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We have studied the hydrogen-induced lattice distortions in niobium using the molecular-dynamics simula-
tion technique. A two-exponential interatomic potential for the H-Nb interaction is proposed, based on recent
first-principles calculations for the H/Nb system. The quasielastic diffuse scattering cross section is determined
and compared with neutron scattering data. The importance of the hydrogen motion is elucidated by comparing
results from dynamic simulations with static defect models and we find that the usual way of introducing the
thermal motion of the atoms through a Debye-Waller factor gives a rather imprecise description of theq
dependence of the scattering cross section. We also find some evidence that the actual time scale for the
hydrogen motion influences the shape of the scattering function at high temperatures~450 K! while at lower
temperatures~300 K! this effect is of minor importance. When comparing with the experimental results we find
agreement for theq dependence but not for the absolute intensities.

I. INTRODUCTION

Metal-hydrogen systems have been studied extensively
during the last decades and basic as well as more applied
aspects have been in focus.1–3 Neutron scattering experi-
ments have provided a lot of information both on the micro-
scopic motion of the hydrogen atom and its isotopes and the
accompanying lattice distortion.

One important issue is the proper description of the
hydrogen-induced lattice distortion. Only quite recently has
it become possible to calculate from first principles the
forces exerted by the dissolved hydrogen atom on the sur-
rounding metal atoms and data for interstitial hydrogen in Pd
and Nb have been derived.4 These investigations show that
the forces decay reasonable quickly within the range of one
lattice constant but are more long ranged compared with
some previous estimates.5

However, not only are the forces important for the lattice
distortion but also the location of the hydrogen atom. Ion-
channeling experiments can be used to determine the pre-
ferred location,3 but the assumption that the hydrogen atom
statically occupies an individual interstitial lattice site when
considering the lattice distortion has been questioned.6,7

Dosch et al.7 have argued that it is important to take the
relative time scale between the hydrogen motion and the
lattice relaxation into account. If the hydrogen moves rapidly
between different interstitial lattice sites, the lattice distortion
may not follow adiabatically the hydrogen motion and this
diffusion-induced mechanism has to be taken into account in
a proper description of the lattice distortion.

In a previous study8,9 it was shown that molecular-
dynamics~MD! simulations, based on classical mechanics,
together with realistic potentials can give detailed micro-
scopic information on the H motion in Nb at high tempera-
tures. It was found that the model could reproduce two key
experimental observations: The anomalous Debye-Waller
factor and the distinct deviations from simple jump diffusion
behavior. Detailed investigations revealed that the H motion
is quite complicated and it can move rapidly among several
T sites, the sites with tetrahedral symmetry.

In the present study we will concentrate on the diffuse
coherent scattering cross section which gives information on
the hydrogen-induced lattice distortion. The standard nu-
merical approach to determine the diffuse scattering cross
section for randomly distributed defects is based on the
formula10
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wherecD is the concentration of defects, andbD andb are
the coherent scattering lengths of the defects and metal at-
oms, respectively. The position of the defect is denoted by
Rp , the undistorted lattice positions byRm

0 , and the static
displacements of the metal atoms from their undistorted lat-
tice positions ~caused by the presence of the defect! by
dRm

p . The average is taken over all possible defect locations,
as indicated by the subscriptp. The two factors in front,
e22L ande22M, are the defect-induced and the usual thermal
Debye-Waller factors, respectively. In our case the static
Debye-Waller factor can be neglected and the thermal
Debye-Waller factor will be determined from the mean-
squared displacement of the host lattice atoms. Attempts
have also been made7 to correct for the vibrational motion of
the defect by multiplying the factor exp(iq•Rp) with a
Debye-Waller factor. Our results will be presented in dimen-
sionless form by dividing withcDb

2.
The aim with the present study is to determineSdif(q) in

Eq. ~1! and compare this with an evaluation ofSdif(q) from a
time-dependent calculation at finite temperatures which re-
sembles the experimental procedure more closely. We can
then study to what extent the lattice distortion is influenced
by the time scale for the defect motion.
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II. INTERACTION POTENTIAL

The necessary input in a MD simulation is a model for the
interatomic interactions. In our previous studies8,9 we have
used the Finnis-Sinclair model for the Nb-Nb interaction11

and a H-Nb potential proposed by Gillan.12 The former is
semiempirical in nature and invokes some many-atom inter-
actions, present in metallic systems. The latter is given as a
simple pair potential with two parameters fitted to the two
lowest localized vibrational modes for hydrogen. The recent
first-principles calculations by Elsa¨sseret al.4 demonstrate
that the H-Nb interaction is more long ranged compared with
the model proposed by Gillan. Their calculations also show
that the H-Nb interaction depends essentially on the distance
between the two nuclei and not so much on the local geom-
etry, i.e., the different interstitial sites for H. It is therefore
reasonable to assume a simple pair potential for that part of
the interaction.

In the present study we have retained the Finnis-Sinclair
model for the Nb-Nb interaction but modified the H-Nb pair
potential in order to take the more long-range character of
the interaction into account. We have assumed the form

VNb-H~r !5Aexp@2~r2r 0!/a#1Bexp@2~r2r 0!/b#,
~2!

with four independent parameters. These have been deter-
mined by fitting to ~i! the data by Elsa¨sseret al., ~ii ! the
measured vibrational frequencies, and~iii ! the height of the
fully relaxed potential barrier when H is displaced from one
T site to another. The following values for the parameters
were then obtained:A 5 0.4304 eV, B 5 0.1165 eV,
a50.8791 Å,b50.0759 Å, andr 053.6 Å.

With this set of parameters we reproduce the forces from
the first-principles calculations4 on the first and second
neighboring atoms for a rigid lattice with the H atom located
at aT site ~1.311 eV/Å and 0.129 eV/Å, respectively!. The
lattice constant in the first-principles calculations~3.23 Å! is
not identical to the lattice constant used here~3.3008 Å! and
in the fitting we define the distance to the first and second
neighboring atoms in units of the lattice constant. The two
lowest localized vibrational frequencies are found to be
equal to 119 meV and 189 meV, respectively, which com-
pares well with the experimental numbers@108 meV and 174
meV ~Ref. 14!#. These frequencies were determined from the
relaxed potential with H located at aT site. This procedure
gives very similar results when compared with more appro-
priate quantum mechanical calculations.13 The fully relaxed
potential energy barrier when H is displaced from oneT site
to another is equal to 115 meV. This is similar to the barrier
in the previous model@122 meV ~Ref. 12!# which ensures
that a reasonable number for the diffusion constant is ob-
tained.

We also notice that a two-exponential form for the H-Nb
interaction has been used previously by Sugimoto and
Fukai.15 They used information on the force-dipole tensor
and the vibrational frequency and constructed a potential
rather similar to the function in Eq.~2!. This early conjecture
by Sugimoto and Fukai is therefore now supported by the
more recent first-principles calculations by Elsa¨sseret al.4

III. SIMULATION DETAILS

In the time-dependent simulation study we are restricted
to use a rather small size of the system. To effectively treat
an infinite system periodic boundary conditions are em-
ployed where the system is replicated throughout space. The
allowed q values are therefore restricted by the condition
q5(2p/L)(nx ,ny ,nz), where L is the linear size of the
system andnx , ny , andnz are arbitrary integers. In the ex-
perimental studies by Doschet al.7,16 the diffuse scattering
cross section is measured along two different scans in recip-
rocal space. These scans are chosen to obtain maximum in-
formation on thelocal distortion around the defect. We have
considered the same quantity and determined the size of the
system such that our scattering cross section data are only
minutely influenced by the periodic boundary conditions.

We have considered the following two different scans:

scan 1:qn5
2p

a0
~h,k,l !5

2p

a0
S 113 ,

n

m
,
n

mD ; ~3!

scan 2:qn5
2p

a0
~h,k,l !5

2p

a0
S 53 , nm ,

n

mD , ~4!

which are close to scan 1 and scan 2 in Ref. 7, respectively.
The size of the system is written asL5ma0 , wherea0 the
lattice spacing (a053.3008 Å! andn andm are integers. In
Fig. 1 we show the result forSdif( q) along scan 2. These
values have been determined with a single static H atom
located at aT site and with the surrounding Nb atoms fully
relaxed to their distorted equilibrium positions. An average is
made over six different configurations with H located at the
six inequivalentT sites. To test the size dependence we have
considered three different values form, m53, 6, and 12, and
we find that the results are surprisingly insensitive to the size
of the system. UsingNNb5432 (m56! or NNb53456
(m512! metal atoms leads to essentially the same result.
This clearly shows thatSdif( q) for theseparticular q values
is dominated by the local distortion around the defect and not

FIG. 1. The diffuse scattering functionSdif( q) calculated along
scan 2 (h55/3) using Eq.~1! with varying system size.s, 3456
Nb atoms (m512); n, 432 Nb atoms (m56); *, 54 Nb atoms
(m53).
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on the long-range distortion field which is always present in
an elastic medium and is inevitably influenced by the peri-
odic boundary conditions. We have verified that the same
conclusion also holds for theq values along scan 1.

In the subsequent time-dependent calculations we will use
N Nb5432 metal atoms and one H~D! atom. This small size
of the system will make it feasible to perform rather exten-
sive time-dependent calculations.

We have also investigated to what extent the H motion is
modified by the change of the H-Nb interaction, compared
with the studies in Refs. 8,9. Due to the fact that both the
vibrational frequencies and the fully relaxed potential energy
barrier for diffusion are roughly the same, we do not expect
any large change. The diffusion constant for deuterium is
found to be slightly lower,Ds53.8131025 cm2 s21 at 450
K, compared withDs55.7831025 cm2 s21 at the same
temperature.9 This difference is not surprising considering
the fact that themagnitudeof the diffusion constant depends
sensitively on the height of the potential barrier for diffusion.
We can compare these numbers with the experimental value
which is equal toDs51.9731025 cm2 s21 at 450 K.3 The
wave vector dependence of the integrated intensity of the

quasielastic peak has also been determined and we find a
very similar ‘‘anomalous Debye-Waller factor’’ as in Ref. 8.
From this we conclude that the details of the H motion, as
revealed in the previous study,8 are quite unaffected by the
present change of the H-Nb interaction.

IV. RESULTS

We will now determineSdif( q) from a time-dependent
calculation at finite temperatures in a way that resembles the
experimental procedure as closely as possible. Experimen-
tally the scattering intensity is measured for a given wave
vector transferq and energy transfer\v, convoluted with
the experimental resolution function. The diffuse scattering
cross sectionSdif( q) is obtained as the~quasi!elastic inten-
sity at constantq. The data are corrected for by subtracting
the background intensity and the incoherent scattering
caused by the deuterium atom. Absolute intensities are ob-
tained by normalizing to the scattering from a known host
lattice phonon.7

In our case, the output data from the MD simulation are
used to determine the intermediate scattering function,

F~ q,t !5K FbDb ei q• Rp~ t !1(
n

ei q• Rn~ t !GFbDb e2 i q• Rp~0!1(
m

e2 i q• Rm~0!G L , ~5!

where Rp denotes the position of the deuterium atom and
Rn , n51, . . . ,N, the positions of the Nb atoms. The coher-
ent scattering lengths are equal tob57.1 fm andbD56.7 fm
for Nb and D, respectively. By dividing withb2 we have
writtenF( q,t) in a dimensionless form. We have also deter-
mined the same scattering function for pure Nb at the same
temperature,

F0~ q,t !5K F(
n

ei q• Rn
0
~ t !GF(

m
e2 i q• Rm

0
~0!G L , ~6!

and subtracted that quantity from the total function,

DF~ q,t ![F~ q,t !2F0~ q,t !. ~7!

To obtain the diffuse scattering cross section the Fourier
transform ofDF( q,t) is integrated together with a Gaussian
resolution functionRG(v),

Sdif~ q!5cDb
2E

2`

`

DF~ q,v!RG~v!dv, ~8!

where

RG~v!5exp@2 ln2~2v/Dv0!
2#. ~9!

The full width at half maximum of the resolution function is
chosen to have the same value as in the experimental study,7

\Dv053.8 meV.
First we have determinedSdif( q) using Eq.~1!. In this

case the deuterium atom is held fix at aT site and the sur-
rounding Nb atoms are allowed to relax to their distorted

equilibrium positions. No thermal motion is included. The
calculation is repeated for the six inequivalent locations of
the deuterium atom and the quantitySdif( q) is derived. The
thermal motion of the metal atoms is added by including the
thermal Debye-Waller factore22M, following Eq. ~1!. In the
present case the defect-induced static Debye-Waller factor
e22L is close to unity and can be neglected. The following
numbers are used:bD56.7 fm, b57.1 fm, and^uNb

2 &55.9
31023 Å 2, whereM5 1

2q
2^uNb

2 &. The mean-squared dis-
placement for the metal atoms,^uNb

2 &, is obtained from a MD
simulation for pure Nb at 450 K. The results are shown in
Fig. 2, denoted as ‘‘static.’’

We can now compare these data with a full MD calcula-
tion whereSdif( q) is determined using Eq.~8!. In this case
the diffusive and vibrational motion of the deuterium atom is
included automatically as well as the distortions and vibra-
tions of the Nb atoms. The results depend on the temperature
and in Fig. 2 we present our data for 450 K, ‘‘m5mD .’’

The main difference between the cases ‘‘m5mD’’ and
‘‘static’’ is that in the time-dependent calculation the deute-
rium atom is allowed to move. The assumption behind Eq.
~1! is that the rapid local vibrations should show up in a
time-averaged fashion and be effectively included in the
thermal Debye-Waller factore22M. Other motions should be
too slow compared withDv0

21 and should not influence
Sdif( q). Attempts have been made to multiply the factor
exp(i q• Rp) in Eq. ~1! with an ‘‘effective’’ Debye-Waller
factor to take into account the fact that the amplitude for the
vibrational motion is not the same for Nb and D.7 However,

53 3173LATTICE DISTORTIONS AROUND FROZEN AND MOBILE . . .



with reasonable numbers for the ‘‘effective’’ Debye-Waller
factor rather small effects onSdif( q) are observed.7

Next we would like to investigate if thetime scalefor the
defect motion is important for the difference between the
cases ‘‘m5mD’’ and ‘‘static’’ shown in Fig. 2. If that is the
case a proper calculation ofSdif( q) has to include time-
dependent lattice distortions, where the time-dependence is
given by the motion of the defect. On the other hand, it can
also be that treating the location of the defect fixed at aT site
and adding the deviations from this positiononly through a
Debye-Waller factor may be too crude. We can to some ex-
tent distinguish between these two different aspects of the
defect motion by changing the mass of the defect in the
time-dependent calculation but keeping thesameexpression
for the interatomic potentials. In that way weonly influence
the relation between the time scale for the defect and lattice
motion but the averaged instantaneous spatial configurations
of all atoms will be the same.~The latter statement is true
provided the system is ergodic which we assume to be true.!

We have considered two different masses for the defect,
the true mass~‘‘m5mD’’ ! and equal to the mass of the metal
atoms~‘‘m5mNb’’ !. The case ‘‘m5mNb’’ corresponds more
closely to the situation with a static defect, with respect to
the motion of the lattice atoms, but where the actual spatial
correlation between the defect and the surrounding metal at-
oms is treated in a proper way. By increasing the mass with
a factormNb /mD546.5 the typical vibrational frequency and
the mean thermal velocity are reduced by a factor
AmNb /mD56.8. We also expect the diffusion constant to be
reduced by about a factorAmNb /mD and from the simulation
we obtain the factor 5.1; the diffusion constant is reduced
from Ds53.8131025 cm2 s21 to Ds50.74431025 cm2

s21. In both cases we use identical interatomic potentials.
The result is shown in Fig. 2.

We notice that the difference between the cases
‘‘m5mD’’ and ‘‘m5mNb’’ is not large but for severalq val-

ues the two numbers deviate from each other. The error bars
represent an estimate of one standard deviation. These results
indicate that in a correct description of the defect-induced
lattice distortion at 450 K the propertime scalefor the defect
motion should be included. The difference between the cases
‘‘m5mNb’’ and ‘‘static’’ implies that including the thermal
motion only by adding a Debye-Waller factor leads to a
rather crude description of the actualq dependence of the
scattering cross section.

We have also performed the same study at 300 K. At this
temperature the diffusion constant for deuterium is reduced
to Ds50.8831025 cm2 s21, which can be compared with
the experimental number which is equal toDs50.3831025

cm2 s21.3 The result is shown in Fig. 3. The cases
‘‘m5mD’’ and ‘‘m5mNb’’ are now more close to each other
and at this temperature the actualtime scalefor the defect
motion seems to play a minor role. Still we find a difference
between the cases ‘‘m5mD’’ and ‘‘static.’’

Finally we would like to compare our results with the
experimental findings. The absolute intensities of the diffuse
scattering cross section have been measured at two different
temperatures 300 K and 480 K.7 The presented data do not
contain the Debye-Waller factorse22L ande22M. To com-
pare with our data we have therefore multiplied the experi-
mental values with e22M, where M5 1

2q
2^uNb

2 & and
^uNb

2 &55.831023 Å 2 at 300 K and̂ uNb
2 &59.331023 Å 2 at

480 K.17 The factore22L can be neglected. The data are
divided by cDb

258.57 mb (cD50.017! and the results are
given in Fig. 4.

In comparison with the observed values forSdif( q) our
data differ substantially in absolute intensities. However, the
shape of the diffuse scattering function is reproduced quite
well by our data, particularly at the higher temperature.
There are several possible reasons for this difference in ab-
solute intensities:~i! Our model for the Nb-Nb potential is
rather crude. The phonon spectrum is not accurately repro-
duced but, on the other hand, our data forSdif( q), based on
Eq. ~1!, are quite similar to the data in Ref. 7, where a more
accurate phonon spectrum has been used in a corresponding
calculation. In our case anharmonicity is included but it is
difficult to state to what extent that influences the result. An

FIG. 2. The diffuse scattering functionSdif( q) at 450 K calcu-
lated along scan 1 (h511/3).L, obtained from a MD simulation;
h, obtained from a MD simulation but where the mass of the
defect is artificially increased to the mass of the metal atoms; *,
obtained from a static calculation with the thermal Debye-Waller
factor added. The error bars represent an estimate of one standard
deviation.

FIG. 3. The same as in Fig. 2 but at 300 K.
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important issue is how accurate our model for the inter-
atomic interaction describes the anharmonicity in the real
system. The H-Nb interaction, fitted to the first-principles
calculations by Elsa¨sseret al.,4 is probably quite accurate but
uncertainties are introduced when the assumption of a pair
potential is introduced and when quantum effects are ne-
glected in developing the model potential~cf. the discussion
in Ref. 9!. ~ii ! The scans we have used@Eqs.~3! and~4!# are
not identical to the experimental scans in Ref. 7. However,
this rather small change cannot explain the large difference
in absolute intensities. This has been verified by calculating
Sdif( q) at some other nearby positions in reciprocal space.
~iii ! We treat the motion of the defect classically. Based on
the study in Ref. 9 the deuterium atom should be rather lo-
calized in space at the present temperature. The details of the
distribution of the deuterium atom are influenced by quan-
tum effects but we expect that to have a rather small effect
on Sdif( q). ~iv! The intensity of the measured cross section
is very weak compared with the diffuse scattering back-
ground and a careful data analysis and calibration have to be
performed in order to obtain absolute intensities. For that
reason one cannot rule out possible uncertainties in the ex-
perimental data but it cannot explain the large difference in
absolute intensities.

The most likely reason for the discrepancy in absolute
intensities is the model potential we are using. Better models
for niobium have been developed18 but these are consider-
ably more complicated and extensive time-dependent calcu-
lations cannot be performed as easily. Also the problem of
introducing hydrogen into that model is still present. In the
future it would be highly desirable to use better model po-
tentials.

V. CONCLUSIONS

We have determined the diffuse scattering function
Sdif( q) from a time-dependent calculation at finite tempera-
tures in a way that closely resembles the experimental pro-
cedure. Two different temperatures are considered, 450 K
and 300 K, and classical mechanics is assumed for the mo-
tion of the atoms. At the higher temperature it has been
shown previously that our model for H in Nb describes ac-
curately the details of the diffusive motion of hydrogen.8,9

We find that the usual way of introducing the thermal
motion of the atoms into the expression for the diffuse scat-
tering function through a Debye-Waller factor@cf. Eq. ~1!#
gives a rather imprecise description of theq dependence of
the scattering cross section. In a detailed analysis of experi-
mental data an improved description should be used.

We also find some evidence for the fact that the actual
time scalefor the defect motion influences the shape of the
diffuse scattering function at 450 K. At the lower tempera-
ture 300 K, this effect seems to be of minor importance.

The obtained results forSdif( q) are found to deviate from
the experimental results in magnitude but not in shape~theq
dependence!. We argue that the most likely reason for this
discrepancy is an inaccurate model potential.
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4C. Elsässer, M. Fa¨hnle, L. Schimmele, C. T. Chan, and K. M. Ho,
Phys. Rev. B50, 5155~1994!.

5M. J. Gillan, Philos. Mag. A58, 143 ~1988!.
6J. Buchholz, J. Vo¨lkl, and G. Alefeld, Phys. Rev. Lett.30, 318

~1973!.

7H. Dosch and J. Peisl, Phys. Rev. Lett.56, 1385 ~1986!; H.
Dosch, J. Peisl, and B. Dorner, Phys. Rev. B35, 3069~1987!.

8G. Wahnstro¨m and Y. Li, Phys. Rev. Lett.71, 1031~1993!; Y. Li
and G. Wahnstro¨m, Phys. Rev. B51, 12 233~1995!.

9B. von Sydow, G. Wahnstro¨m, and Y. Li, J. Alloys Compounds
231, 214 ~1995!.

10M. A. Krivoglaz, Theory of X-ray and Thermal-Neutron Scatter-
ing of Real Crystals~Plenum, New York, 1969!.

11M. W. Finnis and J. E. Sinclair, Philos. Mag. A50, 45 ~1984!.
12M. J. Gillan, Phys. Rev. Lett.58, 563 ~1987!.
13F. Christodoulos and M. J. Gillan, J. Phys. Condens. Matter3,

9429 ~1991!.
14S. Ikeda and N. Watanabe, J. Phys. Soc. Jpn.56, 565 ~1987!.

FIG. 4. Experimental values forSdif( q) along scan 1
(h53.62) at two different temperatures, taken from Ref. 7.

53 3175LATTICE DISTORTIONS AROUND FROZEN AND MOBILE . . .



15H. Sugimoto and Y. Fukai, Phys. Rev. B22, 670 ~1980!.
16H. Dosch, F. Schmid, P. Wiethoff, and J. Peisl, Phys. Rev. B46,

55 ~1992!.
17H. Dosch~private communication!.
18J. A. Moriarty, inMany-Atom Interactions in Solids, edited by R.

N. Nieminen, M. J. Puska, and M. J. Manninen~Springer-
Verlag, Berlin, 1990!, p. 158; G. H. Champbell, S. M. Foiles, P.
Gumbsch, M. Ru¨hle, and W. E. King, Phys. Rev. Lett.70, 449
~1993!.
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