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Replica treatment of the effective elastic behavior of a composite
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We use the replica trick and a variational method to determine the effective elastic coefficients of a disor-
dered composite. We obtain for them a self-consistent formula, which is satisfactory from the points of view of
low disorder and low dilution expansions. When the bulk moduland the shear moduji are such that
K=2u, it satisfies Hashin-Shtrikman bounds and is close to the usual effective-medium approximation. In the
caseK=2u, we observe a deviation of Hashin-Shtrikman bounds which can be understood by analogy with
an equivalent one-dimensional problem. Finally, this calculation allows us to derive the rigidity thrgshold
for any dimensiord.

INTRODUCTION I. MODEL AND BASIC EQUATIONS

We study ad-dimensional binary mixture of two micro-
opically isotropic materials. The elastic coefficients are
stributed according to

An effective medium is a quasihomogeneous descriptior%C
of an inhomogeneous system. Such a description is meaningi
ful when the typical length of these inhomogeneities is re-

garded as small compared with the observation length. The P(u,K)=pd(pu—pu1) d(K—Ky)
determination of the effective behavior of a disordered sys-
tem is not simple, and one usually uses the effective-medium +(1=p)o(p— p2) (K=Kp), @

theory (introduced by Bruggemarin the dielectric case: for where . (the shear modulisandK (the bulk modulus are
a review see Ref.)2 which is essentially a self-consistent defined as usual by Hooke’s law:

one-site approximatioh.Besides, there are exacts bounds
(Hashin and Shtrikmdh that any approximation must sat-

isfy. d
This problem is of great importance because of its Widewherecrij is the stress tensor ang; the strain tensdt.We

range_of appllcatpns dl_Je to thg d(_evelop_ment of COF“P‘?S't‘ase Einstein’s convention for repeated indices. Moreover we
materials. A quantity of interest is, in particular, the rigidity yofine

threshold. When one of the two materials is a quasivacuum
with a proportion - p, the effective behavior of the com-
posite will differ from the vacuum one only above a finite d

value ofp: the “rigidity threshold” which will be denoted by ) o ) ) )
p. . Our method allows its computation for any space dimen-The effective coefficients, which will be superscripted by *,

sion. Qgscribe the response of the whole material to the stress, that

It was shown in Ref. 5 that one can relate the effective'

coefficients to the average of the inverse of a random opera- 1

tor. In order to calculate this average, we use the replica trick (oij)=2u* < ui; — au” 5ij> +K*(u; 85), (4)

and a variational approximation used in Ref. 6. This method

was applied to the propagation of electromagnetic waves iwhere the bracket§ ) denote the average over the fluctua-

disordered dielectriésand to the Hall effect.We here adapt tions of the elastic coefficients. The elastic equilibrium equa-

this point of view to the elastic case and derive the corretion

sponding formulas for the effective static behavior of a bi-

nary mixture of two materials for which the usual linear iso-

tropic Hooke’s law is valid. can be rewritten as
Section | introduces the model and explains how the prob-

lem reduces to the approximation of the average of a fluctu- (Lou);+di[ du(diuj+ d;u;) 1+ 9;( 6N d;u;) =0, 5)

ating operator. In Sec. Il, we explain the method through th%vhere

simple case of pure compressive materials. In Sec. Ill, we

study_the general case and we deri\_/e two self-cor_lsistent (LoU)jZ,uo(f?izuj+f9jﬁiui)+7\oﬁjt9iui

equations for the effective elastic coefficients of the mixture.

In Sec. IV, we discuss the results, perform comparison withwith Su(r)=u(r) — e, N (r)=A(r)—X\g. The quantities

Hashin-Shtrikman bounds and Bruggeman’s effective.wg and Ay are arbitrary(strictly positive parameters. The

medium approximation and study analytically the percola+ourier-transformed Green function of the differential opera-

tion problem. tor Lg is

1
0'ij:2:“<uij__ull5ij +Kuy 6 (2

2
v=2u+\ and A\=K— <u. 3

ﬂiO'ijZO
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8ij pmotho  kik; This case is, of course, tri_vial but it_iIIus_trgte_s in a pedagogi-
Ko | ro(20+ No) Dz (6) ca_l way the me'ghod and it shows its I|m|t_at|ons. Moreover_,
this case is equivalent to the one-dimensional random resis-
We denote by the same letter an operator in real or Fourietor network(where the exact result is knoyvand was stud-
representation and this should be clear from the contexied by use of the replica method in Ref. 5. In the pure com-
Equation(4) can be rewritten as the following integral equa- pression case, the coefficientsare set equal to zero. So we
tion: have

Gij:_

ajui:(9juio_[07p(9]'Gik*(25,u,Upk)+apngik*((s)\U” 5pk)]1 Tij :KU”(S” .

) The material does not support shear any more so we must
where * is the convolution operator and wheu is the take
solution with no disorder: it is fixed by the boundary condi-

tions and so it is not fluctuating. We symmetrize injf in Ujj=udj
order to obtainu; and also in f,k). We can then rewritet 5 pyre compressive strain witha function ofr, the radial
as a function ol coordinate(only in this section The equilibrium equation
then reads
B — '\ 1\,,0 ’
Ui (1) fdr Miga(r.r)uia(r "), ® o=dKu andd,o=0. (13
“li N1 9. (r—r! , We are thus left with the electrical problem studied in Ref. 5,
Mij(r, 1) =1=2Gja(r=r)ou(r’) with an effective dimensioni=1. Here, as in the general
—Gijpp(r=1")ON(r") 84, 9 caseK is a binary random variable. The equilibrium equa-
tion is

L1 kk Kk kK ik K Y y
Gijkl__4_ﬂ0 Sikpz T oz T Ok z toiqz (LK(ru(r)]=0. (14)

Writing K(r)=Kq+ 6K(r), we have

N Mot Ao
kK kik; o OK(D)
The effective medium is homogeneous with coefficientsWith u° a constant. The solution of the equation can be re-
m* and\*. Its equilibrium equation written under the form
d(aij)=0 u(r)=Jdr’M(r,r’)uO (16)
can be rewritten a&8) with (4) and the substitution h
Wi
Sp(r')—3Su* and SN(r’)— S\*.
u(r')—op (r') L , K1)
We obtain{u)=M*u® with M~ Yr,r)y=8(r—r")| 1— Ko )" 17
ME 15 s 4 ou* s kik, v Kiky L s Kiki We know from the previous section that we have to evaluate
L P e LR A (M). Let us note here that
kikk) /.Lo+)\o kikjkkk| ( 5 *)1
+ 68— | —28u* M*(r,r')={1- S(r—r'). 18
O e T P WA S oy
O\ kikj We write M as a function oM ~* with the help of a Gauss-
+ mfﬂdv- (1) ian integral formula with Grassman variabii¢s
Averaging(8) we find (u)=(M)u® sinceu® does not fluctu- f GETEE(T Fdrdr’ E(M™ Y (e e ")
ate. Since it is arbitrary, we immediately find M(r.r)= TEVELIEr)e
(MYy=M*. (12) f @Eggefdfdr';‘(f)(M’1)(r,r')§(r')
We thus have shown that the problem reduces to the evalu- (19

ation of the average of the random operaltb,; knowing

where¢ and ¢ are Grassmann fields satisfyin
its inverse from Eq(9). ¢ ¢ fying

[E(r), &(r")}={&(r). &)} ={&(r).&(r")}=0.
Il. CALCULATION IN A LIMITING CASE: PURE . .
COMPRESSION We use here Grassman’s integratig®ef. 10 because the

operator is not symmetric and we can not use the usual
In order to introduce the method of calculation of the Gaussian one. In order to avera@®), we use the replica
effective coefficients, we study the case of pure compressioririck (see for example the bobl: the denominator is written
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(f---)"* and we will perform the limin—0 at the end. Of  try to prove the limit exits. We introduce the vector
course, we suppose that although this calculation is only »

valid for integer values ofi, we can take the limih— 0. It is §—_(§1, -+ n)

an usual assumption in the replica approach and we will noand similarly the vectog. Equation(19) can be written as

M(r,r')zfygygw exp(fdrdr'azl Ea(r)a*(r—r')[l—5K(r')/Ko]ga(r')). (20)

In order to averagg20) we denote that ifg(r,r’) is a given function and(r’) a fluctuating function ofr’ distributed
according to a binary law without spatial correlatidme notef, andf, the two values off ), we have

(effg(r,r’)f(r’)dr dr’>:effg(r,r’)f1dr dr’H p(1+ 7le(l/A)fg(r,r’)(fszl)dr)

r
:ejfg(r,r’)fldr dr'exp{/\f droln(1+ 7 e(l/A)fg(r,ro)(fszl)dr)+Q Inp (21)

with A a short distance cutoffvhich has the dimension of the inverse of a voloymich appears in the transformation of the
integral in a Riemann sum. The quantiy is the volume of the sample ang=(1—p)/p, wherep is the probability of
fq. _

Using this formula withf (r') = — oK (r')/Ky andg(r,r')=32_,&3(r)8(r—r’)€(r’), we obtain from(20)

w e”el8d,

(M(r,r’)):f DETE (22)

where the effective Hamiltonian is

T . 1 .
.%e(§,§)=J drdr’ga(r)ﬁ(r—r’)(l—ﬁKllKo)ga(r’)+Af droln| 1+ nexp(—xf drg ga(r)é(r—ro)AK/Koga(ro))}

(23)
|
with (o) = OVt (7Y sty OVt 7 V) +0(7)
Sk=Ky—K (26)
K—h2 T with 7= 7,— 7, small. Therefore the bes¥, to second
SK,=K,— Ko, order in 7" must satisfy
1-p (O7Y oy~ A7) 2, =0 (27)
n=-—_—.
P Note that the best”, depends on? and that in our case,

Let us recall that we want to compute the propagator of thig”= £§ is the propagator. One can express the regiltin a
effective Hamiltonian. Moreover we want a nonperturbativesimple form reminiscent of the usual Gibbs-Bogoliubov
result and one way to do this is to use a variational methodvariational principle”” To this end, we introduce the varia-
This consists in approximating”, by a Gaussian Hamil- tional free energy

tonian.7, (diagonal in the replica spacéVe thus introduce TLAV=H = T0) i+ T (28)
Zo:f ‘(/Ef/fe”":f ;@g’@»‘fejdr dr'S£3(r). 2= Er) with .75=In Z,. Using
24
(24) 57y -
The average using, will be denoted by ) ;.. Once. 7, is 57187
determined, the approximation reads )
PP 57)r, - _
A~(M), (25) W:<§§7/>,7/0_<§§>7/0<7/>,740_(55).7/0, (29)

so.Z=M* [Eq.(12)] from which we can deduck*. We
now have to find the best Gaussian Hamiltoniar,. In .
order to do this, one can easily show that for.at}, and all o7 -0
operator®: o4k)

we transform(27) into

(30
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(Let us note that the usual convexity inequality of Gibbs-Grassman variables.
Bogoliubov does not hold here, since we are dealing with We get for the variational free energy frof23) and(28)

\

5K, ddk e
|| 0

Qj d' In_Z(k)+nQ| 1
Wtr n.4( )+n -

+Afdro<ln

1
1+nex;{ AKq er E(r)d(r—rg)A Kga(r0)>

> . (3D

0

The calculation of the last term is the main difficulty here Using (18), and
and can be found in Ref. 5. In the general casxt section

we will give a more detailed calculation. After all calcula- 1 %

tions, the variational free energy per replica and unit volume X f due ",
is (since one expec¥~n() in the limitsn—0 andQ)—o°

we expand the free energy to the first ordenin we find
f —dddk trIn.Z(k)+| 1 5K1) f —dd 2(K) ZRIKEY
— = rin.# -— A
0= ) 2w Ko || 2m) f dzte e (34
“ hAg [ d% . . e . .
A (—1)" f A(K)|. This equation determings™® in a self-consistent way. It is
h>0 AK (2 ) the result of Ref. 5 fod=1. It does not coincide with the
exact result K* =1(1/K)). We will discuss this interesting
(32)  limiting case later.
The variational equatiof30) leads to
Ill. THE GENERAL CASE
1 5Kl hoh After this pedagogical introduction, we will now study the
0% =1-—— Ko hZO (=1)"n general case defined in Sec. |. The key ideas of the method
have already been explained, and we will focus on technical
difficulties.
% 1 (33 In order to computgM;j,;), we writeM as a function of
—(hAg/AKQ) [[d%/(27)9]. 2| ML

jlglffkl(r )§.J(f)exp<fdfdr > & (r )(M_l)im(r,r’)&ku(r’))

Mij (r,r’) = — — (39
f@wgexr{fdrdr'% giJ-(r)(M1>ijk|<r,r'>§k.<r'))
where¢ andg are Grassmann fields.
Equation(35) can be rewritten as
_ ) : d n
Mnkmr,r’):f%g/fgk'( sl p(fdrdr LDy 2 EDLOWGy A= 1) =20u(r) Gy (r—r)
_5)\(r,)Gijpp(r_r,)5k|]§ﬁ|(r,))‘ (36)

Using (21), we obtain from averagin{36)
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(Miji(r,r")) fjgf/gw 7/(§§)

where the effective Hamiltonian is

%e(§,5=fdrijza gﬁ(f)fﬁ(r)—Jdrdr'ijkla H(D[2011Gija (1 =1") + ON1Gijp(r =17) S 1€ (1)

+Afdroln

1 _
1+ UEXF{ _Xf dri J_% . gﬁ(r)[ZA/LGijkl(r_rO)+A)\Gijpp(r_r0)5k|]§ekll(r0)):| (37)
with

A,Fﬂz_ll«l,

A\=N— g,

‘ ©

The variational free energyEq. (28)] is

F=— Qfﬁtrln//( +nﬂfﬁtr 2(K)— nﬂfﬁtr( /l//)(k)

+Afdro<ln 1+7;exp< fdrllklagﬁ(r)ff(r—ro)gﬁl(ro)) >7/ (39)
7,
where
5=2A,Giji+A,Gij pp i
G1=2811Gijg + ON1Gij O - (39)

In order to compute the last term (88), we expand the logarithm. This leads us to compute terms of the form

<?\fdfoexp( fdr” > £ s(r— ro)§§|(ro))> , (40

T

(with h an integer which is equal to

AJ droex;{ nTr In

Expanding this last expression to first ordeminwe obtain

h
Sy o(r—r')— K%‘ f(/‘ﬁijmn(r_ro)k/zmnkl(ro_r,)} ) . (41)

+0(n?)

h ,,
AQ+nAf droTr In{&ikéj,é(r—r’)—xg1 Lijmn(r —=T0) Zmnk(ro—r")

h( d'% , ,) )
=AQ+nQAtrin 5ik5i"Kf W% Aijmn(K) Znki(K) | +0(n?). (42)

Here, tr denotes the usual matrical trace and Tr the operator(frateding spatial indices We finally find (up to a constant
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d9k , d% d
na =— f th’ In_Z(k)+ f Wﬂ'%( k)— f WU'( = 2) (k)

AY (—1)"—tr In| 8,5, — fddk 25 k)
- h>0( )—trn k9~ & W(uw’)ijm()-

The variational equation 2
v*=2u* +\* and \* =K* ——u*

o7 0 43 ‘
8. 2yij (K) “3 _ .
Let us note that in the last term ¢£4), the integral has to be
reads regularized by the cutofA because of short distance diver-
gence, since we have to integrate a homogeneous function of
(2 Yiju = 6y — IJKI(|<)+ E (—D)"7"Zijmn degree zero. One can show that the integral is proportional to
A (see the Appendix for a complete expression of the useful
1 integralg. Note that the cutoff and the arbitrary parameters
X T T (44) Mo and A, disappear at the end of the calculation as ex-
1= (b M) JTAdKI(2m) (A2 | i pected. Equation§5) are the main result of our paper and

Using (25) and (11) in (44), we get after a straightforward W€ nov;/1 dISCUSIS t?em Let us note that whep=0, we re-
but tedious calculation the following self-consistent equalri€ve the result of Sec. II.

tions for the coefficients of isotropic elasticitgee the Ap-
pendix for some details V. DISCUSSION
. [t <,U~Z[2“/d<d+2)](d/”*+2/V*)> A. The low disorder expansion
o z <Z[2,u/d(d+2)](d/M*+2/V*)> '

First, we extract the low disorder expansighat is when
the variance ofu andK are small from our formulas and

SKIv* compare it with the straightforward low disorder expansion
K*—j dz= (45 of (8.
First, if we iterate twice the exact integral equati@)
where and average, we find
|
0 ) d 2 1 kik KKy Kjky kik kiky
(uip =i+ =4on)) 5qv2) PPN v 5jk?T+5il_kT+5il_kT+5il?T+5jk_kT
N 1 1)kikjkkk, 2 (1 1)5 iK; fa(s 5)\) 5 kk <5}\> 5 kik; o
—_— — — u s
wo Vo k4 d(d+2)Vo no Vo kl k2 M d 4. 2% ,2 2 kl .2 k " ki

(46)

and we can extract the perturbative expansionudfand where C is some coefficient withC=C—-Cy<C, and

K* B(C*) a given function ofC*, we find the perturbative
expansion
2(5u’ 2
. d(<di‘2>) da. V_) , C* =Co—B(Cy)(5C?). (49)
72
o Applying this result to(45) leads to the perturbative expan-
(5K?2) sion (47) for u* and K*. The formula(45) has thus the
K*~Kqo— _ (47)  correct low disorder expansion, and it is the only one with
Yo the form of (48).

Let us then note that for a general formula of the form B. Comparison with the Hashin-Shtrikman bounds

<CzB<C 1y A more difficult test for (45 are Hashin-Shtrikman
f dz———, (48) bounds, because we could not prowvepriori that they are
(2B(C7)Cy satisfied. These bounds are giverf by
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FIG. 1. Effective shear modulys* as a function of concentra- FIG. 2. Effective shear modulys* as a function of concentra-
tion p for u,=10, uy=1, K;=15,K;=1.5, andd=3, given by  tjon p for ,=1000,x,=1, K,=1500, and,;=1.5. The contrast
our approximatior{45) (long dash, effective-medium theoryshort  petween the two materials is high and the percolation thresholds are
dash). The Hashin-Shtrikman bounds are also giveontinuous  cjearly displayed.
curves. The respective positions of the curves Kt are the same

in this case. Shtrikman bounds is negligible if the coefficienk§ (i
. e x =1,2) are of the same magnitude as the or lower, even if
Ki<K*=<K3, the contrast between the two materials is high. But, when the
. . . ratiosK;/u; are high(more precisely>2 that we will de-
HISUTSu;, note by K=2u), K* is out of Hashin-Shtrikman bounds
with (see Figs. 1-¥ This can be easily understood. As it was
shown in Sec. Il, the self-consistent equation Kor is (for
K§=Kl+ 1-p ’ ui=0)
U(K,—Kq)+3p/ (3K +4uq) N
K*= fldzw (51
KE =Ko+ P o (29
207 1K —Kp) +3(1-p)/(3Kp+4uy) . . . :
In this case, the Hashin-Shtrikman bounds simply reduce to
. 1-p the exact result
My =pgt :
(o= pa) +6(Ky+2u1)plopm (3K +41q)
1 1
Uk (52

K3 = o
The result of Ref. 5 is false fad=1 [Eq. (51)]: it verifies
p Hashin-Shtrikman bounds only fat>d. with d.~1.5 nu-
+ Uy — ) +6(Ko+2u0)(1—p)/5uma(3Ko+4uy) merically. This is not important for the physics in the electric
case ford= 3, but here it is, because the wide range of pos-
(50) _sible glastic coefficients allows to be very close to this lim-
iting situation.
Another interesting expansion is then the low dilution Let us note that we face the same problem with the limit
limit, when p~0 (the casep~1 is similap. Expanding45), d— +%. We haveu*=(u) but the formula forK* with
the Hashin-Shtrikman bounds, and the standard effectivesw~0 is wrong. Even ifd is high, the computation df* (for
medium approximatioiisee next sectigrin power ofp, we  w*=~0) is still a one-dimensional problem.
find they are equal at first order m (45) is correct for low We tried to solve the difficulty in the following way. First,
dilution. in the electric case, if we calculate the effective resistivity
Numerically, we observe that* always satisfies Hashin- p* by the same method as for the effective conductivity
Shtrikman bounds. Fok*, the deviation from Hashin- g*,° we find
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we compare the two results with the electrical Hashin-
Shtrikman bounds we conclude thatt must be rejected for

d>d.,
proble

andg* for d<d.. One can think that in the elasticity
m, the formula involving the inverse coefficient can be

correct wherK =2 u. If we define the inverse coefficients by with

kik kike  kik

) 1
'(;/a(k):_a_c)&ij&jl_i_rdo(éjk?—*— il W§ik7+5j'? +

_ 1 dg= ; 54
a—ﬂ an B_W, ( )

1
Ujj=a O'ij_aa'llfsij + B0 6ij - (55

We can rewrite the integral equati@8) as

o-ij:(fﬂ+f dr'{[£a(r—r")da(r’)

+p(r=r")op(r")]o(r')}; (56)

kikk) [—2a0+ ﬂo(Zd_dz)] kikjkkk|

aol agt+ Bod(d—1)] k*

9 kiky (29— dBo) kik
-~ adfagt Bod(d-1)] ( 5“?_5”5“> " aglag+ Bod(d—1)] 71 K2
- (K) = dag ( iK; )
780 ot Bod(d—D)] | Pk %) 57

By a computation analogous to the previous one, we find

1 (azl@e 0@+ a* +p* (d2—d—2))/[a* + B* d(a-1])
a*=| dz
0

<Z(a/a* )di(d+2)][a* + B* (d2—d—2)]/[a* T B¥d(d—1)] '

L (Bl 2a* + B A2 A+ 2) ¥ + B d(d - 1))+ Fd(d- DI a* + ¥ dd- 1]
B*zj dz

0 (Zlele)=2a*+pFd2=d)l(d+2)[a* + BT d(d= 1]+ pd(d= D)/l + pFd(d-1)]y (58)
K*
b 400.00 J
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0.00 0.20 0.40 0.60 0.80 w0 P

tion p for u,=100, u,—1, K,=400, K;=4, andd=3 with the

FIG. 4. Effective bulk moduluK* as a function of concentra-
FIG. 3. Effective shear modulys* as a function of concentra- tion p for u,=100, u;=1, K,=400,K;=4, andd=3 with the

same legend as for Fig. 1. We note a deviation from Hashin-

same legend as for Fig. 1. Hashin-Shtrikman bounds are satisfiedShtrikman bounds.
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8 behaves as expected in the limit-+%,d— + =, thatis ~ function of u* andK* by (45), we find thatu* and K*
B*=(B). But, due to the first term in the exponentofn  Percolate at the same value of the proportpand that

the formula forg*, whena— +o (with d fixed), we have w* d

not B8* =(B) except ifay;=a,. As a result, it seems to be lim —=7—=. (59)
impossible to find in this way a formula analogous(4), pop V' 2(d+1)

which would verify Hashin-Shtrikman bounds f&t=2u _ —2d+1)

with a finite contrast for. pr=1-e : (60)

As a conclusion, our approximati@d5) can be applied to In the electric case, there is a percolation effect(xee Ref.
materials whose Poisson coefficient is less than 0.3. Thig5). If we denote byp. the threshold in this case the same
restriction has physical sense since there exist materiaiethod leads to
whose Poisson coefficient is greater or lower than this value.

—1_ e (1d)
In the following we suppose th&t<2u. Pe=1-e ' (61)
We havep.<p,: it needs more material to have a rigid
C. The percolation threshold percolation than a simple topological percolation like in the

. ] ) electric case. In other words the existence of an infinite clus-
When one of the two materiaisay 2 is quasivacuum ter js not sufficient to ensure the ri%}i%dity of the whole sample

(12~0 andK,~0), there is a percolation effect: the elastic (see Ref. 16 and references thet&itfor the calculation of
coefficients are nonzero only above a strictly positive value, in a network model

of the concentration of mattgr. We will call this value the
rigidity thresholdand denote it by, . We obtain the value of D. Comparison with the standard effective-medium
p, in the following way. First, we have a general formula: if approximation

C is a quantity which is determined by We now compare our approximation with the standard
1 pC2¢ effective-medium approximation which verifies Hashin-

c* =f dz—=c———. Shtrikman bounds. The result can be found for example in

o (pZ°+1-p) Ref. 19, where it is derived from the general Eshelby’s cal-

we find the expansion culation for ellipsoidal inhomogeneities. We generalized it in
the d-dimensional case in order to compare it with our

11 1 In(1—p) present result. We used an elementary method: a sphere of

XJo t+(1-p)/p X one material is regarded as embedded in the effective me-

dium, we calculate the stress associated with a general
whenX— +. Applying this to(45) next to the percolation boundary stress applied far from the sphere, and we deduce
threshold withu andK in place ofC and withA given as a  self-consistent equations for the effective coefficients:

K/_K* _0
2(d—Dyu*+dK’ |

W >:o. 62)

3d%K* w* —12u* 2+ 4d2u* 2+ 6dK* ' +4(2d+3) u*

In order to compare with our results, we compptein the

. . . . when the contrast is smalD.5 for examplg or when the
effective-medium approximation

dimension is high. Moreover, we clearly see the percolation
valuesp,, when the contrast is higfL0 000 in Fig. 2.

om. 20°—/d*+6d°+15d°— 18d
Pr= (d—3)(d+2)

(63

CONCLUSION
In the electric casepe™=1/d, sopc"<p;™ and we have the _ . .
same qualitative conclusion as that in our approximation. Ve computed the elastic effective coefficients of a com-
The two approximations are the same in the lighit + . posite using the replica trick and together with a variational
More precisely, we see that in the elastic cdae in the appr_oximation. The result js in good agreement_with Hashin—
electric ong: Shtrikman bounds and with the effective-medium approxi-

mation forK=2u and gives the rigidity thresholgd, in all
p,—pSM=0(1/d?). (64) dimensions easily. We foundp,=1—exp(=2/(d+1)).
Therigidity threshold is greater thgm : the existence of an
We studied numerically the two approximatiof$5) and infinite cluster is not sufficient to ensure the rigidity of the
(62) for various contrasts between the materials and variousthole sample. We note that the method can be generalized in
dimensions(see, e.g., Figs. 1 and.2Me note that the two the case of nonisotropic elasticifyor example when the
approximations are very close to each other, in particulacompliance tensor has only one axis of symmpettye varia-
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tional equation is quite general and the derivation of thewe find

effective coefficients is then an automatic computation, al-

though it can be tedious. Moreover this method may be use-

ful in studying the propagation of waves in a composite. (l—hJ AG
However, the problem of the failure of the electrical formula

in dimension one can be a general limitation of the method.

Even for a three-dimensional disorder, the microscopic paW'th

rameters can be such that our equations degenerate to a one-

= a6 0j+ B ikt v6ij b
ijkI

dimensional problem. 1 2hA, [ d 2
+B=1+—tr| —+ —
BT )\ )
APPENDIX: CALCULATION OF EFFECTIVE
COEFFICIENTS
K
First, let us note that the following calculations are easily a+ﬁ+d7=1+hv—*-

done with a diagrammatic representation of the fourth-rank
tensor which are a combination of the tensor product of unityl_he
and a projector. We calculate? from (11) and we obtain for
AG

linear independence  of &kik; /k?+ & k;k /k?
+5ikkjk|/k2+ 5j|kikk/k2,kikjkkk|/k4, and 5k|kikj/k2 as
functions ofk allows us to identify term by term in the
kik, ik kiki kiKy variational equation. We obtain

(w{f-ff)ijklz_ﬁ<5jk?2‘+5i|—kz—+5ik?2—+ Stz
1
1 1)\ kikikek Ay kik; p*=pat 2 (—D)M A ——
+2A’“(,LL_*_V_*) xSz (AL = “atp
(In fact one can show directly tha¥ &= ¢*, where <™ is 1
% calculated in the effective mediupilo integrate(Al), we K*=K,+ >, (— 1)“*177hAK+—+d.
use the two formulas: h>0 atptdy
d%  kik; \ 8ij Using
2md Kk Td’ )
T due U,
Ak kkkk A X fo He
f 2md K d(d+2)(5ik5j|+5i|5jk+ Sij O )-

(A2) we find the formulag45) of the text.
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