
Molecular-dynamics study of the melting of hexagonal and square lattices in two dimensions

L. L. Boyer*
Complex Systems Theory Branch, Naval Research Laboratory, Washington, D.C. 20375-5345

~Received 11 August 1995!

Simple pair potentials are discussed which give hexagonal- and square-lattice ground states in two dimen-
sions. Molecular-dynamics calculations for these potentials are used to study transitions between the two
lattices and melting. The melting temperature is found to be a minimum near the point where the barrier
between the two structures, as a function of lattice strain, is also a minimum.

I. INTRODUCTION

One of the most basic properties to consider in the com-
parison of two- and three-dimensional~2D and 3D! systems
is the structure of the ground state of a collection of identical
particles. Some general differences are well known. For ex-
ample, in 3D the ground-state structure at constant volume
depends on the type of repulsive interaction:1 Interactions of
the form 1/r n favor close-packed structures for largen and
more open structures forn<7. On the other hand, the hex-
agonal~or triangular! lattice is always favored for such po-
tentials in 2D.2–4 More recently, Zabinska5 has shown that
the square lattice can never be stable for potentials with the
form V(r )5A/r n1B/rm.

More general considerations also seem to favor the hex-
agonal lattice. One can show, from a Voronoi-construction
definition of coordination number and a theorem due to Eu-
ler, that the average coordination number of a periodic 2D
system is exactly six, that of the hexagonal lattice. This can
be interpreted as suggesting, based on geometrical consider-
ations alone, that sixfold coordination is special, and there-
fore, to be expected regardless of the interactions. On the
other hand, this definition of coordination number can be
physically unrealistic, e.g., an infinitesimal distortion of the
square lattice is identified as sixfold coordinated by this defi-
nition.

For these reasons, and the fact that pair potentials applied
thus far give hexagonal ground states, there seems to be a
general perception that simple pair potentials necessarily
produce hexagonal ground states in 2D. In this paper we
demonstrate that this is not the case. A class of potentials is
considered that can have either hexagonal- or square-lattice
ground states depending on the value of a single adjustable
parameter~Fig. 1!. We then examine, using molecular-
dynamics simulation with selected potentials, transitions be-
tween the two structures, and consider the influence of the
variations in the potential on the melting temperature.

II. THE POTENTIAL

Consider a monatomic lattice in two dimensions with
nearest-neighbor separationr 0. The hexagonal lattice has six
nearest neighbors, while the square lattice has only four.
However, the square lattice has its four next-nearest neigh-
bors relatively nearer than the next-nearest neighbors of the
hexagonal lattice;&r 0 compared to)r 0. This suggests that

one can stabilize the square lattice if the second neighbors of
the square lattice are brought into the range of the potential
without including the second neighbors of the hexagonal lat-
tice. Ladd and Hoover6 noted this could be achieved by ap-
plying pressure to particles interacting with piecewise
Hooke’s law potentials. In general, a potential which is just
wide enough to lower the energy substantially from the
second-nearest-neighbor interactions of a square lattice, but
not so wide as to achieve the same for a hexagonal lattice,
can be expected to produce a square-lattice ground state.
Such a potential can be effectively modeled by the sum of
two Gaussians and a 1/r 12 term for repulsion at short range:

V~r !5a/r 122c1exp@2b1~r2r 1!
2#

2c2exp@2b2~r2r 2!
2#. ~1!

To optimize the conditions for producing a square-lattice
ground stater 2/r 1 should be approximately&, the coeffi-
cients of the Gaussian terms should be approximately equal
and their widths should be about halfr 22r 1 . Thea/r

12 term
provides a hard repulsive interaction, but it should not domi-
nate except forr,r 1. We chooser 151, c1/a52, b15b258,

FIG. 1. The pair potential@Eq. ~1!# with parameters as given in
the text andc2/c150 ~solid curve, hexagonal-lattice ground state!
andc2/c151 ~dashed curve, square-lattice ground state!.
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and scaleV(r ) so its minimum value is21. At this point one
could changeV(r ) gradually from producing hexagonal to
square-lattice ground states by fixingc25c1 and varyingr 2
from 1 to approximately&, or by fixing r 2 and varying
c2/c1 . We choose the latter, withr 251.425, a value selected
to give nearly the same equilibrium area in both hexagonal
and square lattices when the equilibrium energies of the two
lattices are nearly degenerate. Curves forV(r ) with c250
andc2/c151 are shown in Fig. 1.

The energy as a function of area for the two lattices is
shown in Fig. 2 for two values ofc2/c1 : 0.7, for which the
two structures have nearly equal minima and 0.9, for which
the square lattice has substantially lower energy.

The change in the minimum energy from that of the hex-
agonal lattice is plotted as a function of shear strain for se-
lected values ofc2/c1 in Fig. 3. If the hexagonal lattice is
expanded by) along any of three special directions~lines to

the nearest neighbors! keeping the area/atom fixed, then the
strained lattice is again perfectly hexagonal. The curves in
Fig. 3 were obtained by increasing the expansion factor from
1 to) while minimizing the energy with respect to expan-
sion direction and area/atom. For future reference, the energy
change along such a curve will be called the minimum strain
~MS! barrier. One could just as well plot these curves in
terms of a strain which takes the square lattice into itself.
Specifically, an expansion of (11A5)/2 along directions
making the angles of arctan@(11A5)/2#, or arctan@2/(1
1A5)#, with respect to nearest-neighbor directions, trans-
forms the square lattice into itself.7

III. MOLECULAR-DYNAMICS RESULTS

In this section we examine the results of molecular-
dynamics~MD! calculations obtained usingV(r ) ~above! for
selected values ofc2/c1 with r 251.425. We choose to carry
out simulations on free clusters of atoms because solids with-
out free surfaces can readily superheat above the melting
temperature (Tm), either in MD simulations using periodic
boundary conditions, or in coated clusters, both
experimentally,8 and in MD simulation.9 For convenience,
the mass and Boltzmann’s constant are taken to be unity. In
these units the temperature for a 2D system is simply the
average kinetic energy, or half the average velocity squared.

There is a vast literature dealing with the properties of
melting in two dimensions. For a recent review, see Glaser
and Clark.10 Much of the work attempts to determine the
precise nature of the transition, whether it is first order or
continuous, and whether or not it is preceded by a transfor-
mation to a ‘‘hexatic’’ phase. Of course, all of the work deals
with the melting of the hexagonal lattice. Here we are inter-
ested only in determining approximate values for the melting
temperature as a function of the parameter that changes the
system from one that melts from the hexagonal lattice to one
that melts from the square lattice.

Clusters with approximately circular shape were prepared
from the bulk minimum energy lattices. Small random dis-
placements of the atoms were included at the beginning of
the simulations to aid in thermalization. In a typical run the
energy was increased by a small amount~;0.01/atom! every
;10 000 time steps~step size of 0.02!, by appropriately scal-
ing the velocities, until the cluster had clearly melted. Melt-
ing was identified by the onset of diffusion. This was moni-
tored by computing the average square of the displacement
of atoms per unit time from their positions at some earlier
time:

D25
1

N~ t2t0!
(
i51

N

@r i~ t !2r i~ t0!#
2. ~2!

Separate averages were taken over atoms which, att0, were
within selected radii,Rj , with Rj21,r i(t0),Rj , to monitor
diffusion in different parts of the cluster. Since each cluster
was prepared without linear or angular momentum, and scal-
ing the velocities does not change these quantities, any
change in atomic positions over a long period of time either
represents diffusion within the cluster or evaporation, which
was independently monitored. Melting occurred before the
onset of evaporation in clusters withc2/c1.;0.3. Values for

FIG. 2. Energy of the hexagonal~solid curves! and square
~dashed curves! lattices as a function of the unit-cell area for poten-
tials with c2/c150.7 and 0.9.

FIG. 3. Energy change from the hexagonal-lattice value as a
function of expansion factor and minimized with respect to expan-
sion direction and area/atom for the potentials withc2/c1
50.3, 0.4,. . .,1.0. The extrema at;1.3 correspond to the square-
lattice structure.
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Tm were defined to correspond to the onset of diffusion in the
innermost region of the clusters.

Results forTm , obtained forN;200 atom clusters, are
plotted in Fig. 4, along with the MS barriers, as a function of
c2/c1 . The Tm values are considered accurate to within
;10%. While longer runs could improve this accuracy, the
trend in Fig. 4 is clear:Tm decreases with increasingc2/c1 to
approximately the point where the MS barrier is minimum,
and then increases beyond that point. The trend is the same
for smaller~N;100! clusters, although the melting tempera-
tures are generally smaller by;15%.

Simulations were carried out for decreasing as well as
increasing energy. Melting~freezing! was found to be revers-
ible in the sense that the temperature and diffusion as a func-
tion of energy,T(E) andD(E), were essentially the same
upon heating or cooling. Small nonlinear features inT(E)
were apparent near the melting point, but these were not
examined in detail. A better analysis of these features could
be achieved by running for longer times on a finer energy
mesh. However, our purpose was simply to identify an ap-
proximate value ofTm , and this was accomplished most eas-
ily from the onset of diffusion.

With the exception of thec2/c150.7 and 0.75 cases~dis-
cussed separately below!, the structure returned to that of its
ground state after melting and refreezing. The precise after-
freezing structures differed from the before-melted structures
only in lattice orientations and minor shape changes.

The after-freezing structures for thec2/c150.75 clusters
showed some influence of the hexagonal lattice even though
the square lattice is nearly 0.05/atom lower in energy than
the hexagonal lattice. A position plot of the structure ob-
tained after reducing the temperature fromT50.15 ~well
aboveTm! to T5;0.01 by removing energy at a rate of 0.01
per atom every 8192 time steps is shown in Fig. 5. The
blackened areas are regions of space that were occupied by
an atom in a sequence of, in this case, 8192 steps. Notice that
the cluster has a single square-lattice domain with some dis-
tortions near the edges. However, the shape of the cluster is
clearly not optimal. Another simulation at a two-times slower
quench rate~0.005/atom/8192 steps! produced a multido-
mained structure with both square and hexagonal regions

with an overall shape which is nearly circular~Fig. 6!. Ap-
parently the longer run was sufficient to form a more favor-
ably shaped surface, which involved both lattice types. The
after-freezing structure of a larger cluster~N5385! was
found to be a single-domain square lattice for both the above
quench rates, consistent with the fact that surface effects are
expected to be less important for larger clusters.

The c2/c150.7 potential has nearly degenerate square-
and hexagonal-lattice energies, with the square lattice win-
ning by only 0.015/atom. Thus, one would expect a stronger
influence of the hexagonal structure in clusters with this po-
tential, especially when considering the fact that the hexago-
nal lattice has lower energy for a wide range of areas~Fig.
2!. Indeed, this was found to be the case. A qualitative dif-
ference was seen in the diffusion as a function of temperature
compared to results obtained for the other potentials. Three
cluster sizes were considered;N589, 213, and 385. The
N589 atom clusters seemed to have three temperature
ranges with qualitatively different diffusion characteristics:
T,;0.04 where the diffusion was zero,;0.04,T,;0.08,

FIG. 4. Melting temperature~triangles! and MS barrier~solid
curve! as a function ofc2/c1 for N;200 atom clusters.

FIG. 5. Position plot for 8192 time steps of anN5213 cluster of
atoms interacting with thec2/c150.75 potential atT;0.01 after
removing energy from the liquid at a rate of 0.01/atom/8192 steps.

FIG. 6. Same as in Fig. 5 with half the quench rate~0.005/atom/
8192 steps!.
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where there was clearly diffusion, but it was relatively low
and increased at a qualitatively lower rate with increasing
temperature than forT.;0.08. The results forN5213 were
similar except the diffusion was much lower in the
intermediate-temperature region. Calculations for the 385
atom cluster showed even lower, essentially zero, diffusion
in this region. Additional analysis in this temperature range
showed the structure had large predominately hexagonal re-
gions which persisted for long periods of time, and these
periods increased with increasingN. Thus we conclude that
thec2/c150.7 potential has a structural transformation from
square to hexagonal with increasing temperature, atT;0.04,
before it melts atT;0.08. Removing energy from the liquid
state at the rate of 0.01/atom/8192 steps produced mixed-
phase structures for the smaller clusters, similar to that
shown in Fig. 6. However, the same quench rate applied to
theN5385 atom cluster produced a single-domain hexago-
nal structure at low temperatures~T,0.04!.

Surface melting was observed in varying degrees for all
clusters studied. This is illustrated in Figs. 7 and 8 with po-
sition plots for two clusters with hexagonal and square lat-
tices just below their melting temperatures. Each covers a

period of 8192 time steps. Above the melting temperature,
plots covering the same time period show an almost com-
pletely blackened circular region.

IV. DISCUSSION

The approximate correlation between melting temperature
and MS barrier, previously identified for 3D solids,11 and
now, for 2D solids as well~Fig. 4!, suggests a general
mechanism for melting: A solid melts when it acquires
enough thermal energy to traverse the energy ‘‘landscape’’
associated with large lattice strain, or, more general types of
shape change that, perhaps, could be described in terms of
some sort of lattice defects.12 Bear in mind, of course, that it
is unrealistic to characterize the entire portion of the energy
landscape that could be important in melting with a single
parameter. Nevertheless, the idea is appealing for a number
of reasons.

First of all, it incorporates other previously proposed
mechanisms involving defects, surfaces, and elastic proper-
ties. Since elastic constants are given by the curvature of the
energy as a function of lattice strain, one would expect elas-
tically stiff lattices to correlate with large MS barriers, and
hence, high melting temperatures. Crystal instabilities at fi-
nite strain, derived in terms of elastic stiffness coefficients,
have been related to the limit of metastability in the super-
heating of defect free crystals without surfaces.13 In a finite
crystal, displacements associated with lattice strain are great-
est at the surface. Thus, one would expect disorder associ-
ated with strain dynamics to develop first at the surface, per-
haps in the form of defects. The role of defects can be
explored in the context of large strain deformation by con-
sidering a many-atom computational cell. With a large num-
ber of atoms per unit cell, the structures associated with
shape change may involve defects. To illustrate this point, an
MD simulation was carried out for a computational unit cell
of 60 atoms interacting with thec2/c150.5 potential and
periodic boundary conditions. The cell shape was gradually
changed, over;16 000 time steps, according to the MS pre-
scription, while maintaining a constant temperature of
;0.04. The results in Fig. 9 illustrate a defect-mediated
shape change. After;1600 steps the structure~a! is basically
the same as the unstrained structure except the interatomic
separations are;7% longer in thex direction and;7%
shorter in they direction. After;200 more steps the struc-
ture becomes defective, as shown in~b!. With another;200
steps, the defects move to create a lattice with a small orien-
tational change from the original one. This type of adjust-
ment to the changing cell shape happened several more times
during the simulation, to produce, finally, the structure in~d!.
One would expect a defect-mediated shape change to be in-
creasingly more important for systems where low MS barri-
ers are unavailable. This could be whyTm increases initially
at about the same rate as the MS barrier, on both sides of the
minimum ~Fig. 4!, and then more gradually, compared to the
MS barrier, away from the minimum.

Secondly, it places melting in the same category as many
other structural phase transitions. Born’s theory of melting,14

which later was considered to be a failure by most people,
including Born himself,15 is one of the earliest attempts to
relate a structural transition to a soft mode. Subsequently, the

FIG. 7. Position plot for 8192 time steps of anN5199,
c2/c150.5, cluster atT50.14, showing surface melting.

FIG. 8. Position plot for 8192 time steps of anN5213,
c2/c150.9, cluster atT50.1, showing surface melting.
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idea was successfully applied to displacive transitions by
Cochran and others.16 It has become customary to think of
displacive transitions as the ‘‘freezing-in’’ of soft modes.
This is a correct picture, if it is understood that the observed
mode softening results from highly anharmonic motion asso-
ciated with a landscape involving energy barriers; rather
than, simply, from the dynamics associated with a
temperature-dependent change in a certain harmonic portion
of the landscape. Clearly, the landscape associated with lat-
tice strain, or, more generally, shape change, is a much more
complicated function than that associated with a soft-mode
displacive transition. Nevertheless, the principle is the same.
Structural transitions occur when a system acquires enough
thermal energy to overcome barriers in the energy landscape.
Whether we have a displacive transition or melting, the
change in structure is characterized by the barriers overcome.

Finally, it provides a distinction between the liquid and
gas phases other than simply their relative densities. Specifi-
cally, a liquid is formed when a solid obtains enough thermal
energy to overcome barriers associated with shape change,
while a gas is formed when the thermal energy approaches
the dissociation energy. In these calculations the dissociation
energy was kept fixed at unity. Only potentials with low
enough shape-change barriers to permit melting without
evaporation in MD simulations of;100 000 time steps were
considered. Of course, a free cluster would always evaporate
in a sufficiently long simulation.

V. CONCLUSIONS

Simple pair potentials can be constructed which stabilize
the square lattice over the hexagonal lattice in 2D. A form for
such potentials, Eq.~1!, has flexibility for easy adjustment to
give either square or hexagonal ground states. Obviously,
other functional forms could be chosen to achieve the same
result. The width of the potential must be great enough to
accommodate first and second neighbors of the square lat-
tice, but not wide enough to do the same for the hexagonal
lattice.

The energy of crystals as a function of small lattice strain
has been widely studied theoretically in order to compare
with experimentally observed elastic properties. However,
there has been very little study of crystals undergoing large
lattice strain. This is understandable from an experimental
point of view because crystals tend to break when they are
strained more than a few percent. On the other hand, accurate
calculations carried out for large lattice strains provide new
insights and even new metastable structures for well-known
elemental systems.17,18 The calculations reported here and
previously~for 3D systems! suggest that the energy of crys-
tals as a function of large lattice strains is important for de-
termining properties of condensed matter at high tempera-
tures.
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