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Molecular-dynamics study of the melting of hexagonal and square lattices in two dimensions
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Simple pair potentials are discussed which give hexagonal- and square-lattice ground states in two dimen-
sions. Molecular-dynamics calculations for these potentials are used to study transitions between the two
lattices and melting. The melting temperature is found to be a minimum near the point where the barrier
between the two structures, as a function of lattice strain, is also a minimum.

[. INTRODUCTION one can stabilize the square lattice if the second neighbors of
the square lattice are brought into the range of the potential
One of the most basic properties to consider in the comwithout including the second neighbors of the hexagonal lat-
parison of two- and three-dimension@D and 3D systems tice. Ladd and Hoovémoted this could be achieved by ap-
is the structure of the ground state of a collection of identicaplying pressure to particles interacting with piecewise
particles. Some general differences are well known. For exHooke’s law potentials. In general, a potential which is just
ample, in 3D the ground-state structure at constant volumwide enough to lower the energy substantially from the
depends on the type of repulsive interactfdnteractions of ~ second-nearest-neighbor interactions of a square lattice, but
the form 1f" favor close-packed structures for largeand  not so wide as to achieve the same for a hexagonal lattice,
more open structures far<7. On the other hand, the hex- can be expected to produce a square-lattice ground state.
agonal(or triangulay lattice is always favored for such po- Such a potential can be effectively modeled by the sum of
tentials in 2D~ More recently, Zabinskahas shown that two Gaussians and arif term for repulsion at short range:
the square lattice can never be stable for potentials with the

form V(r)=A/r"+B/r™. V(r)=a/r**—ciexg —by(r—ry)?]
More general considerations also seem to favor the hex- 2
i ; : —coex —by(r—ry)“]. D
agonal lattice. One can show, from a Voronoi-construction 2 2 2

definition of coordination number and a theorem due to Eu- - . . .
ler, that the average coordination humber of a periodic 2D To optimize the conditions for prqducmg a square-la}ttlce
system is exactly six, that of the hexagonal lattice. This car? outnd ?E{?}tgé M ShOUI? be aphproigrgately?, th_e c?elfﬂ- |
be interpreted as suggesting, based on geometrical consid&'?(;]tiq '((ajth au;c,]smlr& bermts) S tor? . e a%)]rox;n}?tey equa
ations alone, that sixfold coordination is special, and there@Nd their widihs should be abou ajf—r,. Thea/r “term

fore, to be expected regardless of the interactions. On th@rovides a hard repulsive interaction, but it should not domi-

other hand, this definition of coordination number can be"ate except for<r,. We choose, =1, ¢,/a=2,b,=b,=8,

physically unrealistic, e.g., an infinitesimal distortion of the
square lattice is identified as sixfold coordinated by this defi-
nition.

For these reasons, and the fact that pair potentials applied 1,
thus far give hexagonal ground states, there seems to be a
general perception that simple pair potentials necessarily
produce hexagonal ground states in 2D. In this paper we
demonstrate that this is not the case. A class of potentials is
considered that can have either hexagonal- or square-lattice
ground states depending on the value of a single adjustable
parameter(Fig. 1). We then examine, using molecular- g o0
dynamics simulation with selected potentials, transitions be-
tween the two structures, and consider the influence of the
variations in the potential on the melting temperature.

Interatomic Potential

¢,/c, = 0 (solid)
¢/c, = 1 (dash)

-05 -

II. THE POTENTIAL

Consider a monatomic lattice in two dimensions with  -1.0 ; :
. . . . . 1.5 2.0 2.5
nearest-neighbor separation The hexagonal lattice has six .
nearest neighbors, while the square lattice has only four.
However,.the square lattice has its four next—n_earest neigh- FIG. 1. The pair potentiglEq. (1)] with parameters as given in
bors relatively nearer than the next-nearest neighbors of th@e text andc,/c;=0 (solid curve, hexagonal-lattice ground sjate
hexagonal latticey2r , compared ta/3r . This suggests that andc,/c;=1 (dashed curve, square-lattice ground State
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solid- hexagonal, dash- square the nearest neighbgr&eeping the area/atom fixed, then the
20— ; T ' ‘ ' ‘ strained lattice is again perfectly hexagonal. The curves in
Fig. 3 were obtained by increasing the expansion factor from
1 to v3 while minimizing the energy with respect to expan-
sion direction and area/atom. For future reference, the energy
change along such a curve will be called the minimum strain
(MS) barrier. One could just as well plot these curves in
terms of a strain which takes the square lattice into itself.
Specifically, an expansion of 61\/5)/2 along directions
making the angles of arctpfl+ \/5)/2], or arctap2/(1
+\/§)], with respect to nearest-neighbor directions, trans-
forms the square lattice into its€lf.

Energy/atom

lIl. MOLECULAR-DYNAMICS RESULTS

3%8 08 10 11 12 13 14 15 In this section we examine the results of molecular-

Area dynamics(MD) calculations obtained using(r) (above for
selected values af,/c,; with r,=1.425. We choose to carry
out simulations on free clusters of atoms because solids with-
out free surfaces can readily superheat above the melting
temperature T,,,), either in MD simulations using periodic
boundary conditions, or in coated clusters, both
experimentally and in MD simulatior®. For convenience,
the mass and Boltzmann’s constant are taken to be unity. In
these units the temperature for a 2D system is simply the
average kinetic energy, or half the average velocity squared.
There is a vast literature dealing with the properties of
elting in two dimensions. For a recent review, see Glaser
nd Clark!® Much of the work attempts to determine the

FIG. 2. Energy of the hexagondkolid curve$ and square
(dashed curvedattices as a function of the unit-cell area for poten-
tials with c,/c,=0.7 and 0.9.

and scalé/(r) so its minimum value is-1. At this point one
could changeV(r) gradually from producing hexagonal to
square-lattice ground states by fixing=c, and varyingr,
from 1 to approximatelw?, or by fixing r, and varying
c,/c,. We choose the latter, with,=1.425, a value selected
to give nearly the same equilibrium area in both hexagonalln
and square lattices when the equilibrium energies of the twg

lattices are nearly degenerate. Curves ¥gr) with ¢,=0 precise nature of the transition, whether it is first order or

andc,/c, =1 are shown in Fig. 1. . ._continuous, and whether or not it is preceded by a transfor-
The energy as a function of area .for the two .Iattlces ®mation to a “hexatic” phase. Of course, all of the work deals
shown in Fig. 2 for two values afZ/(?l: 0.7, for which the . with the melting of the hexagonal lattice. Here we are inter-
two structures _have nearly equ_al minima and 0.9, for Wh'd]ested only in determining approximate values for the melting
the square Iattm;e has sgpstanhally lower energy. temperature as a function of the parameter that changes the
The chqngg in the minimum energy from that of .the hex'system from one that melts from the hexagonal lattice to one
agonal lattice is plotted as a function of shear strain for S€iat melts from the square lattice.

lected values ot,/c, in Fig. 3. If the hexa_lgon_al I_attlce IS Clusters with approximately circular shape were prepared
expanded by?3 along any of three special directiofies to from the bulk minimum energy lattices. Small random dis-
placements of the atoms were included at the beginning of
the simulations to aid in thermalization. In a typical run the
energy was increased by a small amon0.01/atom every
~10 000 time stepéstep size of 0.0g by appropriately scal-
ing the velocities, until the cluster had clearly melted. Melt-
ing was identified by the onset of diffusion. This was moni-
tored by computing the average square of the displacement
of atoms per unit time from their positions at some earlier
time:

Energy change

1 N
D*={t=tg & (O —ritto) 1 @

Separate averages were taken over atoms whidh, atere
. ‘ . within selected radiiR; , with R;_;<r;(ty) <R;, to monitor
1.0 12 14 16 diffusion in different parts of the cluster. Since each cluster
Expansion factor was prepared without linear or angular momentum, and scal-
FIG. 3. Energy change from the hexagonal-lattice value as 41g the velocities does not change these quantities, any
function of expansion factor and minimized with respect to expan-change in atomic positions over a long period of time either
sion direction and area/atom for the potentials with/c,  represents diffusion within the cluster or evaporation, which
=0.3, 0.4,...,1.0. The extrema at1.3 correspond to the square- was independently monitored. Melting occurred before the
lattice structure. onset of evaporation in clusters with/c,>~0.3. Values for
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FIG. 4. Melting temperaturétriangles and MS barrier(solid FIG. 5. Position plot for 8192 time steps of =213 cluster of
curve as a function oft,/c, for N~200 atom clusters. atoms interacting with the,/c;=0.75 potential aff~0.01 after

removing energy from the liquid at a rate of 0.01/atom/8192 steps.

T,, were defined to correspond to the onset of diffusion in the
innermost region of the clusters. with an overall shape which is nearly circuldfig. 6). Ap-
Results forT,,, obtained forN~200 atom clusters, are parently the longer run was sufficient to form a more favor-
plotted in Fig. 4, along with the MS barriers, as a function ofably shaped surface, which involved both lattice types. The
c,/c,. The T, values are considered accurate to withinafter-freezing structure of a larger clustdN=385 was
~10%. While longer runs could improve this accuracy, thefound to be a single-domain square lattice for both the above
trend in Fig. 4 is clearT,,, decreases with increasimg/c, to  quench rates, consistent with the fact that surface effects are
approximately the point where the MS barrier is minimum, expected to be less important for larger clusters.
and then increases beyond that point. The trend is the same The ¢,/c;=0.7 potential has nearly degenerate square-
for smaller(N~100) clusters, although the melting tempera- and hexagonal-lattice energies, with the square lattice win-
tures are generally smaller by15%. ning by only 0.015/atom. Thus, one would expect a stronger
Simulations were carried out for decreasing as well agnfluence of the hexagonal structure in clusters with this po-
increasing energy. Meltin(freezing was found to be revers- tential, especially when considering the fact that the hexago-
ible in the sense that the temperature and diffusion as a funsal lattice has lower energy for a wide range of ar¢zg.
tion of energy,T(E) and D(E), were essentially the same 2). Indeed, this was found to be the case. A qualitative dif-
upon heating or cooling. Small nonlinear featuresTi{E)  ference was seen in the diffusion as a function of temperature
were apparent near the melting point, but these were natompared to results obtained for the other potentials. Three
examined in detail. A better analysis of these features coul@luster sizes were considerel;=89, 213, and 385. The
be achieved by running for longer times on a finer energyN=89 atom clusters seemed to have three temperature
mesh. However, our purpose was simply to identify an apfanges with qualitatively different diffusion characteristics:
proximate value off,,, and this was accomplished most eas-T<~0.04 where the diffusion was zere;,0.04<T<~0.08,
ily from the onset of diffusion.
With the exception of the,/c;=0.7 and 0.75 casdslis-
cussed separately belpwthe structure returned to that of its
ground state after melting and refreezing. The precise after-

freezing structures differed from the before-melted structures 8 et e,

only in lattice orientations and minor shape changes. A I
The after-freezing structures for tlg/c,;=0.75 clusters ol R

showed some influence of the hexagonal lattice even though “ ce e .

the square lattice is nearly 0.05/atom lower in energy than
the hexagonal lattice. A position plot of the structure ob- g
tained after reducing the temperature frofs=0.15 (well

aboveT,,) to T=~0.01 by removing energy at a rate of 0.01 4 et tel o . s
per atom every 8192 time steps is shown in Fig. 5. The ol ; N
blackened areas are regions of space that were occupied by | R

an atom in a sequence of, in this case, 8192 steps. Notice that
the cluster has a single square-lattice domain with some dis-

tortions near the edges. However, the shape of the cluster is %6 12 s 4 o 4 8 12
clearly not optimal. Another simulation at a two-times slower x
guench rate(0.005/atom/8192 stepsproduced a multido- FIG. 6. Same as in Fig. 5 with half the quench ré€05/atom/

mained structure with both square and hexagonal regiong192 steps
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12 , , : k , , , period of 8192 time steps. Above the melting temperature,
plots covering the same time period show an almost com-
pletely blackened circular region.

IV. DISCUSSION

The approximate correlation between melting temperature
and MS barrier, previously identified for 3D solitlsand
now, for 2D solids as well(Fig. 4), suggests a general
mechanism for melting: A solid melts when it acquires
enough thermal energy to traverse the energy “landscape”
associated with large lattice strain, or, more general types of
shape change that, perhaps, could be described in terms of
some sort of lattice defect§.Bear in mind, of course, that it

2 s 5 ” ) 2 P 12 is unrealistic to characterize the entire portion of the energy
X landscape that could be important in melting with a single

FIG. 7. Position plot for 8192 time steps of ai=199, Pparameter. Nevertheless, the idea is appealing for a number
c,/c;=0.5, cluster aff =0.14, showing surface melting. of reasons.

First of all, it incorporates other previously proposed
where there was clearly diffusion, but it was relatively low mechanisms involving defects, surfaces, and elastic proper-
and increased at a qualitatively lower rate with increasingies. Since elastic constants are given by the curvature of the
temperature than fofF >~0.08. The results foN=213 were energy as a function of lattice strain, one would expect elas-
similar except the diffusion was much lower in the tically stiff lattices to correlate with large MS barriers, and
intermediate-temperature region. Calculations for the 38%ience, high melting temperatures. Crystal instabilities at fi-
atom cluster showed even lower, essentially zero, diffusiomite strain, derived in terms of elastic stiffness coefficients,
in this region. Additional analysis in this temperature rangehave been related to the limit of metastability in the super-
showed the structure had large predominately hexagonal réseating of defect free crystals without surfaéédn a finite
gions which persisted for long periods of time, and thesecrystal, displacements associated with lattice strain are great-
periods increased with increasitg Thus we conclude that est at the surface. Thus, one would expect disorder associ-
the c,/c,=0.7 potential has a structural transformation fromated with strain dynamics to develop first at the surface, per-
square to hexagonal with increasing temperaturg~a0.04, haps in the form of defects. The role of defects can be
before it melts aff ~0.08. Removing energy from the liquid explored in the context of large strain deformation by con-
state at the rate of 0.01/atom/8192 steps produced mixedidering a many-atom computational cell. With a large num-
phase structures for the smaller clusters, similar to thaber of atoms per unit cell, the structures associated with
shown in Fig. 6. However, the same quench rate applied tshape change may involve defects. To illustrate this point, an
the N=385 atom cluster produced a single-domain hexagoMD simulation was carried out for a computational unit cell
nal structure at low temperatur€6<0.04). of 60 atoms interacting with the,/c;=0.5 potential and

Surface melting was observed in varying degrees for alperiodic boundary conditions. The cell shape was gradually
clusters studied. This is illustrated in Figs. 7 and 8 with po-changed, over-16 000 time steps, according to the MS pre-
sition plots for two clusters with hexagonal and square latscription, while maintaining a constant temperature of
tices just below their melting temperatures. Each covers a-0.04. The results in Fig. 9 illustrate a defect-mediated

shape change. After 1600 steps the structu(a) is basically
12 ‘ . . , . , , the same as the unstrained structure except the interatomic
separations are-7% longer in thex direction and~7%
shorter in they direction. After~200 more steps the struc-
ture becomes defective, as shown(lim. With another~200
steps, the defects move to create a lattice with a small orien-
1 tational change from the original one. This type of adjust-
ment to the changing cell shape happened several more times
during the simulation, to produce, finally, the structurédn
One would expect a defect-mediated shape change to be in-
creasingly more important for systems where low MS barri-
ers are unavailable. This could be willy, increases initially
at about the same rate as the MS barrier, on both sides of the
minimum (Fig. 4), and then more gradually, compared to the
MS barrier, away from the minimum.
. . . Secondly, it places melting in the same category as many
4 8 12 other structural phase transitions. Born’s theory of meltthg,
which later was considered to be a failure by most people,

FIG. 8. Position plot for 8192 time steps of a=213, including Born himself® is one of the earliest attempts to

c,/c1=0.9, cluster af=0.1, showing surface melting. relate a structural transition to a soft mode. Subsequently, the
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12 . ; . . k ‘ . Finally, it provides a distinction between the liquid and
e e e e e .. . . gas phases other than simply their relative densities. Specifi-
sl @ L, o, S ] cally, a liquid is formed when a solid obtains enough thermal
e 4 e v a <. energy to overcome barriers associated with shape change,
e while a gas is formed when the thermal energy approaches
4t AP TR 1 the dissociation energy. In these calculations the dissociation
A A energy was kept fixed at unity. Only potentials with low
> ol et Tre 77T ] enough shape-change barriers to permit melting without
e, " evaporation in MD simulations of 100 000 time steps were

C) ...."-

considered. Of course, a free cluster would always evaporate
in a sufficiently long simulation.

V. CONCLUSIONS

Simple pair potentials can be constructed which stabilize
L a2z s 4 y PR the square lattice over the hexagonal lattice in 2D. A form for
such potentials, Ed1), has flexibility for easy adjustment to
give either square or hexagonal ground states. Obviously,
FIG. 9. Position plots for selected portions of Bir=60 atom  gther functional forms could be chosen to achieve the same
bulk (computational cell with periodic boundary conditiprssmu- result. The width of the potential must be great enough to
lation for thec,/c;=0.5 potential, in which the computational cell 5-:ommodate first and second neighbors of the square lat-
shape was gradually changed according to the MS condition, whilﬁce’ but not wide enough to do the same for the hexagonal
maintaining a temperature 6f0.04:(a), (b), and(c) illustrating the lattice.
ﬁrst defect-mediated structural reconfiguration, &idshowing the The energy of crystals as a function of small lattice strain
final structure. has been widely studied theoretically in order to compare
b)yvith experimentally observed elastic properties. However,
there has been very little study of crystals undergoing large
lattice strain. This is understandable from an experimental

This is a correct picture, if it is understood that the observed©!Nt of view because crystals tend to break when they are
mode softening results from highly anharmonic motion assoStrained more than a few percent. On the other hand, accurate

ciated with a landscape involving energy barriers: rathel;:alculations carried out for large lattice strains provide new
than, simply, from the dynamics associated \,Nith ainsights and even new metastable structures for well-known

glemental system<:'8 The calculations reported here and

temperature-dependent change in a certain harmonic portior™ . \v(for 3D hat th ¢
of the landscape. Clearly, the landscape associated with lgprevious y(for systemssuggest that the energy of crys-

tice strain, or, more generally, shape change, is a much mOItéIIS asa functlor]['of Ia;ge Ia(;tlce sctjralnsttls Imtpﬁ.rtini for de-
complicated function than that associated with a soft-modd€"MINing properties of condensed matter at high tempera-

displacive transition. Nevertheless, the principle is the samdU'es:
Structural transitions occur when a system acquires enough
thermal energy to overcome barriers in the energy landscape.
Whether we have a displacive transition or melting, the The author is grateful for helpful discussions with J. Q.
change in structure is characterized by the barriers overcom8roughton and T. Chou.

X ol

idea was successfully applied to displacive transitions
Cochran and other$.It has become customary to think of
displacive transitions as the “freezing-in” of soft modes.
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