achieved by applying an exter- of Canada and the Swiss NGB.B.).
nal field hy, along the easy axis. Indeed, inserting
doc(x—X) of Eq. (3.3 into the Zeeman term APPENDIX A: COHFRENT STATES
hyJdx singgc=—2hNAQX we see that a weak magnetic AND BERRY'S PHASE
field acts like a(classical force on the soliton center where | this Appendix we discuss the path integrals for coher-
Q is the charge of the soliton. It can be seen that the phasgnt spin staté§ and, in particular, the associated Berry
a remains unaffected bly, . Note that in analogy to electro- phases. We emphasize single valuedness of spin states and
magnetism, wher&=—A/c, h, plays the role of the vector the role of admissible gauges since this is of central impor-
potentialA (albeit chirality dependentwhile hy, corresponds  tance for the spin parity effects discussed in the main text.
to the electric fieldE. Elsewhere we have discussed in A coherent state is the state of minimal uncertainty for
detaif+**how such forces can give rise to Bloch oscillations spin components transverse to the spin quantization axis. It is
of the Bloch wall—a magnetic analogue of the Josephsoriefined as the maximum eigenstateSpf |S,M =S}, rotated
effect. Similarly, we expect a variety of effects for oscillating into the direction of the unit vector
fields such as resonances due to the Wannier-Stark laddes= (sind cosp, sindsing, cod),
and related localization effects. Here we just note that exter- _ _ _
nal fields along the easy or hard axis can be used to drive the |Q)=e"S9e71S% 7SS M=), (A1)
system through the Brillouin zone.

Finally, we consider an external fielg, along the propa-
gation axis. This field lifts the degeneracy between walls o
opposite chirality(with Q fixed), and we find from(8.3

2Ec=H[¢q c-+]—H[dg c=-1=47mQN,sh,, which is

whereS is the spin operator. By construction, the coherent
state (A1) obeys the eigenvalue equati® Q|Q)=SQ)
and is an eigenvector & with eigenvalueS(S+1). By use

of Wigner's formula®* (A1) can be expressed as

simply the effective Zeeman splitting energy of the two s g |12
chirality states. From the exact soluti6hso (8.4 we see |Q)y=e-iSx > e iM¢
= ; ~ s \|S+M
that the phase becomes= a+ Cag(h,), wherea, vanishes M=-5S
for hy—0. Hence the relative phase between walls of oppo- g\ SM S-M
siteC remains 2, independent of the field, and the effective X co%> (sin— |S,M). (A2)
Hamiltonian(6.22 becomes 2

The Euler angley has to be fixed by the requirement that the
coherent state besingle value®® upon ¢— ¢+2mn,

1
H==—(p—ao,)’+V(X)+eoy,+Eco,. (8.7 n=0,x1,... . Thusy is only allowed to take the following
2M .
values:
Qualitatively, we see that the last term shifts the dispersion x=(2n+1)¢, n=0=x1,.... (A3)

sheets of opposite chirality in opposiertical directions. In For the choicesn=—1 andn=0 we shall use the terms

the free limit, V=0, the eigenvalues areE. “north-" and “south-pole” gauge, respectively. Of course,
= (k2 + a®)/2M = [ka(ka+2M EQ)/MZJ_F €’+EC]". ThUS e results obtained in either of these gauges must be physi-
the results of Sec. VI remain basically unchanged forgq)1y equivalent. Note that this requirement of single valued-
Ec=e with the level splitting atk=0 becoming now pess has nothing to do with the transformation properties of
2\e*+E¢. For Ec>e tunneling of the chirality(as dis- Q) under active rotationsby 2z which, of course, will
cussed in Sec. V]Iand hence its alternation in the Brillouin a|WayS produce a factor of—(l)zs irrespective of the choice
zone will get suppressed. For instance,eif 10 mK this  of y.
requiresH, not to exceed & 10~ * Oe (for the YIG values of For later use we list a few important properf% of the
Sec. VI). On the other hand, the field, provides a useful coherent state€l.2) in the north-pole gaugg= — ¢. From
tool to enhance observability of the chirality switching, since(1.2) it follows that coherent states are in general not or-
it can be used to offset unwanted level detuning and to rethogonal,
store the degeneracy of the chirality states.

Note added in proofSince submission of the manuscript o 6 6 0 . ,\2S
we have been able to demonstrate that band halving and ~ (€2'[Q)= 0055C0§+5m75m§e'(¢_d’) . (Ad)
chirality correlation also occur in the extreme quantum limit
of ferromagnetic and antiferromagnetic sgichains[H.-B.  sinceQ may vary continuously on the sphere while there are
Braun and D. Loss, Int. J. Mod. Phys. (B be published. only 25+ 1 mutually orthogonal spin eigenstates. For infini-
For antiferromagnetic chains the dispersion is also known atesimally separated angles, the overlap becomes
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(Q'|Q)=1+iSsp(coss—1), (A5)  wheredi(7n) = ¢i(7y+1) — ¢i(7,). These overlap terms are

, . of purely kinematical origin and contribute {&9) even in
where d¢=¢’—¢. For the south-pole parametrization yhe ghsence of a Hamiltonian. It is these terms which are
x=¢, the overlap between infinitesimally separated state$egponsible for the distinct behavior of half-odd-integral and

becomes integral spins. Passing to the time continuum litit> 0 we
(Q'|Q)=1+iS5¢(cosh+1). (Ag)  obtain

Coherent states also form an overcomplete *°set .

[(2S+1)/47]fdQ|Q)(Q|=1, wheredQ =d¢d(cosd). Al-  ({Lule P Qa})=

though the states are not orthogonal, the overlap between
different states decreases for rapidly lag®vith increasing

g [ .
angle, since xexp—f dT|ISZ ¢i(7)
0 i

ﬁf@Qi(T)>

1 S
(@ |ﬂ>|=<§(1+Q ~9)) : (A7) x[l—cosﬂi(r)]+,%[8()i(7')]],

In addition we shall make use of the fact that for lagjeve
have (A12)

, _ , where 20;(7)=11,,/dQ,(7,) is the measure, and we re-

(Q']9|Q)=[SQ+0(VS)(Q'| D). (A8) placedd¢;(7)/ e by dey(7)/d.

This relation follows from the exact expressions of the spin In the space continuum limit where the spin configura-

matrix elements and from the fact that fluctuations have sizéions vary slowly over the lattice constaatthe exchange

O(VS) since the overlap (1.7 decreases as term in 7[SQ;] becomes —3; Qi ;. ,=[(d’r/a)

exp{— Q' _9)2/4}_ X =,(VQ;)?. The transition amplitude then takes finally the
We derive now a path integral representation for the tranform

sition amplitude between two spin configurations. To this

end, we represent the state vec'_[or of_the systerrsl as a prodLﬁhbHe—w/HQaD:f G (co)e™ el$.0] (A13)

of coherent states over all lattice sitfd})=®,",[€).

Following the usual proceduf@we slice the interval it \here the path integral runs over configurations that satisfy
identical pieces of lengte= 8/N and insert complete sets of ((x 0)=0,(x) andQ(x,8)=Q,(x). The Euclidean action

states at each lattice site and imaginary time stepne, is given by<7E=!7Wz+f€dTH, where the dynamics is de-
<{Qb}|e—ﬁ%|{ga}> termined by the Wess-Zumino or Berry phase term
N—-1 N_ . o S , 8 -
:(nll_[l Hl in(rm)) ,/WZ—I§J’ d rJO dr¢(1-cod), (A14)
N~1 and the energy of the spin configuration is given by
< I1 (@ D} 1= e [{QU)}), (A9) o

) H=f—3(382a2[(V0)2+sin20(V¢)2]
wheredQ;=[(25+1)/47]dQ; and|{Q(70)})=|{Q2,}) and a
|{.{){(TN)}>= [{Q}). In the limit of largeS we use(A8) and _ Ryszsinza st + K,S%co20). (A15)
write
Equations(A13)—(A15) generalize the formalism of micro-
({1 )}H1-e7 {Q(m)}) magnetics to include quantum interference effe€sr dis-
—(1— o7 cussion is not restricted to the anisotropy configurations
= (A= e [SQ(7) DAL a IR, (AL0) shown here, one could also include, e.g., magnetostatic in-
where. 7 [ SQ,(7,,)] is the diagonal element of the Hamil- teractions of more general form. In the particular case where
tonian and follows from (2.1) by substituting S by  the spin configuration only depends on one coordinate, we
SQ,(7,). An O(S*?) correction to this diagonal element has recover(2.2—(2.5).
been dropped following standard reasorfingor large S, Note that the Berry phase terfA14) has been derived in
large deviations between coherent states at adjacent imaghe the north-pole gauge= — ¢. If, instead, we had used
nary time steps are exponentially suppressed dugA®. the south-pole gauge= ¢ we would have obtained
Therefore the trajectories in imaginary time become smooth,
and from (A5) we obtain for the overlap between coherent

S B .
[ 3
states at adjacent imaginary time steps Swz= T asf d rfo dré(1+cos).  (Al6)

QU7 D)} This gauge dependence can be traced back to the gauge de-
Ny pendence of the overlapA5) and (A6) of infinitesimally
- 1—iS6d: 1— cosh: ’ A1l separated coherent states. It is instructive to express this
iljl {1-1S0¢i(ml ()} (AL1) overlap as a line integral
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s isfﬂ”dQ'A defined and the fluctuations have effective sx€1/\/N,).
(QQ7)=e®| Eins (Al7)  Rescaling 3=N,¢ and making use of the identity

over a “vector potential’Ay s= €,(cosd+1)/sing, where the det=exp r In, we can rewrite defQ/5X) as

upper (lower) sign corresponds to the nortlisouth) pole 52
parametrization. These vector potenfialare equivalent to exp tr Inl 1— — f o+ (512) f ip| i, (B3
that of a magnetic monopole of unit strength evaluated on VN4

the surrounding unit sphere. The gauge character of the dif- 12
ferent parametrizations of the coherent stéid) now be-  Where we used ¢,°=2/5 [cf. (3.5)], and where the constant

comes apparent. If we gauge transform the coherent stafXPltr In(2/9)} has been absorbed into the integration mea-
|Q)—>e A Q), where A=\¢, the overlap(A17) trans- Suré. The second term under the logarithm can be neglected
forms according té\—A+V ,A. By the choice of the gauge for largeN, and the last term being proportional X3 gives

one decides whether a part of the Berry phase “disappears’ise to a pure mass renormalization. Neglecting irrelevant
in the definition of the coherent state or whether it appeargrefactors, Eq(2.2) thus becomes
explicitly in the path integral via the overla@®17). How- .

ever, in order to preserve the single valuedness of the coher- F[X]:e—(AM/Z)fdrxzf @‘Apé(f boo
ent states—our fundamental postulate—only gauge transfor-

mations exp—iA} are admissibfé° that are single valued

e—pr[;H,zz];

upon ¢— ¢+ 2. Evidently, this is the case foh =2S¢ o (AM2) [ 1
(for all S) which relates the north- and south-pole parametri- =€ het’( T+ ) (B4)

zations. On the other hand, for half-odd-integer spin this con-
dition is violated forA = S¢ which relates the coherent state where the prime on the determinant denotes omission of the
with y=— ¢ to the one withy=0, but the latter is not single zero mode which is enforced by thé function, and
valued and thus not an admissible state. The correspondingM =O((N,)°) is a small mass renormalization whose ex-
vector potential would bé\,= —cotd e, and does not yield act value is not of interest here. In the evaluation of the
the full Berry phase accumulated in a closed circuit:determinant we will encounter sevefaltravioley divergent
$dQ- A, measures the area between the trajectory on thterms which also have the form of a mass renormalization of
unit sphere and the equator whifelQ- Ay s measures the order O((Np)°). All these renormalizations will change the
area between the trajectory and the north or south pole. FanassM into the experimentally observed “dressed” Bloch
trajectories crossing the datelMdthis is typically the case wall massM ;. We will thus drop all these renormalization

if spherical coordinates are chosen that are adapted terms and simply replackl —M g in the action(5.7).

the symmetry of the Hamiltonian the phase factor Moreover, since the SG model is known to be
exp(iS[dQ-Ay}, that results from the “wrong” choice renormalizablé and since we are interested only in the long
x=0 for the coherent stat@\1), does notcoincide with the time (infrared behavior there is no need here to carry out a
Berry phase term, eXis/dQ-Ay s}, for half-odd-integer systematic renormalization procedure to remove the short
spins and would, e.g., lead to a wrong semiclassical spitime divergences.

guantization. We now turn to the explicit evaluation of the determinant
in (B4). We make again use of the identity In gdt In and
APPENDIX B: EVALUATION expand the logarithm:
OF THE DAMPING KERNEL
In this Appendix we present the derivation of the damping ;
kernel (5.195 starting from Eq.(5.9). Vdet (£+ %)
In order to evaluateF in (5.8) we first complete the _ o (W2 In(#[1+ 5 L)
square in the exponential. As we are working only to order
O(X?/c?), it is sufficient to shiftp by p=(1/2)% " 7 since 1 .
_ _ e—(1/2)tr'[:f1,7[—(1/2)15*1//7':5'*1.7/‘+0((></c)3)]_
o [T+ TN o+ 7 o=(e+p)-[ £+ T (e+p)+O(X?) Vdet &’
(B1)

(B5)

(2 and. 7% are Hermitian. Thus Eq.(5.8) can be rewrittenas . . ) o
Since.7Z’=0(X/c) this represents an expansion in increas-

(o~ P , ing powers ofX/c. The factor{ det &1~ 2is independent of
F[X]_j 7 de{j dx{¢o"— bolo—plta(r—1") X and is the partition function of spin wave fluctuations
around the static Bloch wall. The trace ifB5),
« 5([ di[o—p]|eNae L7+ T, (B2) tr(---)==(k|---|k), is evaluated in the basis of eigenfunc-
tions of 7,

where o= ¢+ p. Equation(B2) can now be considerably
simplified. First we note thafdx¢op> [dxpys tep=0
due to the parity invariance ¢f” and (ant)symmetry of¢y  wherex=J/c% The anisotropy gaj, will have important
(¢4)- Thus thes function enforcesp to be orthogonal to the consequences for the form of the damping kernel below. The
zero mode. The Gaussian integrations ogeare then well  eigenfunctions factorize into a space awhaginary time

LK) =¢€k), €=IK+ kw?+ Ky, (B6)
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part, |K)=|w)|k), Where<7-|w):eiwf/\//_g with Matsubara ization which diverges logarithmicallyafter the partial

frequenciesw=2mv/B,v=0,=1,... . Since the contribu- renormalization(B10)]. As mentioned above, this term is
tion of the zero modep;, is explicitly excluded in(B5), we  Part of the dressing of the “bare” bing mass to the experi-
only need the spin wave staféé* mentally observed valuM o, and thus there is no need to

remove this divergence explicitly.
A The damping due to spin waves will be exclusively due to
(x|ky=N,[ —ik 5+ tanh(x/ &) ]e'*, (B7)  the remaining terms iiB5) which will be discussed next.

> a1/ ) ) Using the above notation, we have up to ord@r
whereN,=[L(1+k*5%)] ~“ Thek values in(B7) are im-

plicitly defined by
U 1 N "2

Ztr(.ﬁ' VAT o [(k|Xa,a,| k") (B13)
kL+A(k)=2mn, (B8) Kk

whereA (k) =2arctan1ks is the scattering phase shift of the In leading order in. we have

eigenfunction(B7).

To render the results finite in the thermodynamic limit, we = . , ' (0 — )
have to subtract the vacuum fluctuatihand thus renor- (KIXd:dx/k")=— 751«’ dre X(7). (B14)
malize,

Thus Eq.(B13) can be rewritten in the form
1 de( So+. %)
det(o+.%)  det(s+.2)"

®9 4 b (B .
Ztr(ffrl,%Y:f drf doX(7)X(o)y(t—0), (B15)
0 0

where %= — k92— JJ5+K, is the operator describing spin
waves around the anisotropy minimum in the absence of with
Bloch wall. £, has thesameeigenvaluegB6) as ¢ but the

space eigenfunctions are simply plane waves wherekthe 1
values are given b¥..=2mn/L rather than(B8). For the Y(1)=—>3 E
results given below which only involve one summation over B

k, the renormalizatior{B9) then simply amounts to the re-

kaw/ei(w’fw)T

[0+ wﬁ][w'z-l- wE] '

(B16)

w,0' K

where w?=c?(k?+ 6~ 2). With partial integrations and with

placement v(7+ B)=vy(7) Eq. (B15) reduces to
o = dk dA 1 1(6 [+
2 -2 2= _mdk[P(k)_Pfree]:j_wﬂ aK’ Ztr(z*l.%)zz—zfo deodUK(T—U)[X(T)—X(O')]Z,
(B10) (B17)

where p=dn/dk=L/27— (1/27)(dA/dK) is the density of WhereK(r)=—2d2y. In (B17), we have neglected a term
states corresponding t88), pyee=27/L, and where we go  2[X(8) —X(0)]Jd7Xy which turns out to be small for typi-
over now to the thermodynamic limit. From the definition of cal tunneling processes. For the evaluationyond K we
A it follows thatdA/dk= —26/(k?5°+1). make use of the exact relation

With these preliminaries, we can now rewrite the lowest-

order term in(B5) as follows: 20 elenT - costiw(|7|—B/2)]

D,(7)=

1 1 « . ?n:—oc wﬁ-l—wz_ sinh Bw/2) '
- St = E; 6—k[2<k| —ia k)N @]iX3,|w) (B19)
) ) wherew,=2mn/B and the RHS is understood to be periodi-
—(klaglk){w|X?|w)], (B11)  cally extended beyonfir|< /2. With (B16) and (B18) we

finally obtain fork = — 2%y
where k=J/c?. Using the eigenfunction$B7) we obtain
(k| —idyk' )=k +O(L™Y) and (k|aZk')=—k?6
+0O(L™1). Inserting the identity % [d7|7)( 7| we obtain in K(7)=2, k’w?
leading order in_ k

sinhZ(@) ~2D2 (7)

5 . (B19

Note that as a consequence of the relevant coupling between
1 . K k . - the systemX and the bath which is quadratic in the
- itr! = ﬁ; E_J dr{20X—kX%}. (B12)  path coordinates, K is proportional toD? rather tharD,,
as in the usual Caldeira-Leggett theory. For low tempera-
The first term on the RHS vanishes singeis symmetric in  tures, the damping kernel(B19) reduces to K(7)
bothk andw and the second term leads to a mass renormal= — 23 k2wze 2K,
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