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We use the replica trick and a variational method to determine the effective elastic coefficients of a disor-
dered composite. We obtain for them a self-consistent formula, which is satisfactory from the points of view of
low disorder and low dilution expansions. When the bulk moduliK and the shear modulim are such that
K*2m, it satisfies Hashin-Shtrikman bounds and is close to the usual effective-medium approximation. In the
caseK*2m, we observe a deviation of Hashin-Shtrikman bounds which can be understood by analogy with
an equivalent one-dimensional problem. Finally, this calculation allows us to derive the rigidity thresholdpr
for any dimensiond.

INTRODUCTION

An effective medium is a quasihomogeneous description
of an inhomogeneous system. Such a description is meaning-
ful when the typical length of these inhomogeneities is re-
garded as small compared with the observation length. The
determination of the effective behavior of a disordered sys-
tem is not simple, and one usually uses the effective-medium
theory~introduced by Bruggeman1 in the dielectric case: for
a review see Ref. 2!, which is essentially a self-consistent
one-site approximation.3 Besides, there are exacts bounds
~Hashin and Shtrikman4! that any approximation must sat-
isfy.

This problem is of great importance because of its wide
range of applications due to the development of composite
materials. A quantity of interest is, in particular, the rigidity
threshold. When one of the two materials is a quasivacuum
with a proportion 12p, the effective behavior of the com-
posite will differ from the vacuum one only above a finite
value ofp: the ‘‘rigidity threshold’’ which will be denoted by
pr . Our method allows its computation for any space dimen-
sion.

It was shown in Ref. 5 that one can relate the effective
coefficients to the average of the inverse of a random opera-
tor. In order to calculate this average, we use the replica trick
and a variational approximation used in Ref. 6. This method
was applied to the propagation of electromagnetic waves in
disordered dielectrics7 and to the Hall effect.8 We here adapt
this point of view to the elastic case and derive the corre-
sponding formulas for the effective static behavior of a bi-
nary mixture of two materials for which the usual linear iso-
tropic Hooke’s law is valid.

Section I introduces the model and explains how the prob-
lem reduces to the approximation of the average of a fluctu-
ating operator. In Sec. II, we explain the method through the
simple case of pure compressive materials. In Sec. III, we
study the general case and we derive two self-consistent
equations for the effective elastic coefficients of the mixture.
In Sec. IV, we discuss the results, perform comparison with
Hashin-Shtrikman bounds and Bruggeman’s effective-
medium approximation and study analytically the percola-
tion problem.

I. MODEL AND BASIC EQUATIONS

We study ad-dimensional binary mixture of two micro-
scopically isotropic materials. The elastic coefficients are
distributed according to

P~m,K !5pd~m2m1!d~K2K1!

1~12p!d~m2m2!d~K2K2!, ~1!

wherem ~the shear modulus! andK ~the bulk modulus! are
defined as usual by Hooke’s law:

s i j52mS ui j2 1

d
ulld i j D1Kulld i j ; ~2!

wheres i j is the stress tensor andui j the strain tensor.9 We
use Einstein’s convention for repeated indices. Moreover we
define

n52m1l and l5K2
2

d
u. ~3!

The effective coefficients, which will be superscripted by *,
describe the response of the whole material to the stress, that
is2

^s i j &52m* K ui j2 1

d
ulld i j L 1K* ^ulld i j &, ~4!

where the bracketŝ & denote the average over the fluctua-
tions of the elastic coefficients. The elastic equilibrium equa-
tion

] is i j50

can be rewritten as

~L0u! j1] i@dm~] iuj1] jui !#1] j~dl] iui !50, ~5!

where

~L0u! j5m0~] i
2uj1] j] iui !1l0] j] iui

with dm(r )5m(r )2m0 ,dl(r )5l(r )2l0 . The quantities
m0 and l0 are arbitrary~strictly positive! parameters. The
Fourier-transformed Green function of the differential opera-
tor L0 is
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Gi j52
d i j
k2m0

1
m01l0

m0~2m01l0!

kikj
k4

. ~6!

We denote by the same letter an operator in real or Fourier
representation and this should be clear from the context.
Equation~4! can be rewritten as the following integral equa-
tion:

] jui5] jui
02@]r] jGik* ~2dmurk!1]r] jGik* ~dlulldrk!#,

~7!

where * is the convolution operator and whereu0 is the
solution with no disorder: it is fixed by the boundary condi-
tions and so it is not fluctuating. We symmetrize in (i , j ) in
order to obtainui j and also in (r,k). We can then rewriteu
as a function ofu0

ui j ~r !5E dr8Mi jkl ~r ,r 8!ukl
0 ~r 8!, ~8!

Mi jkl
21 ~r ,r 8!5122Gi jkl ~r2r 8!dm~r 8!

2Gi j rr~r2r 8!dl~r 8!dkl , ~9!

Gi jkl52
1

4m0
S d jk

kikl
k2

1d i l
kjkk
k2

1d ik
kjkl
k2

1d j l

kikk
k2 D

1
m01l0

m0~2m01l0!
kikjkkkl
k4

. ~10!

The effective medium is homogeneous with coefficients
m* andl* . Its equilibrium equation

] i^s i j &50

can be rewritten as~8! with ~4! and the substitution

dm~r 8!→dm* and dl~r 8!→dl* .

We obtain^u&5M* u0 with

Mi jkl*215d ikd j l1
dm*

2m0
S d jk

kikl
k2

1d i l
kjkk
k2

1d ik
kjkl
k2

1d j l

kikk
k2 D22dm*

m01l0

m0~2m01l0!

kikjkkkl
k4

1
dl*

2m01l0
dkl

kikj
k2

. ~11!

Averaging~8! we find ^u&5^M &u0 sinceu0 does not fluctu-
ate. Since it is arbitrary, we immediately find

^M &5M* . ~12!

We thus have shown that the problem reduces to the evalu-
ation of the average of the random operatorMi jkl knowing
its inverse from Eq.~9!.

II. CALCULATION IN A LIMITING CASE: PURE
COMPRESSION

In order to introduce the method of calculation of the
effective coefficients, we study the case of pure compression.

This case is, of course, trivial but it illustrates in a pedagogi-
cal way the method and it shows its limitations. Moreover,
this case is equivalent to the one-dimensional random resis-
tor network~where the exact result is known! and was stud-
ied by use of the replica method in Ref. 5. In the pure com-
pression case, the coefficientsm are set equal to zero. So we
have

s i j5Kulld i j .

The material does not support shear any more so we must
take

ui j5ud i j

a pure compressive strain withu a function ofr , the radial
coordinate~only in this section!. The equilibrium equation
then reads

s5dKu and] rs50. ~13!

We are thus left with the electrical problem studied in Ref. 5,
with an effective dimensiond51. Here, as in the general
case,K is a binary random variable. The equilibrium equa-
tion is

] r@K~r !u~r !#50. ~14!

Writing K(r )5K01dK(r ), we have

u~r !5u02
dK~r !

K0
u~r ! ~15!

with u0 a constant. The solution of the equation can be re-
written under the form

u~r !5E dr8M ~r ,r 8!u0 ~16!

with

M21~r ,r 8!5d~r2r 8!S 12
dK~r !

K0
D . ~17!

We know from the previous section that we have to evaluate
^M &. Let us note here that

M* ~r ,r 8!5S 12
dK*

K0
D 21

d~r2r 8!. ~18!

We writeM as a function ofM21 with the help of a Gauss-
ian integral formula with Grassman variables10

M ~r ,r 8!5

E D j̄Djj̄~r 8!j~r !e*drdr8 j̄ ~r !~M21!~r ,r 8!j~r 8!

E D j̄Dje*drdr8 j̄ ~r !~M21!~r ,r 8!j~r 8!

,

~19!

wherej and j̄ are Grassmann fields satisfying

$j~r !,j~r 8!%5$j~r !,j̄~r 8!%5$j̄~r !,j̄~r 8!%50.

We use here Grassman’s integration~Ref. 10! because the
operator is not symmetric and we can not use the usual
Gaussian one. In order to average~19!, we use the replica
trick ~see for example the book11!: the denominator is written

3162 53O. PARCOLLET, M. BARTHELÉMY, AND G. ZÉRAH



(*•••)n21 and we will perform the limitn→0 at the end. Of
course, we suppose that although this calculation is only
valid for integer values ofn, we can take the limitn→0. It is
an usual assumption in the replica approach and we will not

try to prove the limit exits. We introduce the vector

j5~j1 , . . . ,jn!

and similarly the vectorj̄. Equation~19! can be written as

M ~r ,r 8!5E D j̄Dj
j̄~r 8!•j~r !

n
expS E drdr8(

a51

n

j̄a~r !d~r2r 8!@12dK~r 8!/K0#j
a~r 8!D . ~20!

In order to average~20! we denote that ifg(r ,r 8) is a given function andf (r 8) a fluctuating function ofr 8 distributed
according to a binary law without spatial correlations~we notef 1 and f 2 the two values off !, we have

^e**g~r ,r 8! f ~r 8!dr dr8&5e**g~r ,r 8! f1dr dr8)
r 8

p~11he~1/L!*g~r ,r 8!~ f22 f1!dr!

5e**g~r ,r 8! f1dr dr8expS LE dr0ln~11h e~1/L!*g~r ,r0!~ f22 f1!dr!1V ln pD ~21!

with L a short distance cutoff~which has the dimension of the inverse of a volume! which appears in the transformation of the
integral in a Riemann sum. The quantityV is the volume of the sample andh5(12p)/p, wherep is the probability of
f 1 .
Using this formula withf (r 8)52dK(r 8)/K0 andg(r ,r 8)5(a51

n j̄a(r )d(r2r 8)ja(r 8), we obtain from~20!

^M ~r ,r 8!&5E D j̄Dj
j̄~r 8!•j~r !

n
eHe~j,j!, ~22!

where the effective Hamiltonian is

He~j,j̄!5E drdr8j̄a~r !d~r2r 8!~12dK1 /K0!j
a~r 8!1LE dr0lnF11hexpS 2

1

LE dr(
a

j̄a~r !d~r2r 0!DK /K0j
a~r 0! D G

~23!

with

dK5K22K1 ,

dK15K12K0 ,

h5
12p

p
.

Let us recall that we want to compute the propagator of this
effective Hamiltonian. Moreover we want a nonperturbative
result and one way to do this is to use a variational method.
This consists in approximatingHe by a Gaussian Hamil-
tonianH0 ~diagonal in the replica space!. We thus introduce

Z05E D j̄DjeH05E D j̄Dje*dr dr8(aj̄ a~r !A21~r2r 8!ja~r 8!.

~24!

The average usingZ0 will be denoted bŷ &H0
. OnceH0 is

determined, the approximation reads

A'^M &, ~25!

soA5M* @Eq. ~12!# from which we can deduceK* . We
now have to find the best Gaussian HamiltonianH0 . In
order to do this, one can easily show that for allH0 and all
operatorO :

^OHe
&5^O &H0

1~^OV &H0
2^O &H0

^V &H0
!1o~V !

~26!
with V 5He2H0 small. Therefore the bestH0 to second
order inV must satisfy

^OV &H0
2^OH0

&^V &H0
50. ~27!

Note that the bestH0 depends onO and that in our case,
O5 j̄j is the propagator. One can express the result~27! in a
simple form reminiscent of the usual Gibbs-Bogoliubov
variational principle.12 To this end, we introduce the varia-
tional free energy

F @A#5^He2H0&H0
1F 0 ~28!

with F 05 ln Z0. Using

dF 0

dA21 5^j̄j&H0
,

d^V &H0

dA21 5^j̄jV &H0
2^j̄j&H0

^V &H0
2^j̄j&H0

, ~29!

we transform~27! into

dF

dA~k!
50. ~30!
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~Let us note that the usual convexity inequality of Gibbs-
Bogoliubov does not hold here, since we are dealing with

Grassman variables.!
We get for the variational free energy from~23! and~28!

F 52nVE ddk

~2p!d
tr lnA~k!1nVS 12

dK1

K0
D E ddk

~2p!d
A~k!

1LE dr0K lnF11h expS 2
1

LK0
E dr(

a
j̄a~r !d~r2r 0!DKja~r 0! D G L

H0

. ~31!

The calculation of the last term is the main difficulty here
and can be found in Ref. 5. In the general case~next section!
we will give a more detailed calculation. After all calcula-
tions, the variational free energy per replica and unit volume
is ~since one expectF ;nV in the limits n→0 andV→`
we expand the free energy to the first order inn!:

F

nV
52E ddk

~2p!d
tr lnA~k!1S 12

dK1

K0
D E ddk

~2p!d
A~k!

2L (
h.0

~21!h
hh

h
lnF12

hDK

LK0
E ddk

~2p!d
A~k!G .

~32!

The variational equation~30! leads to

1

A~k!
512

dK1

K0
1

DK

K0
(
h.0

~21!hhh

3F 1

12~hDK /LK0!*@ddk/~2p!d#AG . ~33!

Using ~18!, and

1

x
5E

0

`

due2ux,

we find

K*5E
0

1

dz
^KzK/K* &

^zK/K* &
. ~34!

This equation determinesK* in a self-consistent way. It is
the result of Ref. 5 ford51. It does not coincide with the
exact result (K*51/̂ 1/K&). We will discuss this interesting
limiting case later.

III. THE GENERAL CASE

After this pedagogical introduction, we will now study the
general case defined in Sec. I. The key ideas of the method
have already been explained, and we will focus on technical
difficulties.

In order to computêMi jkl &, we writeM as a function of
M21:

Mi jkl ~r ,r 8!5

E D j̄Djj̄kl~r 8!j i j ~r !expS E drdr8(
i jkl

j̄ i j ~r !~M21! i jkl ~r ,r 8!jkl~r 8! D
E D j̄DjexpS E drdr8(

i jkl
j̄ i j ~r !~M21! i jkl ~r ,r 8!jkl~r 8! D , ~35!

wherej and j̄ are Grassmann fields.
Equation~35! can be rewritten as

Mi jkl ~r ,r 8!5E D j̄Dj
j̄kl~r 8!•ji j ~r !

n
expS E drdr8 (

i , j ,k,l51

d

(
a51

n

j̄ i j
a ~r !@d ikd j ld~r2r 8!22dm~r 8!Gi jkl ~r2r 8!

2dl~r 8!Gi j rr~r2r 8!dkl#jkl
a ~r 8!D . ~36!

Using ~21!, we obtain from averaging~36!
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^Mi jkl ~r ,r 8!&5E D j̄Dj
j̄kl~r 8!•ji j ~r !

n
eHe~j,j̄ !,

where the effective Hamiltonian is

He~j,j̄!5E dr(
i , j ,a

j̄ i j
a ~r !j i j

a ~r !2E drdr8 (
i , j ,k,l ,a

j̄ i j
a ~r !@2dm1Gi jkl ~r2r 8!1dl1Gi j rr~r2r 8!dkl#jkl

a ~r 8!

1LE dr0lnF11hexpS 2
1

LE dr (
i , j ,k,l ,a

j̄ i j
a ~r !@2DmGi jkl ~r2r 0!1DlGi j rr~r2r 0!dkl#jkl

a ~r 0! D G ~37!

with

Dm5m22m1 ,

Dl5l22l1 ,

h5
12p

p
.

The variational free energy@Eq. ~28!# is

F 52nVE ddk

~2p!d
tr lnA~k!1nVE ddk

~2p!d
trA~k!2nVE ddk

~2p!d
tr~G 1A!~k!

1LE dr0K lnF11h expS 2
1

LE dr (
i , j ,k,l ,a

j̄ i j
a ~r !G ~r2r 0!jkl

a ~r 0! D G L
H0

, ~38!

where

G52DmGi jkl1DlGi j rrdkl ,

G 152dm1Gi jkl1dl1Gi j rrdkl . ~39!

In order to compute the last term of~38!, we expand the logarithm. This leads us to compute terms of the form

K lE dr0expS 2
h

LE dr (
i , j ,k,l ,a

j̄ i j
a ~r !G ~r2r 0!jkl

a ~r 0! D L
H0

, ~40!

~with h an integer! which is equal to

LE dr0expS nTr lnFd ikd j ld~r2r 8!2
h

L(
mn

G i jmn~r2r 0!Amnkl~r 02r 8!G D . ~41!

Expanding this last expression to first order inn, we obtain

LV1nLE dr0Tr lnFd ikd j ld~r2r 8!2
h

L(
mn

G i jmn~r2r 0!Amnkl~r 02r 8!G1O~n2!

5LV1nVL tr lnS d ikd j l2
h

LE ddk

~2p!d(mn
Ai jmn~k!G mnkl~k! D 1O~n2!. ~42!

Here, tr denotes the usual matrical trace and Tr the operator trace~including spatial indices!. We finally find~up to a constant!
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F

nV
52E ddk

~2p!d
tr lnA~k!1E ddk

~2p!d
trA~k!2E ddk

~2p!d
tr~G 1A!~k!

2L (
h.0

~21!h
hh

h
tr lnS d ikd j l2

h

LE ddk

~2p!d
~AG ! i jkl ~k! D .

The variational equation

dF

dAkli j ~k!
50 ~43!

reads

~A21! i jkl5d ikd j l2G i jkl
1 ~k!1 (

h.0
~21!hhhG i jmn

3F 1

12~h/L!*@ddk/~2p!d#~AG !G
mnkl

. ~44!

Using ~25! and ~11! in ~44!, we get after a straightforward
but tedious calculation the following self-consistent equa-
tions for the coefficients of isotropic elasticity~see the Ap-
pendix for some details!,

m*5E
0

1

dz
^mz@2m/d~d12!#~d/m*12/n* !&

^z@2m/d~d12!#~d/m*12/n* !&
,

K*5E
0

1

dz
^KzK/n* &

^zK/n* &
, ~45!

where

n*52m*1l* and l*5K*2
2

d
m* .

Let us note that in the last term of~44!, the integral has to be
regularized by the cutoffL because of short distance diver-
gence, since we have to integrate a homogeneous function of
degree zero. One can show that the integral is proportional to
L ~see the Appendix for a complete expression of the useful
integrals!. Note that the cutoff and the arbitrary parameters
m0 and l0 disappear at the end of the calculation as ex-
pected. Equations~45! are the main result of our paper and
we now discuss them. Let us note that whenm i50, we re-
trieve the result of Sec. II.

IV. DISCUSSION

A. The low disorder expansion

First, we extract the low disorder expansion~that is when
the variance ofm andK are small! from our formulas and
compare it with the straightforward low disorder expansion
of ~8!.

First, if we iterate twice the exact integral equation~8!
and average, we find

^ui j &5ui j
01H 24^dm2&

1

d~d12! S d

m0
1

2

n0
D F2

1

4m0
S d jk

kikl
k2

1d i l
kjkk
k2

1d i l
kjkk
k2

1d i l
kjkl
k2

1d jk

kikk
k2 D

1S 1

m0
2

1

n0
D kikjkkklk4

2
2

d~d12!n0
S 1

m0
2

1

n0
D dkl

kikj
k2 G14^dmdl&

1

dn0
2 dkl

kikj
k2

1^dl2&
1

n0
2 dkl

kikj
k2 J

i jkl

ukl
0 ~k!,

~46!

and we can extract the perturbative expansion ofm* and
K*

m*'m02
2^dm2&
d~d12! S dm0

1
2

n0
D ,

K*'K02
^dK2&

n0
. ~47!

Let us then note that for a general formula of the form

C*5E
0

1

dz
^CzB~C* !C&

^zB~C* !C&
, ~48!

where C is some coefficient withdC5C2C0!C0 and
B(C* ) a given function ofC* , we find the perturbative
expansion

C*5C02B~C0!^dC
2&. ~49!

Applying this result to~45! leads to the perturbative expan-
sion ~47! for m* and K* . The formula~45! has thus the
correct low disorder expansion, and it is the only one with
the form of ~48!.

B. Comparison with the Hashin-Shtrikman bounds

A more difficult test for ~45! are Hashin-Shtrikman
bounds, because we could not provea priori that they are
satisfied. These bounds are given by4
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K1*<K*<K2* ,

m1*<m*<m2* ,

with

K1*5K11
12p

1/~K22K1!13p/~3K114m1!
,

K2*5K21
p

1/~K12K2!13~12p!/~3K214m2!
,

m1*5m11
12p

1/~m22m1!16~K112m1!p/5m1~3K114m1!
,

m2*5m2

1
p

1/~m12m2!16~K212m2!~12p!/5m2~3K214m2!
.

~50!

Another interesting expansion is then the low dilution
limit, whenp;0 ~the casep;1 is similar!. Expanding~45!,
the Hashin-Shtrikman bounds, and the standard effective-
medium approximation~see next section! in power ofp, we
find they are equal at first order inp: ~45! is correct for low
dilution.

Numerically, we observe thatm* always satisfies Hashin-
Shtrikman bounds. ForK* , the deviation from Hashin-

Shtrikman bounds is negligible if the coefficientsKi ( i
51,2) are of the same magnitude as them j , or lower, even if
the contrast between the two materials is high. But, when the
ratiosKi /m j are high~more precisely.2 that we will de-
note byK*2m), K* is out of Hashin-Shtrikman bounds
~see Figs. 1–4!. This can be easily understood. As it was
shown in Sec. II, the self-consistent equation forK* is ~for
m i50)

K*5E
0

1

dz
^KzK/K* &

^zK/K* &
. ~51!

In this case, the Hashin-Shtrikman bounds simply reduce to
the exact result

1

K*
5 K 1K L . ~52!

The result of Ref. 5 is false ford51 @Eq. ~51!#: it verifies
Hashin-Shtrikman bounds only ford.dc with dc'1.5 nu-
merically. This is not important for the physics in the electric
case ford53, but here it is, because the wide range of pos-
sible elastic coefficients allows to be very close to this lim-
iting situation.

Let us note that we face the same problem with the limit
d→1`. We havem*5^m& but the formula forK* with
m'0 is wrong. Even ifd is high, the computation ofK* ~for
m*'0) is still a one-dimensional problem.

We tried to solve the difficulty in the following way. First,
in the electric case, if we calculate the effective resistivity
r* by the same method as for the effective conductivity
g* ,5 we find

FIG. 1. Effective shear modulusm* as a function of concentra-
tion p for m2510, m151, K2515, K151.5, andd53, given by
our approximation~45! ~long dash!, effective-medium theory~short
dash!. The Hashin-Shtrikman bounds are also given~continuous
curves!. The respective positions of the curves forK* are the same
in this case.

FIG. 2. Effective shear modulusm* as a function of concentra-
tion p for m251000,m151, K251500, andK151.5. The contrast
between the two materials is high and the percolation thresholds are
clearly displayed.
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r*5E
0

1

dz
^rz~r/r* !~121/d!&

^z~r/r* !~121/d!&
. ~53!

This formula is exact ford51, but false ford51`. One
inconsistency of the replica method is thatr* g*.1.13,14 If
we compare the two results with the electrical Hashin-
Shtrikman bounds we conclude thatr* must be rejected for
d.dc , andg* for d,dc . One can think that in the elasticity
problem, the formula involving the inverse coefficient can be
correct whenK*2m. If we define the inverse coefficients by

a5
1

2m
and b5

1

d2K
, ~54!

ui j5aS s i j2
1

d
s l ld i j D1bs l ld i j . ~55!

We can rewrite the integral equation~8! as

s i j5s i j
01E dr8$@G a~r2r 8!da~r 8!

1G b~r2r 8!db~r 8!#s~r 8!% i j ~56!

with

G a~k!52
1

a0
d i jd j l1

1

2a0
S d jk

kikl
k2

1d i l
kjkk
k2

d ik
kjkl
k2

1d j l

kikk
k2 D1

@22a01b0~2d2d2!#

a0@a01b0d~d21!#

kikjkkkl
k4

2
db0

a0@a01b0d~d21!# S dkl
kikj
k2

2d i jdklD1
~a02db0!

a0@a01b0d~d21!#
d i j

kkkl
k2

,

G b~k!5
da0

a0@a01b0d~d21!# S dkl
kikj
k2

2d i jdklD . ~57!

By a computation analogous to the previous one, we find

a*5E
0

1

dz
^az~a/a* !@d/~d12!#@a*1b* ~d22d22!#/@a*1b* d~d21!#&

^z~a/a* !@d/~d12!#@a*1b* ~d22d22!#/@a*1b* d~d21!#
,

b*5E
0

1

dz
^bz~a/a* !@22a*1b* d~22d!#/~d12!@a*1b* d~d21!#1bd~d21!/@a*1b* d~d21!#&

^z~a/a* !@22a*1b* d~22d!#/~d12!@a*1b* d~d21!#1bd~d21!/@a*1b* d~d21!#&
. ~58!

FIG. 3. Effective shear modulusm* as a function of concentra-
tion p for m25100, m121, K25400, K154, andd53 with the
same legend as for Fig. 1. Hashin-Shtrikman bounds are satisfied.

FIG. 4. Effective bulk modulusK* as a function of concentra-
tion p for m25100, m151, K25400, K154, andd53 with the
same legend as for Fig. 1. We note a deviation from Hashin-
Shtrikman bounds.
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b behaves as expected in the limita→1`,d→1`, that is
b*5^b&. But, due to the first term in the exponent ofz in
the formula forb* , whena→1` ~with d fixed!, we have
not b*5^b& except ifa15a2 . As a result, it seems to be
impossible to find in this way a formula analogous to~45!,
which would verify Hashin-Shtrikman bounds forK*2m
with a finite contrast form.

As a conclusion, our approximation~45! can be applied to
materials whose Poisson coefficient is less than 0.3. This
restriction has physical sense since there exist materials
whose Poisson coefficient is greater or lower than this value.
In the following we suppose thatK&2m.

C. The percolation threshold

When one of the two materials~say 2! is quasivacuum
(m2'0 andK2'0), there is a percolation effect: the elastic
coefficients are nonzero only above a strictly positive value
of the concentration of matterp. We will call this value the
rigidity thresholdand denote it bypr . We obtain the value of
pr in the following way. First, we have a general formula: if
C is a quantity which is determined by

C*5E
0

1

dz
pCzXC

~pzXC112p!
,

we find the expansion

C*5
1

XE0
1

dtt1/XC
1

t1~12p!/p
'2

ln~12p!

X

whenX→1`. Applying this to~45! next to the percolation
threshold withm andK in place ofC and withA given as a

function of m* and K* by ~45!, we find thatm* and K*
percolate at the same value of the proportionp and that

lim
p→pr1

m*

n*
5

d

2~d11!
, ~59!

pr512e22/~d11!. ~60!

In the electric case, there is a percolation effect too~see Ref.
15!. If we denote bypc the threshold in this case the same
method leads to5

pc512e2~1/d!. ~61!

We havepc<pr : it needs more material to have a rigid
percolation than a simple topological percolation like in the
electric case. In other words the existence of an infinite clus-
ter is not sufficient to ensure the rigidity of the whole sample
~see Ref. 16 and references therein17,18 for the calculation of
pr in a network model!.

D. Comparison with the standard effective-medium
approximation

We now compare our approximation with the standard
effective-medium approximation which verifies Hashin-
Shtrikman bounds. The result can be found for example in
Ref. 19, where it is derived from the general Eshelby’s cal-
culation for ellipsoidal inhomogeneities. We generalized it in
the d-dimensional case in order to compare it with our
present result. We used an elementary method: a sphere of
one material is regarded as embedded in the effective me-
dium, we calculate the stress associated with a general
boundary stress applied far from the sphere, and we deduce
self-consistent equations for the effective coefficients:

K K82K*

2~d21!m*1dK8 L 50,

K m82m*

3d2K*m*212m* 214d2m* 216dK*m814~2d13!m*m8 L 50. ~62!

In order to compare with our results, we computepr in the
effective-medium approximation

pr
em5

2d22Ad416d3115d2218d

~d23!~d12!
. ~63!

In the electric case,pc
em51/d, sopc

em<pr
em and we have the

same qualitative conclusion as that in our approximation.
The two approximations are the same in the limitd→1`.
More precisely, we see that in the elastic case~as in the
electric one!:

pr2pr
em5O~1/d2!. ~64!

We studied numerically the two approximations~45! and
~62! for various contrasts between the materials and various
dimensions~see, e.g., Figs. 1 and 2!. We note that the two
approximations are very close to each other, in particular

when the contrast is small~0.5 for example! or when the
dimension is high. Moreover, we clearly see the percolation
valuespr , when the contrast is high~10 000 in Fig. 2!.

CONCLUSION

We computed the elastic effective coefficients of a com-
posite using the replica trick and together with a variational
approximation. The result is in good agreement with Hashin-
Shtrikman bounds and with the effective-medium approxi-
mation forK&2m and gives the rigidity thresholdpr in all
dimensions easily. We foundpr512exp(22/(d11)).
Therigidity threshold is greater thanpc : the existence of an
infinite cluster is not sufficient to ensure the rigidity of the
whole sample. We note that the method can be generalized in
the case of nonisotropic elasticity~for example when the
compliance tensor has only one axis of symmetry!: the varia-
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tional equation is quite general and the derivation of the
effective coefficients is then an automatic computation, al-
though it can be tedious. Moreover this method may be use-
ful in studying the propagation of waves in a composite.
However, the problem of the failure of the electrical formula
in dimension one can be a general limitation of the method.
Even for a three-dimensional disorder, the microscopic pa-
rameters can be such that our equations degenerate to a one-
dimensional problem.

APPENDIX: CALCULATION OF EFFECTIVE
COEFFICIENTS

First, let us note that the following calculations are easily
done with a diagrammatic representation of the fourth-rank
tensor which are a combination of the tensor product of unity
and a projector. We calculateA from ~11! and we obtain for
AG

~AG ! i jkl52
Dm

2m* S d jk

kikl
k2

1d i l
kjkk
k2

1d ik
kjkl
k2

1d j l

kikk
k2 D

12DmS 1

m*
2

1

n* D kikjkkklk4
2

Dl

n*
dkl

kikj
k2

. ~A1!

~In fact one can show directly thatAG5G * , whereG * is
G calculated in the effective medium.! To integrate~A1!, we
use the two formulas:

E ddk

~2p!d
kikj
k2

5L
d i j
d
,

E ddk

~2p!d
kikjkkkl
k4

5
L

d~d12!
~d ikd j l1d i ld jk1d i jdkl !.

~A2!

We find

S 12hE AG D
i jkl

5ad ikd j l1bd i ld jk1gd i jdkl

with

a1b511
2hDm

d~d12!S d

m*
1

2

n* D ,
a1b1dg511h

DK

n*
.

The linear independence ofd jkkikl /k
21d i l kjkk /k

2

1d ikkjkl /k
21d j l kikk /k

2,kikjkkkl /k
4, and dklkikj /k

2 as
functions of k allows us to identify term by term in the
variational equation. We obtain

m*5m11 (
h.0

~21!h11hhDm

1

a1b
,

K*5K11 (
h.0

~21!h11hhDK

1

a1b1dg
.

Using

1

x
5E

0

`

due2ux,

we find the formulas~45! of the text.

*Also at: Laboratoire de Physique The´orique de l’Ecole Normale
Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France.
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