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We study spin parity effects and the quantum propagation of solitons~Bloch walls! in quasi-one-dimensional
ferromagnets. Within a coherent state path integral approach we derive a quantum field theory for nonuniform
spin configurations. The effective action for the soliton position is shown to contain a gauge potential due to
the Berry phase and a damping term caused by the interaction between soliton and spin waves. For tempera-
tures below the anisotropy gap this dissipation reduces to a pure soliton mass renormalization. The quantum
dynamics of the soliton in a periodic lattice or pinning potential reveals remarkable consequences of the Berry
phase. For half-integer spin, destructive interference between opposite chiralities suppresses nearest-neighbor
hopping. Thus the Brillouin zone is halved, and for small mixing of the chiralities the dispersion reveals a
surprising dynamical correlation: Two subsequent band minima belong to different chirality states of the
soliton. For integer spin the Berry phase is inoperative and a simple tight-binding dispersion is obtained.
Finally it is shown that external fields can be used to interpolate continuously between the Bloch wall disper-
sions for half-integer and integer spin.

I. INTRODUCTION

Quantum effects in low-dimensional magnetism are a fas-
cinating subject which has attracted much interest over the
years. A notable example is antiferromagnetic chains where
the quantum spin~or Berry1! phase leads to remarkable par-
ity effects. It is for integer spinS only that the ground state
exhibits an excitation~or Haldane2! gap whereas for half-
odd-integralS such gaps are suppressed by interfering Berry
phases.3 Related to this phenomenon is the suppression of
mesoscopic stiffness fluctuations forS half-integral antifer-
romagnets, whereas such fluctuations grow with chain size
for integerS ~similar to universal conductance fluctuations in
mesoscopic metals!.4

Over recent years, the rapid advances in nanostructure
technology5 have opened the door to another class of mag-
netic systems: small single domain particles that display
striking mesoscopic quantum phenomena6 ~MQP! such as
quantum coherence, quantum tunneling, or spin parity ef-
fects. These particles exhibit one or several directions of
minimal anisotropy energy between which the spins can tun-
nel coherently. Motivated by theoretical predictions for uni-
form ferromagnets7–10and antiferromagnets11 several experi-
ments at subkelvin temperatures have shown either
temperature-independent relaxation phenomena12–14 or a
well-defined resonance15 ~in the ac susceptibility! which
scales exponentially with the number of spins16 in accor-
dance with theory.11 Although these observations have been
criticized on the basis of dissipation models, such as the
influence of nuclear spins,17 the experiments on antiferro-
magnetic ferritin15 provide a strong indication that the spins
indeed tunnel coherently at low temperatures.

In subsequent work, it has been shown18–21 that also tun-
neling depends on the spin parity via Berry phases, and that
magnetization switching is allowed only if the total spin of
the particle is integral, but not otherwise. Similar results have
been found in uniform antiferromagnetic particles.18,20,22,23

While such spin parity effects are sometimes related to

Kramers degeneracy, in particular in single domain
ferromagnets,7,8,18 they typically go beyond this theorem in
rather unexpected ways.18,21 It is notably for nonuniform
magnets that such effects can be quite intriguing, as we know
since Haldane’s work on antiferromagnets.2 On the other
hand, there has not been much related study on nonuniform
ferromagnets, primarily because their ground state is trivial
and did not seem to offer much room for surprises. However,
this is by no means so, and it is one of our goals to show that
ferromagnets with more than one magnetic domain do ex-
hibit interesting spin parity effects and that these effects have
experimental consequences.

We address the issue of spin parity in the context of MQP,
although the Berry phase effects discussed here are of gen-
eral relevance in low-dimensional magnetism. We start by
considering the coherent quantum propagation of Bloch
walls in the presence of periodic pinning potentials. Such
potentials are naturally provided by the underlying crystal
lattice or some superlattice structure that can be created by
periodic deposition of materials with different
anisotropies.24,21,25Parenthetically we note that periodic pin-
ning provides a much smaller barrier height and tunneling
distance than one isolated pinning center would do. Thus the
tunneling probability will be drastically enhanced in this
case24,21 compared to the more traditional scenario where
experiment26,27,13and theory28–32focus on wall tunneling out
of single pinning centers.

In a collective coordinate description the Bloch wall is
then seen to behave like a single degree of freedom moving
in a periodic structure.24 This in turn results in characteristic
Bloch bands in reciprocal space, where the bandwidth is de-
termined by the tunneling rate through the potential. It is
now at this stage where the Berry phase enters the wall dy-
namics via an effective gauge potential that depends on the
chirality, i.e., the internal rotation sense of the Bloch wall.
For half-integer spins this gauge potential induces a halving
of the associated Brillouin zone. At the same time a remark-
able dynamical correlation occurs: Two subsequent band
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minima belong to opposite chiralities. Thus the chirality of
the wall alternates when the system is adiabatically driven
through the Brillouin zones by an external magnetic field. As
we shall argue, this phenomenon can be experimentally ob-
served if there is a finite tunneling probability between the
chiralities, a condition which is not difficult to meet in real
systems. Due to the topological nature of the Berry phase
these results are independent of details such as the shape of
the soliton and the pinning potential. Thus we expect that
band halving and chirality correlation also occur in the limit
of a spin-1/2 chain where the soliton width approaches one
lattice constant.

Besides these spin parity effects, the band structure leads
to interesting coherence effects in the form of Bloch oscilla-
tions of the wall center.24,21As a result the sample magneti-
zation oscillates in response to astaticmagnetic field, a be-
havior which is very similar to the ac-Josephson effect in
superconductors.

In principle these results hold for an arbitrary number
NA of coupled ferromagnetic chains. However, observation
of MQP becomes increasingly difficult with increasingNA
since observability requires tunneling exponents~which
grow with NA) to be of the order of Planck’s constant. This
necessarily limits the size of sample cross sections~but not
their lengths! and restricts considerations to low-dimensional
ferromagnets, most typically of quasi-one-dimensional size.
An important consequence of this reduced dimensionality is
the fact that dissipation due to spin waves has a negligible
effect on the wall dynamics since there is an associated finite
size gap~besides the anisotropy gap! in the spin wave spec-
trum. It is due to these gaps that at temperatures typically
below 100 mK the spin waves freeze out exponentially fast,
and are thus simply irrelevant for dissipation~they only lead
to a minor soliton mass renormalization as we shall show
explicitly!.

To simplify our discussion we consider in the following
the limit of large hard-axis anisotropy33,34 as it occurs, for
instance, in an yttrium iron garnet~YIG! sample of the shape
shown in Fig. 1. We can then eliminate the out-of-easy-plane
degree of freedom and the spin model reduces to that of a
sine-Gordon model plus a gauge term coming from the Berry
phases. In a quantum field approach we introduce collective
coordinates, eliminate the spin waves, and arrive at an effec-
tive action for the wall position. The spin waves give rise to
a nonlocal term in the action which can be cast into the
well-known Caldeira-Leggett form at low temperatures. In
this way we make contact with phenomenological formula-

tions of dissipation35,36 as extensively discussed in the con-
text of MQP,37 and show that the spectral function has a gap
due to anisotropies. While there have been a number of
works in various contexts related to intrinsic soliton
damping,38–42,30we believe that the approach presented here
is most adequate to the combined description of wall dynam-
ics and Berry phases and, moreover, provides the first com-
plete discussion of spin wave dissipation, particularly in the
context of MQP. Finally we note that a brief account of part
of the results presented here has been given before.24,21

The outline of the paper is as follows. In Sec. II we dis-
cuss the derivation of the spin action plus topological phase
from the Heisenberg model. Details of this derivation via
coherent spin states together with a unified treatment of the
Berry phase in different gauges are given in Appendix A. In
Sec. III we discuss static Bloch wall solutions and derive the
sine-Gordon action plus gauge term in Sec. IV. To gain con-
fidence in our approach we first consider the uniform limit
and show that this gauge term reproduces the known spin
parity behavior.18 As a by-product we also obtain the tunnel-
ing prefactor. In Sec. V we discuss the coupling between
Bloch wall and spin waves and show that spin wave dissipa-
tion is negligible at low temperatures, technical details are
presented in Appendix B. In Sec. VI we discuss the influence
of the Berry phase on the Bloch wall dynamics in a periodic
potential, first in the nearly free~Sec. VI B! and then in the
tight-binding limit ~Sec. VI C!. In both cases it is shown that
for half-integral spin the Brillouin zone is halved and the
chirality alternates. Experimental implications are given in
Sec. VII, where we also give results for the level splitting
due to the tunneling between the two wall chiralities. Finally
in Sec. VIII we discuss how the interference effects are al-
tered by external fields. A note regarding the terminology:
the terms soliton and Bloch~or domain! wall are used inter-
changeably to denote the transition region between domains
in ferromagnets.

II. MODEL

In this section we derive a continuum field theory to de-
scribe the quantum dynamics of nonuniform spin configura-
tions in ferromagnets. Our starting point is a microscopic
Heisenberg spin Hamiltonian with local anisotropies. The
transition amplitude between two nonuniform spin configu-
rations is then expressed as a coherent state path integral.
The corresponding action differs from the classical micro-
magnetic expression by a total derivative.18,21,24While this
term does not affect the classical equations of motion, it
gives rise to quantum mechanical interference effects and
thus leads in a natural way to the quantization of micromag-
netics. Several examples of such interference effects will be
discussed below in Secs. IV and VI–VIII.

Ferromagnetic insulators can often be described by a
Heisenberg Hamiltonian with anisotropies

H52 J̃(
i ,r

Si•Si1r2K̃y(
i

~Si
y!21K̃z(

i
~Si

z!2, ~2.1!

whereSi denotes the spin operator at the lattice sitei . For
simplicity we assume that the spins form a simple cubic
lattice of lattice constanta. Throughout this work we shall
use units such that\51. The first term on the right-hand side

FIG. 1. ~a! Bloch wall configuration withQ51, C521 in a
thin long slab centered at the pinning siteX50; ~b! periodic pin-
ning potentialV for the wall centerX.
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~RHS! of ~2.1! is the exchange interaction between a spin at
the lattice sitei and its nearest neighbors at the lattice sites
i1r. The next term is an easy-axis anisotropy along they
axis with anisotropy constantK̃y.0. The third term is a
hard-axis anisotropy of strengthK̃z.0 which renders thexy
plane an easy plane. The spins will thus preferably point
parallel or antiparallel to they axis.

The anisotropies that are used in~2.1! are effective
anisotropies and may arise from two different microscopic
mechanisms. One contribution is the magnetocrystalline an-
isotropy which is due to the interaction of the magnetic mo-
ments with their neighboring atoms via spin-orbit interac-
tion. Consequently this contribution reflects the symmetry of
the crystal lattice. The second contribution is the dipolar in-
teraction between the magnetic moments. Due to its long
range nature this contribution depends on the sample shape
and is in general a nonlocal functional of the magnetization
configuration. It is this magnetostatic interaction that gives
rise to the existence of domains in macroscopic samples.
However, for quasi-one-dimensional configurations this in-
teraction considerably simplifies and can be modeled by lo-
cal anisotropies as in~2.1!.43

Our focus in this work will be on elongated samples as
shown in Fig. 1 with transverse dimensions smaller than the
length scalea@ J̃/K̃z#

1/2. Spin waves running transverse to the
sample38,44 then exhibit a finite size gap such that they are
frozen out at low temperatures.45 This condition is met in
most experimental situations studied so far and thus we shall
use a quasi-one-dimensional model in the following. Truly
three-dimensional samples where all degrees of freedom are
allowed to be excited are of rather limited interest for MQP
since their tunneling ratesandassociated crossover tempera-
tures~separating the classical from the quantum regime! are
in general too small to be observed.21

We now turn to the path integral formulation of the sys-
tem described by the Hamiltonian~2.1!. We introduce coher-
ent spin states46 at each lattice site, defined by
Vi•Si uVi&5SuVi& whereV5(sinu cosf, sinu f, cosu) is a
unit vector. The whole system is then described by a product
of coherent states at each of theNL lattice sites, i.e.,
u$V%&5 ^ i51

NL uVi&. Since we are interested in configurations
that are varying slowly compared to the lattice constant, the
spin state can be described by a smoothly varying unit vector
fieldV(x,t) depending on the coordinatex along the sample
and the imaginary timet. As outlined in Appendix A, the
transition amplitude between the two statesu$Va%& and
u$Vb%& can then be expressed as an~imaginary! time path
integral

^$Vb%ue2bHu$Va%&5E Df D~cosu!e2S E@f,u#,

~2.2!

where the integration is over all configurations that satisfy
the boundary conditions V(x,0)5Va(x) and
V(x,b)5Vb(x) ~spatial boundary conditions will be speci-
fied later!. The Euclidean action is given by

S E5S WZ1E
0

b

dt H, ~2.3!

with the Wess-Zumino or Berry phase term

S WZ5 i
SNA
a E

0

b

dtE
2L/2

L/2

dx ḟ~12cosu!, ~2.4!

with ḟ5]tf and where a gauge has been chosen with the
coherent states underlying the path integral~2.2! expressed
in the ‘‘north-pole’’ parametrization~cf. Appendix A!. Equa-
tion ~2.4! has for closed trajectories the form of the sum over
the Berry phases of allNAL/a spins. The energy is given by

H5NAE
2L/2

L/2

dx$J@~]xu!21sin2u~]xf!2#

2Ky@sin
2u sin2f21#1Kzcos

2u%. ~2.5!

NA denotes the number of spins in the cross sectional area
A of the sample, andL is the sample length. The parameters
in ~2.5! are related to those in~2.1! via

J5 J̃S2a, Ky,z5K̃y,zS
2/a. ~2.6!

The energy~2.5! is identical to the traditional micromagnetic
energy expression.43,47–49J andKy,z can now be related to
the micromagnetic anisotropy and exchange constants
J5Aa2, Ky5Kea

2, andKz5Kha
2. For an elongated slab as

shown in Fig. 1, we have Ke5Ke,cryst and
Kh5Kh,cryst12pM0

2 , whereM05gmBS/a
3 is the saturation

magnetization, andKe,cryst, Kh,cryst describe crystalline
anisotropies. Note, however, that for other sample geom-
etries the demagnetizing term enters in a different form. For
instance, for a cylindrical wire we would have
Ke5Ke,cryst1pM0

2 , while the hard-axis anisotropy would be
of purely crystalline origin.~For other examples see Fig. 8 of
Ref. 43.! The demagnetizing energy is not always important;
in particular, for samples with misoriented anisotropy axes
~see p. 15 of Ref. 47! the crystalline anisotropies can be
much larger than 2pM0

2 .
In saddle point approximation,dS E50, and rotating to

real time t52 i t, we recover the classical Landau-Lifshitz
equations of motion

sinu] tf52
a

S

dH

du
, ] tu5

a

S

1

sinu

dH

df
. ~2.7!

FIG. 2. The Berry phase factor for one single spinS,
exp{iSRdf(12cosu)}5eiSA, whereA is the area on the unit sphere
enclosed by the trajectoryC traced out byS.
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These classical equations are not affected by the total deriva-
tive ḟ in ~2.4! and thus follow from the classical Lagrangian
density48L52(SNA /a)] tf cosu1H.

Note, however, that theḟ term is of crucial importance
for the quantum dynamics: While the path integral~2.2! con-
tains higher-winding-number contributions where a path re-
traces itself, the Wess-Zumino term enforces quantization by
destructive interference of paths which do not satisfy the
conditionS( iAi52pn, whereAi is the area enclosed by the
trajectory of thei th spin on the unit sphere cf. Fig. 2. If the
ḟ term were dropped in~2.4! — a ‘‘gauge’’ that has some-
times been used in the literature — the areaAi would be
measured with respect to the equator and one would have to
impose the additional constraint50 that the paths not intersect
the ‘‘dateline.’’ This constraint is very difficult to handle
within a path integral formalism. On the other hand, ignoring
this constraint would lead to a wrong semiclassical quantiza-
tion of half-integral spins. Moreover, one would not obtain
the suppression of tunneling for half-integer spins in small
ferromagnetic particles,18 in clear contradiction to Kramers
theorem which requires that the ground state not be split. In
Appendix A we show that all these difficulties can be
avoided if one starts from one single premise — the single
valuedness of the coherent states — which leads to a re-
stricted set of ‘‘admissible’’ gauges.

Finally, we remark that if we work in the south-pole pa-
rametrization of the coherent state@cf. ~A2!#, the ḟ term in
~2.4! changes sign but, of course, all physical effects that will
be derived below are independent of the gauge~provided the
gauge is admissible!.

III. BLOCH WALL CONFIGURATIONS

There are two energetically degenerate spin configura-
tions which minimize the energy~2.1!: uniform configura-
tions with all spins pointing either along the positive or along
the negativey direction. We are now interested in structures
that interpolate between these two configurations. Due to the
easy-axis anisotropy in~2.1!, this transition region will have
a finite width and form a Bloch wall~or soliton!. Such Bloch
walls may have various origins in realistic samples. They can
simply be enforced by keeping the spins at both sample ends
antiparallel to each other. For certain sample geometries,
their existence can be favored by long range magnetostatic
interactions which have not been built into~2.5!. Finally, in
strictly one-dimensional chains, solitons with width of one
lattice constant rather than spin waves can form the elemen-
tary excitations.51,52

A static Bloch wall connects the anisotropy minima
f56p/2 within the easy planeu5p/2 and thus satisfies
the Euler-Lagrange equations

J]x
2f1Ky sinf cosf50. ~3.1!

With the additional condition]xf(6`)50, this can be im-
mediately integrated once

J

Ky
~]xf!22cos2f50. ~3.2!

This equation exhibits the symmetriesf→2f and
f→f1p, which reflect the fact that the energy~2.1! is

invariant under rotations byp around each axis in spin
space. Consequently, there are four different Bloch wall so-
lutions of ~3.2! ~see, e.g., Ref. 47!:

fQC~x!52QC
p

2
12 arctaneCx/d, u5

p

2
, ~3.3!

of width d5AJ/Ky. In order to distinguish the four different
soliton configurations we have introduced the ‘‘charge’’
Q5(1/2)*dx]x(sinf) and the ‘‘chirality’’

C5
1

pE2`

`

dx ]xf ~3.4!

of a spin configuration. For the Bloch walls~3.3! we have
Q,C561, and all four walls have the same energy,

E052JNAE
2`

`

dx~]xfQC!254NAAJKy. ~3.5!

The definition of the chiralityC simply tells us whether the
anglef increases or decreases as we proceed in the positive
x direction along the sample. The definition of the chargeQ
is motivated by the response of the Bloch wall to an applied
magnetic field: For an external field along the positivey axis,
a Bloch wall of positive charge moves along the positivex
axis while a negatively charged wall moves in the opposite
direction.~We recall that the spin is antiparallel to the mag-
netization.! Within the present description, the spin is al-
lowed to point into an arbitrary direction on the unit sphere
S2. In this case, only the charge is a topological invariant,
i.e., for infinite sample length field configurations of opposite
charge cannot be deformed into each other without overcom-
ing an infinite energy barrier. Solitons of different chirality
~but the same charge! can be deformed into each other via a
‘‘Néel wall’’ configuration where the spin at the wall center
points along the hard axis. It is only in theXY limit of large
hard-axis anisotropy where the configuration space of the
spins becomes a circle and the chirality also becomes a to-
pological invariant. It will be this limit that shall be consid-
ered in the next section, but we shall return to the general
case when we discuss chirality tunneling in Sec. VII.

IV. RELATION TO THE SINE-GORDON MODEL

In some materials such as elongated YIG films~cf. Fig. 2!
or in garnet crystals with misoriented anisotropy axes, the
hard-axis aniotropy is much larger than the easy-axis anisot-
ropy, typically by a factor of 10 or more. As a consequence,
deviations away from the easy plane become energetically
costly and the magnetization will be confined to the easy
plane and the system can effectively be described in the
easy-plane variablef only.

In the limit Kz@Ky , deviations away from the easy plane
are suppressed and we can expand53

u~x,t!5p/22q~x,t!, ~4.1!

whereuqu!1. Inserting~4.1! into the action~2.4! we obtain
up to second order inq
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S E5NAE dxdtH i Sa ]tf1J~]xf!2

1Kycos
2f2 i

S

a
q]tf1qLqJ , ~4.2!

where L52J]x
22J(]xf)

21Kysin
2f1Kz. If the fluctua-

tions in bothq and f have wavelengthl larger than the
domain wall width,l>d, the hard-axis anisotropy becomes
dominant andL5Kz1O(Ky /Kz). With this approximation,
we insert ~4.1! into ~2.2! and usingD cosu.Dq we can
perform the Gaussian integrations. The transition amplitude
can then be expressed as a path integral over the azimuthal
anglef alone,

^$Vb%ue2bHu$Va%&.E Dfe2S SG@f#, ~4.3!

with the boundary conditions f(x,0)5fa(x), and
f(x,b)5fb(x). The action has the following form:

S SG5NAE dx dtH i Sa ]tf1JF 1c2 ~]tf!21~]xf!2G
1Kycos

2fJ , ~4.4!

where we have introduced the asymptotic spin wave velocity

c5~2a/S!AJKz. ~4.5!

We thus have arrived at the important result thatfor large
hard-axis anisotropy the dynamics of a mesoscopic ferro-
magnet is described by the sine-Gordon (SG) action plus a
topological term iSNA*(dx/a)*dtḟ. While the reduction to
the sine-Gordon model has been known for some time,54,9,51

the topological term has not been identified before. This term
is of central importance for the quantization of the spin sys-
tem as we shall see below. It is this term that is responsible
for observable effects such as band halving and chirality cor-
relation.

We can now explicitly verify the consistency of our ap-
proach.S SGhas the same long wavelength excitations as the
full magnetic model described by the action~2.3!. In the
latter model, deviations from the uniform statef5p/2,
u5p/2 along the easy axis have the spin-wave spectrum
vk52(a/S)(@Jk21Ky1Kz#@Jk

21Ky#)
1/2, with k the spin-

wave wave vector.55 ForKz@Ky andk,AKz /J this reduces

tovk52(a/S)(Kz@Jk
21Ky#)

1/25cAk21d22 which is iden-
tical to the spin wave spectrum in the sine-Gordon model
~4.4! aroundf5p/2. Similarly, the dynamic soliton solu-
tions of the spin system~see, e.g., Ref. 56! which correspond
to moving Bloch walls have their counterpart in the SG
model in this limit. Even soliton-antisoliton breather solu-
tions of the spin system have analogues in SG breather
solutions.57 This is surprising since in the spin model breath-
ers exhibit a precession around the easy axis and thus do not
stay close to the easy plane as required in~4.1!. The connec-
tion between the spin model and the SG system is therefore
more general than the above derivation suggests.

A. Spin tunneling for Kz@Ky

To illustrate the importance of the topological term de-
rived above, we consider the case of a uniform spin configu-
ration as, e.g., realized in a nanoscale ferromagnetic particle.
We shall show that the reduced model~4.4! reproduces both
the spin parity effect18 and the tunneling action9 of the full
magnetic model in theXY limit. In addition we shall also
evaluate the prefactor of the transition amplitude resulting
from Gaussian fluctuations around the instanton path.

For uniform configurationsf5f(t), the action~4.4! re-
duces to

S̄ SG5NE dtH iS]tf1
Ja

c2
~]tf!21Kya cos2fJ , ~4.6!

whereN5NAL/a is the total number of spins in the sample.
Note thatf describes the azimuthal angle of a spin and is a
compact variable (f12p is identified withf). The tunnel-
ing amplitude between the anistropy minima atf56p/2 is
then given by

K f5
p

2Ue2bHUf52
p

2 L 5E
f~0!52p/2

f~b!5p/2
Dfe2S̄ SG@f#.

~4.7!

The dominant contributions to the transition amplitude are
the extrema of the action which satisfydS̄ SG50 or

~J/c2!]t
2f1Kysinf cosf50 . ~4.8!

Note that this equation is formally equivalent to~3.1!. Simi-
larly, as a consequence of the symmetry of the action~4.4!
underp rotations around the hard axis, i.e.,f→f1p, the
two anisotropy minima can be connected by two different
paths. These ‘‘instanton’’ and ‘‘anti-instanton’’ trajectories
are given byf6(t)52p/262 arctanevI(t2t0) and describe a
transition fromf52p/2 to p/2 in the clockwise (f1) or
anticlockwise direction (f2). The transition occurs att0
within a finite imaginary time interval characterized by the
‘‘instanton frequency’’v I5c/d5(2a/S)AKyKz. Inserting
f6 into the action~4.6!, we recognize that the topological
term gives rise to a phase which differs in sign for instantons
or anti-instantons,

S̃ SG@f6#56 ipNS1S 0 , ~4.9!

with the tunneling exponent58 S 052NSAKy /Kz.
The effect of the topological phase may now be seen as

follows. Adding the contributions of one single instanton and
anti-instanton to the action, we obtain with~4.9! for ~4.7!

K f5
p

2Ue2bHUf52
p

2 L } (
s561

e2S̃ SG@fs#

52 cos~pNS!e2S 0.

~4.10!

Thus the transition amplitude vanishes for half-odd-integer
NS since tunneling paths of opposite winding~or ‘‘chiral-
ity’’ ! interfere destructively with each other. A calculation
within the ‘‘dilute instanton gas’’ approximation59 reveals
that this interference persists to all orders in the instanton
contributions. Identifying m52NJa/c25NS2/2Kza,
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k5NKya, a52NS, and d5p we obtain ~including the
contributions of Gaussian fluctuations around the instanton!

K p

2Ue2bHU2 p

2 L }e2bv I /2sinhS b
D

2
cos~NSp! D ~4.11!

with D516AN/pSa(Ky
3Kz)

1/4e2S 0. Taking the limitb→`
in Eq. ~4.11! we conclude that the ground-state energy of the
individual potential wellsv I /2 is split into two levels sepa-
rated byD provided the total spinNS of the particle is inte-
ger. ForNS a half odd integer no splitting occurs. Thus for
arbitrary spinS the splittingDE between the two states of
lowest energy is given by

DE5ucos~pNS!uD. ~4.12!

Thus in the uniform limit our theory reproduces the spin
parity effect of Ref. 18; moreover, in the limitKy!Kz , the
tunneling exponent agrees with Refs. 60 and 9 andD with
Ref. 7.

V. BLOCH WALLS AND SPIN WAVES

In this section we discuss the interaction between a Bloch
wall and its surrounding spin waves. We consider here a
sample withNA ~or S! sufficiently large such that spin waves
are just a small perturbation of the Bloch wall. For a quan-
titative description of this interaction we use a systematic
approach with the ratio of wall velocity to spin wave velocity
Ẋ/c as a small parameter. This is justified since typically
Ẋ!c;104 cm/s. We construct then anab initio theory for
the soliton dissipation by integrating out the spin waves. Fi-
nally, by deriving the spectral function of the damping kernel
we can make contact with the phenomenological Caldeira-
Leggett formalism of dissipation.35 A brief account of the
following results has been given in Refs. 21 and 24.

We consider elongated samples~cf. Fig. 1! of sufficiently
small cross sectional area such that the transverse spin
waves44,38 around the Bloch wall are frozen out.45 This con-
dition typically requiresNA to be less than 10

3, and thus can
easily be reconciled with the above condition thatNA@1.
Motivated by materials such as YIG which are favorable for
MQP we consider the limit of large hard-axis anisotropy.
This allows us to build upon the results of the last section
and we can treat the interaction between Bloch wall and spin
waves within the sine-Gordon model.33

For notational simplicity we restrict ourselves for the
moment to one of the Bloch walls ~3.3!,
f0(x)5fQ51,C51(x). First we recall thatf0(x2X) is, for
arbitraryX, a static solution ofdS SG50. We now consider
field configurations describing a Bloch wall at a positionX
surrounded by arbitrary spin wavesw,

f~x,t!5f0~x2X!1w~x2X,t!, ~5.1!

andelevate X(t) to a dynamical variable. However, Eq.~5.1!
contains now a redundant description of a rigid translation of
the soliton: A translation is described either byX or by the
‘‘zero-mode’’ ~Goldstone mode! w0(x,t)}f08(x).

61–63,59To
avoid double counting, we thus have to impose the constraint
that the spin wave modes be orthogonal to the zero mode

E dx f08~x!w~x,t!50, ~5.2!

for all imaginary timest. We incorporate this constraint into
the path integral by means of the Faddeev-Popov
technique62,63which we now briefly sketch. It is based on the
identity

E DXd~Q@X# !det
dQ

dX
51, ~5.3!

with the judiciously63,64 chosen functional

Q@X#5E dx f08~x2X!f~x,t!. ~5.4!

Inserting ~5.1! into ~5.4! we recognize that thed function
enforces the constraint~5.2! as desired.

For configurations which contain one soliton, we thus can
rewrite the transition amplitude~4.3! as follows:

^$Vb%ue2bHu$Va%&5E DX Dfd~Q!detS dQ

dX De2S SG@f#,

~5.5!

where the action is given by~4.4!. We now perform a sys-
tematic expansion up to second order in both spin wavesw
andẊ/c. ~Note thatẊ/c,1.531022 for YIG as discussed in
Sec. VII andw}1/ANA as we shall see below.! After inser-
tion of ~5.1! into ~5.5! and expansion to second order in the
spin wavesw and second order in the Bloch wall velocity
Ẋ/c, the transition amplitude takes the form

^$Vb%ue2bHu$Va%&5E DX e2SX@X#F@X#, ~5.6!

where

S X5E dtH 2 iaẊ1
M

2
Ẋ2J ~5.7!

is the action of a free Bloch wall, and where

F@X#5E Dw dS E f08w DdetS dQ

dX De2NA$w•@G1K #w1J•w%

~5.8!

describes the interaction between the Bloch wall and the spin
waves. Here we have introduced the scalar product
a•b5*dxdta* b and the integral in thed function is under-
stood as an integral overx.

We now discuss the various terms that have been intro-
duced in~5.6!–~5.8!. The first term in the action~5.7! has the
form of a gauge potential

a5pSNA /a. ~5.9!

It originates from the topological term in~4.4! and from the
relation*dx ]tf0(x2X)52pẊ since each soliton flips the
spins byp5*dxf08 .

The second term in~5.7! is the kinetic energy of the Bloch
wall and the mass is given by
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M5
E0

c2
5
NAS

2

a2
AKy

J

1

Kz
. ~5.10!

This value coincides with the Do¨ring mass47

M5NAa
2/(2pg2d) with g5gmB /\ if the hard-axis anisot-

ropy is of purely demagnetizing origin,Kz52pM0
2a2 with

M05gmBS/a
3. We thus have given amicroscopic derivation

of the Döring wall mass.
In ~5.7! we have dropped a termbE0 with E0 the Bloch

wall energy~3.5! since the Bloch wall already exists in the
sample and is not created thermally. The thermal creation of
Bloch wall pairs in the absence of an external field is negli-
gibly small for temperatures in the kelvin range even for
samples as small as 50 Å350 Å. Only at higher tempera-
tures and in the presence of external fields does thermal cre-
ation of Bloch wall pairs become appreciable.65

The functionalF ~5.8! describes the coupling between
spin waves and the Bloch wall. The operator43

G52J]x
22k]t

21KyF122 sech2S xd D G ~5.11!

with k5J/c2 describes the spin wave spectrum around a
static Bloch wall. The remaining operators are responsible
for the dynamic coupling between spin waves and domain
wall,

K52kẊ]x]t2kẊ2]x
2 , J522kẊ2f09 . ~5.12!

Due to the constraint~5.2! the exponential inF, Eq. ~5.8!,
does not contain a term linear in the velocityẊ and in the
spin wavesw. It has been pointed out30,31 that this is an
important difference from the standard Caldeira-Leggett
model.35 However, despite this nonlinear coupling we shall
see shortly that at low temperatures the dissipation due to
spin waves can — if this should be desirable — perfectly
well be modeled by a Caldeira-Leggett approach~such cases
have actually been discussed in Appendix I of Ref. 35!, al-
though the precise form of the relevant spectral function can
only be obtained from a microscopic calculation as presented
here.

After the evaluation of~5.5! which is sketched in Appen-
dix B and collecting Eqs.~5.7!, ~B4!, ~B5!, and~B17! we can
express the transition amplitude~5.6! as

^$Vb%ue2bHu$Va%&5E DX e2S eff@X#, ~5.13!

with the effective action for the soliton position

S eff@X#5E
0

b

dtH 2 iaẊ1
Meff

2
Ẋ2J

1
1

2E0
b

dtE
0

t

dsK~t2s!@X~t!2X~s!#2.

~5.14!

The damping kernel has been evaluated for arbitrary tem-
peratures in Appendix B. Here we restrict ourselves to low
temperatures,b→`, where the damping kernel~B19! takes
the form

K~t!522(
k
k2vk

2e22vkutu. ~5.15!

This can also be cast into standard Caldeira-Leggett
notation,35,36

K~t!5
1

pE0
`

dvJ~v!Dv~t!. ~5.16!

HereDv(t)5e2vutu is theT→0 limit of ~B18! and the spec-
tral function is given by66

J~v!5
v

v0d
2Q~v2v0!Av22v0

2, ~5.17!

which vanishes forv,v0[2c/d5(4a/S)AKyKz, the an-
isotropy gap of the spin waves.~For material values as in
YIG, this gap corresponds to a temperature ofTg50.2 K.
Other materials have in general larger anisotropies and thus
higherTg .) In deriving ~5.17! from ~5.15! we have used the
renormalization~B10!. It is only after this renormalization
that the memory kernelK becomes positive definite~as is
needed for convergence!.

If now the dynamics ofX is slow compared to the time
variation of the damping kernel, i.e., if the instanton
frequency v I ~to be evaluated below! is much smaller
than v052c/d, and if the temperature is small such
that b@v I

21 , then we may expandX(t)2X(s)
'(t2s)Ẋ(s), and the damping kernel reduces to a pure
mass renormalization. Note that this mass renormalization is
anO„(NA)

0
… correction of the wall massM}NA . Since all

these conditions will be satisfied for the tunneling situations
considered below, we see that we end up with a deceptively
simple effective description of the Bloch wall dynamics,
given by the first two terms in~5.14!.

VI. INTERFERENCE EFFECTS DUE TO THE BERRY
PHASE

In the last section we derived an effective action for the
dynamics of the Bloch wall position. We showed that damp-
ing due to spin waves leads to a gap in the spectral function
and thus leads to a mere renormalization of the wall mass at
low temperatures. More importantly, we have identified a
topological term in the action which has its origin in the
Berry phase term~2.4! of the original spin action.

Here we shall generalize these considerations to solitons
fQC of arbitrary chiralityC and chargeQ which are all
energetically degenerate. We show that the interference be-
tween states of different chirality gives rise to remarkable
effects such as the halving of the Brillouin zone and the
alternation of chirality in reciprocal space for half-integral
spin.

These effects originate in the fact that for arbitrary soli-
tons, the topological term~2.4!

i
a

pE dxḟQC~x2X!52 iaCẊ ~6.1!

depends on the soliton chiralityC ~but not on its chargeQ!
(a5pSNA /a). This chirality dependence can intuitively be
understood as follows. As the soliton sweeps across a given
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spin, the spin is rotated by an angle6p ~after the wall is
sufficiently far away!, the rotation sense being uniquely de-
termined by the chirality and the direction of motion of the
Bloch wall.

At low temperatures and for solitons of arbitrary chirality
the effective action~5.14! of a soliton in an external potential
V(X) thus takes the form

S @X,C#5E dt H 2 iaCẊ1
M

2
Ẋ21V~X!J . ~6.2!

Here we have used the mass~5.10! rather than the dressed
massMeff since the mass renormalizations at low tempera-
tures are smallO„(NA)

0
… and the value~5.10! thus represents

a good approximation for the experimentally observed wall
mass. In addition we have introduced a periodic potential
V(X) of periodd, and we make the natural assumption that
d is some integer multiple of the lattice constanta. For defi-
niteness we assume

V~X!5V0F12cosS 2pX

d D G , ~6.3!

which has amplitude 2V0 .
67 Such a potential can have its

origin24,21 in the discrete nature of the crystal lattice itself, or
for Bloch walls it can arise from a magnetic superlattice of
layers with different anisotropies.

The action~6.2! corresponds to the Hamiltonian

H5
1

2M
~p2asz!

21V~X!, ~6.4!

wherep52 i ]/]X is the Bloch wall momentum andsz is
the Pauli matrix of the ‘‘pseudospin’’ characterizing the
chirality C56 of the Bloch wall. Obviously, this Hamil-
tonian conserves the chirality. For mathematical conve-
nience, we choose periodic boundary conditions in the fol-
lowing. However, all our results are finite in the
thermodynamic limit and none of our conclusions depend on
this choice of boundary conditions.68

From both~6.2! and~6.4! it is evident that the topological
phase plays the role of a gauge potential whose effect on the
wall dynamics will be discussed next. We note that such
spin-dependent gauge potentials are not uncommon in prob-
lems involving Berry phases.69

A. An illustrative example

Before giving a rigorous discussion of the dispersion re-
lation, we give an argument to illustrate the interplay be-
tween the topological phase and soliton propagation.

Consider the transition amplitude for the propagation of
the Bloch wall between nearest neighbors, which is given by

^0ue2bHud&5(
C

E
0

d

DXeiaC*dtẊe2S 0

52 cos~ad!E
0

d

DXe2S 0, ~6.5!

where S 0@X#5*dt$(M /2)Ẋ21V(X)%. For half-integer
s[NASd/a, we thus arrive at a most important conclusion:
Nearest-neighbor hopping of the soliton is suppressed if both

chiralities contribute equally to the transition amplitude.
However, if the soliton is in a state ofdefinite chirality, only
one path contributes to the transition amplitude~6.5! and
nearest-neighbor hopping is allowed.No such interference
occurs for integers. Note that this interference effect is
entirely due to the topological term in~6.2! which in turn is
a consequence of the topological term in the sine-Gordon
action ~4.4!.

We now investigate how this interference affects the dis-
persion of solitons and in this way can become observable.

B. Dispersion in the nearly free limit

In this section we discuss the dynamics of a soliton in an
arbitrarily weak periodic potentialV(X). The Hamiltonian is
given by ~6.4! with V0→0. Despite being simple this case
already captures most of the characteristic features of the
tight-binding limit which will be discussed below. For sim-
plicity we assume that the period of the potential is given by
d5a.

Using periodic boundary conditions, the eigenstates of
~6.4! are simply plane waveseikX, with k52pn/L, L5Nd,
and the spectrum consists of two parabolas~corresponding to
the two soliton chiralities!

E~k,C561!5
1

2M
~km7a!2, ~6.6!

periodically extended by the reciprocal lattice vector
G52p/a. @Note that the requirement of gauge invariance
alone produces such a periodic extension even in the
complete absence of a periodic potential. The gauges~A3!
lead to Hamiltonians ~6.4! with a→(2n11)a with
n50,61, . . . . The gauge invariant dispersion is therefore
the periodic extension of~6.6! by a vector 2a.#

The Berry phase thus leads to remarkable spin parity ef-
fects in the dispersion: For half-odd-integer spinNAS, we
havea5G/4 ~mod G! and the parabolas are separated by
half the reciprocal lattice vector,G/2. Thus the Brillouin
zone is halved and two subsequent parabolas belong to op-
posite chiralities as illustrated in Fig. 3. The observability of
this is discussed in Sec. VI D.

For integer spin, however, the dispersion is analogous to
that of a free particle of massM and the Berry phase is
inoperative since it merely shifts the dispersion by a recipro-
cal lattice vector.

Note that sincea}1/a is independent of the sample
length, the result is unchanged if we pass to the thermody-
namic limit. Therefore~6.6! is independent of the boundary
conditions.70

C. Tight-binding limit

We now turn to a discussion of the system in the tight-
binding limit whereV(X) is no longer small. In the absence
of tunneling there exists a large number of degenerate
ground states corresponding to the soliton trapped at one
particular pinning site. If the pinning potential is not too
large, the soliton can tunnel between the sites, and these
ground states split into the~lowest! bandE(k,C) with

Huk,C&5E~k,C!uk,C&. ~6.7!
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SinceH in ~6.4! is invariant under translations by the po-
tential periodd and conserves the chirality pseudospin, the
eigenstates are products of Bloch states and chirality eigen-
states uk,C&5uk& ^ uC& where T uk&5eikduk& and
szuC&5CuC& with k52pn/Nd, n50,1, . . . ,N21, and
L5Nd. T is the translation operator^XuT 5^X1du.

For the evaluation of the band structure in the tight-
binding limit we now develop a formalism which allows us
to keep careful track of the topological phases within the
instanton approach. To this end we start from the modified
partition function71

Zl5tr$T le2bH%, ~6.8!

where tr{•••} 5(k,C^k,Cu•••uk,C&. We use ~6.8! rather
than the usual partition functionZ5tr$e2bH% for the fol-
lowing reason. As we have seen in the previous section, the
Berry phase gives rise to a shift of the dispersion with re-
spect tok. However, the partition functionZ is insensitive
to such shifts~at least if there is no perturbation which mixes
the chirality states! and thus represents an insufficient tool
for the evaluation of the band structure.

From ~6.8! we can easily extract the dispersion by taking
the Fourier transform

(
l50

N21

e2 ikldZl5N (
C56

e2bE~k,C!, ~6.9!

where we used~6.7! and the definition ofT . In addition, we
have restricted ourselves to the lowest band since we are
interested in the low-temperature limit. Note also that the
LHS of ~6.9! does not contain higher-winding-number con-
tributions since we are not interested in finite size effects
arising from the sample topology. We now evaluateZl and
get in a first step

Zl5(
C

E
0

L

dX^X1 ld,Cue2bHuX,C&

5(
C,k

(
m50

N21 E
md2d/2

md1d/2

dXz^X,Cuk& z2e2bE~k,C!1 ikld,

~6.10!

where we used periodic boundary conditions and inserted a
complete set of Bloch states. Next, in the tight-binding limit
the main contributions to the integral are coming from the
vicinity of the potential minima,X.md, and the Bloch
functions can be replaced by their harmonic approximations,
i.e., z^kumd& z2'uch(0)u2/N5a0 /N. Here,ch is the ground
state in the harmonic approximation of the potential well and
a05AMv/p its normalization~squared!. Thus we find

Zl'
1

a0
(
C

(
m50

N21

^md1 ld,Cue2bHumd,C&. ~6.11!

Using a path integral representation for~6.11! and employing
the periodicity ofH we obtain with~6.9!

(
C

e2bE~k,C!5
1

a0
(

C,l50

N21

e2 ikldE
X~0!50

X~b!5 ld
DX e2S @X,C#.

~6.12!

with S @X,C# as in ~6.2!. The path integral on the RHS of
~6.12! is dominated by instantons between the potential
minima. These instantons obey the Euler-Lagrange equation
dS /dX52MẌ1V8(X) 50. For instance, a transition from
X50 to X5d (X52d) is mediated by the~anti-! instanton

X656
2d

p
arctanev~t2t0!, ~6.13!

centered at the arbitary imaginary timet0 . The instanton
frequencyv5(2p/d)AV0 /M equals the harmonic oscilla-
tion frequency in the potential well. The instanton action is
given by

S 65S @X6,C#5S 07 iadC, ~6.14!

whereS 05(4/p)dAMV058(V0 /v). The unusual second
term in ~6.14! is purely imaginary and is a direct conse-
quence of the gauge potential in~5.14! or ~6.4! and distin-
guishes between instantons and anti-instantons. Note that
this term does not break time reversal invariance as the par-
tition function contains contributions of both chirality states
C561.

The path integral in~6.12! can be expressed as the sum
over all distinct sequences ofn1 instantons and
n25n12 l anti-instantons which connect the initial state
X50 with the final stateX(b)5 ld. Within this ‘‘dilute in-
stanton gas approximation’’59 we obtain

FIG. 3. Dispersion of a soliton in a weak periodic potential.~a!
For s5NASd/a integer the dispersion resembles that of a Bloch
electron and the gaps at6p/d are due to the periodic pinning
potential ~6.3!. ~b! For s half-odd integer the Brillouin zone is
halved and two subsequent band minima have opposite chirality.
Band gaps 2e arise due to tunneling between the chiralities as de-
scribed by~6.22!; E1 andE2 are the dispersions as given by~6.23!.

53 3245BERRY’S PHASE AND QUANTUM DYNAMICS OF . . .



E
X~0!50

X~b!5 ld
DXe2S @X,C#

5a0e
2bv/2 (

n1,n250

`

dn1 ,n21 l

3
~JKbe2S 1!n1

n1!

~JKbe2S 2!n2

n2!
, ~6.15!

whereJ5AS 0/2pM andK52vAM arise from the integra-
tion over the zero modes and the Gaussian fluctuations
around an instanton, respectively. Inserting~6.15! into ~6.12!,
using ~6.14!, and performing the sums, we obtain

(
C

e2bE~k,C!5(
C

e2b@v/21e~k,C!#, ~6.16!

where

e~k,C!522JKe2S 0cos@~k1aC!d#. ~6.17!

The ground state as a function ofk is given by

E~k!52 lim
b→`

1

b
ln(

C
e2bE~k,C!. ~6.18!

Similarly to the nearly free limit discussed in the previous
subsection, this dispersion is fundamentally different for
s[ad/p5NASd/a integer or half-odd integer.21

Inserting ~6.16! into ~6.18! we obtain for integers the
following dispersion:

E~k!52
D

2
cos~kd!, ~6.19!

which is of standard tight-binding type. In~6.19! we dropped
the constantv/2. The bandwidth is given by

D58vAS 0

2p
e2S 0. ~6.20!

In contrast, fors half-integer we obtain

E~k!52
D

2
usin~kd!u. ~6.21!

In ~6.19! and~6.21! we have suppressed sign changes which
correspond to a global shift ofk by p/d. Such a global sign
cannot be measured since the absolute value ofk is experi-
mentally not detectable.

The dispersion~6.21! now has cusps andthe bandwidth
and the Brillouin zone are halved,72 as shown in Fig. 3.
Moreover, we draw from~6.16! and ~6.18! the important
conclusion thatstates whose wave vectors differ byp have
opposite chirality, cf. Fig. 4.

Note that this period halving in reciprocal space is a con-
sequence of the fact thatZl5(C*0

ld
DXe2S @X,C#50 for l

odd @cf. ~6.5!#. However, one must not conclude from this
fact that nearest-neighbor hopping is always suppressed: At
fixed kÞ0,6p/d, the ground-state condition~6.18! selects a
branch of the dispersion withdefinitechirality, a dispersion
that results from nearest-neighbor hopping. Only at the cusps
in ~6.21! is hopping suppressed.

This band halving can also be understood in a more intui-
tive way: For half-integers, a soliton acquires a Berry phase
iC for forward (2 iC for backward! hopping. In the ground
state this phase gets compensated by the Bloch phase, thus
creating two band minima atkd56p/2 which have oppo-
site chirality.

Finally, we give a more explicit formal argument for the
chirality correlation. We find the explicit form of the eigen-
valueE(k,C) by repeating the steps leading to Eq.~6.16!,
but instead ofZl we useZl

C5tr$uC&^CuT le2bH%, which
projects onto a state of definite chiralityC. Thus we find that
E(k,C) is given bye(k,C) in Eq. ~6.17!. By comparing the
ground-state energy~6.21! with E(k,C) we see thatk inter-
vals with positive~negative! sinkd belong to negative~posi-
tive! chirality C. This result is derived in the north-pole pa-
rametrization. If, instead, we use the south-pole
parametrization, then the gauge potential in~6.2! changes
sign and again we find that the chirality alternates, but now
with the opposite assignment between chirality and a givenk
interval. The physical consequence—alternating chirality
with changingk—is the same in the two gauges, since,
again, the absolutek value cannot be observed.

D. Discussion and analogies to other physical systems

In the last two sections we have seen that the dispersion is
strongly affected by the parity ofs5NASd/a. Fors integer,
the dispersion equals that of a particle in a periodic potential
while for s half-integer a halving of the Brillouin zone oc-
curs with alternating chiralities. In the latter case the disper-
sion consists of mutually intersecting parabolas or tight-
binding bands. How can we observe such a dispersion?

Let us for definiteness focus on the nearly free limit with
a dispersion as shown in Fig. 3. Suppose the chirality has
been measured to beC51 and the system is in its ground
state, i.e., in the minimum of aC51 parabola. If we now
drive the system out of its energy minimum, e.g., by apply-
ing an external field along the easy axis~see below!, the
Bloch wall will follow the C51 parabola. The Bloch wall

FIG. 4. Soliton dispersion in the tight-binding limit.~a! For
s5NASd/a integer a standard tight-binding dispersion results.~b!
Fors half-odd integer, the Brillouin zone~and bandwidth! is halved
and two subsequent band minima belong to opposite chiralities. A
gap 2e develops if the two chiralities of the soliton are connected
by tunneling.
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will remain on this parabola even beyond the crossing point,
providedthat the chiralityC is a conserved quantity. In this
sense, the two parabolas forC51 andC521 behave like
two different ‘‘sheets’’ of the energy which are completely
disconnected, and their intersection has no observable con-
sequences if there is no mixing, i.e., tunneling, between the
chiralities of the Bloch wall.

Nevertheless, the dispersion of Fig. 3~thin line! is a pre-
cursor of a striking physical effect: As soon as there is tun-
neling between the chiralities, the different ‘‘sheets’’ get con-
nected and for half-integer spins a gap develops at the
crossing points of parabolas belonging toC561. At the
same time the halving of the Brillouin zone becomes observ-
able. Formally this can be described as follows. In the pres-
ence of tunneling between the two wall chiralities~see Sec.
VII ! the Hamiltonian ~6.4! acquires an additional term
esx ,

H5
1

2M
~p2asz!

21V~X!1esx , ~6.22!

such that the chiralityC ~i.e., sz) is no longer a conserved
quantity. We are interested in the limit of small chirality tun-
neling and thereforee will be much smaller than the band-
width D ~estimates fore will be given in Sec. VII!. For s
half odd integer, the degeneracy at the pointskn5np/a is
lifted and the dispersion splits into two bands which for
uk2knu!p/a are given by

E6~k!5
1

2M
@~k2kn!

21a26A4a2~k2kn!
21 ẽ2#,

~6.23!

with ẽ52Me and where, for simplicity, we have stated the
result in the nearly free limit. In this and the tight-binding
limit the two bands are separated by a gap 2e at k5kn , as
shown in Figs. 3 and 4.

Solving for the corresponding eigenstates we recognize
that the chirality continuously switches fromC561 to
C571 as we pass from one band minimum to an adjacent
one.

We thus have established that the spectrum given in~6.6!
and~6.21! is reached in the limite→0. Note that the experi-
mental observation of the gap depends on the probability
of Zener interband transitions and thus on the time scale
at which the band structure is probed. In the nearly free
limit, the Zener probability73 can be expressed as24,21

P}exp$2(p/2)(e2T/\E0)%, whereT52p/vB is the time to
cross the Brillouin zone, withvB5Fd/\ being the Bloch
frequency andF52gmBSNAH/a the driving force due to an
external fieldH ~along, say, the easy axis, see Sec. VIII!.
E05(\2/2M )(p/d)2 is the kinetic energy at the zone bound-
ary. Thus, to optimize observability we must have
A5(p/2)(e2T/\E0)@1, which is easy to achieve since typi-
cally T;1027 s, giving A;100 for YIG, if we choose
H;1023 Oe, d5a, and e;E0/10;10 mK kB ~see Sec.
VII !. The alternation of chirality could then be observed, for
instance, by~optical! dichroism techniques which would be
sensitive to the rotation sense of the magnetization within the
Bloch wall.

We emphasize that these results are gauge independent. If,
instead, we had started from the south-pole parametrization

of the coherent states, we would have obtained the same
dispersion~6.6!, ~6.19!, and~6.21!, except for a global shift
k→k12a which is unobservable.

A dispersion consisting of disjoint parabolas dictated by
gauge invariance and the formation of gaps due to tunneling
is quite a common phenomenon in condensed matter physics.
Persistent currents in isolated metal rings,74 the Josephson
effect,75 and the tunneling of quasiparticles between edge
states in the fractional quantum Hall regime76 might serve as
familiar examples.

For further illustration let us briefly discuss some relations
between our spin effect and, say, persistent currents. First, in
the spin system the dispersion remains unaltered in the ther-
modynamic limit, whereas persistent currents are a finite size
effect, resulting from the discreteness of the energy levels. In
addition, we consider a simply connected sample topology
while a persistent current relies on the ring geometry of the
sample. In the spin system it is theS1 topology of spin space
restricted to the easy plane, not the topology of the sample,
which is responsible for the interference effect.

An electron of massm confined to a ring of radiusr
which is threaded by the electromagnetic fluxF is described
by the Hamiltonian

H5
\2

2mr2
~2 i ]u2F!2, ~6.24!

where F is measured in units of the flux quantum
F05hc/e, andu is the azimuthal angle. The eigenfunctions
are einu with eigenvaluesEn5(\2/2mr2)(n2F)2, where
n50,61, . . . . Theground-state energyEG as a function of
flux is the envelope of the set of energy parabolas separated
by F0 .

77 Thus the persistent currentj52(e/\)]EG /]F is
a sawtooth curve with discontinuities atuFu5n/2 where the
parabolas intersect. Suppose now thatF50 and that the sys-
tem is in its ground state withn50. If the flux is increased
adiabatically, the system will stay on then50 parabola even
for F.1/2 since the angular momentum is a conserved
quantity. Thus the electron will not see the other parabolas
and the spectrum consists of disconnected ‘‘sheets’’ of pa-
rabolas. This behavior is analogous to that for the soliton
dispersion~6.6! for half-integer spin.

However, if angular momentum is no longer conserved,
e.g., due to the presence of a scattering potential, the parabo-
las will be connected and a gap develops at their crossing
points. The scattering potential thus plays a role similar to
the esx term in ~6.22! caused by tunneling between the
chiralities.

The mere existence of interference effects in a metal ring
can also be derived from the following argument. Assume
that F51/2 and let us imagine having prepared two wave
packets of opposite angular momentum, but otherwise iden-
tical. If we let these wave packets dynamically evolve until
they have traveled half the circumference, one clockwise and
the other anticlockwise, they will have picked up Aharonov-
Bohm phases of opposite sign such that~for F51/2) de-
structive interference occurs, leading to a vanishing transi-
tion amplitude between initial and final states. This behavior
is similar to the spin case described in~6.5!, where the clock-
wise and anticlockwise traveling wave packets correspond to
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the two chirality states of the soliton~note again that the real
space topology of the ferromagnet is irrelevant!.

VII. EXPERIMENTAL IMPLICATIONS

In this section we give numerical estimates for the effects
discussed in the previous sections. For definiteness we
concentrate on material parameters for YIG. Exchange78

and anisotropy79 are given byJ51.65310221 erg/cm and
Ky59.61310211 erg/cm, where a cell with lattice constant
a56.2 Å contains oneS55/2 spin implying a saturation
magnetization79 of M05194 Oe ~i.e., Kz52pM0

2a2

59.1310210 erg/cm!, wall width d5AJ/Ky5414 Å, and
spin wave velocity, Eq.~4.5!, c563104 cm/s. The pinning
potential strength can be related to an experimentally
observed coercivity by adding29 a Zeeman term
22AM0HextX to the pinning potential V(X), with
A5NAa

2 the cross sectional area of the sample. Defining
the coercivityHc as the field at which the barrier height
vanishes, we obtainV0 /A5HcM0d/p. Note that the coer-
civity is proportional to the slopeV0 /d of the potential.
Looking at the WKB exponent~6.14!, S 05(4/p)dAMV0,
we see that a low coercivity does not necessarily imply a
high tunneling probability. The crucial condition is a small
potential widthd.

We now assume a coercivity80 of Hc52 Oe andd53a.
Note that the wall extends over 22 pinning sites. The instan-
ton frequency then becomesv5(2p/d)AV0 /M51.431010

s21, and uẊ/cu5v Id/pc<1.531022. For a sample with
cross sectional areaA5104 Å2 we haveNA5260, and the
wall containsNAd/a523104 spins. The pinning potential
height takes the value 2V05330 mKkB , and the bandwidth
~6.20! is D/\.106 s21, which is of the order of the mea-
sured resonance frequency in Ref. 15. The Do¨ring mass, Eq.
~5.10!, corresponding to this cross sectional areaA takes the
valueM51.24310222 g5(1.363105)me , whereme is the
electron mass. The crossover temperature between quantum
tunneling and thermally activated behavior is
Tc52V0\/S 0kB5\v/4kB.28 mK, since\v/kB5110 mK
for d53a. Note that the bandwidth is extremely sensitive to
the details of the pinning potential. For instance, ifd5a
~lattice pinning! but all other parameters are chosen as above,
we obtainv52.531010 s21 ~corresponding to 190 mK!,
and D/\.1.231010 s21 ~since S 0 /\52.3), or D.0.8
times the pinning potential height 2V05110 mK kB , while
Tc.48 mK.

We emphasize that these numbers are rather material de-
pendent. For instance, in an orthoferrite, a canted antiferro-
magnet, the effective wall mass is by a factor 103 smaller47

than the value obtained from the Do¨ring wall mass~5.10!.
Thus tunneling could also occur at much larger potential
heights and higher crossover temperatures.

Next, we briefly address the issue of impurities;21 a more
detailed account will be given elsewhere.34 The analysis so
far was based on the fact that the magnetic field is constant
throughout the sample. A single impurity~or similarly an
inhomogeneous field! can be incorporated into the energy
~2.5! by adding a termkad(x2x0)sin

2f wherek is of the
order of the anisotropy constantKy . Although the impurity
is pointlike, it leads to an extended potential

U(X)52ka sech2@(X2x0)/d# of width d for the wall cen-
ter. Thus even whenka is of the order of the strength 2V0 of
the periodic potential, the impurity potential only leads to a
small variation (d/d)ka between pinning sites separated by
d!d. This holds also for a random impurity distribution
even in the unrealistic case~for YIG! of high disorder with
one impurity per transverse layer. Under the action of an
external fieldHy along the easy axis, which can be much
smaller than the coercivityHc , all wells created by the im-
purities can be rendered unstable such that they no longer
trap the wall. Localization of the wall is then determined by
quantum intereference effects only which we can character-
ize by the Anderson localization length. This length, how-
ever, is sufficiently large and explicitly given by
aNA

2(D/2V0)
2'(53104)a.34

We note that tunneling in periodic pinning potentials al-
lows much higher crossover temperatures than tunneling out
of a single isolated~metastable! potential. Indeed, in the
presence of an external field along the easy axis the total
energy is U(X)52V0sech

2X/d22AM0HextX where
V05(3A3/2)dAM0Hc . The crossover temperature and
the WKB exponent are then given byTc5
23/4(5/18)(gmB /kB)ApHcM0ē

1/4 and S 0523/4(6/5)\Ns
3AHc /pM0ē

5/4 where ē512Hext/Hc. For example, for a
YIG sample of 50 Å3200 Å withHc510 Oe, this leads to
crossover temperatures in the millikelvin range
0.5,Tc,1.4 mK while the WKB exponent changes in the
interval 0.2,S 0 /\,31.1.

We now turn to a discussion ofquantum tunneling be-
tween the two chirality states of a soliton. We shall obtain
explicit estimates for the level splittinge introduced in Eq.
~6.22!. In addition, we shall see that chirality tunneling pro-
vides a scenario for mesoscopic quantum coherence with one
important advantage that both barrier height and bias of the
double well can be tuned independently by external fields.

Chirality tunneling involves rotation of the spins out of
the easy plane and thus cannot be described within theXY
approximation which we have used so far. To treat this case
we must go back to the full action~2.3! and deal with both
polar anglesf andu. The generalization of the wall dynam-
ics to this situation, in particular, the reduction to the collec-
tive coordinate and the dissipation due to spin waves, is nec-
essarily more involved but still feasible.34 However, since
this generalization is somewhat outside the scope of the
present work we shall only quote the essential results here
and give the details in a forthcoming paper.34 For definite-
ness we concentrate now on ferromagnets where the easy-
axis anisotropy exceeds the one along the hard axis, i.e.,
Ky@Kz ; typical examples are bubble materials.47 To take
advantage of the resulting approximate symmetry around the
z axis, we represent the magnetization field as
V5(sinu sinf, cosu, sinu cosf).47 The Bloch wall is then
described by a rotation of the spins in thexy plane about the
angleu, and the chirality switching by a rotation in thexz
plane about the anglef56p. In addition, we allow for an
external magnetic fieldHz along the hard axisz with which
one can tune the barrier height that separates the two wall
chiralities.

We now integrate out theu fluctuations around the Bloch
wall and restrict ourselves to uniform rotations inf ~which
is valid47 if the wall width d is less thanAJ/Kz). After a
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careful treatment of the zero mode, we obtain an effective
Langrangian inf(t),

Lc5
Mc

2
ḟ21V~f!, ~7.1!

V5k cos2f1h cosf1h2/4k, ~7.2!

whereMc5NAS
2p2d/8a2Ky is the effective mass associ-

ated with the chirality dynamics, and the parameters
k52dNAKz andh5gmBSNApdHz /a characterize the bar-
rier potential V. Defining the anisotropy field by
Ha54aKz /gmBSp and noting that the chirality tunnels be-
tween the potential minima defined by cosfmin5
2Hz /Ha[n21, we obtain for the level splittinge

e54gvcAS c/2pe2Sc, ~7.3!

whereg is a numerical constant of order 1. The instanton
actionS c and frequencyvc are given by

S c52pS~NAd/a!AKz

Ky
n3/2, ~7.4!

vc5
8a

p
AKyKzn

1/2. ~7.5!

The crossover temperature becomesTc5vc/8kB . Note the
characteristic power dependence on the external control pa-
rametern512Hz /Ha with which the chirality splittinge
can be changed over a large range. In the next section we
shall also see how a fieldHx can be used to offset unwanted
bias between the potential minima.

We illustrate these results with some typical numbers.
ChoosingNAd/a;104, Ky /Kz;10, n;1023, aKz;1 K
kB , andS55/2, we find for the chirality splittinge'5 mK
kB , while the crossover temperature isTc'13 mK. The val-
ues for the bandwidthD are roughly the same as before. This
shows that the splittinge can be made quite large~on the
scale ofD) just by tuning the external field along the hard
axis, while the crossover temperature is still reasonably high.
Without field, i.e.,n51, the splittinge is only of nonvanish-
ing value if the wall is narrow and/or ifNA;1, which means
if the system is close to being strictly one dimensional.

VIII. INFLUENCE OF EXTERNAL FIELDS

In this section we show that external fields allow us to
control the gauge potentiala. In the presence of external
fields the four degenerate Bloch wall configurations
fQC ,u5p/2 get deformed into new configurations
f(x),u(x). For moving solitons,f(x2X),u(x2X), the
Berry phase term~2.4! becomes

S WZ52 i ãC̃E
0

b

dt Ẋ, ~8.1!

where

ã5
NAS

a U E
2L/2

1L/2

dx f8~12cosu!U, ~8.2!

and the chirality has been defined as
C̃5sgn$*dxf8(12cosu)% with f85]xf. Note that ã is
proportional to the area on the unit sphere between the north
pole and the trajectory which is traced out by a given spin
upon passing of the Bloch wall~cf. Fig. 4!. Since the Bloch
wall shape changes in response to an applied external field,
ã will in general differ from the valuea5NASp/a of the
Bloch wall fQC , u5p/2.

An external field is taken into account by adding a Zee-
man termgmBB•( iSi to the spin HamiltonianH ~2.1!. Cor-
respondingly, the total energyH ~2.5! is changed into

H̄5H1NAh•E dxV, h5g
mBS

a
B. ~8.3!

For fields along the easy axis or the hard axis, the static
configurations satisfy the Euler-Lagrange equationsdH̄50,

4Ju8f8cosu12Jf9sinu1Kysinu sin2f

1hx sinf2hy cosf50,

22Ju91sin2u@Jf822Kysin
2f2Kz#1hxcosu cosf

1hycosu sinf2hzsinu50 . ~8.4!

We first discuss fields along the hard axis as they have the
most interesting effect on the Berry phase. Forhx,y50 but
hzÞ0 all four configurations that emerge fromfQC in ~3.3!
are still energetically degenerate: The invariance of~2.1! un-
derp rotations around thez axis ~which remains intact for
hzÞ0) implies the degeneracy of configurations of opposite
charge but the same chirality. In addition, states of opposite
chirality and charge are also degenerate since with
f(x),u(x) also2f(x),u(x) solve ~8.4! ~with hx,y50).

In the limit of large hard-axis anisotropy,Kz@Ky , the
possiblef configurations are stillfQC given by ~3.3! while

cosu52hz /Kz . ~8.5!

Inserting this into~8.2! we have

ã5a~11hz /Kz!, ~8.6!

which demonstrates that the topological phase~8.1! can in-
deed be tuned by the external field.

For arbitrary values of the ratioKz /Ky no analytical so-
lution for the soliton structure can be found. However, we
can convince ourselves thatã is still field dependent. As is
verified by insertingf85u850 andf56p/2 into ~8.4!,
the spins far away from the soliton get pulled out of the easy
plane, cosu52hz/@2(Ky1Kz)#. Thus in generalã is different
from a.

How does the field dependence in~8.6! affect the band
structure? Let us assume thats5NASd/a is a positive inte-
ger, i.e.,ã[a5ps/d for hz50. The dispersion then has the
tight-binding form ~6.19! of Fig. 3~a! and consists of two
coinciding chirality sheets. With increasing fieldhz the
sheets of opposite chiralityC56 get separated, each shifted
by Dk5uã2au. At an external fieldhz

05Kza/2SNAd, this
shift becomesDk5p/2d and the dispersion shown in Fig.
3~b! is reached. Thus a system with integers can be con-
tinuously transformed until it reaches half-integer behavior,
and vice versa.81 Note that this behavior is periodic in the
field with period 2hz

0 .82 Moreover, if the fieldhz(t) and thus
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ã(t) depends on time, it is clear from the effective Hamil-
tonian~6.22! thatdã/dt plays the role of a force driving the
Bloch wall in the positive/negativex direction for positive/
negative chirality. Note that this force has its origin in the
‘‘classical’’ part of the Berry phase,ḟcosu, and therefore can
also be deduced from theclassicalLandau-Lifshitz equation
~2.7!. ~It is somewhat surprising that this force, as far as we
know, has not been discussed in the literature.!

A similar driving effect is achieved by applying an exter-
nal field hy along the easy axis. Indeed, inserting
fQC(x2X) of Eq. ~3.3! into the Zeeman term
hy*dx sinfQC522hyNAQX we see that a weak magnetic
field acts like a~classical! force on the soliton center where
Q is the charge of the soliton. It can be seen that the phase
a remains unaffected byhy . Note that in analogy to electro-
magnetism, whereE52Ȧ/c, hz plays the role of the vector
potentialA ~albeit chirality dependent!, while hy corresponds
to the electric fieldE. Elsewhere we have discussed in
detail21,24how such forces can give rise to Bloch oscillations
of the Bloch wall—a magnetic analogue of the Josephson
effect. Similarly, we expect a variety of effects for oscillating
fields such as resonances due to the Wannier-Stark ladders
and related localization effects. Here we just note that exter-
nal fields along the easy or hard axis can be used to drive the
system through the Brillouin zone.

Finally, we consider an external fieldhx along the propa-
gation axis. This field lifts the degeneracy between walls of
opposite chirality~with Q fixed!, and we find from~8.3!
2EC[H̄@fQ,C51#2H̄@fQ,C52#54pQNAdhx , which is
simply the effective Zeeman splitting energy of the two
chirality states. From the exact solutions83 to ~8.4! we see
that the phase becomesã5a1Ca0(hx), wherea0 vanishes
for hx→0. Hence the relative phase between walls of oppo-
siteC remains 2a, independent of the field, and the effective
Hamiltonian~6.22! becomes

H5
1

2M
~p2asz!

21V~X!1esx1ECsz . ~8.7!

Qualitatively, we see that the last term shifts the dispersion
sheets of opposite chirality in oppositevertical directions. In
the free limit, V50, the eigenvalues areE6

5(k21a2)/2M6@ka(ka12MEC)/M
21e21EC

2 #1/2. Thus
the results of Sec. VI remain basically unchanged for
EC&e with the level splitting at k50 becoming now
2Ae21EC

2 . For EC.e tunneling of the chirality~as dis-
cussed in Sec. VII! and hence its alternation in the Brillouin
zone will get suppressed. For instance, ife;10 mK this
requiresHx not to exceed 331024 Oe~for the YIG values of
Sec. VII!. On the other hand, the fieldHx provides a useful
tool to enhance observability of the chirality switching, since
it can be used to offset unwanted level detuning and to re-
store the degeneracy of the chirality states.

Note added in proof.Since submission of the manuscript
we have been able to demonstrate that band halving and
chirality correlation also occur in the extreme quantum limit
of ferromagnetic and antiferromagnetic spin-1

2 chains@H.-B.
Braun and D. Loss, Int. J. Mod. Phys. B~to be published!#.
For antiferromagnetic chains the dispersion is also known as

the ‘‘Villain-mode’’ which has been observed in neutron-
scattering experiments@S.E. Nagleret al., Phys. Rev. Lett.
49, 590 ~1982!#.
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APPENDIX A: COHERENT STATES
AND BERRY’S PHASE

In this Appendix we discuss the path integrals for coher-
ent spin states46 and, in particular, the associated Berry
phases. We emphasize single valuedness of spin states and
the role of admissible gauges since this is of central impor-
tance for the spin parity effects discussed in the main text.

A coherent state is the state of minimal uncertainty for
spin components transverse to the spin quantization axis. It is
defined as the maximum eigenstate ofSz , uS,M5S&, rotated
into the direction of the unit vector
V5(sinu cosf, sinu sinf, cosu),

uV&5e2 iSzfe2 iSyue2 iSzxuS,M5S&, ~A1!

whereS is the spin operator. By construction, the coherent
state ~A1! obeys the eigenvalue equationS•VuV&5SuV&
and is an eigenvector ofS2 with eigenvalueS(S11). By use
of Wigner’s formula,84 ~A1! can be expressed as

uV&5e2 iSx (
M52S

S S 2S
S1M D 1/2e2 iMf

3S cosu2D
S1MS sinu2D

S2M

uS,M &. ~A2!

The Euler anglex has to be fixed by the requirement that the
coherent state besingle valued85 upon f→f12pn,
n50,61, . . . . Thusx is only allowed to take the following
values:

x5~2n11!f, n50,61, . . . . ~A3!

For the choicesn521 and n50 we shall use the terms
‘‘north-’’ and ‘‘south-pole’’ gauge, respectively. Of course,
the results obtained in either of these gauges must be physi-
cally equivalent. Note that this requirement of single valued-
ness has nothing to do with the transformation properties of
uV& under active rotationsby 2p which, of course, will
always produce a factor of (21)2S irrespective of the choice
of x.

For later use we list a few important properties46,86of the
coherent states~1.2! in the north-pole gaugex52f. From
~1.2! it follows that coherent states are in general not or-
thogonal,

^V8uV&5S cosu8

2
cos

u

2
1sin

u8

2
sin

u

2
ei ~f2f8!D 2S, ~A4!

sinceV may vary continuously on the sphere while there are
only 2S11 mutually orthogonal spin eigenstates. For infini-
tesimally separated angles, the overlap becomes
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^V8uV&511 iSdf~cosu21!, ~A5!

where df5f82f. For the south-pole parametrization
x5f, the overlap between infinitesimally separated states
becomes

^V8uV&511 iSdf~cosu11!. ~A6!

Coherent states also form an overcomplete set46

@(2S11)/4p#*dVuV&^Vu51, wheredV5dfd(cosu). Al-
though the states are not orthogonal, the overlap between
different states decreases for rapidly largeS with increasing
angle, since

u^V8uV&u5S 12 ~11V8•V! D S. ~A7!

In addition we shall make use of the fact that for largeS, we
have

^V8uSuV&5@SV1O~AS!#^V8uV&. ~A8!

This relation follows from the exact expressions of the spin
matrix elements and from the fact that fluctuations have size
O(AS) since the overlap ~1.7! decreases as
exp$2S(V82V)2/4%.

We derive now a path integral representation for the tran-
sition amplitude between two spin configurations. To this
end, we represent the state vector of the system as a product
of coherent states over all lattice sitesu$V%&5 ^ i51

NL uVi&.
Following the usual procedure,46 we slice the interval intoN
identical pieces of lengthe5b/N and insert complete sets of
states at each lattice site and imaginary time steptn5ne,

^$Vb%ue2bHu$Va%&

5S )
m51

N21

)
i51

NL E dṼ i~tm!D
3 )

n50

N21

^$V~tn11!%u12eH u$V~tn!%&, ~A9!

wheredṼ i5@(2S11)/4p#dV i andu$V(t0)%&5u$Va%& and
u$V(tN)%&5u$Vb%&. In the limit of largeS we use~A8! and
write

^$V~tn11!%u12eH u$V~tn!%&

5„12eH @SVi~tn!#…^$V~tn11!%u$V~tn!%&, ~A10!

whereH @SVi(tn)# is the diagonal element of the Hamil-
tonian and follows from ~2.1! by substituting Si by
SVi(tn). An O(S

3/2) correction to this diagonal element has
been dropped following standard reasoning.2 For largeS,
large deviations between coherent states at adjacent imagi-
nary time steps are exponentially suppressed due to~A7!.
Therefore the trajectories in imaginary time become smooth,
and from ~A5! we obtain for the overlap between coherent
states at adjacent imaginary time steps

^$V~tn11!%u$V~tn!%&

.)
i51

NL

$12 iSdf i~tn!@12cosu i~tn!#%, ~A11!

wheredf i(tn)5f i(tn11)2f i(tn). These overlap terms are
of purely kinematical origin and contribute to~A9! even in
the absence of a Hamiltonian. It is these terms which are
responsible for the distinct behavior of half-odd-integral and
integral spins. Passing to the time continuum limitN→` we
obtain

^$Vb%ue2bHu$Va%&5S )
i51

NL E DV i~t!D
3exp2E

0

b

dtH iS(
i

ḟ i~t!

3@12cosu i~t!#1H @SV i~t!#J ,
~A12!

whereDV i(t)5)n* d̃V i(tn) is the measure, and we re-
placeddf i(t)/e by df i(t)/dt.

In the space continuum limit where the spin configura-
tions vary slowly over the lattice constanta the exchange
term in H@SV i # becomes 2( i ,rVi•Vi1r5*(d3r /a)
3( i(¹V i)

2. The transition amplitude then takes finally the
form

^$Vb%ue2bHu$Va%&5E DfD~cosu!e2S E@f,u#, ~A13!

where the path integral runs over configurations that satisfy
V(x,0)5Va(x) andV(x,b)5Vb(x). The Euclidean action
is given byS E5S WZ1*0

bdtH, where the dynamics is de-
termined by the Wess-Zumino or Berry phase term

S WZ5 i
S

a3E d3r E
0

b

dtḟ~12cosu!, ~A14!

and the energy of the spin configuration is given by

H5E d3r

a3
„J̃S2a2@~¹u!21sin2u~¹f!2#

2K̃yS
2sin2u sin2f1K̃zS

2cos2u…. ~A15!

Equations~A13!–~A15! generalize the formalism of micro-
magnetics to include quantum interference effects. Our dis-
cussion is not restricted to the anisotropy configurations
shown here, one could also include, e.g., magnetostatic in-
teractions of more general form. In the particular case where
the spin configuration only depends on one coordinate, we
recover~2.2!–~2.5!.

Note that the Berry phase term~A14! has been derived in
the the north-pole gaugex52f. If, instead, we had used
the south-pole gaugex5f we would have obtained

S WZ52 i
S

a3E d3r E
0

b

dtḟ~11cosu!. ~A16!

This gauge dependence can be traced back to the gauge de-
pendence of the overlap~A5! and ~A6! of infinitesimally
separated coherent states. It is instructive to express this
overlap as a line integral

53 3251BERRY’S PHASE AND QUANTUM DYNAMICS OF . . .



^V9uV8&.eiSE
V8

V9
dV•AN,S ~A17!

over a ‘‘vector potential’’AN,S5ef(cosu71)/sinu, where the
upper ~lower! sign corresponds to the north-~south-! pole
parametrization. These vector potentials87 are equivalent to
that of a magnetic monopole of unit strength evaluated on
the surrounding unit sphere. The gauge character of the dif-
ferent parametrizations of the coherent state~A1! now be-
comes apparent. If we gauge transform the coherent state
uV&°e2 iLuV&, where L5lf, the overlap~A17! trans-
forms according toA°A1¹fL. By the choice of the gauge
one decides whether a part of the Berry phase ‘‘disappears’’
in the definition of the coherent state or whether it appears
explicitly in the path integral via the overlap~A17!. How-
ever, in order to preserve the single valuedness of the coher-
ent states—our fundamental postulate—only gauge transfor-
mations exp$2iL% are admissible88,69 that are single valued
upon f→f12p. Evidently, this is the case forL52Sf
~for all S! which relates the north- and south-pole parametri-
zations. On the other hand, for half-odd-integer spin this con-
dition is violated forL5Sf which relates the coherent state
with x52f to the one withx50, but the latter is not single
valued and thus not an admissible state. The corresponding
vector potential would beA052cotu ef and does not yield
the full Berry phase accumulated in a closed circuit:
rdV•A0 measures the area between the trajectory on the
unit sphere and the equator whilerdV•AN,S measures the
area between the trajectory and the north or south pole. For
trajectories crossing the dateline50 ~this is typically the case
if spherical coordinates are chosen that are adapted to
the symmetry of the Hamiltonian!, the phase factor
exp$iS*dV•A0%, that results from the ‘‘wrong’’ choice
x50 for the coherent state~A1!, does notcoincide with the
Berry phase term, exp$iS*dV•AN,S%, for half-odd-integer
spins and would, e.g., lead to a wrong semiclassical spin
quantization.

APPENDIX B: EVALUATION
OF THE DAMPING KERNEL

In this Appendix we present the derivation of the damping
kernel ~5.15! starting from Eq.~5.8!.

In order to evaluateF in ~5.8! we first complete the
square in the exponential. As we are working only to order
O(Ẋ2/c2), it is sufficient to shiftw by r[(1/2)G 21J since

w•@G1K #w1J•w5~w1r!•@G1K #~w1r!1O~Ẋ3!
~B1!

(G andK are Hermitian!. Thus Eq.~5.8! can be rewritten as

F@X#5E Dw̃ detF E dx$f08
22f09@w̃2r#%d~t2t8!G

3dS E f08@w̃2r# De2NAw̃•@G1K #w̃, ~B2!

where w̃5w1r. Equation ~B2! can now be considerably
simplified. First we note that*dxf08r}*dxf08G

21f0950
due to the parity invariance ofG and ~anti!symmetry off08
(f09). Thus thed function enforcesw̃ to be orthogonal to the
zero mode. The Gaussian integrations overw̃ are then well

defined and the fluctuations have effective sizeO(1/ANA).
Rescaling ŵ5ANAw̃ and making use of the identity
det5exp tr ln, we can rewrite det(dQ/dX) as

expH tr lnS 12
d/2

ANA
E f09ŵ1~d/2!E f09r D J , ~B3!

where we used*f08
252/d @cf. ~3.5!#, and where the constant

exp$tr ln(2/d)% has been absorbed into the integration mea-
sure. The second term under the logarithm can be neglected
for largeNA and the last term being proportional toẊ2 gives
rise to a pure mass renormalization. Neglecting irrelevant
prefactors, Eq.~2.2! thus becomes

F@X#5e2~DM /2!*dtẊ2E DŵdS E f08ŵ De2ŵ•@G1K #ŵ

5e2~DM /2!*dtẊ2
1

Adet8~G1K !
, ~B4!

where the prime on the determinant denotes omission of the
zero mode which is enforced by thed function, and
DM5O„(NA)

0
… is a small mass renormalization whose ex-

act value is not of interest here. In the evaluation of the
determinant we will encounter several~ultraviolet! divergent
terms which also have the form of a mass renormalization of
orderO„(NA)

0
…. All these renormalizations will change the

massM into the experimentally observed ‘‘dressed’’ Bloch
wall massMeff . We will thus drop all these renormalization
terms and simply replaceM→Meff in the action~5.7!.

Moreover, since the SG model is known to be
renormalizable71 and since we are interested only in the long
time ~infrared! behavior there is no need here to carry out a
systematic renormalization procedure to remove the short
time divergences.

We now turn to the explicit evaluation of the determinant
in ~B4!. We make again use of the identity ln det5tr ln and
expand the logarithm:

1

Adet8~G1K !

5e2~1/2!tr8ln~G @11G21K # !

5
1

Adet8G
e2~1/2!tr8@G21K2~1/2!G21KG21K1O„~Ẋ/c!3…#.

~B5!

SinceK5O(Ẋ/c) this represents an expansion in increas-
ing powers ofẊ/c. The factor@det8G #21/2 is independent of
Ẋ and is the partition function of spin wave fluctuations
around the static Bloch wall. The trace in~B5!,
tr(•••)5(k^ku•••uk&, is evaluated in the basis of eigenfunc-
tions ofG ,

G uk&5ekuk&, ek5Jk21kv21Ky , ~B6!

wherek5J/c2. The anisotropy gapKy will have important
consequences for the form of the damping kernel below. The
eigenfunctions factorize into a space and~imaginary! time
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part, uk&5uv&uk&, where ^tuv&5eivt/Ab with Matsubara
frequenciesv52pn/b,n50,61, . . . . Since the contribu-
tion of the zero modef08 is explicitly excluded in~B5!, we
only need the spin wave states43,44

^xuk&5Nk@2 ikd1tanh~x/d!#eikx, ~B7!

whereNk5@L(11k2d2)#21/2. Thek values in~B7! are im-
plicitly defined by

kL1D~k!52pn, ~B8!

whereD(k)52arctan1/kd is the scattering phase shift of the
eigenfunction~B7!.

To render the results finite in the thermodynamic limit, we
have to subtract the vacuum fluctuations63 and thus renor-
malize,

1

det8~G1K !
→

det~G 01K !

det8~G1K !
, ~B9!

whereG 052k]t
22J]x

21Ky is the operator describing spin
waves around the anisotropy minimum in the absence of a
Bloch wall.G 0 has thesameeigenvalues~B6! asG but the
space eigenfunctions are simply plane waves where thek
values are given bykfree52pn/L rather than~B8!. For the
results given below which only involve one summation over
k, the renormalization~B9! then simply amounts to the re-
placement

(
k
→(

k
2(

kfree
5E

2`

`

dk@r~k!2r free#5E
2`

` dk

2p

dD

dk
,

~B10!

wherer5dn/dk5L/2p2(1/2p)(dD/dk) is the density of
states corresponding to~B8!, r free52p/L, and where we go
over now to the thermodynamic limit. From the definition of
D it follows thatdD/dk522d/(k2d211).

With these preliminaries, we can now rewrite the lowest-
order term in~B5! as follows:

2
1

2
trG 21K52

1

2(k
k

ek
@2^ku2 i ]xuk&^vu iẊ]tuv&

2^ku]x
2uk&^vuẊ2uv&#, ~B11!

where k5J/c2. Using the eigenfunctions~B7! we obtain
^ku2 i ]xuk8&5kdkk81O(L21) and ^ku]x

2uk8&52k2dkk8
1O(L21). Inserting the identity 15*dtut&^tu we obtain in
leading order inL

2
1

2
trG 21K5

k

2b(
k

k

ek
E dt$2vẊ2kẊ2%. ~B12!

The first term on the RHS vanishes sinceek is symmetric in
bothk andv and the second term leads to a mass renormal-

ization which diverges logarithmically@after the partial
renormalization~B10!#. As mentioned above, this term is
part of the dressing of the ‘‘bare’’ Do¨ring mass to the experi-
mentally observed valueMeff , and thus there is no need to
remove this divergence explicitly.

The damping due to spin waves will be exclusively due to
the remaining terms in~B5! which will be discussed next.
Using the above notation, we have up to orderẊ2

1

4
tr~G 21K !25k2(

k,k8

1

ekek8
z^kuẊ]t]xuk8& z2. ~B13!

In leading order inL we have

^kuẊ]t]xuk8&52
kv8

b
dkk8E dtei ~v82v!tẊ~t!. ~B14!

Thus Eq.~B13! can be rewritten in the form

1

4
tr~G 21K !25E

0

b

dtE
0

b

dsẊ~t!Ẋ~s!g~t2s!, ~B15!

with

g~t!5
1

b2 (
v,v8,k

k2vv8ei ~v82v!t

@v21vk
2#@v821vk

2#
, ~B16!

wherevk
25c2(k21d22). With partial integrations and with

g(t1b)5g(t) Eq. ~B15! reduces to

1

4
tr~G 21K !252

1

2E0
b

dtE
0

t

dsK~t2s!@X~t!2X~s!#2,

~B17!

whereK(t)522]t
2g. In ~B17!, we have neglected a term

2@X(b)2X(0)#*dtẊg which turns out to be small for typi-
cal tunneling processes. For the evaluation ofg andK we
make use of the exact relation

Dv~t!5
2v

b (
n52`

`
eivnt

vn
21v2 5

cosh@v~ utu2b/2!#

sinh~bv/2!
,

~B18!

wherevn52pn/b and the RHS is understood to be periodi-
cally extended beyondutu<b/2. With ~B16! and ~B18! we
finally obtain forK522]t

2g

K~t!5(
k
k2vk

2Fsinh22S bvk

2 D22Dvk

2 ~t!G . ~B19!

Note that as a consequence of the relevant coupling between
the system Ẋ and the bath which is quadratic in the
bath coordinatesw, K is proportional toDv

2 rather thanDv

as in the usual Caldeira-Leggett theory. For low tempera-
tures, the damping kernel~B19! reduces to K(t)
522(kk

2vk
2e22vkutu.
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